I2NSF Working Group S. Hyun Internet-Draft Chosun University Intended status: Standards Track J. Jeong Expires:May 8,September 12, 2019 T. Roh S. Wi Sungkyunkwan University J. Park ETRINovember 4, 2018March 11, 2019 I2NSF Registration Interface YANG Data Modeldraft-ietf-i2nsf-registration-interface-dm-01draft-ietf-i2nsf-registration-interface-dm-02 Abstract This document defines an information model and a YANG data model for Interface to Network Security Functions (I2NSF) Registration Interface between Security Controller and Developer's Management System (DMS). The objective of these information and data models is to support NSFsearch, instantiation andcapability registrationaccording to required security capabilitiesand query via I2NSF Registration Interface. Editorial Note (To be removed by RFC Editor) Please update these statements within the document with the RFC number to be assigned to this document: "This version of this YANG module is part of RFC XXXX;" "RFC XXXX: I2NSF Registration Interface YANG Data Model" "reference: RFC XXXX" Please update the "revision" date of the YANG module. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire onMay 8,September 12, 2019. Copyright Notice Copyright (c)20182019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . .23 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 4. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 4 5. Information Model . . . . . . . . . . . . . . . . . . . . . . 5 5.1. NSF Capability RegistrationMechanism. . . . . . . . . . . . . . . 55.2.5.1.1. NSFAccessCapability Information . . . . . . . . . . . . .. . . .65.3.5.1.2. NSFCapabilityAccess Information(Capabilities of an NSF Instance) . . . . . . .. . . . . . . . . . . . . . .. . 6 5.3.1. Performance Capabilities . . . . . . . . .8 5.2. NSF Capability Query . . . . .7 5.4. Role-based Access Control List. . . . . . . . . . . . . 8 6. Data Model . . . . . . . . . . . . . . . . . . . . . . . . .98 6.1.High-LevelYANG Tree Diagram . . . . . . . . . . . . . . . . . . . .. 98 6.1.1. Definition of Symbols in Tree Diagrams . . . . . . . 9 6.1.2. I2NSF Registration Interface . . . . . . . . . . . .. . . 109 6.1.3.Registration Request . . . . . . . . . . . . . . . . 10 6.1.4. Instance Management Request . . . . . . . . . . . . . 10 6.1.5.NSF Capability Information . . . . . . . . . . . . . 116.1.6.6.1.4. NSF Access Information . . . . . . . . . . . . . . .12 6.1.7. NSF Performance Capability . .11 6.2. YANG Data Modules . . . . . . . . . . .12 6.1.8. Role-Based ACL(Access Control List). . . . . . . . . 126.2. YANG Modules . . .7. IANA Considerations . . . . . . . . . . . . . . . . . . .13 6.2.1. XML Example of Registration Interface Data Model. .17 7.16 8. Security Considerations . . . . . . . . . . . . . . . . . . .19 8.17 9. References . . . . . . . . . . . . . . . . . . . . . . . . .19 8.1.17 9.1. Normative References . . . . . . . . . . . . . . . . . .19 8.2.17 9.2. Informative References . . . . . . . . . . . . . . . . .1917 Appendix A.NSF Lifecycle Managmenet in NFV EnvironmentsXML Example of Registration Interface Data Model . . 19 A.1. Example 1: Registration for Capabilities of General Firewall . .21 Appendix B. Changes from draft-ietf-i2nsf-registration- interface-dm-00. . . . . . . . . . . . . . . . . .21 Appendix C. Acknowledgments. . . . 19 A.2. Example 2: Registration for Capabilities of Time based Firewall . . . . . . . . . . . . . .21 Appendix D. Contributors. . . . . . . . . . 20 A.3. Example 3: Registration for Capabilities of Web Filter . 22 A.4. Example 4: Registration for Capabilities of VoIP/VoLTE Filter . . . . . . . . .21 Authors' Addresses. . . . . . . . . . . . . . . . 24 A.5. Example 5: Registration for Capabilities of HTTP and HTTPS Flood Mitigation . . . . . . .22 1. Introduction A number of virtual. . . . . . . . . . 26 A.6. Example 6: Query for Capabilities of Time based Firewall 28 Appendix B. NSF Lifecycle Managmenet in NFV Environments . . . . 29 Appendix C. Changes from draft-ietf-i2nsf-registration- interface-dm-01 . . . . . . . . . . . . . . . . . . 29 Appendix D. Acknowledgments . . . . . . . . . . . . . . . . . . 29 Appendix E. Contributors . . . . . . . . . . . . . . . . . . . . 30 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 30 1. Introduction A number of network securityfunction instances typicallyfunctions may exist in Interface to Network Security Functions (I2NSF) framework [RFC8329]. Since theseNSF instances mayNSFs likely have different security capabilities, it is important to register the security capabilities of each NSFinstanceinto the securitycontroller after they have been created.controller. In addition, it is required to searchor instantiateNSFs of some required security capabilities on demand. As an example, if additional security capabilities are required tomeet the newserve some securityrequirements thatservice request(s) from an I2NSFuser requests,user, the security controller should be able to request the DMS for NSFs that have the required security capabilities. This document describes an information model (see Section 5) and a YANG[RFC6020][RFC7950] data model (see Section 6) for the I2NSF Registration Interface [RFC8329] between the security controller and the developer's management system (DMS) to support NSFsearch, instantiationcapability registration and query and NSF initiation request via the registrationaccording to required security capabilities.interface. It also describes theprocedureoperations which should be performed by the security controller and the DMS via the Registration Interface using the defined model. