I2NSF Working Group J. Kim, Ed. Internet-Draft J. Jeong, Ed. Intended status: Standards Track Sungkyunkwan University Expires:September 9, 202116 February 2022 J. Park ETRI S. Hares Q. Lin HuaweiMarch 8,15 August 2021 I2NSF Network Security Function-Facing Interface YANG Data Modeldraft-ietf-i2nsf-nsf-facing-interface-dm-12draft-ietf-i2nsf-nsf-facing-interface-dm-13 Abstract This document defines a YANG data model for configuring security policy rules on Network Security Functions (NSF) in the Interface to Network Security Functions (I2NSF) framework. The YANG data model in this document corresponds to the information model for NSF-Facing Interface in the I2NSF framework. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire onSeptember 9, 2021.16 February 2022. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents(https://trustee.ietf.org/license-info)(https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. YANG Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 3 3.1. General I2NSF Security Policy Rule . . . . . . . . . . . 3 3.2. Event Clause . . . . . . . . . . . . . . . . . . . . . . 5 3.3. Condition Clause . . . . . . . . . . . . . . . . . . . . 6 3.4. Action Clause . . . . . . . . . . . . . . . . . . . . . .1211 4. YANG Data Model of NSF-Facing Interface . . . . . . . . . . .1312 4.1. YANG Module of NSF-Facing Interface . . . . . . . . . . .1412 5. XML Configuration Examples of Low-Level Security Policy Rules85. . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.1. Security Requirement 1: Block Social Networking Service (SNS) Access during Business Hours . . . . . . . . . . .8564 5.2. Security Requirement 2: Block Malicious VoIP/VoLTE Packets Coming to a Company . . . . . . . . . . . . . . .89. . . . 68 5.3. Security Requirement 3: Mitigate HTTP and HTTPS Flood Attacks on a Company Web Server . . . . . . . . . . . . .9271 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . .9574 7. Security Considerations . . . . . . . . . . . . . . . . . . .9574 8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .9675 9. Contributors . . . . . . . . . . . . . . . . . . . . . . . .9775 10. References . . . . . . . . . . . . . . . . . . . . . . . . .9876 10.1. Normative References . . . . . . . . . . . . . . . . . .9876 10.2. Informative References . . . . . . . . . . . . . . . . .10179 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .10180 1. Introduction This document defines a YANG [RFC6020][RFC7950] data model for security policy rule configuration of Network Security Functions (NSF). The YANG data model in this document is based on the information and data model in [I-D.ietf-i2nsf-capability-data-model] for the NSF-Facing Interface in the Interface to Network Security Functions (I2NSF) architecture [RFC8329]. The YANG data model in this document focuses on security policy configuration forgeneric network security functions (e.g., firewall, web filter, and Distributed-Denial-of- Service (DDoS) attack mitigator) [I-D.ietf-i2nsf-capability-data-model]. Security policy configuration for advanced network security functions is out ofthescope of this document, such as Intrusion Prevention System (IPS) and anti-virus [I-D.ietf-i2nsf-capability-data-model].NSFs discussed in [I-D.ietf-i2nsf-capability-data-model], i.e., generic NSF (. This YANG data model uses an "Event-Condition-Action" (ECA) policy model that is used as the basis for the design of I2NSF Policy described in [RFC8329] and [I-D.ietf-i2nsf-capability-data-model]. The "ietf-i2nsf-policy-rule-for-nsf" YANG module defined in this document provides the configuration of the following features.o* Ageneralsecurity policy rule of agenericnetwork security function.o* An event clause of a generic network security function.o* A condition clause of a generic network security function.o* An action clause of a generic network security function. 2. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. This document uses the terminology described in [RFC8329]. This document follows the guidelines of [RFC8407], uses the common YANG types defined in [RFC6991], and adopts the Network Management Datastore Architecture (NMDA). The meaning of the symbols in tree diagrams is defined in [RFC8340]. 3. YANG Tree Diagram This section shows a YANG tree diagram ofgenericpolicy for network security functions.Advanced network security functions can be defined in future. Advanced network security functions is out of the scope of this document can be defined in future, such as Intrusion Prevention System (IPS), Distributed-Denial-of-Service (DDoS) attack mitigator, and anti-virus[I-D.ietf-i2nsf-capability-data-model]. 3.1. General I2NSF Security Policy Rule This section shows a YANG tree diagram for a general I2NSF security policy rule for generic network security functions. module: ietf-i2nsf-policy-rule-for-nsf +--rwi2nsf-security-policy +--rw system-policy*i2nsf-security-policy* [system-policy-name] +--rw system-policy-name string +--rw priority-usage? identityref +--rw resolution-strategy? identityref +--rw default-action? identityref +--rw rules* [rule-name] | +--rw rule-name string | +--rw rule-description? string | +--rw rule-priority? uint8 | +--rw rule-enable? boolean | +--rwrule-session-aging-time?session-aging-time? uint16 | +--rwrule-long-connectionlong-connection | | +--rw enable? boolean | | +--rw duration? uint16 | +--rwtime-intervals | | +--rw absolute-time-interval | | | +--rw start-time? start-time-type | | | +--rw end-time? end-time-type | | +--rw periodic-time-interval | | +--rw day | | | +--rw every-day? boolean | | | +--rw specific-day* day-type | | +--rw month | | +--rw every-month? boolean | | +--rw specific-month* month-type | +--rw event-clause-container | | ... | +--rw condition-clause-container |event | ... | +--rwaction-clause-containeraction | ... +--rw rule-group +--rw groups* [group-name] +--rw group-name string +--rw rule-range | +--rw start-rule? string | +--rw end-rule? string +--rw enable? boolean +--rw description? string Figure 1: YANG Tree Diagram for Network Security Policy The system policy provides for multiple system policies in one NSF, and each system policy