Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 Internet Draft Hiroaki Satou, NTT Intended Status: Hiroshi Ohta, NTT Informational Expires:AugustJanuary Christian Jacquenet, France Telecom22, 20083, 2009 Tsunemasa Hayashi, NTT Haixiang He, Nortel NetworksFebruary 25, 2007July 1, 2008 AAA and Admission Control Framework for Multicasting<draft-ietf-mboned-multiaaa-framework-06.txt><draft-ietf-mboned-multiaaa-framework-07.txt> Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents asInternet- Drafts.Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 This Internet-Draft will expire onAugust 22, 2008.January 3, 2009. Copyright Notice Copyright (C) The IETF Trust (2008). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Abstract IP multicast-based services, such as TV broadcasting or videoconferencing raise the issue of making sure that potential customers are fully entitled to access the corresponding contents. There is indeed a need for service and content providers to identify users (if not authenticate, especially within the context of enforcing electronic payment schemes) and toinvoice such customers in a reliableretrieve statistical information for accounting purposes, as far as content andefficient manner.network usage are concerned. This memo describes the framework for specifying the Authorization, Authentication and Accounting (AAA) capabilities that could be activated within the context of the deployment and the operation of IP multicast-based services. This framework addresses the requirements presented indraft-ietf-mboned-maccnt-req-04.txt,"Requirements for Accounting, Authentication and Authorization in Well Managed IP MulticastingServices".Services" [I-D.mboned-maccnt-req]. The memo provides a basic AAA enabled model as well as an extended fully enabled model with resource and admission control coordination. Table of Contents 1. INTRODUCTION 4 1.1 PURPOSE AND BACKGROUND 4 2. DEFINITIONS AND ABBREVIATIONS 5 2.1 DEFINITIONS 5 2.2 ABBREVIATIONS 6 3. COMMON USE MODELS AND NETWORK ARCHITECTURE IMPLICATIONS 7 4. FRAMEWORK AND ROLES OF ENTITIES89 4.1 "AAA FRAMEWORK IN MULTICAST-ENABLED ENVIRONMENTS89 4.1.1 MULTIPLE CPS ARE CONNECTED TO MULTIPLE NSPS 9 4.1.2 MULTIPLE CPS ARE CONNECTED TO A SINGLE NSP1011 4.1.3 A SINGLE CP IS CONNECTED TO MULTIPLE NSPS1011 4.1.4 A SINGLE CP IS CONNECTED TO SINGLE NSP1011 4.2 USER ID1112 4.2.1 CP-ASSIGNED USER ID1112 4.2.2 NSP-ASSIGNED USER ID1112 4.3 ACCOUNTING1213 4.4 ACCESS CONTROL AND CP SELECTION BY NSP1314 4.5 ADMISSION CONTROL INFORMATION BY NSP1314 4.6 ACCESS CONTROL AND DISTINGUISHING OF USERS BY CP1415 Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 4.7 AAA PROXY IN NSP1415 5.1 BASIC CONNECTION MODEL1516 5.2 CONSTITUENT LOGICAL FUNCTIONAL COMPONENTS OF THE FULLY ENABLED AAA FRAMEWORK1517 5.3 MODULARITY OF THE FRAMEWORK1921 6. IANA CONSIDERATIONS1921 7. SECURITY CONSIDERATIONS1921 8. CONCLUSION1921 1. Introduction 1.1 Purpose and Background IP multicasting is designed to serve cases of group communication schemes of any kind, such as1-to-none-to-many (case of TV broadcasting services for example) orn-to-pmany-to- many (case of videoconferencing services, for example). In these environments, IP multicast provides a better resource optimization than using a unicast transmission scheme, where data need to be replicated as many times as there are receivers. Activation of IP multicast capabilities in networks yields the establishment and the maintenance of multicast distribution trees that are receiver-initiated by nature: multicast-formatted data are forwarded to receivers who explicitly request them. IP multicast-based services, such as TV broadcasting or videoconferencing raise the issue of making sure that potential customers are fully entitled to access the corresponding contents. There is indeed a need for service and content providers to identify (if not authenticate, especially within the context of enforcing electronic payment schemes) and to invoice such customers in a reliable and efficient manner. Solutions should consider a wide range of possible content delivery applications: content delivered over the multicast network may include video, audio, images, games, software and information such as financial data, etc. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 This memo describes a framework for specifying the Authorization, Authentication and Accounting (AAA) capabilities that could be activated within the context of the deployment and the operation of IP multicast-based services. This memo also describes a framework to realize high-quality multicast transport using a Multicast Admission Control Function (MACF) with multicast Authorization. Specifically, this framework addresses the requirements presented indraft-ietf-mboned-maccnt-req-05.txt,"Requirements for Multicast AAA coordinated between Content Provider(s) and Network Service Provider(s)"MACCNT-REQ- draftwhich describes the requirements in CDN services using IPmulticast[1].multicast. The requirements are derived from: - need for user tracking and billing capabilities - need for network access control to satisfy the requirements of the Network Service Provider (NSP) and/or content access control to satisfy the requirements of the Content Provider (CP) - methods for sharing information between the network service provider and content provider to make it possible to fulfill the above two requirements. [I-D.mboned-maccnt- req] Detailed requirements are presented inMACCNT-REQ-draft."Requirements for Accounting, Authentication and Authorization in Well Managed IP Multicasting Services" [I-D.mboned-maccnt-req]. These requirements include mechanisms for recording end- user requests and provider responses for content-delivery, sharing user information (possibly anonymously depending on the trust model) between content provider and network service provider, and protecting resources through the prevention of network and content access by unauthorized users, as well as other AAA related requirements. The purpose of this memo is to provide a generalized framework for specifying multicast-inferred AAA capabilities that can meet these requirements. This framework is to provide a basis for future work of investigating the applicability of existing AAA protocols to provide these AAA capabilities in IP multicast specific context and/or if deemed necessary, the refining or defining of protocols to provide these capabilities. 2. Definitions and Abbreviations 2.1 Definitions Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 For the purpose of this memo the following definitions apply: Accounting: The set of capabilities that allow the retrieval of a set of statistical data that can be defined on a per customer and/or a per service basis, within the context of the deployment of multicast-based services. Such data are retrieved for billing purposes, and can be retrieved on a regular basis or upon unsolicited requests. Such data include (but are not necessarily limited to) the volume of multicast-formatted data that have been forwarded to the receiver over a given period of time, the volume of multicast-formatted data that have been exchanged between a receiver (or set of) and a given source over a given period of time (e.g. the duration of a multicast session), etc. Authentication: action for identifying a user as a genuine one. Authorization: The set of capabilities that need to be activated to make surea given requesting customer is (1) what he claims to be (identification purposes), and (2)an authenticated user is fully entitled to access a set ofservices (authentication purposes).services. Join: Signaling mechanism used by receivers to indicate they want to access a multicast group and receive the corresponding traffic. Leave: Signaling mechanism used by receivers to indicate they want to leave a multicast group and not receive the corresponding traffic anymore. Receiver: an end-host or end-client which receives content. A receiver may be identified by a network ID such as MAC address or IP address. User: a human with a user account. A user may possibly use multiple reception devices. Multiple users may use the same reception device.Note:(Note: The definition of a receiver (device) and a user (human) should not beconfused.confused.) 2.2 Abbreviations For the purpose of this draft the following abbreviations apply: AAA: Authentication.Authorization.and Accounting ACL: Access Control List Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 AN: Access Node CDN: Content Delivery Network CDS: Content Delivery Services CP: Content Provider CP-AAA: Authentication, Authorization, and Accounting functions used by a Content Provider CPE: Customer Premise Equipment ID: Identifier IF: network interface mAAA: Authentication, Authorization, and Accounting functions activated in multicast-enabled environments MACF: Multicast Admission Control Function NAS: Network Access Server (RFC2881) NSP: Network Service ProviderTS: Transport SystemNSP-mAAA: Authentication, Authorization, and Accounting functions used by a Network Service provider QoS: Quality of Service 3. Common use models and network architecture implications In some cases a single entity may design and be responsible for a system that covers the various common high-level requirements of a multicasting system such as 1) content serving, 2) the infrastructure to multicast it, 3) network and content access control mechanisms. In many cases however the content provision and network