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 3. Terminology This document uses the following terms defined in [i2nsf-terminology], [capability-im], [RFC8329], [nsf-triggered-steering], [supa-policy-data-model], and [supa-policy-info-model] o Network Security Function (NSF): A function that is responsible for specific treatment of received packets. A Network Security Function can act at various layers of a protocol stack (e.g., at the network layer or other OSI layers). Sample Network Security Service Functions are as follows: Firewall, Intrusion Prevention/ Detection System (IPS/IDS), Deep Packet Inspection (DPI), Application Visibility and Control (AVC), network virus and malware scanning, sandbox, Data Loss Prevention (DLP), Distributed Denial of Service (DDoS) mitigation and TLS proxy. [nsf-triggered-steering] oAdvanced Inspection/Action: As like the I2NSF information model for NSF facing interface [capability-im], Advanced Inspection/ Action means that a security function calls another security function for further inspection based on its own inspection result. [nsf-triggered-steering] o NSF Profile (NSF Capability Information): NSF Capability Information specifies the inspection capabilities of the associated NSF instance. Each NSF instance has its own NSF Capability Information to specify the type of security service it provides and its resource capacity etc. [nsf-triggered-steering] oData Model: A data model is a representation of concepts of interest to an environment in a form that is dependent on data repository, data definition language, query language, implementation language, and protocol. [supa-policy-info-model] o Information Model: An information model is a representation of concepts of interest to an environment in a form that is independent of data repository, data definition language, query language, implementation language, and protocol. [supa-policy-info-model] o YANG: This document follows the guidelines of [RFC6087], uses the common YANG types defined in [RFC6991], and adopts the Network Management Datastore Architecture (NMDA). The meaning of the symbols in tree diagrams is defined in [RFC8340]. 4. Objectives o Registering NSFs to I2NSF framework: Developer's Management System (DMS) in I2NSF framework is typically run by an NSF vendor, and uses Registration Interface to provide NSFs developed by the NSF vendor to Security Controller. DMS registers NSFs and their capabilities to I2NSF framework through RegistrationInterface, so thatInterface. For the registered NSFs, Security Controllercan usemaintains a catalog of the capabilities of thosecapabilities by instantiating the NSFs once they are required. Once NSFs are registered to I2NSF framework, a catalog of the NSFs and their capabilities is created and provided to Security Controller. When we consider the implementation of I2NSF framework based on NFV technology, the catalog of the NSFs may be prepared and managed by NFV MANO. o Updating theNSFs. o Updating the capabilities of registered NSFs: After an NSF is registered intoI2NSF framework,Security Controller, some modifications on the capability of the NSF may be required later. In this case, DMS uses Registration Interface to update the capability of the NSF, and this update should be reflected on the catalog of NSFs. oRetrieving the catalog of NSFs:Querying DMS about some required capabilities: Security Controlleruses Registration Interfacemay need some additional capabilities toretrieveserve thecatalog of available NSFs and their capabilities. Enforcing security policy requires a set ofsecuritycapabilities that is provided by a set of NSFs. Once receiving aservice requestof security policyfrom an I2NSF user,Security Controller figures out what capabilities are required to enforce the security policy. Security Controller then searches the catalog of NSFs for the required capabilities, and finally determines a setbut none ofNSFs that is necessary to enforcetherequested policy. o Requesting NSF instantiation: If someregistered NSFsneed to be instantiated to enforce requested security policy, Security Controller makes a request to instantiate them through Registration Interface. Or if an NSF, running as a virtual NSF inhas theNFV environment, is not used by any traffic flows for a time period,required capabilities. In this case, Security Controller mayrequest deinstantiating it through Registration Interface forquery DMS about NSF(s) that can provide thepurpose of efficient resource utilization.required capabilities via Registration Interface. 5. Information Model The I2NSF registration interface is used by Security Controller and Developer's Management System (DMS) in I2NSF framework. The following summarizes theprocess typicallyoperations done through the registration interface: 1) DMS registers NSFs and their capabilities toI2NSF framework throughSecurity Controller via the registration interface. DMS also uses the registration interface to update the capabilities of the NSFs registeredin the framework.previously. 2)Once NSFs are registered to I2NSF framework, a catalog of the NSFs and their capabilities is created and providedIn case that Security Controller fails to find any registered NSF that can provide some required capabilities, Security Controller queries DMS about NSF(s) having the required capabilities via the registration interface.3) Security Controller searchesFigure 1 shows thecataloginformation model ofNSFs forthecapabilities required to enforce security policies requested byI2NSFusers, and selects some of the NSFs that can provide the required capabilities. 4) Security Controller requests the instantiation of the selected NSFs via theregistrationinterface. This section clarifies the information model thatinterface, which consists of three submodels: NSF capability registration, and NSF capability query. Each submodel isrequired to supportused for theprocess describedoperations listed above. The remainder of this section will provide more in-depth explanations of each submodel. