--- 1/draft-ietf-i2nsf-registration-interface-dm-12.txt 2021-10-04 08:13:19.206924337 -0700 +++ 2/draft-ietf-i2nsf-registration-interface-dm-13.txt 2021-10-04 08:13:19.286926334 -0700 @@ -1,23 +1,23 @@ I2NSF Working Group S. Hyun, Ed. Internet-Draft Myongji University Intended status: Standards Track J. Jeong, Ed. -Expires: 19 March 2022 T. Roh +Expires: 7 April 2022 T. Roh S. Wi Sungkyunkwan University J. Park ETRI - 15 September 2021 + 4 October 2021 I2NSF Registration Interface YANG Data Model - draft-ietf-i2nsf-registration-interface-dm-12 + draft-ietf-i2nsf-registration-interface-dm-13 Abstract This document defines an information model and a YANG data model for Registration Interface between Security Controller and Developer's Management System (DMS) in the Interface to Network Security Functions (I2NSF) framework to register Network Security Functions (NSF) of the DMS with the Security Controller. The objective of these information and data models is to support NSF capability registration and query via I2NSF Registration Interface. @@ -30,21 +30,21 @@ Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." - This Internet-Draft will expire on 19 March 2022. + This Internet-Draft will expire on 7 April 2022. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights @@ -67,38 +67,38 @@ 5.1. YANG Tree Diagram . . . . . . . . . . . . . . . . . . . . 9 5.1.1. Definition of Symbols in Tree Diagrams . . . . . . . 9 5.1.2. I2NSF Registration Interface . . . . . . . . . . . . 9 5.1.3. NSF Capability Information . . . . . . . . . . . . . 11 5.1.4. NSF Access Information . . . . . . . . . . . . . . . 12 5.2. YANG Data Modules . . . . . . . . . . . . . . . . . . . . 12 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 17 7. Security Considerations . . . . . . . . . . . . . . . . . . . 18 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.1. Normative References . . . . . . . . . . . . . . . . . . 19 - 8.2. Informative References . . . . . . . . . . . . . . . . . 20 + 8.2. Informative References . . . . . . . . . . . . . . . . . 21 Appendix A. XML Examples of I2NSF Registration Interface Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22 A.1. Example 1: Registration for the Capabilities of a General Firewall . . . . . . . . . . . . . . . . . . . . . . . . 22 A.2. Example 2: Registration for the Capabilities of a - Time-based Firewall . . . . . . . . . . . . . . . . . . . 25 + Time-based Firewall . . . . . . . . . . . . . . . . . . . 26 A.3. Example 3: Registration for the Capabilities of a Web - Filter . . . . . . . . . . . . . . . . . . . . . . . . . 29 + Filter . . . . . . . . . . . . . . . . . . . . . . . . . 30 A.4. Example 4: Registration for the Capabilities of a VoIP/ VoLTE Filter . . . . . . . . . . . . . . . . . . . . . . 33 A.5. Example 5: Registration for the Capabilities of a DDoS Mitigator . . . . . . . . . . . . . . . . . . . . . . . . 36 A.6. Example 6: Query for the Capabilities of a Time-based - Firewall . . . . . . . . . . . . . . . . . . . . . . . . 40 + Firewall . . . . . . . . . . . . . . . . . . . . . . . . 41 Appendix B. NSF Lifecycle Management in NFV Environments . . . . 43 - Appendix C. Acknowledgments . . . . . . . . . . . . . . . . . . 43 - Appendix D. Contributors . . . . . . . . . . . . . . . . . . . . 43 + Appendix C. Acknowledgments . . . . . . . . . . . . . . . . . . 44 + Appendix D. Contributors . . . . . . . . . . . . . . . . . . . . 44 Appendix E. Changes from draft-ietf-i2nsf-registration-interface-dm-11 . . . . . . 44 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 44 1. Introduction A number of Network Security Functions (NSF) may exist in the Interface to Network Security Functions (I2NSF) framework [RFC8329]. Since each of these NSFs likely has different security capabilities from each other, it is important to register the security @@ -144,22 +144,22 @@ repository, data definition language, query language, implementation language, and protocol. * Information Model: An information model is a representation of concepts of interest to an environment in a form that is independent of data repository, data definition language, query language, implementation language, and protocol. * YANG: This document follows the guidelines of [RFC8407], uses the common YANG types defined in [RFC6991], and adopts the Network - Management Datastore Architecture (NMDA). The meaning of the - symbols in tree diagrams is defined in [RFC8340]. + Management Datastore Architecture (NMDA) [RFC8342]. The meaning + of the symbols in tree diagrams is defined in [RFC8340]. 