provision roles are divided between separate entities.The MACCNT-REQ- draftCommonly, Content Providers (CP) do not build and maintain their own multicast network infrastructure as this is not their primary business area. CP often purchase transport and management services from network service providers instead. Similarly Network Service Providers (NSP) may not make their business in providing content. [I-D.mboned- maccnt-req] provides more detail of the multiple versussingle entity CDSInternet Draft AAA and Admission Control Framework for Multicasting July, 2008 single-entity Content Delivery Service (CDS) network models.As such it should not be assumed that the entity responsible for the multicasting structure and the entity responsible for content serving are the same. Indeed because the infrastructure for multicasting is expensive and many content holders are not likely to be competent at building and maintaining complicated infrastructures necessary for multicasting, many content holders would prefer to purchase transport and management services from a network service provider and thus shareIn theinfrastructure costs with other content holders. Similarly network service providers in many cases do not specialize in providing content and are unlikely to build and maintain such a resource-intensive system without a certain level of demand from content holders. The useusage modelofwhere a single NSPproviding multicastingprovides multicast services to multipleCPsCPs, the following general requirements fromMACCNT-REQ-draft[I-D.mboned-maccnt-req] apply: -Need for user tracking and billing capabilities -Need for QoS control such as resource management and admission control -Need for conditionalcontentmulticast access control satisfactory to the requirements of the CP -Methods for sharing information between the NSP and CP to make the above two possible When the NSP and CP are the same single entity then the general requirements are as follows. -Need for user tracking and user-billing capabilities -Need for access control and/or content protection at level the entity deems appropriate Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 4. Framework and Roles of Entities 4.1"AAAAAA Framework in Multicast-Enabled Environments A general high-level frameworkcan be represented as follows.is depicted in Figure 1. +------------------------------+ | user | | | +------------------------------+ |Access ^ Response | Request|V| +------------------------------+ | NSP | | | +------------------------------+ |Access ^ Response|Request | (Success) v| +------------------------------+ | CP | | | +------------------------------+ Figure11: High-level AAA framework in Multicast-Enabled Environments For the sake of simplicity, the above diagram portrays a case where there is a single NSP entity and a single CPentity,entity (one-to-one model), but multiple CPs can be connected to a single NSP (e.g. NSP may provide connections to multiple CPs to provide a wide selection of contentcategories.)categories: one-to-many model) It is also possible for a single CP to be connected to multiple NSP networks (e.g. network selection). Furthermore it is possible that the NSP and CP could be the same entity. A NSP and CP authenticate and authorize each other when they establish connectivity. Below the general case of multiple NSPs with multiple CPs is explained. Then, the various combinations of single and multiple CPs and NSPs are described in relation to the general case. 4.1.1 Multiple CPs are connected to multiple NSPs The user subscribes to multiple NSPs and multiple CPs in this usage case. The user selects a CP and a NSP when the user requests content. The NSP may be automatically selected by a user terminal: e.g. a fixed line NSP by a set top box or a mobile NSP by a mobile phone. In some usage Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 cases it is possible that the NSP used by a certain user will not always be the same. For example a user may have contracted with more than one NSP: one for fixed line access and another for mobile roaming access. The content may be associated with (or managed by) a specific CP. In this case, when the user selects content, the CP is automatically selected.TheRequests for multicast sent by the usershould send an Access-Requesttothea selected NSPwithshould include enough information not only for authentication by the CP but also for CP selection and admission control by the NSP. When an NSP receivesan Access-Requesta request for multicast from a user, the NSPselectsrequests the appropriate CPforto make sure that thereceived Access-Request and relaysuser is entitled to access the corresponding contentrequest.As the NSP is responsible for managing its network resources, the