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | I2NSF Registration Interface Information Model | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | | | NSF Capability | | NSF Capability | | | | Registration | | Query | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: I2NSF Registration Interface Information Model 5.1. NSF Capability RegistrationMechanism In orderThis submodel is used by DMS to registera new NSF, DMS should generate a registration messagean NSF to Security Controller.A registration message consists of anFigure 2 shows how this submodel is constructed. The most important part in Figure 2 is the NSFcapability informationcapability, andan NSF Access Information. The former describesthis specifies thesecurity capabilityset of capabilities that thenewNSF to be registered canprovide andoffer. The NSF Name contains a unique name of this NSF with the specified set of capabilities. When registering the NSF, DMS additionally includes thelatter is for enablingnetwork accesstoinformation of the NSFfrom other components. After this registration process, as explained in [capability-im],which is required to enable network communications with theI2NSFNSF. The following will further explain the NSF capabilityinterface can conduct controllinginformation andmonitoringthenew registered NSF. +-+-+-+-+-+-+-+-+NSF access information in more detail. +-+-+-+-+-+-+-+-+-+ | NSF Capability | | Registration |+-+-+-+-^-+-+-+-++-+-+-+-^-+-+-+-+-+ |+-------------------------------------++---------------------+--------------------+ | | | | | |+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+| NSFCapability| | NSFAccess |Capability| | NSFRold-basedAccess | |InformationName | | Information | |ACLInformation |+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+Figure1:2: NSF Capability RegistrationMechanismSub-ModelOverview 5.2.5.1.1. NSFAccessCapability Information NSFAccessCapability Informationcontainsbasically describes thefollowings that are required to communicate withsecurity capabilities of anNSF: IPv4 address, IPv6 address, port number, and supported transport protocol(s) (e.g., Virtual Extensible LAN (VXLAN) [RFC 7348], Generic Protocol Extension for VXLAN (VXLAN-GPE) [draft-ietf-nvo3-vxlan-gpe], Generic Route Encapsulation (GRE), Ethernet etc.). In this document, NSF Access Information is used to identify a specific NSF instance (i.e. NSF Access Information is the signature(unique identifier) of an NSF instance in the overall system). 5.3. NSF Capability Information (Capabilities of an NSF Instance) NSF Profile basically describes the inspection capabilities of an NSF instance.NSF. In Figure2,3, we show capability objects of anNSF instance.NSF. Following the information model of NSF capabilities defiend in [capability-im], we share the same security capabilities:Network-SecurityNetwork Security Capabilities,Content-SecurityContent Security Capabilities, and Attack Mitigation Capabilities. Also, NSFProfileCapability Information additionally contains the performance capabilitiesand role-Based access control list (ACL)of an NSF as shown in Figure2. +-+-+-+-+-+-+-+-+3. +-+-+-+-+-+-+-+-+-+ | NSF Capability | |ObjectsInformation |+-+-+-+-^-+-+-+-++-+-+-+-^-+-+-+-+-+ | | +---------------+-------+--------------+ | | | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ ||Network-Security|Network Security ||Content-Security|Content Security | | | Capabilities | | Capabilities | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | | +-----------------------+--------------+ | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | Performance | |Attack Mitigation| | Capabilities | | Capabilities | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ Figure2:3: NSFProfile Overview 5.3.1.Capability Information 5.1.1.1. Performance Capabilities This information represents the processing capability of an NSF. This information can be used to determine whether the NSF is in congestion by comparing this with the workload that the NSF currently undergoes. Moreover, this information can specify an available amount of each type of resources such as processing power which are available on the NSF. (The registration interface can control the usages and limitations of the created instance and make the appropriate request according to the status.) As illustrated in Figure3,4, this information consists of two items: Processing and Bandwidth. Processing information describes the NSF's available processing power. Bandwidth describes the information about available network amount in two cases, outbound, inbound. This two information can be used for the NSF's instance request. +-+-+-+-+-+-+-+-+-+ | Performance | | Capabilities | +-+-+-+-^-+-+-+-+-+ | +----------------------------+ | | | | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ | Processing | | Bandwidth | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ Figure3:4: Performance Capability Overview5.4. Role-based5.1.2. NSF AccessControl List This information specifies access policies of anInformation NSF Access Information contains the followings that are required todetermine whethercommunicate with an NSF: IPv4 address, IPv6 address, port number, and supported transport protocol(s) (e.g., Virtual Extensible LAN (VXLAN) [RFC 7348], Generic Protocol Extension for VXLAN (VXLAN-GPE) [draft-ietf-nvo3-vxlan-gpe], Generic Route Encapsulation (GRE), Ethernet etc.). In this document, NSF Access Information is used topermit or denyidentify a specific NSF instance (i.e. NSF Access Information is theaccesssignature(unique identifier) of anentity to theNSFbased on the role given toinstance in theentity. Eachoverall system). 5.2. NSFis associated with a role- based access control list (ACL) so that it can determine whetherCapability Query Security Controller may require some additional capabilities topermit or denyserve theaccesssecurity service request from anentity. Figure 4 and Figure 5 show the structureI2NSF user, but none of therole-based ACL, which is composed of role-id, access-type, and permit/deny. The role-id identifies roles of entities (e.g., administrator, developer etc.). The access- type identifiesregistered NSFs has thespecific typerequired capabilities. In this case, Security Controller makes a description ofaccess requests such as NSF rule configuration/update and NSF monitoring. Consequently,therole- based ACLrequired capabilities by using the NSF capability information sub-model inFigure 4Section 5.1.1, andFigure 5 specifiessends DMS aset of access-types to be permitted and to be denied by each role-id. +-+-+-+-+-+-+-+-+ | Role-based | | ACL | +-+-+-+-+-+-+-+-+ | +-----------------------------------+ | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | Role-id 1 | ... | Role-id N | +-+-+-+-+-+-+ +-+-+-+-+-+-+ Figure 4: Role-based Access Control List +-+-+-+-+-+-+-+-+ | Role-id i | +-+-+-+-+-+-+-+-+ | +---------------------------------+ | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | Permit | | Deny | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | | +------------------+ +------------------+ | | | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ |access-type| ... |access-type| |access-type| ... |access-type| | p1 | | pn | | d1 | | dn | +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ Figure 5: Role-id Subtreequery about which NSF(s) can provide these capabilities. 