3. Objectives * Registering NSFs to I2NSF framework: Developer's Management System (DMS) in I2NSF framework is typically run by an NSF vendor, and uses Registration Interface to provide NSFs developed by the NSF vendor to Security Controller. DMS registers NSFs and their capabilities to I2NSF framework through Registration Interface. For the registered NSFs, Security Controller maintains a catalog of the capabilities of those NSFs. @@ -388,31 +388,29 @@ Security Controller uses the registration interface to query DMS about NSF(s) having the required capabilities. The following sections describe the YANG data models to support these operations. 5.1.2.1. NSF Capability Registration This section expands the i2nsf-nsf-registrations in Figure 5. NSF Capability Registration +--rw nsf-registrations - +--rw nsf-information* [capability-name] - +--rw capability-name string + +--rw nsf-information* [nsf-name] + +--rw nsf-name string +--rw nsf-capability-info | uses nsf-capability-info +--rw security-capability | uses ietf-i2nsf-capability +--rw performance-capability | uses performance-capability +--rw nsf-access-info - | uses nsf-access-info - +--rw capability-name +--rw ip +--rw port Figure 6: YANG Tree of NSF Capability Registration Module When registering an NSF to Security Controller, DMS uses this module to describe what capabilities the NSF can offer. DMS includes the network access information of the NSF which is required to make a network connection with the NSF as well as the capability description of the NSF. @@ -421,22 +419,21 @@ This section expands the nsf-capability-query in Figure 5. I2NSF Capability Query +---x nsf-capability-query +---w input | +---w query-nsf-capability | | uses ietf-i2nsf-capability +--ro output +--ro nsf-access-info - | uses nsf-access-info - +--rw capability-name + +--rw nsf-name +--rw ip +--rw port Figure 7: YANG Tree of NSF Capability Query Module Security Controller MAY require some additional capabilities to provide the security service requested by an I2NSF user, but none of the registered NSFs has the required capabilities. In this case, Security Controller makes a description of the required capabilities using this module and then queries DMS about which NSF(s) can provide @@ -484,45 +481,43 @@ This module is used to specify the performance capabilities of an NSF when registering or initiating the NSF. 5.1.4. NSF Access Information This section expands the nsf-access-info in Figure 6. NSF Access Information +--rw nsf-access-info - +--rw capability-name string +--rw ip inet:ip-address-no-zone +--rw port inet:port-number Figure 10: YANG Tree of I2NSF NSF Access Informantion This module contains the network access information of an NSF that is required to enable network communications with the NSF. The field of ip can have either an IPv4 address or an IPv6 address. 5.2. YANG Data Modules This section provides a YANG module of the data model for the registration interface between Security Controller and Developer's Management System, as defined in Section 4. This YANG module imports from [RFC6991], and makes a reference to [I-D.ietf-i2nsf-capability-data-model]. - file "ietf-i2nsf-reg-interface@2021-09-15.yang" + file "ietf-i2nsf-reg-interface@2021-10-04.yang" module ietf-i2nsf-reg-interface { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"; - prefix nsfreg; // RFC Ed.: replace occurences of XXXX with actual RFC number and // remove this note import ietf-inet-types { prefix inet; reference "RFC 6991"; } import ietf-i2nsf-capability { @@ -519,21 +514,21 @@ prefix nsfreg; // RFC Ed.: replace occurences of XXXX with actual RFC number and // remove this note import ietf-inet-types { prefix inet; reference "RFC 6991"; } import ietf-i2nsf-capability { - prefix cap; + prefix nsfcap; // RFC Ed.: replace YYYY with actual RFC number of // draft-ietf-i2nsf-capability-data-model and remove this note. reference "RFC YYYY: I2NSF Capability YANG Data Model"; } organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact @@ -543,37 +538,41 @@ Editor: Sangwon Hyun Editor: Jaehoon Paul Jeong "; description "This module defines a YANG data model for I2NSF Registration Interface. + The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', + 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', + 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this + document are to be interpreted as described in BCP 14 + (RFC 2119) (RFC 8174) when, and only when, they appear + in all capitals, as shown here. + Copyright (c) 2021 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; - // RFC Ed.: replace XXXX with actual RFC number and