NSP may perform admission control.The NSP will allow access to thenetwork and contents conditional tomulticast service, depending on both theCP's content authorization resultresponse sent by the CP and theNSPs network availability.availability of resources operated by the NSP. That is, the NSPstartswill forward multicastflowtraffic towards the user only whenitthe NSP hasboth1) made sure the user is entitled to access the network resources operated by the NSP, 2) receivedan "accept" responsea confirmation from the CP that the user is entitled to access the content and2)(possibly) 3) determined that the network resources (e.g. bandwidth) are sufficient toservedeliver the multicastchannel.traffic to the user with the relevant level of quality. When neither ofthesethe first two conditions are met, the NSPdoeswill notstart the requestedforward multicastchannel.traffic to the user. Condition #3 may also be a showstopper. When the NSP already knows that network resources are insufficient or there is a network failure, the NSP may choose to notrelayrequest theAccess-Request toCP about theCP.user's ability to retrieve content. The NSP is also responsible forrelaying the Response message from the CP tonotifiying the user whetherthe userhe/she is eligible to receive content(in response to the corresponding Access-Request fromdepending on theuser toresponse sent by theCP.)CP. In casesthatwhere the NSP does not start multicasting because of its own network issues (e.g. lack of network resources or network failure), the NSP notifies the user with a reason for rejecting the request. A CP receives anAccess-Request relayed byinquiry from the NSP. The CP authenticates the NSP's identity and makes an authorization decision regarding theNSP'suser's eligibility toprovide usersaccessto itsthe requested contents. The CP is responsible forAuthenticationthe authentication andAuthorizationauthorization ofusers' access to contentusers so that they can access theCP manages. The CP hopes to collect accounting information related tocontent managed by theaccess of their content.CP. The CPresponds tonotifies the NSPregarding the relayed Access-Request.accordingly. When the CP cannot (e.g. error or resource issues) or decides not (e.g. policy issues) to deliver Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 content, the CP is responsible for notifying the NSPofabout the reason. It is up to the NSPhowto relay or translate the reasons for rejection to the user. A CP may delegate AAA responsibility to a NSP. 'AAA proxy in NSP' is described in 4.7 for this case. As defined in [I-D.mboned-maccnt-req], the CP may require the retrieval of accounting information related to the access of its content. 4.1.2 Multiple CPs are connected to a single NSP The user subscribes to a single NSP which provides multicastingof channelsfrom multiple CPs in this usage case. In this case the user does not select an NSP. The user selects a CP when the user requests content. The content may be associated with (or managed by) the specific CP, so that when the user selects content, the CP is automatically selected. The user should sendan Access-Requesta request for multicast to the specific NSP with enough information not only for authentication by the CP but also for CP selection and admission control by the NSP. The role of the NSP is the same as that described in 4.1.1. The role of a CP is the same as that described in 4.1.1. 4.1.3 A single CP is connected to multiple NSPsAIn this usage case, a user subscribes to multiple NSPs but only a singleCP in this usage case.CP. A user selects the NSP when the user requestscontentmulticast but the CP is fixed. The user should sendan Access-Requesta request for multicast to the selected NSP with enough information not only for authentication by the CP but also for admission control by the NSP. The role of the NSP is similar to the description in 4.1.1, with the exception that when a NSP receivesan Access- Requesta request from a user, NSPrelays itmakes an inquiry to the CP without CP selection. The role of the CP is the same as that described in 4.1.1. 4.1.4 A single CP is connected to single NSP In this case, a user subscribes to only one NSP and one CP. The user does not select a NSP and CP in this scenario.TheRequests for multicast sent by the usershould send an Access-Requesttothea selected NSPwithInternet Draft AAA and Admission Control Framework for Multicasting July, 2008 should include enough information not only for authentication by the CP but also for admission control by the NSP. The role for the NSP is the same as 4.1.3 The role of the CP is the same as the description in 4.1.1. The NSP and CP could be the same entity. In this case, the roles of the NSP and CP may be combined. 