6. Data Model 6.1.High-LevelYANG Tree Diagram This section provides an overview of thehigh level YANG.YANG Tree diagram of the I2NSF registration interface. 6.1.1. Definition of Symbols in Tree Diagrams A simplified graphical representation of the data model is used in this section. The meaning of the symbols used in the following diagrams[i2rs-rib-data-model][RFC8431] is as follows: Brackets "[" and "]" enclose list keys. Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only). Symbols after data node names: "?" means an optional node and "*" denotes a "list" and "leaf-list". Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":"). Ellipsis ("...") stands for contents of subtrees that are not shown. 6.1.2. I2NSF Registration Interface module :ietf-i2nsf-regs-interface-modelietf-i2nsf-reg-interface +--rwregs-reqnsf-capability-registration | usesi2nsf-regs-req +--rw instance-mgnt-reqi2nsf-nsf-registrations rpcs : +---x nsf-capability-query | usesi2nsf-instance-mgnt-reqi2nsf-nsf-capability-query Figure6: High-Level5: YANG tree of I2NSF Registration InterfaceEach of these sections mirrorThe I2NSF registration interface is used for the following purposes. Developer's Management System (DMS) registers NSFs and their capabilities into Security Controller via the registration interface. In case that Security Controller fails to find any NSF among the registered NSFs which can provide some required capabilities, Security Controller uses the registration interface to query DMS about NSF(s) having the required capabilities. The following sectionsof Section 5. 6.1.3.describe the YANG data models to support these operations. 6.1.2.1. NSF Capability RegistrationRequestThis section expands thei2nsf-regs-reqi2nsf-nsf-registrations in Figure6.5. NSF Capability RegistrationRequest+--rwi2nsf-regs-reqi2nsf-nsf-registrations +--rw i2nsf-nsf-capability-registration* [nsf-name] +--rwnsf-capability-informationnsf-name string +--rw nsf-capability-info | usesi2nsf-nsf-capability-informationi2nsf-nsf-capability-info +--rw nsf-access-info | uses i2nsf-nsf-access-info Figure7: High-Level6: YANG tree ofI2NSF Registration RequestNSF Capability RegistrationRequest contains the capability information of newly createdWhen registering an NSF tonotify its capability toSecurityController. The request also contains Network Access Information so thatController, DMS uses this module to describe what capabilities theSecurity ControllerNSF can offer. DMS includes the network access information of the NSF which is required to make a network connection with the NSF as well as the capability description of the NSF.6.1.4. Instance Management Request6.1.2.2. NSF Capability Query This section expands thei2nsf-instance-mgnt-reqi2nsf-nsf-capability-query in Figure6. Instance Management Request +--rw i2nsf-instance-mgnt-req +--rw req-level uint16 +--rw req-id uint64 +--rw (req-type)? +--rw (instanciation-request) +--rw in-nsf-capability-information5. NSF Capability Query +---x i2nsf-nsf-capability-query +---w input | +---w query-i2nsf-capability-info |uses i2nsf-nsf-capability-information +--rw (deinstanciation-request) +--rw de-nsf-access-info| usesi2nsf-nsf-access-info +--rw (updating-request) +--rw update-nsf-capability-informationietf-i2nsf-capability +--ro output +--ro nsf-access-info | usesi2nsf-nsf-capability-informationi2nsf-nsf-access-info Figure8: High-Level7: YANG tree of NSF Capability Query Security Controller may require some additional capabilities to provide the security service requested by an I2NSFInstance Mgnt Request Instance management request consistsuser, but none oftwo types: instanciation- request, deinstanciation-request,the registered NSFs has the required capabilities. In this case, Security Controller makes a description of the required capabilities using this module andupdating-request. The instanciation-request is usedthen queries DMS about which NSF(s) can provide these capabilities. Use NETCONF RPCs torequest generation ofsend anew NSF instance with NSF Capability Information which specifies requiredNSF capabilityinformation. The deinstanciation-requestquery. Input data isused to remove an existing NSF with NSF Access Information. The updating nsf requestquery-i2nsf-capability-info and output data isusednsf- access-info. In Figure 7, the ietf-i2nsf-capability refers toupdating a existing NSf information with NSF capabilities. 6.1.5.the module defined in [i2nsf-capability-dm]. 6.1.3. NSF Capability Information This section expands thei2nsf-nsf-capability-informationi2nsf-nsf-capability-info in Figure76 and Figure8.7. NSF Capability Information +--rwi2nsf-nsf-capability-informationi2nsf-nsf-capability-info +--rw i2nsf-capability | uses ietf-i2nsf-capability +--rwperformance-capabilitynsf-performance-capability | usesi2nsf-nsf-performance-capsi2nsf-nsf-performance-capability Figure9: High-Level8: YANG tree of I2NSF NSF Capability Information In Figure9,8, the ietf-i2nsf-capability refers to the moduleietf-i2nsf- capabilitydefined in [i2nsf-capability-dm].We addThe i2nsf-nsf-performance-capability is used to specify the performance capabilitybecause it is absent in [i2nsf-capability-dm] and [netmod-acl-model] 6.1.6. NSF Access Information This section expands the i2nsf-nsf-access-info in Figure 7 and Figure 8. NSF Access Information +--rw i2nsf-nsf-access-info +--rw nsf-address inet:ipv4-address +--rw nsf-port-address inet:port-number Figure 10: High-Level YANGofI2NSF NSF Access Informantion This information is used by other components to accessan NSF.6.1.7.6.1.3.1. NSF Performance Capability This section expands thei2nsf-nsf-performance-capsi2nsf-nsf-performance-capability in Figure9.8. NSF Performance Capability +--rwi2nsf-nsf-performance-capsi2nsf-nsf-performance-capability +--rw processing | +--rw processing-average uint16 | +--rw processing-peak uint16 +--rw bandwidth | +--rw outbound | | +--rw outbound-average uint16 | | +--rw outbound-peak uint16 | +--rw inbound | | +--rw inbound-average uint16 | | +--rw inbound-peak uint16 Figure11: High-Level9: YANG tree of I2NSF NSF Performance CapabilityWhen the Security Controller requests the Developer Management System to create a new NSF instance, the performance capabilityThis module is used to specify the performancerequirementscapabilities of an NSF when registering or initiating thenew instance. 