is used by one virtual instance of the NSF/ device. The system policy includes system policy name, priority usage, resolution strategy, default action, and rules. A resolution strategy is used to decide how to resolve conflicts that occur between the actions of the same or different policy rules that are matched and contained in a particular NSF. The resolution strategy is defined as First Matching Rule (FMR), Last Matching Rule (LMR), Prioritized Matching Rule (PMR) with Errors (PMRE), and Prioritized Matching Rule with No Errors (PMRN). The resolution strategy can be extended according to specific vendor action features. The resolution strategy is described in detail in [I-D.ietf-i2nsf-capability-data-model]. A default action is used to execute I2NSF policy rule when no rule matches a packet. The default action is defined as pass, drop,reject, alert,rate- limit, and mirror. The default action can be extended according to specific vendor action features. The default action is described in detail in [I-D.ietf-i2nsf-capability-data-model]. The rules include rule name, rule description, rule priority, rule enable,time zone, event clause container, condition clause container,event, condition, andaction clause container.action. 3.2. Event Clause This section shows a YANG tree diagram for an event clause for a general I2NSF security policy rule for generic network security functions. module: ietf-i2nsf-policy-rule-for-nsf +--rwi2nsf-security-policy +--rw system-policy*i2nsf-security-policy* [system-policy-name] ... +--rw rules* [rule-name] | ... | +--rwevent-clause-containerevent | | +--rw event-clause-description? string | | +--rwevent-clausestime | | | +--rwsystem-event* identityrefstart-date-time? yang:date-and-time | | | +--rwsystem-alarm* identityrefend-date-time? yang:date-and-time | | | +--rwcondition-clause-containerperiod | | |...| +--rwaction-clause-containerstart-time? time | | | |...+--rwrule-group ... Figure 2: YANG Tree Diagram for an Event Clause An event clause is any important occurrence at a specificend-time? timeof a| | | | +--rw day* identityref | | | | +--rw date* int32 | | | | +--rw month* string | | | +--rw frequency? enumeration | | +--rw event-clauses | | +--rw system-event* identityref | | +--rw system-alarm* identityref | +--rw condition | | ... | +--rw action | ... +--rw rule-group ... Figure 2: YANG Tree Diagram for an Event Clause An event clause is any important occurrence at a specific time of a change in the system being managed, and/or in the environment of the system being managed. An event clause is used to trigger the evaluation of the condition clause of the I2NSF Policy Rule. The event clause is defined as a systemevent andevent, system alarm[I-D.ietf-i2nsf-nsf-monitoring-data-model].[I-D.ietf-i2nsf-nsf-monitoring-data-model] and time. The event clause can be extended according to specific vendor event features. The event clause is described in detail in [I-D.ietf-i2nsf-capability-data-model]. 3.3. Condition Clause This section shows a YANG tree diagram for a condition clause for a general I2NSF security policy rule for generic network security functions. module: ietf-i2nsf-policy-rule-for-nsf +--rwi2nsf-security-policyi2nsf-security-policy* [system-policy-name] ... +--rw rules* [rule-name] | ... | +--rwevent-clause-container |event | ... | +--rwcondition-clause-containercondition | | +--rw condition-clause-description? string | | +--rwpacket-security-ipv4-conditionmac | | | +--rwipv4-description?mac-description? string | | | +--rwpkt-sec-ipv4-header-length |source-address* yang:mac-address | | | +--rw(match-type)? | | | | +--:(exact-match) | |destination-address* yang:mac-address | | | +--rwipv4-header-length* uint8 | | | | +--:(range-match) | |ether-type* uint16 | | +--rwrange-ipv4-header-length* [start-ipv4-header-length end-ipv4-header-length] |ipv4 | | | +--rwstart-ipv4-header-length uint8 |description? string | | | +--rwend-ipv4-header-length uint8 | |header-length* [start end] |+--rw pkt-sec-ipv4-tos* identityref| | | +--rwpkt-sec-ipv4-total-lengthstart uint8 | | | | +--rw(match-type)? | | | | +--:(exact-match) | |end uint8 | | | +--rwipv4-total-length* uint16 | | | | +--:(range-match) |dscp* inet:dscp | | | +--rwrange-ipv4-total-length* [start-ipv4-total-length end-ipv4-total-length]total-length* [start end] | | | | +--rwstart-ipv4-total-lengthstart uint16 | | | | +--rwend-ipv4-total-lengthend uint16 | | | +--rwpkt-sec-ipv4-id*identification* uint16 | | | +--rwpkt-sec-ipv4-fragment-flags*fragment-flags* identityref | | | +--rwpkt-sec-ipv4-fragment-offset | | | | +--rw (match-type)? | | | | +--:(exact-match) | | | | | +--rw ipv4-fragment-offset* uint16 | | | | +--:(range-match) | | | | +--rw range-ipv4-fragment-offset* [start-ipv4-fragment-offset end-ipv4-fragment-offset]fragment-offset* [start end] | | | | +--rwstart-ipv4-fragment-offsetstart uint16 | | | | +--rwend-ipv4-fragment-offsetend uint16 | | | +--rwpkt-sec-ipv4-ttl | | | | +--rw (match-type)? | | | | +--:(exact-match) |ttl* [start end] | | | | +--rwipv4-ttl*start uint8 | | | |+--:(range-match) | | | | +--rw range-ipv4-ttl* [start-ipv4-ttl end-ipv4-ttl] | | | |+--rwstart-ipv4-ttlend uint8 | | ||+--rwend-ipv4-ttlprotocol* uint8 | | | +--rwpkt-sec-ipv4-protocol* identityref | | | +--rw pkt-sec-ipv4-srcsource-address | | | | +--rw (match-type)? | | | |+--:(exact-match)+--:(prefix) | | | | | +--rwipv4-address*ipv4-prefix* [ipv4] | | | | | +--rw ipv4 inet:ipv4-address | | | | | +--rw (subnet)? | | | | | +--:(prefix-length) | | | | | | +--rw prefix-length? uint8 | | | | | +--:(netmask) | | | | | +--rw netmask? yang:dotted-quad | | | |+--:(range-match)+--:(range) | | | | +--rwrange-ipv4-address* [start-ipv4-address end-ipv4-address]ipv4-range* [start end] | | | | +--rwstart-ipv4-addressstart inet:ipv4-address | | | | +--rwend-ipv4-addressend inet:ipv4-address | | | +--rwpkt-sec-ipv4-destdestination-address | | | | +--rw (match-type)? | | | |+--:(exact-match)+--:(prefix) | | | | | +--rwipv4-address*ipv4-prefix* [ipv4] | | | | | +--rw ipv4 inet:ipv4-address | | | | | +--rw (subnet)? | | | | | +--:(prefix-length) | | | | | | +--rw prefix-length? uint8 | | | | | +--:(netmask) | | | | | +--rw netmask? yang:dotted-quad | | | |+--:(range-match)+--:(range) | | | | +--rwrange-ipv4-address* [start-ipv4-address end-ipv4-address]ipv4-range* [start end] | | | | +--rwstart-ipv4-addressstart inet:ipv4-address | | | | +--rwend-ipv4-addressend inet:ipv4-address | | | +--rwpkt-sec-ipv4-ipopts*ipopts* identityref | ||+--rwpkt-sec-ipv4-same-ip? booleanipv6 | | | +--rwpkt-sec-ipv4-geo-ip*description? string | |+--rw packet-security-ipv6-condition | || +--rwipv6-description? stringdscp* inet:dscp | | | +--rwpkt-sec-ipv6-traffic-class* identityrefflow-label* [start end] | | | | +--rwpkt-sec-ipv6-flow-labelstart inet:ipv6-flow-label | | | | +--rw(match-type)?end inet:ipv6-flow-label | | | +--rw payload-length* [start end] |+--:(exact-match)| | | +--rw start uint16 | |+--rw ipv6-flow-label* uint32| | +--rw end uint16 | |+--:(range-match)| +--rw next-header* uint8 | | | +--rwrange-ipv6-flow-label* [start-ipv6-flow-label end-ipv6-flow-label]hop-limit* [start end] | | | | +--rwstart-ipv6-flow-label uint32start uint8 | | | | +--rwend-ipv6-flow-label uint32end uint8 | | | +--rwpkt-sec-ipv6-payload-lengthsource-address | | | | +--rw (match-type)? | | | |+--:(exact-match)+--:(prefix) | | | | | +--rwipv6-payload-length* uint16 | | |ipv6-prefix* [ipv6] |+--:(range-match)| | | | +--rwrange-ipv6-payload-length* [start-ipv6-payload-length end-ipv6-payload-length]ipv6 inet:ipv6-address | | | | | +--rwstart-ipv6-payload-length uint16prefix-length? uint8 | | | |+--rw end-ipv6-payload-length uint16+--:(range) | | | | +--rwpkt-sec-ipv6-next-header* identityrefipv6-range* [start end] | | | | +--rwpkt-sec-ipv6-hop-limitstart inet:ipv6-address | | | | +--rw(match-type)?end inet:ipv6-address | | | +--rw destination-address |+--:(exact-match)| | +--rw (match-type)? | | |+--rw ipv6-hop-limit* uint8+--:(prefix) | | | |+--:(range-match)+--rw ipv6-prefix* [ipv6] | | | | +--rwrange-ipv6-hop-limit* [start-ipv6-hop-limit end-ipv6-hop-limit]ipv6 inet:ipv6-address | | | | +--rwstart-ipv6-hop-limitprefix-length? uint8 | | | +--:(range) | | | +--rwend-ipv6-hop-limit uint8ipv6-range* [start end] | | | +--rwpkt-sec-ipv6-src |start inet:ipv6-address | | | +--rw(match-type)? |end inet:ipv6-address | | +--rw tcp |+--:(exact-match)| | +--rw description? string | | | +--rwipv6-address* [ipv6] |source-port-number* [start end] | | | | +--rwipv6 inet:ipv6-address |start inet:port-number | | | | +--rwprefix-length? uint8 |end inet:port-number | | |+--:(range-match)+--rw destination-port-number* [start end] | | | | +--rwrange-ipv6-address* [start-ipv6-address end-ipv6-address]start inet:port-number | | | | +--rwstart-ipv6-address inet:ipv6-address |end inet:port-number | | | +--rwend-ipv6-address inet:ipv6-address |flags* identityref | | +--rwpkt-sec-ipv6-destudp | | | +--rw(match-type)?description? string | | |+--:(exact-match)+--rw source-port-number | | | | +--rwipv6-address* [ipv6]start? inet:port-number | | | | +--rwipv6 inet:ipv6-address |end? inet:port-number | | | +--rwprefix-length? uint8destination-port-number | | |+--:(range-match) | || +--rwrange-ipv6-address* [start-ipv6-address end-ipv6-address]start? inet:port-number | | | | +--rwstart-ipv6-address inet:ipv6-addressend? inet:port-number | | | +--rwend-ipv6-address inet:ipv6-addresstotal-length* [start end] | | | +--rwpacket-security-tcp-conditionstart uint32 | | | +--rwtcp-description? string |end uint32 | | +--rwpkt-sec-tcp-src-port-num |sctp | | | +--rw(match-type)? | |description? string | |+--:(exact-match)| +--rw source-port-number | | | | +--rwport-num*start? inet:port-number | | | |+--:(range-match) |+--rw end? inet:port-number | | | +--rwrange-port-num* [start-port-num end-port-num]destination-port-number | | | | +--rwstart-port-numstart? inet:port-number | | | | +--rwend-port-numend? inet:port-number | | | +--rwpkt-sec-tcp-dest-port-numverification-tag* uint32 | | | +--rw chunk-type* uint8 | | +--rw(match-type)?dccp | | | +--rw description? string | |+--:(exact-match)| +--rw source-port-number | | | | +--rwport-num*start? inet:port-number | | | |+--:(range-match) |+--rw end? inet:port-number | | | +--rwrange-port-num* [start-port-num end-port-num]destination-port-number | | | | +--rwstart-port-numstart? inet:port-number | | | | +--rwend-port-numend? inet:port-number | | | +--rwpkt-sec-tcp-flags* identityrefservice-code* uint32 | | +--rwpacket-security-udp-conditionicmp* [version] | | | +--rwudp-description?description? string | | | +--rwpkt-sec-udp-src-port-num |version enumeration | | | +--rw(match-type)? | | | | +--:(exact-match) | |type* uint8 | | | +--rwport-num* inet:port-number | | | | +--:(range-match) | |code* uint8 | | +--rwrange-port-num* [start-port-num end-port-num] |url-category | | | +--rwstart-port-num inet:port-number |description? string | | | +--rwend-port-num inet:port-numberpre-defined-category* string | | | +--rwpkt-sec-udp-dest-port-num | |user-defined-category* string | | +--rw(match-type)? | | | | +--:(exact-match) | |voice | | | +--rwport-num* inet:port-number | | | | +--:(range-match) |description? string | | | +--rwrange-port-num* [start-port-num end-port-num] |source-voice-id* string | | | +--rwstart-port-num inet:port-number |destination-voice-id* string | | | +--rwend-port-num inet:port-number |user-agent* string | | +--rwpkt-sec-udp-total-lengthddos | | | +--rw(match-type)? | | | +--:(exact-match) |description? string | | | +--rwudp-total-length*alert-packet-rate? uint32 | | |+--:(range-match) | | |+--rwrange-udp-total-length* [start-udp-total-length end-udp-total-length] | | | +--rw start-udp-total-lengthalert-flow-rate? uint32 | | | +--rwend-udp-total-lengthalert-byte-rate? uint32 | | +--rwpacket-security-sctp-conditionanti-virus | | | +--rwsctp-description?profile? string | | | +--rwpkt-sec-sctp-src-port-num | |exception-files? string | | +--rw(match-type)? | | | | +--:(exact-match) | |payload | | | +--rwport-num* inet:port-number | | | | +--:(range-match) |packet-payload-description? string | | | +--rwrange-port-num* [start-port-num end-port-num] | |payload-content* string | | +--rwstart-port-num inet:port-numbercontext | | +--rw context-description? string | | +--rwend-port-num inet:port-numberapplication | | | +--rwpkt-sec-sctp-dest-port-num |description? string | | | +--rw(match-type)?object* string | | | +--rw group* string |+--:(exact-match)| | +--rw label* string | | | +--rwport-num* inet:port-number | |category | |+--:(range-match)| +--rw application-category* [name subcategory] | | | +--rwrange-port-num* [start-port-num end-port-num] |name string | | | +--rwstart-port-num inet:port-number | |subcategory string | | +--rwend-port-num inet:port-numbertarget | | | +--rwpkt-sec-sctp-verification-tag* uint32description? string | | | +--rwpkt-sec-sctp-chunk-type* uint8device* identityref | | +--rwpacket-security-dccp-conditionusers | | |+--dccp-description?