remove - // this note - - revision "2021-09-15" { + revision "2021-10-04" { description "Initial revision"; reference "RFC XXXX: I2NSF Registration Interface YANG Data Model"; // RFC Ed.: replace XXXX with actual RFC number and remove // this note } grouping nsf-performance-capability { description "Description of the performance capabilities of an NSF"; @@ -634,65 +635,62 @@ } } } grouping nsf-capability-info { description "Capability description of an NSF"; container security-capability { description "Description of the security capabilities of an NSF"; - uses cap:nsf-capabilities; + uses nsfcap:nsf-capabilities; + reference "RFC YYYY: I2NSF Capability YANG Data Model"; // RFC Ed.: replace YYYY with actual RFC number of // draft-ietf-i2nsf-capability-data-model and remove this note. - reference "RFC YYYY: I2NSF Capability YANG Data Model"; } container performance-capability { description "Description of the performance capabilities of an NSF"; uses nsf-performance-capability; } } grouping nsf-access-info { description "Information required to access an NSF"; - leaf capability-name { - type string; - description - "Unique name of this NSF's capability"; - } leaf ip { type inet:ip-address-no-zone; description "Either an IPv4 address or an IPv6 address of this NSF"; } leaf port { type inet:port-number; description "Port available on this NSF"; } } container nsf-registrations { description "Information of an NSF that DMS registers to Security Controller"; list nsf-information { - key "capability-name"; + key "nsf-name"; description "Required information for registration"; - leaf capability-name { + leaf nsf-name { type string; - mandatory true; description - "Unique name of this registered NSF"; + "The name of this registered NSF. The NSF name MUST be unique + to identify the NSF with the capability. The name can be an + arbitrary string including FQDN (Fully Qualified Domain + Name)."; } container nsf-capability-info { description "Capability description of this NSF"; uses nsf-capability-info; } container nsf-access-info { description "Network access information of this NSF"; uses nsf-access-info; @@ -701,31 +699,39 @@ } rpc nsf-capability-query { description "Description of the capabilities that the Security Controller requests to the DMS"; input { container query-nsf-capability { description "Description of the capabilities to request"; - uses cap:nsf-capabilities; + uses nsfcap:nsf-capabilities; + reference "RFC YYYY: I2NSF Capability YANG Data Model"; // RFC Ed.: replace YYYY with actual RFC number of // draft-ietf-i2nsf-capability-data-model and remove this note. - reference "RFC YYYY: I2NSF Capability YANG Data Model"; } } output { container nsf-access-info { description "Network access information of an NSF with the requested capabilities"; + leaf nsf-name { + type string; + description + "The name of this registered NSF. The NSF name MUST be + unique to identify the NSF with the capability. The name + can be an arbitrary string including FQDN (Fully Qualified + Domain Name)."; + } uses nsf-access-info; } } } } Figure 11: Registration Interface YANG Data Model 6. IANA Considerations @@ -855,20 +861,25 @@ [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . + [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., + and R. Wilton, "Network Management Datastore Architecture + (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, + . + [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, . [RFC8431] Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini, S., and N. Bahadur, "A YANG Data Model for the Routing Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431, September 2018, . @@ -877,23 +888,23 @@ . [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K., and R. Wilton, "YANG Library", RFC 8525, DOI 10.17487/RFC8525, March 2019, . [I-D.ietf-i2nsf-capability-data-model] Hares, S., Jeong, J. (., Kim, J. (., Moskowitz, R., and Q. Lin, "I2NSF Capability YANG Data Model", Work in Progress, - Internet-Draft, draft-ietf-i2nsf-capability-data-model-17, - 14 August 2021, . + Internet-Draft, draft-ietf-i2nsf-capability-data-model-19, + 28 September 2021, . 