6.1.8. Role-Based ACL(Access Control List)NSF. 6.1.4. NSF Access Information This section expands theietf-netmod-acl-modeli2nsf-nsf-access-info in[netmod-acl-model]. Role-Based ACLFigure 6. NSF Access Information +--rwrole-based-acl uses ietf-netmod-acl-modeli2nsf-nsf-access-info +--rw nsf-instance-name string +--rw nsf-address inet:ipv4-address +--rw nsf-port-number inet:port-number Figure12: Role-Based ACL In [netmod-acl-model], ietf-netmod-acl-model refers10: YANG tree of I2NSF NSF Access Informantion This moduleietf- netmod-acl-model in [netmod-acl-model]. We add the role-based ACL because itcontains the network access information of an NSF that isabsent in [i2nsf-capability-dm].required to enable network communications with the NSF. 6.2. YANG Data Modules This section introduces a YANG data module for the information model of the required data for the registration interface between Security Controller and Developer's Management System, as defined in Section 5. <CODE BEGINS> file"ietf-i2nsf-regs-interface@2018-11-04.yang""ietf-i2nsf-reg-interface@2019-03-11.yang moduleietf-i2nsf-regs-interface {ietf-i2nsf-reg-interface{ yang-version 1.1; namespace"urn:ietf:params:xml:ns:yang:ietf-i2nsf-regs-interface";"urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"; prefixregs-interface;"iiregi"; import ietf-inet-types{ prefix inet; reference "RFC 6991"; } import ietf-i2nsf-capability{ prefix capa; reference "draft-ietf-i2nsf-capability -data-model-02"; } organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact "WG Web: <http://tools.ietf.org/wg/i2nsf> WG List: <mailto:i2nsf@ietf.org> WG Chair:Adrian Farrel <mailto:Adrain@olddog.co.uk> WG Chair:Linda Dunbar <mailto:Linda.duhbar@huawei.com> Editor: Sangwon Hyun <mailto:swhyun77@skku.edu> Editor: Jaehoon Paul Jeong <mailto:pauljeong@skku.edu> Editor: Taekyun Roh <mailto:tkroh0198@skku.edu> Editor: Sarang Wi <mailto:dnl9795@skku.edu> Editor: Jung-Soo Park <mailto:pjs@etri.re.kr>"; description "It defines a YANG datamodulemodel for RegistrationInterface.";Interface. Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; revision"2018-11-04"{2019-03-11 { description "Thesecondthird revision"; reference"draft-ietf-i2nsf-capability-data-model-01"; } list interface-container{ key "interface-name"; description "i2nsf-reg-interface-container"; leaf interface-name{ type string; description "interface name";"RFC XXXX: I2NSF Registration Interface YANG Data Model"; }container i2nsf-regs-reqrpc i2nsf-nsf-capability-query { description"The capability"Capability informationof newly created NSF to notify its capability tothat the SecurityController";Controller sends to the DMS"; input{ containernsf-capability-informationquery-i2nsf-capability-info { description"nsf-capability-information";"i2nsf capability information"; usesi2nsf-nsf-capability-information;"capa:nsf-capabilities"; reference "draft-ietf-i2nsf-capability -data-model-02"; } } output{ container nsf-access-info { description"nsf-access-info";"nsf access information"; uses i2nsf-nsf-access-info; }container ietf-netmod-acl-model{ description "netmod-acl-model"; uses ietf-netmod-acl-model;} } containeri2nsf-instance-mgnt-reqi2nsf-nsf-registrations{ description "i2nsf-nsf-registrations"; list i2nsf-nsf-capability-registration { key "nsf-name"; description"Required"Requeired information forinstanciation-request, deinstanciation-request and updating-request";registration"; leafreq-levelnsf-name { typeuint16; description "req-level"; } leaf req-id { type uint64;string; mandatory true; description"req-id";"nsf-name"; }choice req-type { description "req-type"; case instanciation-request { description "instanciation-request";containerin-nsf-capability-informationnsf-capability-info { description "nsf-capability-information"; usesi2nsf-nsf-capability-information; }i2nsf-nsf-capability-info; }case deinstanciation-request { description "deinstanciation-request";containerde-nsf-access-infonsf-access-info { description "nsf-access-info"; uses i2nsf-nsf-access-info; } }case updating-request { description "updating nsf's information"; container update-nsf-capability-information { description "nsf-capability-information"; uses i2nsf-nsf-capability-information; } } } }} groupingi2nsf-nsf-performance-capsi2nsf-nsf-performance-capability { description "NSF performance capailities"; container processing{ description "processing info"; leaf processing-average{ type uint16; description "processing-average"; } leaf processing-peak{ type uint16; description "processing peak"; } } container bandwidth{ description "bandwidth info"; containerinbound{outbound{ description"inbound";"outbound"; leafinbound-average{outbound-average{ type uint16; description"inbound-average";"outbound-average"; } leafinbound-peak{outbound-peak{ type uint16; description"inbound-peak";"outbound-peak"; } } containeroutbound{inbound{ description"outbound";"inbound"; leafoutbound-average{inbound-average{ type uint16; description"outbound-average";"inbound-average"; } leafoutbound-peak{inbound-peak{ type uint16; description"outbound-peak";"inbound-peak"; } } } } groupingi2nsf-nsf-capability-informationi2nsf-nsf-capability-info { description "Detail information of an NSF"; containerperformance-capability { uses i2nsf-nsf-performance-caps; description "performance-capability"; } containeri2nsf-capability { description"It refers draft-ietf-i2nsf-capability-data-model-01.txt later"; } } grouping ietf-netmod-acl-model { description "Detail"ietf i2nsf capability information"; uses "capa:nsf-capabilities"; reference "draft-ietf-i2nsf-capability -data-model-02"; } containerrole-based-aclnsf-performance-capability { description"It refers draft-ietf-netmod-acl-model-19.txt later";"performance capability"; uses i2nsf-nsf-performance-capability; } } grouping i2nsf-nsf-access-info { description "NSF access information"; leaf nsf-instance-name { type string; description "nsf-instance-name"; } leaf nsf-address { type inet:ipv4-address; mandatory true; description "nsf-address"; } leaf nsf-port-address { type inet:port-number; description "nsf-port-address"; } } } <CODE ENDS> Figure13: Data Model of I2NSF Registration Interface 6.2.1. XML Example of11: Registration Interface YANG Data ModelRequirement: Registering the IDS NSF with VoIP/VoLTE security capability using Registration interface. Here is the configuration xml for this Registration Interface: <?xml version="1.0" encoding="UTF-8"?