4.2 User ID Users may hold multiple user IDs: IDs which have been separately assigned for each subscriptionthey may have forto various NSPs and CPs. The NSPs and CPs manage the user IDs for their respective domains. A CP identifies a user by a user ID assigned by the CP itself. A NSP identifies a user by a user ID assigned by the NSP itself. The user IDs are only meaningful within the context of each domain. Users may hold multiple user IDs which have been separately assigned for each subscription they may have for various NSPs and CPs. 4.2.1 CP-assigned user ID CPs assign user IDs to their users. The user may have more than one CP-assigned user ID per specific CP. A usersends an Access-Requestrequests multicast to a NSP, the CP-assigned user ID should be indicated so that the CP can identify the user requesting content access. A NSP shouldrelaynotify the CP- assigned user IDfrom the userto the CP. A NSP should notsendshare aCP-assignedCP- assigned user IDtowith any CP except the one which assigned it and should not relay it at all if there is no appropriate CP that assigned the user ID. 4.2.2 NSP-assigned user ID NSPs assign user IDs to their users. A user may have more than one NSP-assigned user ID per a specific NSP. A usersends an Access-Requestrequests for multicast to a NSP, the NSP-assigned user ID may be indicated in the request so that the NSP can identify the user. The NSP should notrelayinform the NSP- assigned user ID to the CP for security reasons. The NSP may identify the multicast-access user by other methods than the NSP-assigned userID, e.g. by the access port. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 The actual mapping rules for NSP-assigned user IDs with CP- user assigned IDs in account logs is a matter for the providers and out of the scope of this framework. 4.3 Accounting There are some accounting issues specific to multicasting. An (S,G) should be recorded as a channel identifier. The last hop device, such as an IGMP or MLD router or an IGMP or MLD proxy, notifies the NSP'sAAAmAAA function of the (S,G) channel identifier. The NSP should notify the CP of the (S,G) information in the accounting report messages. A NSP records an accounting start corresponding to only the first Join for a specific user-access session. A NSP should not treat a "Join" response to a Query as the accounting start. A NSP records an accounting stop triggered by any of the following: 1) a user requested Leave, 2) a timeout of a multicast state or 3) a re-authentication failure. A NSP may also record an accounting stop due to network availability reasons such as failure. The NSP logs the reason for each accounting stop. Intermittent logs between the join and leave would allow for finer diagnostics and therefore could serve useful in billing discrepancies, and provide for a better estimation of the time-span that content wasmulticasted,multicast, in the event that users disconnect without sending leave messages. There are two levels of accounting report messaging. Messages in Accounting level 1 include a channel identifier, a user identifier, and the accounting start and stop time information. Accounting level 2 includes all information of Level 1, plus traffic volume information. QoS class is an optional item for each accounting level. Whether to send, and at what interval to send intermittent log information is optional for both levels. CP and NSPs may also agree to include additional option information in accounting messages of either level. The level of account report messaging between the NSP and CP may be either configured statically or can be dynamically requested by the CP in its response to the Access-Request relayed by the NSP to the CP. The determination of the actual level of report messaging is configured by the NSP at the NAS. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 In case of very fast channel changes, the amount of items logged by the NSP could become high. In order to reduce the number of report messages sent to the CP, the NSP can consolidate multiple sets of accounting information inside a single accounting report message.[4][I-D.ancp-framework] 4.4 Access Control and CP selection by NSP When a NSP receives an access request from a user, the NSP determines to which CP the request is to be directed. The NSP may select a CP based on CP-assigned userID with CP domain name or channel identifier (S,G). The user should include in the request sufficient information for CP selection. 