8.2. Informative References [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix Reserved for Documentation", RFC 3849, DOI 10.17487/RFC3849, July 2004, . [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks Reserved for Documentation", RFC 5737, @@ -909,36 +920,36 @@ [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018, . [I-D.ietf-i2nsf-nsf-monitoring-data-model] Jeong, J. (., Lingga, P., Hares, S., Xia, L. (., and H. Birkholz, "I2NSF NSF Monitoring Interface YANG Data Model", Work in Progress, Internet-Draft, draft-ietf- - i2nsf-nsf-monitoring-data-model-09, 24 August 2021, + i2nsf-nsf-monitoring-data-model-10, 15 September 2021, . + monitoring-data-model-10.txt>. [RFC9061] Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez- Garcia, "A YANG Data Model for IPsec Flow Protection Based on Software-Defined Networking (SDN)", RFC 9061, DOI 10.17487/RFC9061, July 2021, . [I-D.ietf-nvo3-vxlan-gpe] (Editor), F. M., (editor), L. K., and U. E. (editor), "Generic Protocol Extension for VXLAN (VXLAN-GPE)", Work - in Progress, Internet-Draft, draft-ietf-nvo3-vxlan-gpe-11, - 6 March 2021, . + in Progress, Internet-Draft, draft-ietf-nvo3-vxlan-gpe-12, + 22 September 2021, . [nfv-framework] "Network Functions Virtualisation (NFV); Architectureal Framework", ETSI GS NFV 002 ETSI GS NFV 002 V1.1.1, October 2013. Appendix A. XML Examples of I2NSF Registration Interface Data Model This section describes XML examples of the I2NSF Registration Interface data model under the assumption of registering several @@ -947,53 +958,52 @@ A.1. Example 1: Registration for the Capabilities of a General Firewall This section shows an XML example for registering the capabilities of a general firewall in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. - general_firewall_capability + general_firewall - cap:next-header - cap:source-address - cap:destination-address - cap:source-port-number - cap:destination-port-number + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address + nsfcap:source-port-number + nsfcap:destination-port-number - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - 1000 5000 1000 5000 @@ -999,23 +1009,22 @@ 5000 1000 5000 - general_firewall 192.0.2.11 - 3000 + 49152 Figure 12: Configuration XML for Registration of a General Firewall in an IPv4 Network Figure 12 shows the configuration XML for registering a general firewall in an IPv4 network [RFC5737] and its capabilities as follows. @@ -1031,56 +1040,56 @@ 4. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 5. The NSF can support IPsec not through IKEv2, but through a Security Controller [RFC9061]. 6. The NSF can have processing power and bandwidth. 7. The IPv4 address of the NSF is 192.0.2.11. - 8. The port of the NSF is 3000. + 8. The port of the NSF is 49152. - general_firewall_capability + general_firewall - cap:next-header - cap:source-address - cap:destination-address - cap:source-port-number - cap:destination-port-number + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address + nsfcap:source-port-number + nsfcap:destination-port-number - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 @@ -1088,23 +1097,22 @@ 5000 1000 5000 - general_firewall 2001:DB8:0:1::11 - 3000 + 49152 Figure 13: Configuration XML for Registration of a General Firewall in an IPv6 Network In addition, Figure 13 shows the configuration XML for registering a general firewall in an IPv6 network [RFC3849] and its capabilities as follows. @@ -1117,67 +1125,68 @@ 3. The NSF can inspect the port number(s) and flow direction for the transport layer protocol, i.e., TCP and UDP. 4. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 5. The NSF can have processing power and bandwidth. 6. The IPv6 address of the NSF is 2001:DB8:0:1::11. - 7. The port of the NSF is 3000. + 7. The port of the NSF is 49152. A.2. Example 2: Registration for the Capabilities of a Time-based Firewall This section shows an XML example for registering the capabilities of a time-based firewall in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. - time_based_firewall_capability + time_based_firewall - cap:absolute-time - cap:periodic-time + nsfcap:absolute-time + nsfcap:periodic-time - cap:next-header - cap:source-address - cap:destination-address - cap:source-port-number - cap:destination-port-number + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address + nsfcap:source-port-number + nsfcap:destination-port-number - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror + - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 @@ -1185,23 +1194,22 @@ 5000 1000 5000 - time_based_firewall 192.0.2.11 - 3000 + 49152 Figure 14: Configuration XML for Registration of a Time-based Firewall in an IPv4 Network Figure 14 shows the configuration XML for registering a time-based firewall in an IPv4 network [RFC5737] and its capabilities as follows. @@ -1215,60 +1223,61 @@ address(es), IPv4 destination address(es), TCP source port number(s), and TCP destination port number(s). 4. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 5. The NSF can have processing power and bandwidth. 