> <rpc xmlns="urn:ietf:params:netconf:base:1.0" message-id="1"> <edit-config> <target> <running/> </target> <config> <i2nsf-regs-req> <i2nsf-nsf-capability-information> <ietf-i2nsf-capability> <nsf-capabilities> <nsf-capabilities-id>1</nsf-capabilities-id> <con-sec-control-capabilities> <content-security-control> <ids> <ids-support>true</ids-support> <ids-fcn nc:operation="create"> <ids-fcn-name>ids-service</ids-fcn-name> </ids-fcn> </ids> <voip-volte> <voip-volte-support>true</voip-volte-support> <voip-volte-fcn nc:operation="create"> <voip-volte-fcn-name> ips-service </voip-volte-fcn-name> </voip-volte-fcn> </voip-volte> </content-security-control> </con-sec-control-capabilities> </nsf-capabilities> </ietf-i2nsf-capability> <i2nsf-nsf-performance-caps> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </i2nsf-nsf-performance-caps> </i2nsf-nsf-capability-information> <nsf-access-info> <nsf-address>10.0.0.1</nsf-address> <nsf-port-address>145</nsf-port-address> </nsf-access-info> </i2nsf-regs-req> </config> </edit-config> </rpc> Figure 14: Registration Interface example7.SecurityIANA Considerations This documentintroduces no additional security threats and SHOULD followrequests IANA to register the following URI in the "IETF XML Registry" [RFC3688]: URI: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. This document requests IANA to register the following YANG module in the "YANG Module Names" registry [RFC7950]. Name: ietf-i2nsf-reg-interface Namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface Prefix: iiregi Reference: RFC XXXX 8. Security Considerations This document introduces no additional security threats and SHOULD follow the security requirements as stated in [RFC8329].8.9. References8.1.9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs toIndicate Requirement Levels", RFC 2119, March 1997.[RFC6020][RFC3688] Mealling, M., "The IETF XML Registry", RFC 3688, January 2004. [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", RFC 6087, January 2011. [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991, July 2013. [RFC7950] Bjorklund, M.,"YANG - A"The YANG 1.1 Data ModelingLanguage for the Network Configuration Protocol (NETCONF)",Language", RFC6020, October 2010. 8.2.7950, August 2016. [RFC8340] Bjorklund, M. and L. Berger, "YANG Tree Diagrams", RFC 8340, March 2018. 9.2. Informative References [capability-im] Xia, L., Strassner, J., Basile, C., and D. Lopez, "Information Model of NSFs Capabilities", draft-i2nsf-capability-02capability-04 (work in progress),JulyOctober 2018. [draft-ietf-nvo3-vxlan-gpe] Maino, Ed., F., Kreeger, Ed., L., and U. Elzur, Ed., "Generic Protocol Extension for VXLAN", draft-ietf-nvo3- vxlan-gpe-06 (work in progress), April 2018. [i2nsf-capability-dm] Hares, S., Jeong, J., Kim, J., Moskowitz, R., and Q. Lin, "I2NSF Capability YANG Data Model", draft-ietf-i2nsf-capability-data-model-01capability-data-model-02 (work in progress),JulyNovember 2018. [i2nsf-terminology] Hares, S., Strassner, J., Lopez, D., Xia, L., and H. Birkholz, "Interface to Network Security Functions (I2NSF) Terminology",draft-ietf-i2nsf-terminology-06 (work in progress), July 2018. [i2rs-rib-data-model] Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini, S., and N. Bahadur, "A YANG Data Model for Routing Information Base (RIB)", draft-ietf-i2rs-rib-data-model-15 (work in progress), May 2018. [netmod-acl-model] Jethanandani, M., Huang, L., Agarwal, S., and D. Blair, "Network Access Control List (ACL) YANG Data Model", draft-ietf-netmod-acl-model-19draft-ietf-i2nsf-terminology-07 (work in progress),April 2018.January 2019. [nfv-framework] "Network Functions Virtualisation (NFV); Architectureal Framework", ETSI GS NFV 002 ETSI GS NFV 002 V1.1.1, October 2013. [nsf-triggered-steering] Hyun, S., Jeong, J., Park, J., and S. Hares, "Service Function Chaining-Enabled I2NSF Architecture", draft-hyun- i2nsf-nsf-triggered-steering-06 (work in progress), July 2018. [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., andR. Kumar, "FrameworkR. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, February 2018. [RFC8431] Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini, S., and N. Bahadur, "A YANG Data Model for Routing Information Base (RIB)", RFC 8431, September 2018. [supa-policy-data-model] Halpern, J., Strassner, J., and S. van der Meer, "Generic Policy Data Model for Simplified Use of Policy Abstractions (SUPA)", draft-ietf-supa-generic-policy-data- model-04 (work in progress), June 2017. [supa-policy-info-model] Strassner, J., Halpern, J., and S. van der Meer, "Generic Policy Information Model for Simplified Use of Policy Abstractions (SUPA)", draft-ietf-supa-generic-policy-info- model-03 (work in progress), May 2017. Appendix A. XML Example of Registration Interface Data Model This section describes XML examples of the I2NSF Registration Interface data model in five NSF Registration examples and one NSF Capability Query example. A.1. Example 1: Registration for Capabilities of General Firewall This section shows a configuration example for capabilities registration of general firewall. <i2nsf-nsf-registrations xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <i2nsf-nsf-capability-registration> <nsf-name>general_firewall_capability</nsf-name> <nsf-capability-info> <i2nsf-capability> <condition-capabilities> <generic-nsf-capabilities> <ipv4-capa>capa:ipv4-protocol</ipv4-capa> <ipv4-capa>capa:exact-ipv4-address</ipv4-capa> <ipv4-capa>capa:range-ipv4-address</ipv4-capa> <tcp-capa>capa:exact-tcp-port-num</tcp-capa> <tcp-capa>capa:range-tcp-port-num</tcp-capa> </generic-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </i2nsf-capability> <nsf-performance-capability> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </nsf-performance-capability> </nsf-capability-info> <nsf-access-info> <nsf-instance-name>general_firewall</nsf-instance-name> <nsf-address>221.159.112.100</nsf-address> <nsf-port-address>3000</nsf-port-address> </nsf-access-info> </i2nsf-nsf-capability-registration> </i2nsf-nsf-registrations> Figure 12: Configuration XML for Registration of General Firewall Figure 12 shows the configuration XML for registration of general firewall and its capabilities are as follows. 