+--rw users-description? string | | | +--rwpkt-sec-dccp-src-port-numuser* [user-id] | | | | +--rw(match-type)? | | | | +--:(exact-match) |user-id uint32 | | | | +--rwport-num* inet:port-number | | | | +--:(range-match) |user-name? string | | | +--rwrange-port-num* [start-port-num end-port-num]group* [group-id] | | | | +--rwstart-port-num inet:port-numbergroup-id uint32 | | | | +--rwend-port-num inet:port-numbergroup-name? string | | | +--rwpkt-sec-dccp-dest-port-num | |security-group? string | | +--rw(match-type)? | | |geography-location |+--:(exact-match)| +--rw description? string | | +--rw source* string | | +--rwport-num* inet:port-numberdestination* string || | | +--:(range-match) | | | | +--rw range-port-num* [start-port-num end-port-num] | | | | +--rw start-port-num inet:port-number | | | | +--rw end-port-num inet:port-number | | | +--rw pkt-sec-dccp-service-code* uint32 | | +--rw packet-security-icmp-condition | | | +--rw icmp-description? string | | | +--rw pkt-sec-icmp-type-and-code* identityref | | +--rw packet-security-url-category-condition | | | +--rw url-category-description? string | | | +--rw pre-defined-category* string | | | +--rw user-defined-category* string | | +--rw packet-security-voice-condition | | | +--rw voice-description? string | | | +--rw pkt-sec-src-voice-id* string | | | +--rw pkt-sec-dest-voice-id* string | | | +--rw pkt-sec-user-agent* string | | +--rw packet-security-ddos-condition | | | +--rw ddos-description? string | | | +--rw pkt-sec-alert-packet-rate? uint32 | | | +--rw pkt-sec-alert-flow-rate? uint32 | | | +--rw pkt-sec-alert-byte-rate? uint32 | | +--rw packet-security-payload-condition | | | +--rw packet-payload-description? string | | | +--rw pkt-payload-content* string | | +--rw context-condition | | +--rw context-description? string | | +--rw application-condition | | | +--rw application-description? string | | | +--rw application-object* string | | | +--rw application-group* string | | | +--rw application-label* string | | | +--rw category | | | +--rw application-category* [name application-subcategory] | | | +--rw name string | | | +--rw application-subcategory string | | +--rw target-condition | | | +--rw target-description? string | | | +--rw device-sec-context-cond | | | +--rw target-device* identityref | | +--rw users-condition | | | +--rw users-description? string | | | +--rw user [user-name user-id] | | | +--rw user-name* string | | | +--rw user-id* uint32 | | | +--rw group [group-name group-id] | | | +--rw group-name string | | | +--rw group-id uint32 | | | +--rw security-group string | | +--rw geography-context-condition | | +--rw geography-context-description? string | | +--rw geography-location | | +--rw src-geography-location* string | | +--rw dest-geography-location* string | +--rw action-clause-container+--rw action | ... +--rw rule-group ... Figure 3: YANG Tree Diagram for a Condition Clause A condition clause is defined as a set of attributes, features, and/ or values that are to be compared with a set of known attributes, features, and/or values in order to determine whether or not the set of actions in that (imperative) I2NSF policy rule can be executed or not. A condition clause is classified as a condition of generic network security functions, advanced network security functions, or context. A condition clause of generic network security functions is defined aspacket securityIPv4 condition,packet securityIPv6 condition,packet security tcpTCP condition, UDP condition, SCTP condition, DCCP condition, andpacket security icmpICMP (ICMPv4 and ICMPv6) condition. Note that the data model in this document does not focus on only IP addresses, but focuses on all the fields of IPv4 and IPv6 headers. The IPv4 and IPv6 headers have similarity with some different fields. In this case, it is better to handle separately the IPv4 and IPv6 headers such that the different fields can be used to handle IPv4 and IPv6 packets. A condition clause of advanced network security functions is defined aspacket securityurl category condition,packet securityvoice condition,packet securityDDoS condition, orpacket securitypayload condition. A condition clause of context is defined as application condition, target condition, users condition, and geography condition. Note that this document deals only with conditions of several advanced network security functions such as url filter (i.e., web filter), VoIP/VoLTE security, and DDoS-attack mitigator. A condition clause of other advanced network security functions such as Intrusion Prevention System (IPS) and Data Loss Prevention (DLP) can be defined as an extension in future. A condition clause can be extended according to specific vendor condition features. A condition clause is described in detail in [I-D.ietf-i2nsf-capability-data-model]. 