4.5 Admission Control Information by NSP After authorizing a user request, the NSP may have further conditions for determining its admission control decision. The NSP receivestrafficparameters (such as QoS class, required bandwidth, burst-size, etc.) ofamulticastchannel.traffic. Such parameters serve as information to be considered in the admission control decision. The traffic parameters can be communicated as follows: - A CP may notify a mapping between the channel identifier (S,G) and traffic parameters in the Response message when the CP authorizes an access request. Such parameters may include required bandwidth, burst-size, QoS class downgrade policy, etc. - A user may indicate in the Request willingness to accept QoS class downgrade to best-effort streaming. - The NSP may maintain a mapping between channel identifier (S,G) and traffic parameters in advance, for example pre-configured by agreement between the CP and NSP on a per channel (S,G) basis. The ultimate admission decision is made by the NSP based on required traffic parameters of the requested, and available resources. In a case that it cannot guarantee the required network resources for the requestedchannel,multicast traffic, streaming the requestedchannelmulticast traffic as best-efforttrafficis optional. The user may indicate in his/her Access Request whether he/she will accept best-effort grade streaming if guaranteed class is not available. The CP's preference for accepting downgrading to best-effort streaming may be either configured statically or can be dynamically requested by the CP in its response to the Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 Access-Request relayed by the NSP to the CP. In the case that it cannot be offered a guaranteed QoS stream, the NSP may decidetoeither to decline admission or to stream the requestedchannelmulticast traffic asbest-effort traffic.best-effort. The NSP should not stream best-effort traffic if either the user or CP has indicated against best-effort provision. A NSP's admission control may manage integrated network resources for unicast usage, such as VoIP or unicast streaming, and multicast usage. Alternatively, it may manage network resources separately for unicast and multicast usage. In either ease, AAA and admission control framework for multicast usage is independent of unicast admission control. Such QoS measurement and policy mechanisms themselves depend on NSP policies and are out of the scope of this memo. 4.6 Access Control and Distinguishing of Users by CP The user ID and authentication information are forwarded transparently by the NSP so that the CP can distinguish the user, as well as authenticate and authorize the request. 4.7 AAA proxy in NSP A NSP may act as AAA proxy of a CP based upon an agreement between the NSP and the CP. The AAA proxy would store information about permissions of a specific user to receive multicast data from specified channel(s) up to specified expiration date(s) and time(s). If such proxying is implemented, the NSP may receive authorization conditions from a CP in advance and statically hold them, or a CP may send them dynamically in the Response message. In either case, the user has permission to receive multicastchanneltraffic and therefore the NSP starts the multicasting without querying the CP. The CP may send unsolicited requests to the NSP to refresh or change the permissions for a user for specific group(s) or channel(s). When a user is receiving multicastcontent andtraffic while the permission is about to expire, the NSP may send a notification to the user client that his session is about to expire, and that he will need toreauthenticate.re-authenticate. In such a case, the user will have to send the Access-Request. In the case that the user still has permission to the Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 content, they should be able to continue to receive thecontentmulticast traffic without interruption. When re-authentication fails, the NSP should stop the multicastchanneltraffic and record accounting stop. 5. Network Connection Model and Functional Components Section 3.1introducesintroduced the high-level AAA framework for multicasting. This section provides more detail on the network connection model and constituent functional components. 5.1 Basic Connection Model +------------------------------+ | receiver | | | +------------------------------+ | ^ Response | Request | V | +------------------------------+ | NSP's network | | | +------------------------------+ | ^ Response | Request | (Success) v | +------------------------------+ | CP's network | | | +------------------------------+ Figure 2: Basic Connection Model In the simple case represented in Figure 1 the NSP is the sole entity providing network resources including network access to theUser.multicast receiver. First auser that requests contentreceiver sendsan Accessa request for multicast (e.g. an IGMP Report message) to an NSP which may thenforwards it on toforward a mAAA request towards the appropriate CP forAuthenticationauthentication andAuthorizationauthorization purposes. The receiver gets information about a given multicast group (*,G) or channel (S,G) corresponding to the content beforehand for generating the request. The CP responds with either "success" or "failure". If "success", the NSPmay forward a success response and stream multicast datagrants access to theuser.receiver and forwards multicast traffic accordingly. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 In this model theuserreceiver selects the NSP to whichto send its content request.the Join request will be sent. Based on this request the NSP selects an appropriate CP to which it forwards the corresponding mAAA request. The CP responds to the NSP's m AAA request: it may not respond to another NSP in regards to the request. In this model, as described in section3.1,4.1, the relationship between NSP and CP can be1:1, 1:None-to-one, one-to- many orM:N. Usersmany-to-many. Receivers may connect to multiplenetworks, and networks have multiple users.networks. 5.2 Constituent Logical Functional Components of the fully enabled AAA Framework Requirements for "fully AAA and QoS enabled" IP multicasting networks were defined in MACCNT-REQ-draft. To allow for levels of enablement, this memo defines two models within the framework: "AAA enabled" multicasting and "Fully enabled AAA" multicasting which means "AAA enabled" with added admission control functions. Section 3.1 introduces the high-level AAA framework for multicasting. Below is a diagram of a AAA enabled multicasting network with AAA, including the logical components within the various entities. Internet Draft AAAenabled framework (basic model)and Admission Control Framework for Multicasting July, 2008 +-------------------------------+ | user | |+- - - - - - - - - - - - - - -+| || CPE || || || |+- - - - - | - - - - - - - - -+| +-----------|-------------------+ | -------|------ IFa | +-----------|-------------------+ | NSP | | |+- - - - - |- -_+ | ||TS | | | | +------|-+ | || | AN | | | | | |---------+ | || +------|-+ | | | | | IFb | | || +------|-+ | | +---------+| | | |----|-|mAAA || || | NAS | | | |(MACF *) || * optional | +--------+ +---------+| ||+- - - - - - - + | | +-----------------------|--------+ | -------|------ IFc | +-----------------------|-------+ | CP +---------+ | | | CP-AAA | | | +---------+ | +-------------------------------+ Figure23: AAA enabled framework (basic model) The user entity includes the CPE (Customer Premise Equipment) whichincludesconnects theuser host(s) and optionally a multicast proxy (not shown in the Figure 2.)receiver (s). The NSP (Network Service Provider) in the basic model includes the transport system and a logical element for multicast AAA functionality. Thetransport systemTS (transport system) is comprised of the access node and NAS(network access server.)(Network Access Server) An AN (Access Node) may be connecteddirectorydirectly to mAAA or a NAS relays AAA information between an AN and amAAAmAAA. Descriptions of AN and its interfaces are out of the scope for this memo. The multicast AAA function may be provided by amulticast AAA server (mAAA)mAAA which may include the functionby which thethat Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 downloads Join accesspolicy is downloadedcontrol lists to the NAS(conditional(this function is referred to conditional access policy control function.) Interface between mAAA and NAS The interface between mAAA and the NAS is labeled IFb in Figure 2. Over IFb the NASmakessends an access request to the NSP-mAAA and the mAAA replies. The mAAA may push conditional access policy to the NAS. CP-AAA The content provider may have its own AAA server which has the authority over access policy for its contents. Interface between user and NSP The interface between the user and the NSP is labeled IFa in Figure2.3. Over IFa the user makes a multicasting request to the NSP. The NSP may inreply sendreturn forward multicast traffic depending on the NSP and CP's policy decisions. Interface between NSP and CP The interface between the NSP and CP is labeled IFc. Over IFc the NSP requests to the CP-AAA for access to contents and the CP replies. CP may also send conditional access policy over this interface for AAA-proxying.Fully enabled frameworkInternet Draft AAA and Admission Control Framework for Multicasting July, 2008 +-------------------------------+ | user | |+- - - - - - - - - - - - - - -+| || CPE || || || |+- - - - - | - - - - - - - - -+| +-----------|-------------------+ | -------|------ IFa | +-----------|-----------------------+ |+- - - - - |- - _+ + - - - - - + |||TS|| | | | | | | | +------|-+ | +--------+ | || | AN | | | | | MACF || | | | | | | | | || +------|-+ | | | +---|----+| | | | | | | | | | | | IFd----- | | | | | IFb | | | || +------|---+ | | | +---|----+| | | | |---|---| mAAA | | || | NAS | | | | |(MACF *)|| | * optional | +----------+ | +--------+ | ||+- - - - - - - -+ - - |- - - - -+ | +-----------------------|-----------+ | -------|------ IFc | +-----------------------|-------+ | CP +---------+ | | | CP-AAA | | | +---------+ | +-------------------------------+ Figure34: Fully enabled framework In the fully enabled model the NSP also includes a component that provides network resource management (e.g. QoS management), as described in section 3.4, "Network Resource Management by NSP". In the fully enabled model (Figure 3) resource management and admission control is provided by MACF(multicast admission control function.)(Multicast Admission Control Function). This meansthat Beforethat, before replying to the user's multicastrequestrequest, the mAAA queries the MACF for a network resource access decision over the interface IFd. The MACF is responsible for allocating network resources for forwarding multicast traffic.So thatMACFhas the necessary network resource availability information,also receives Leave information from NASnotifiesso that MACFvia mAAA of the stopping of multicast traffic.releases corresponding reserved resources. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 5.3 Modularity of the framework In the interest of flexibility, this framework is modular so that it is possible that partially enabled versions of the models are supported. A AAA-enabled version provides AAA functionality without Network Resource management. A Network-Resource-Management-enabled (QoS-enabled) version provides Network Resource management without AAA functionality. Similarly, the possibility of one or more layers of transit provision between an NSP and CP is in the interest of modularity and extendibility. 6. IANA considerations This memo does not raise any IANA consideration issues. 7. Security considerationsRefer to section 3.3. Also theThe user information related to authentication with the CP and the information related to user accounting shared between the NSP and the CP must be protected in some way. Otherwise, this memo does not raise any new security issues which are not already addressed by the original protocols. Enhancement of multicast access control capabilities should enhance security performance. 8. Conclusion This memo provides a generalized framework for solution standards to meet the requirements. Further work should be done to specify the interfaces between the user and NSP, NAS and mAAA, mAAA and MACF and NSP-mAAA and CP-AAA (presented in 5.2.) Normative References[1][I-D.mboned-maccnt-req] Hayashi, et. al., "Requirements for Multicast AAA coordinated between Content Provider(s) and Network Service Provider(s)", draft-ietf-mboned-maccnt-req-05.txt, September 2007,06.txt, June 2008, Work in Progress.[2] RFC-3810, Vida, R. and L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", June 2004. [3] RFC-3376, Cain B., et.al., "Internet Group Management Protocol, Version 3", October 2002. [4][I-D.ancp-framework] Ooghe, et. al, "Framework and Requirements for an Access Node Control Mechanism in Broadband Multi- Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 Service Networks",draft-ietf-ancp-framework-05.txt, February 2008,draft-ietf-ancp-framework-04.txt, November 2007, Work in Progress. Authors' Addresses Hiroaki Satou NTT Network Service Systems Laboratories 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan Phone : +81 422 59 4683 Email : satou.hiroaki@lab.ntt.co.jp Hiroshi Ohta NTT Network Service Systems Laboratories 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan Phone : +81 422 59 3617 Email: ohta.hiroshi@lab.ntt.co.jp Christian Jacquenet France Telecom 3, avenue Francois Chateau CS 36901, 35069 Rennes Cedex, France Phone: +33 2 99 8763 3161 92 Email:christian.jacquenet@francetelecom.comchristian.jacquenet@orange-ftgroup.com Tsunemasa Hayashi NTT Network Innovation Laboratories 1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 Japan Phone: +81 46 859 8790 Email: tsunemasa@gmail.com Haixiang He Nortel 600 Technology Park Drive Billerica, MA 01801, USA Phone: +1 978 288 7482 Email: haixiang@nortel.com Comments Comments are solicited and should be addressed to the mboned working group's mailing list at mboned@lists.uoregon.edu_and/or the authors. Internet Draft AAA and Admission Control Framework for Multicasting July, 2008 Full Copyright Statement Copyright (C) The IETF Trust (2008). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Expiration This Internet-Draft will expire onAugust 22, 2008.January 3, 2009. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.