1. The instance name of the NSF is general_firewall. 2. The NSF can inspect protocol, exact IPv4 address, and range IPv4 address for IPv4 packets. 3. The NSF can inspect exact port number and range port number for tcp packets. 4. The NSF can control whether the packets are allowed to pass, drop, or alert. 5. The NSF can have processing power and bandwidth. 6. The location of the NSF is 221.159.112.100. 7. The port of the NSF is 3000. A.2. Example 2: Registration for Capabilities of Time based Firewall This section shows a configuration example for capabilities registration of time based firewall. <i2nsf-nsf-registrations xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <i2nsf-nsf-capability-registration> <nsf-name>time_based_firewall_capability</nsf-name> <nsf-capability-info> <i2nsf-capability> <time-capabilities>absolute-time</time-capabilities> <time-capabilities>periodic-time</time-capabilities> <condition-capabilities> <generic-nsf-capabilities> <ipv4-capa>capa:ipv4-protocol</ipv4-capa> <ipv4-capa>capa:exact-ipv4-address</ipv4-capa> <ipv4-capa>capa:range-ipv4-address</ipv4-capa> </generic-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </i2nsf-capability> <nsf-performance-capability> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </nsf-performance-capability> </nsf-capability-info> <nsf-access-info> <nsf-instance-name>time_based_firewall</nsf-instance-name> <nsf-address>221.159.112.110</nsf-address> <nsf-port-address>3000</nsf-port-address> </nsf-access-info> </i2nsf-nsf-capability-registration> </i2nsf-nsf-registrations> Figure 13: Configuration XML for Registration of Time based Firewall Figure 13 shows the configuration XML for registration of time based firewall and its capabilities are as follows. 1. The instance name of the NSF is time_based_firewall. 2. The NSF can execute the security policy rule according to absolute time and periodic time. 3. The NSF can inspect protocol, exact IPv4 address, and range IPv4 address for IPv4 packets. 4. The NSF can control whether the packets are allowed to pass, drop, or alert. 5. The NSF can have processing power and bandwidth. 6. The location of the NSF is 221.159.112.110. 7. The port of the NSF is 3000. A.3. Example 3: Registration for Capabilities of Web Filter This section shows a configuration example for capabilities registration of web filter. <i2nsf-nsf-registrations xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <i2nsf-nsf-capability-registration> <nsf-name>web_filter_capability</nsf-name> <nsf-capability-info> <i2nsf-capability> <condition-capabilities> <advanced-nsf-capabilities> <http-capa>capa:url</http-capa> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </i2nsf-capability> <nsf-performance-capability> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </nsf-performance-capability> </nsf-capability-info> <nsf-access-info> <nsf-instance-name>web_filter</nsf-instance-name> <nsf-address>221.159.112.120</nsf-address> <nsf-port-address>3000</nsf-port-address> </nsf-access-info> </i2nsf-nsf-capability-registration> </i2nsf-nsf-registrations> Figure 14: Configuration XML for Registration of Web Filter Figure 14 shows the configuration XML for registration of web filter and its capabilities are as follows. 1. The instance name of the NSF is web_filter. 2. The NSF can inspect url for http and https packets. 3. The NSF can control whether the packets are allowed to pass, drop, or alert. 4. The NSF can have processing power and bandwidth. 5. The location of the NSF is 221.159.112.120. 6. The port of the NSF is 3000. A.4. Example 4: Registration for Capabilities of VoIP/VoLTE Filter This section shows a configuration example for capabilities registration of VoIP/VoLTE filter. <i2nsf-nsf-registrations xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <i2nsf-nsf-capability-registration> <nsf-name>voip_volte_filter_capability</nsf-name> <nsf-capability-info> <i2nsf-capability> <condition-capabilities> <advanced-nsf-capabilities> <voip-volte-capa>capa:voice-id</voip-volte-capa> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </i2nsf-capability> <nsf-performance-capability> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </nsf-performance-capability> </nsf-capability-info> <nsf-access-info> <nsf-instance-name>voip_volte_filter</nsf-instance-name> <nsf-address>221.159.112.130</nsf-address> <nsf-port-address>3000</nsf-port-address> </nsf-access-info> </i2nsf-nsf-capability-registration> </i2nsf-nsf-registrations> Figure 15: Configuration XML for Registration of VoIP/VoLTE Filter Figure 15 shows the configuration XML for registration of VoIP/VoLTE filter and its capabilities are as follows. 1. The instance name of the NSF is voip_volte_filter. 2. The NSF can inspect voice id for VoIP/VoLTE packets. 3. The NSF can control whether the packets are allowed to pass, drop, or alert. 4. The NSF can have processing power and bandwidth. 5. The location of the NSF is 221.159.112.130. 6. The port of the NSF is 3000. A.5. Example 5: Registration for Capabilities of HTTP and HTTPS Flood Mitigation This section shows a configuration example for capabilities registration of http and https flood mitigation. <i2nsf-nsf-registrations xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <i2nsf-nsf-capability-registration> <nsf-name> http_and_https_flood_mitigation_capability </nsf-name> <nsf-capability-info> <i2nsf-capability> <condition-capabilities> <advanced-nsf-capabilities> <antiddos-capa>capa:http-flood-action</antiddos-capa> <antiddos-capa>capa:https-flood-action</antiddos-capa> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </i2nsf-capability> <nsf-performance-capability> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </nsf-performance-capability> </nsf-capability-info> <nsf-access-info> <nsf-instance-name> http_and_https_flood_mitigation </nsf-instance-name> <nsf-address>221.159.112.140</nsf-address> <nsf-port-address>3000</nsf-port-address> </nsf-access-info> </i2nsf-nsf-capability-registration> </i2nsf-nsf-registrations> Figure 16: Configuration XML for Registration of of HTTP and HTTPS Flood Mitigation Figure 16 shows the configuration XML for registration of VoIP/VoLTE filter and its capabilities are as follows. 