3.4. Action Clause This section shows a YANG tree diagram for an action clause for a general I2NSF security policy rule for generic network security functions. module: ietf-i2nsf-policy-rule-for-nsf +--rwi2nsf-security-policyi2nsf-security-policy* [system-policy-name] ... +--rw rules* [rule-name] | ... | +--rwevent-clause-container |event | ... | +--rwcondition-clause-container |condition | ... | +--rwaction-clause-containeraction | +--rw action-clause-description? string | +--rw packet-action | | +--rw ingress-action? identityref | | +--rw egress-action? identityref | | +--rw log-action? identityref | +--rw flow-action | | +--rw ingress-action? identityref | | +--rw egress-action? identityref | | +--rw log-action? identityref | +--rw advanced-action | +--rw content-security-control* identityref | +--rw attack-mitigation-control* identityref +--rw rule-group ... Figure 4: YANG Tree Diagram for an Action Clause An action is used to control and monitor aspects of flow-based NSFs when the policy rule event and condition clauses are satisfied. NSFs provide security services by executing various actions. The action clause is defined as ingress action, egress action, or log action for packet action, flow action, and advanced action for additional inspection. The packet action is an action for an individual packet such as an IPdatagram.datagram as a stateless process that uses the packet's header and payload. The flow action is an action of a traffic flow such as the packets of a TCP session (e.g., an HTTP/HTTPSsession).session) as a stateful process that uses the traffic flow information such as 5-tuple information, packet counts, and byte counts. The advanced action is an actionoffor an advancedactionsecurity service (e.g.,web filter andurl filter, DDoS-attackmitigator)mitigator, and VoIP/VoLTE filter) for either a packet or a trafficflow.flow according to the intention of such an advanced security service. The action clause can be extended according to specific vendor action features. The action clause is described in detail in [I-D.ietf-i2nsf-capability-data-model]. 4. YANG Data Model of NSF-Facing Interface The main objective of this data model is to provide both an information model and the corresponding YANG data model of I2NSF NSF- Facing Interface. This interface can be used to deliver control and management messages between Security Controller and NSFs for the I2NSF low-level security policies. This data model is designed to support the I2NSF framework that can be extended according to the security needs. In other words, the model design is independent of the content and meaning of specific policies as well as the implementation approach. With the YANG data model of I2NSF NSF-Facing Interface, this document suggests use cases for security policy rules such as time-based firewall, web filter, VoIP/VoLTE security service, and DDoS-attack mitigation in Section 5. 4.1. YANG Module of NSF-Facing Interface This section describes a YANG module of NSF-Facing Interface. This document provides identities in the data model for the configuration of an NSF. The identity has the same concept with the corresponding identity in [I-D.ietf-i2nsf-consumer-facing-interface-dm] This YANG module imports from [RFC6991]. It makes references to [RFC0768][RFC0791][RFC0792][RFC0793][RFC3261][RFC4443][RFC8200][RFC8329][RFC83 35][RFC8344][ISO-Country-Codes][IANA-Protocol-Numbers].[RFC0791] [RFC0792] [RFC0793] [RFC2474] [RFC3261] [RFC4340] [RFC4960] [RFC6335] [RFC8200] [RFC8329] [RFC8335] [RFC8344] [IEEE-802.3] [ISO-Country-Codes] [IANA-Protocol-Numbers] [IANA-ICMP-Parameters] [I-D.ietf-i2nsf-capability-data-model] [I-D.ietf-i2nsf-nsf-monitoring-data-model]. <CODE BEGINS> file"ietf-i2nsf-policy-rule-for-nsf@2021-03-08.yang""ietf-i2nsf-policy-rule-for-nsf@2021-08-15.yang" module ietf-i2nsf-policy-rule-for-nsf { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"; prefix nsfintf; import ietf-inet-types{ prefix inet; reference"RFC"Section 4 of RFC 6991"; } importietf-yang-types{ietf-yang-types { prefix yang; reference"RFC"Section 3 of RFC 6991"; } organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact "WG Web: <http://tools.ietf.org/wg/i2nsf> WG List: <mailto:i2nsf@ietf.org> Editor:JingyongJinyong Tim Kim <mailto:timkim@skku.edu> Editor: Jaehoon Paul Jeong <mailto:pauljeong@skku.edu>"; description "This module is a YANG module for Network Security Functions (NSF)-Facing Interface. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2021 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices."; revision"2021-03-08"{"2021-08-15"{ description "The latest revision."; reference "RFC XXXX: I2NSF Network Security Function-Facing Interface YANG Data Model"; } /* * Identities */ identitypriority-usage-typepriority-usage { description "Base identity for priority usage type."; } identity priority-by-order { basepriority-usage-type;priority-usage; description "Identity for priority by order"; } identity priority-by-number { basepriority-usage-type;priority-usage; description "Identity for priority by number"; } identity event { description "Base identity for policy events"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - Event"; } identity system-event { base event; description "Identity for system events"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System event"; } identity system-alarm { base event; description "Identity for system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm"; } identity access-violation { base system-event; description "Identity for access violation system events"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System event for access violation"; } identity configuration-change { base system-event; description "Identity for configuration change system events"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System event for configuration change"; } identity memory-alarm { base system-alarm; description "Identity for memory alarm system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm for memory"; } identity cpu-alarm { base system-alarm; description "Identity for CPU alarm system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm for CPU"; } identity disk-alarm { base system-alarm; description "Identity for disk alarm system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm for disk"; } identity hardware-alarm { base system-alarm; description "Identity for hardware alarm system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm for hardware"; } identity interface-alarm { base system-alarm; description "Identity for interface alarm system alarms"; reference"draft-ietf-i2nsf-nsf-monitoring-data-model-04:"draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - System alarm for interface"; } identitytype-of-servicefragmentation-flags { description "Base identity fortype of service of IPv4";fragmentation flags type"; reference "RFC 791: Internet Protocol -Type of Service";Fragmentation Flags"; } identitytraffic-classfragment { base fragmentation-flags; description"Base identity"Identity fortraffic-class of IPv6";'More fragment' flag"; reference "RFC8200:791: InternetProtocol, Version 6 (IPv6) SpecificationProtocol -Traffic Class";Fragmentation Flags"; } identitynormalno-fragment { basetype-of-service; base traffic-class;fragmentation-flags; description "Identity fornormal IPv4 TOS and IPv6 Traffic Class";'Do not fragment' flag"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Fragmentation Flags"; } identityminimize-costreserved { basetype-of-service; base traffic-class;fragmentation-flags; description "Identity for'minimize monetary cost' IPv4 TOS and IPv6 Traffic Class"; referencereserved flags"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Fragmentation Flags"; } identitymaximize-reliabilityipopts {base type-of-service; base traffic-class;description"Identity"Base identity for'maximize reliability' IPv4 TOS and IPv6 Traffic Class";IP options"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Options"; } identitymaximize-throughputrr { basetype-of-service; base traffic-class;ipopts; description "Identity for'maximize throughput' IPv4 TOS and IPv6 Traffic Class";'Record Route' IP Option"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Options"; } identityminimize-delayeol { basetype-of-service; base traffic-class;ipopts; description "Identity for'minimize delay' IPv4 TOS and IPv6 Traffic Class";'End of List' IP Option"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Options"; } identitymaximize-securitynop { basetype-of-service; base traffic-class;ipopts; description "Identity for'maximize security' IPv4 TOS and IPv6 Traffic Class";'No Operation' IP Option"; reference "RFC 791: Internet Protocol -Type of Service RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class";Options"; } identityfragmentation-flags-typets { base ipopts; description"Base identity"Identity forfragmentation flags type";'Timestamp' IP Option"; reference "RFC 791: Internet Protocol -Fragmentation Flags";Options"; } identityfragmentsec { basefragmentation-flags-type;ipopts; description "Identity for'More fragment' flag";'IP security' IP Option"; reference "RFC 791: Internet Protocol -Fragmentation Flags";Options"; } identityno-fragmentesec { basefragmentation-flags-type;ipopts; description "Identity for'Do not fragment' flag";'IP extended security' IP Option"; reference "RFC 791: Internet Protocol -Fragmentation Flags";Options"; } identityreservedlsrr { basefragmentation-flags-type;ipopts; description "Identity forreserved flags";'Loose Source Routing' IP Option"; reference "RFC 791: Internet Protocol -Fragmentation Flags";Options"; } identityprotocolssrr { base ipopts; description"Base identity"Identity forprotocol of IPv4";'Strict Source Routing' IP Option"; reference"IANA: Assigned Internet Protocol Numbers RFC"RFC 791: Internet Protocol -Protocol";Options"; } identitynext-headersatid { base ipopts; description"Base identity"Identity forIPv6 next header";'Stream Identifier' IP Option"; reference "RFC8200:791: InternetProtocol, Version 6 (IPv6) SpecificationProtocol -Next Header";Options"; } identityicmpany { baseprotocol; base next-header;ipopts; description "Identity forICMP'any IP options included in IPv4protocol and IPv6 next header";packet"; reference"IANA: Assigned Internet Protocol Numbers RFC"RFC 791: Internet Protocol -Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";Options"; } identityigmptcp-flags {base protocol; base next-header;description"Identity"Base identity forIGMP IPv4 protocol and IPv6 next header";TCP flags"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identitytcpcwr { baseprotocol; base next-header;tcp-flags; description "Identity for 'Congestion Window Reduced' TCPprotocol";flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identityigrpecn { baseprotocol; base next-header;tcp-flags; description "Identity forIGRP IPv4 protocol and IPv6 next header";'Explicit Congestion Notification' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identityudpurg { baseprotocol; base next-header;tcp-flags; description "Identity forUDP IPv4 protocol and IPv6 next header";'Urgent' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identitygreack { baseprotocol; base next-header;tcp-flags; description "Identity forGRE IPv4 protocol and IPv6 next header";'acknowledgement' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identityesppsh { baseprotocol; base next-header;tcp-flags; description "Identity forESP IPv4 protocol and IPv6 next header";'Push' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identityahrst { baseprotocol; base next-header;tcp-flags; description "Identity forAH IPv4 protocol and IPv6 next header";'Reset' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identitymobilesyn { baseprotocol; base next-header;tcp-flags; description "Identity formobile IPv4 protocol and IPv6 next header";'Synchronize' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identitytlspfin { baseprotocol; base next-header;tcp-flags; description "Identity forTLSP IPv4 protocol and IPv6 next header";'Finish' TCP flag"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol -"RFC 793: Transmission Control ProtocolRFC 8200: Internet Protocol, Version 6 (IPv6) Specification-Next Header";Flags"; } identityskiptarget-device {base protocol; base next-header;description"Identity"Base identity forskip IPv4 protocol and IPv6 next header";target devices"; reference"IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol - Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model"; } identityipv6-icmpcomputer { baseprotocol; base next-header;target-device; description "Identity forIPv6 ICMP next header"; reference "IANA: Assigned Internet Protocol Numbers RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";computer such as personal computer (PC) and server"; } identityeigrpmobile-phone { baseprotocol; base next-header;target-device; description "Identity forEIGRP IPv4 protocolmobile-phone such as smartphone andIPv6 next header"; reference "IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol - Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";cellphone"; } identityospfvoip-volte-phone { baseprotocol; base next-header;target-device; description "Identity forOSPF IPv4 protocol and IPv6 next header"; reference "IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol - Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";voip-volte-phone"; } identityl2tptablet { baseprotocol; base next-header;target-device; description "Identity forL2TP IPv4 protocol and IPv6 next header"; reference "IANA: Assigned Internet Protocol Numbers RFC 791: Internet Protocol - Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header";tablet"; } identityipoptsnetwork-infrastructure-device { base target-device; description"Base identity"Identity forIP options"; reference "RFC 791: Internet Protocol - Options";network infrastructure devices such as switch, router, and access point"; } identityrriot-device { baseipopts;target-device; description "Identity for'Record Route' IP Option"; reference "RFC 791: Internet Protocol - Options";IoT (Internet of Things) devices"; } identityeolot { baseipopts;target-device; description "Identity for'End of List' IP Option"; reference "RFC 791: Internet Protocol - Options";Operational Technology"; } identitynopvehicle { baseipopts;target-device; description "Identity for'No Operation' IP Option";vehicle that connects to and shares data through the Internet"; } identity advanced-nsf { description "Base identity for advanced Network Security Function (NSF) capability. This can be used for advanced NSFs such as Anti-DDoS Attack, IPS, URL-Filtering, Antivirus, and VoIP/VoLTE Filter."; reference"RFC 791: Internet Protocol - Options";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model"; } identitytscontent-security-control { baseipopts;advanced-nsf; description"Identity"Base identity for'Timestamp' IP Option";content security control"; reference"RFC 791: Internet Protocol - Options";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model"; } identitysecips { baseipopts;content-security-control; description "Identity for'IP security' IP Option"; reference "RFC 791: Internet Protocol - Options";IPS (Intrusion Prevention System) that prevents malicious activity within a network"; } identityesecurl-filtering { baseipopts;content-security-control; description "Identity for'IP extended security' IP Option"; reference "RFC 791: Internet Protocol - Options";url filtering that limits access by comparing the web traffic's URL with the URLs for web filtering in a database"; } identitylsrranti-virus { baseipopts;content-security-control; description "Identity for'Loose Source Routing' IP Option"; reference "RFC 791: Internet Protocol - Options";antivirus to protect the network by detecting and removing viruses or malwares."; } identityssrrvoip-volte-filter { baseipopts;content-security-control; description "Identity for'Strict Source Routing' IP Option"; reference "RFC 791: Internet Protocol - Options";VoIP/VoLTE security service that filters out the packets or flows of malicious users with a deny list of malicious users in a database"; } identitysatidattack-mitigation-control { baseipopts;advanced-nsf; description"Identity"Base identity for'Stream Identifier' IP Option";attack mitigation control"; reference"RFC 791: Internet Protocol - Options";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model"; } identityanyanti-ddos { baseipopts;attack-mitigation-control; description "Identity for'any IP options included in IPv4 packet"; reference "RFC 791: Internet Protocol - Options";advanced NSF Anti-DDoS or DDoS Mitigator capability."; } identitytcp-flagsingress-action { description "Base identity forTCP flags";action"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Ingress Action"; } identitycwregress-action {base tcp-flags;description"Identity"Base identity for'Congestion Window Reduced' TCP flag";egress action"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Egress Action"; } identityecndefault-action {base tcp-flags;description"Identity"Base identity for'Explicit Congestion Notification' TCP flag";default action"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Default Action"; } identityurgpass { basetcp-flags;ingress-action; base egress-action; base default-action; description "Identity for'Urgent' TCP flag";pass"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Actions and Default Action"; } identityackdrop { basetcp-flags;ingress-action; base egress-action; base default-action; description "Identity for'acknowledgement' TCP flag";drop"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Actions and Default Action"; } identitypshmirror { basetcp-flags;ingress-action; base egress-action; base default-action; description "Identity for'Push' TCP flag";mirror"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Actions and Default Action"; } identityrstrate-limit { basetcp-flags;ingress-action; base egress-action; base default-action; description "Identity for'Reset' TCP flag";rate limiting action"; reference"RFC 793: Transmission Control Protocol"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model -Flags";Actions and Default Action"; } identitysynlog-action {base tcp-flags;description"Identity"Base identity for'Synchronize' TCP flag"; reference "RFC 793: Transmission Control Protocol - Flags";log action"; } identityfinrule-log { basetcp-flags;log-action; description "Identity for'Finish' TCP flag"; reference "RFC 793: Transmission Control Protocol - Flags";rule log"; } identityicmp-typesession-log { base log-action; description"Base identity"Identity forICMP Message types"; reference "RFC 792: Internet Control Message Protocol";session log"; } identityecho-replyinvoke-signaling { baseicmp-type;egress-action; description "Identity for'Echo Reply' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";invoke signaling"; } identitydestination-unreachabletunnel-encapsulation { baseicmp-type;egress-action; description "Identity for'Destination