6. The IPv4 address of the NSF is 192.0.2.11. - 7. The port of the NSF is 3000. + 7. The port of the NSF is 49152. - time_based_firewall_capability + time_based_firewall - cap:absolute-time - cap:periodic-time + nsfcap:absolute-time + nsfcap:periodic-time - cap:next-header - cap:source-address - cap:destination-address - cap:source-port-number - cap:destination-port-number + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address + nsfcap:source-port-number + nsfcap:destination-port-number - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop + - cap:mirror + nsfcap:mirror 1000 5000 @@ -1276,23 +1285,22 @@ 5000 1000 5000 - time_based_firewall 2001:DB8:0:1::11 - 3000 + 49152 Figure 15: Configuration XML for Registration of a Time-based Firewall in an IPv6 Network In addition, Figure 15 shows the configuration XML for registering a time-based firewall in an IPv6 network [RFC3849] and its capabilities as follows. @@ -1306,58 +1314,58 @@ address(es), IPv6 destination address(es), TCP source port number(s), and TCP destination port number(s). 4. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 5. The NSF can have processing power and bandwidth. 6. The IPv6 address of the NSF is 2001:DB8:0:1::11. - 7. The port of the NSF is 3000. + 7. The port of the NSF is 49152. A.3. Example 3: Registration for the Capabilities of a Web Filter This section shows an XML example for registering the capabilities of a web filter in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. - web_filter + web_filter - cap:user-defined + nsfcap:user-defined - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 @@ -1362,27 +1370,25 @@ 1000 5000 1000 5000 - - web_filter 192.0.2.11 - 3000 + 49152 Figure 16: Configuration XML for Registration of a Web Filter in an IPv4 Network Figure 16 shows the configuration XML for registering a web filter in an IPv4 network [RFC5737] and its capabilities are as follows. @@ -1391,53 +1397,53 @@ 2. The NSF can inspect URL from a pre-defined database or a added new URL by user (user-defined). 3. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 4. The NSF can have processing power and bandwidth. 5. The IPv4 address of the NSF is 192.0.2.11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. - web_filter + web_filter - cap:user-defined - cap:pre-defined + nsfcap:user-defined + nsfcap:pre-defined - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 @@ -1445,24 +1451,24 @@ 5000 1000 5000 - web_filter 2001:DB8:0:1::11 - 3000 + 49152 + Figure 17: Configuration XML for Registration of a Web Filter in an IPv6 Network In addition, Figure 17 shows the configuration XML for registering a web filter in an IPv6 network [RFC3849] and its capabilities are as follows. @@ -1471,60 +1477,59 @@ 2. The NSF can inspect URL from a pre-defined database or a added new URL by user (user-defined). 3. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 4. The NSF can have processing power and bandwidth. 5. The IPv6 address of the NSF is 2001:DB8:0:1::11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. A.4. Example 4: Registration for the Capabilities of a VoIP/VoLTE Filter This section shows an XML example for registering the capabilities of a VoIP/VoLTE filter in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. - voip_volte_filter + voip_volte_filter - cap:call-id + nsfcap:call-id - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop - + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 @@ -1532,23 +1537,22 @@ 5000 1000 5000 - voip_volte_filter 192.0.2.11 - 3000 + 49152 Figure 18: Configuration XML for Registration of a VoIP/VoLTE Filter in an IPv4 Network Figure 18 shows the configuration XML for registering a VoIP/VoLTE filter in an IPv4 network [RFC5737] and its capabilities are as follows. @@ -1557,77 +1561,76 @@ 2. The NSF can inspect a call id for VoIP/VoLTE packets. 3. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 4. The NSF can have processing power and bandwidth. 5. The IPv4 address of the NSF is 192.0.2.11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. - voip_volte_filter + voip_volte_filter - cap:call-id + nsfcap:call-id - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror 1000 5000 + 1000 5000 1000 5000 - - voip_volte_filter 2001:DB8:0:1::11 - 3000 + 49152 Figure 19: Configuration XML for Registration of a VoIP/VoLTE Filter in an IPv6 Network Figure 19 shows the configuration XML for registering a VoIP/VoLTE filter in an IPv6 network [RFC3849] and its capabilities are as follows. @@ -1636,72 +1639,72 @@ 2. The NSF can inspect a call id for VoIP/VoLTE packets. 3. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 4. The NSF can have processing power and bandwidth. 5. The IPv6 address of the NSF is 2001:DB8:0:1::11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. A.5. Example 5: Registration for the Capabilities of a DDoS Mitigator This section shows an XML example for registering the capabilities of a DDoS mitigator in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. - anti_DDoS + anti_DDoS - cap:packet-rate + nsfcap:packet-rate - cap:flow-rate + nsfcap:flow-rate - cap:byte-rate + nsfcap:byte-rate - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:rate-limit + nsfcap:rate-limit - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:rate-limit + nsfcap:rate-limit 1000 5000 @@ -1709,25 +1712,22 @@ 5000 1000 5000 - - http_and_https_flood_mitigation - 192.0.2.11 - 3000 + 49152 Figure 20: Configuration XML for Registration of a DDoS Mitigator in an IPv4 Network Figure 20 shows the configuration XML for registering a DDoS mitigator in an IPv4 network [RFC5737] and its capabilities are as follows. @@ -1737,68 +1737,66 @@ 2. The NSF can detect the amount of packet, flow, and byte rate in the network for potential DDoS Attack. 3. The NSF can determine whether the packets are allowed to pass, drop, or mirror. 4. The NSF can have processing power and bandwidth. 5. The IPv4 address of the NSF is 192.0.2.11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. - - anti_DDoS - + anti_DDoS - cap:packet-rate + nsfcap:packet-rate - cap:flow-rate + nsfcap:flow-rate - cap:byte-rate + nsfcap:byte-rate - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:rate-limit + nsfcap:rate-limit - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:rate-limit + nsfcap:rate-limit 1000 5000 @@ -1806,23 +1804,22 @@ 5000 1000 5000 - anti_DDoS 2001:DB8:0:1::11 - 3000 + 49152 Figure 21: Configuration XML for Registration of a DDoS Mitigator in an IPv6 Network In addition, Figure 21 shows the configuration XML for registering a DDoS mitigator in an IPv6 network [RFC3849] and its capabilities are as follows. @@ -1832,141 +1829,142 @@ 2. The NSF can detect the amount of packet, flow, and byte rate in the network for potential DDoS Attack. 3. The NSF can determine whether the packets are allowed to pass, drop, mirror, or rate-limit. 4. The NSF can have processing power and bandwidth. 5. The IPv6 address of the NSF is 2001:DB8:0:1::11. - 6. The port of the NSF is 3000. + 6. The port of the NSF is 49152. A.6. Example 6: Query for the Capabilities of a Time-based Firewall This section shows an XML example for querying the capabilities of a time-based firewall in either IPv4 networks [RFC5737] or IPv6 networks [RFC3849]. absolute-time periodic-time - cap:next-header - cap:source-address - cap:destination-address + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - time-based-firewall + time_based_firewall 192.0.2.11 - 3000 + 49152 Figure 22: Configuration XML for Query of a Time-based Firewall in an IPv4 Network Figure 22 shows the XML configuration for querying the capabilities of a time-based firewall in an IPv4 network [RFC5737]. The access information of the announced time-based firewall has the IPv4 address - of 192.0.2.11 and the port number of 3000. + of 192.0.2.11 and the port number of 49152. absolute-time periodic-time - cap:next-header - cap:source-address - cap:destination-address + nsfcap:next-header + nsfcap:source-address + nsfcap:destination-address - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror - cap:pass + nsfcap:pass - cap:drop + nsfcap:drop - cap:mirror + nsfcap:mirror + - time-based-firewall + time_based_firewall 2001:DB8:0:1::11 - 3000 + 49152 Figure 23: Configuration XML for Query of a Time-based Firewall in an IPv6 Network In addition, Figure 23 shows the XML configuration for querying the capabilities of a time-based firewall in an IPv6 network [RFC3849]. The access information of the announced time-based firewall has the - IPv6 address of 2001:DB8:0:1::11 and the port number of 3000. + IPv6 address of 2001:DB8:0:1::11 and the port number of 49152. Appendix B. NSF Lifecycle Management in NFV Environments Network Functions Virtualization (NFV) can be used to implement I2NSF framework. In NFV environments, NSFs are deployed as virtual network functions (VNFs). Security Controller can be implemented as an Element Management (EM) of the NFV architecture, and is connected with the VNF Manager (VNFM) via the Ve-Vnfm interface [nfv-framework]. Security Controller can use this interface for the purpose of the lifecycle management of NSFs. If some NSFs need to be