1. The instance name of the NSF is http_and_https_flood_mitigation. 2. The NSF can control the amount of packets forInterfacehttp and https packets. 3. The NSF can control whether the packets are allowed toNetwork Security Functions", RFC 8329, February 2018. [supa-policy-data-model] Halpern, J., Strassner, J.,pass, drop, or alert. 4. The NSF can have processing power andS. van der Meer, "Generic Policy Data Modelbandwidth. 5. The location of the NSF is 221.159.112.140. 6. The port of the NSF is 3000. A.6. Example 6: Query forSimplified UseCapabilities ofPolicy Abstractions (SUPA)", draft-ietf-supa-generic-policy-data- model-04 (work in progress), June 2017. [supa-policy-info-model] Strassner, J., Halpern, J.,Time based Firewall This section shows a configuration example for capabilities query of Time based Firewall. <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <i2nsf-nsf-capability-query xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface" xmlns:capa="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <query-i2nsf-capability-info> <time-capabilities>absolute-time</time-capabilities> <time-capabilities>periodic-time</time-capabilities> <condition-capabilities> <generic-nsf-capabilities> <ipv4-capa>capa:ipv4-protocol</ipv4-capa> <ipv4-capa>capa:exact-ipv4-address</ipv4-capa> <ipv4-capa>capa:range-ipv4-address</ipv4-capa> </generic-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capa>capa:pass</ingress-action-capa> <ingress-action-capa>capa:drop</ingress-action-capa> <ingress-action-capa>capa:alert</ingress-action-capa> <egress-action-capa>capa:pass</egress-action-capa> <egress-action-capa>capa:drop</egress-action-capa> <egress-action-capa>capa:alert</egress-action-capa> </action-capabilities> </query-i2nsf-capability-info> </i2nsf-nsf-capability-query> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <nsf-access-info xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"> <nsf-instance-name>time-based-firewall</nsf-instance-name> <nsf-address>221.159.223.250</nsf-address> <nsf-port-address>8080</nsf-port-address> </nsf-access-info> </rpc-reply> Figure 17: Configuration XML for Query of Time based Firewall Figure 17 shows the configuration of input data andS. van der Meer, "Generic Policy Information Modeloutput data XML forSimplified Usensf capability query ofPolicy Abstractions (SUPA)", draft-ietf-supa-generic-policy-info- model-03 (work in progress), May 2017.time based firewall. AppendixA.B. NSF Lifecycle Managmenet in NFV Environments Network Functions Virtualization (NFV) can be used to implement I2NSF framework. In NFV environments, NSFs are deployed as virtual network functions (VNFs). Security Controller can be implemented as an Element Management (EM) of the NFV architecture, and is connected with the VNF Manager (VNFM) via the Ve-Vnfm interface [nfv-framework]. Security Controller can use this interface for the purpose of the lifecycle management of NSFs. If some NSFs need to be instantiated to enforce security policies in the I2NSF framework, Security Controller could request the VNFM to instantiate them through the Ve-Vnfm interface. Or if an NSF, running as a VNF, is not used by any traffic flows for a time period, Security Controller may request deinstantiating it through the interface for efficient resource utilization. AppendixB.C. Changes fromdraft-ietf-i2nsf-registration-interface-dm-00draft-ietf-i2nsf-registration-interface-dm-01 The following changes have been made from draft-ietf-i2nsf-registration-interface-dm-00:registration-interface-dm-01: o Section 4 has been revised to clarifythemajor objectives of the I2NSF registrationinterface, consideringinterface: NSF capability registration, NSF capability query. o Section 5 has been revised to describe theregister-select- instantiate operation sequence that is typically performed throughabove-mentioned major operations of theregistration interface inI2NSFframeworkregistration interface. Section 5.1 describes the information model for registering NSFs and their capabilities. Section 5.2 describes the information model for querying NSFs based onNFV.a description of required capabilities. oSection 5In section 6, the data model has been revisedas well based onaccording to theregister-select- instantiate operation sequence.revised information model. o AppendixAA. has beenaddedrevised toclarifydescribe thelifecycle managementXML examples ofNSFsthe registration interface data model inI2NSF framework based on NFV.five NSF Registration examples and one NSF Capability Query example. AppendixC.D. Acknowledgments This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R-20160222-002755, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning). AppendixD.E. Contributors This document is made by the group effort of I2NSF working group. Many people actively contributed to this document. The following are considered co-authors: o Jinyong Tim Kim (Sungkyunkwan University) o Susan Hares (Huawei) o Diego R. Lopez (Telefonica) o Chung, Chaehong (Sungkyunkwan University) Authors' Addresses Sangwon Hyun Department of Computer Engineering Chosun University 309, Pilmun-daero, Dong-gu Gwangju, Jeollanam-do 61452 Republic of Korea EMail: shyun@chosun.ac.kr Jaehoon Paul Jeong Department of Software Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 299 4957 Fax: +82 31 290 7996 EMail: pauljeong@skku.edu URI: http://iotlab.skku.edu/people-jaehoon-jeong.php Taekyun Roh Electrical Computer Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 290 7222 Fax: +82 31 299 6673 EMail: tkroh0198@skku.eduURI: http://imtl.skku.ac.kr/xe/index.php?mid=board_YoKq57Sarang Wi Electrical Computer Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 290 7222 Fax: +82 31 299 6673 EMail: dnl9795@skku.eduURI: http://imtl.skku.ac.kr/xe/index.php?mid=board_YoKq57Jung-Soo Park Electronics and Telecommunications Research Institute 218 Gajeong-Ro, Yuseong-Gu Daejeon 305-700 Republic of Korea Phone: +82 42 860 6514 EMail: pjs@etri.re.kr