Unreachable' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";tunnel encapsulation"; } identityredirectforwarding { baseicmp-type;egress-action; description "Identity for'Redirect' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";forwarding"; } identityechotransformation { baseicmp-type;egress-action; description "Identity for'Echo' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";transformation"; } identityrouter-advertisementredirection { baseicmp-type;egress-action; description "Identity for'Router Advertisement' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";redirection"; } identityrouter-solicitationresolution-strategy {base icmp-type;description"Identity"Base identity for'Router Solicitation' ICMP message type";resolution strategy"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identitytime-exceededfmr { baseicmp-type;resolution-strategy; description "Identity for'Time exceeded' ICMP message type";First Matching Rule (FMR)"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identityparameter-problemlmr { baseicmp-type;resolution-strategy; description "Identity for'Parameter Problem' ICMP message type";Last Matching Rule (LMR)"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identitytimestamppmr { baseicmp-type;resolution-strategy; description "Identity for'Timestamp' ICMP message type";Prioritized Matching Rule (PMR)"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identitytimestamp-replypmre { baseicmp-type;resolution-strategy; description "Identity for'Timestamp Reply' ICMP message type";Prioritized Matching Rule with Errors (PMRE)"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identitydatagram-conversion-errorpmrn { baseicmp-type;resolution-strategy; description "Identity for'Datagram Conversion Error' ICMP message type";Prioritized Matching Rule with No Errors (PMRN)"; reference"RFC 792: Internet Control Message Protocol";"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution Strategy"; } identityexperimental-mobility-protocolsday {base icmp-type;description"Identity"This represents the base for'Experimental Mobility Protocols' ICMP message type"; reference "RFC 792: Internet Control Message Protocol";days."; } identityextended-echo-requestmonday { baseicmp-type;day; description"Identity for 'Extended Echo Request' ICMP message type"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces";"This represents Monday."; } identityextended-echo-replytuesday { baseicmp-type;day; description"Identity for 'Extended Echo Reply' ICMP message type"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces";"This represents Tuesday."; } identitynet-unreachablewednesday { baseicmp-type;day; description"Identity for net unreachable in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity host-unreachable { base icmp-type; description "Identity for host unreachable in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity protocol-unreachable { base icmp-type; description "Identity for protocol unreachable in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity port-unreachable { base icmp-type; description "Identity for port unreachable in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity fragment-set { base icmp-type; description "Identity for fragmentation set in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity source-route-failed { base icmp-type; description "Identity for source route failed in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity destination-network-unknown { base icmp-type; description "Identity for destination network unknown in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity destination-host-unknown { base icmp-type; description "Identity for destination host unknown in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity source-host-isolated { base icmp-type; description "Identity for source host isolated in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity communication-prohibited-with-destination-network { base icmp-type; description "Identity for which communication with destination network is administratively prohibited in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity communication-prohibited-with-destination-host { base icmp-type; description "Identity for which communication with destination host is administratively prohibited in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity destination-network-unreachable-for-tos { base icmp-type; description "Identity for destination network unreachable for type of service in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity destination-host-unreachable-for-tos { base icmp-type; description "Identity for destination host unreachable for type of service in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity communication-prohibited { base icmp-type; description "Identity for communication administratively prohibited in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity host-precedence-violation { base icmp-type; description "Identity for host precedence violation in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity precedence-cutoff-in-effect { base icmp-type; description "Identity for precedence cutoff in effect in destination unreachable types"; reference "RFC 792: Internet Control Message Protocol"; } identity redirect-datagram-for-the-network { base icmp-type; description "Identity for redirect datagram for the network (or subnet) in redirect types"; reference "RFC 792: Internet Control Message Protocol"; } identity redirect-datagram-for-the-host { base icmp-type; description "Identity for redirect datagram for the host in redirect types"; reference "RFC 792: Internet Control Message Protocol"; } identity redirect-datagram-for-the-tos-and-network { base icmp-type; description "Identity for redirect datagram for the type of service and network in redirect types"; reference "RFC 792: Internet Control Message Protocol"; } identity redirect-datagram-for-the-tos-and-host { base icmp-type; description "Identity for redirect datagram for the type of service and host in redirect types"; reference "RFC 792: Internet Control Message Protocol"; } identity normal-router-advertisement { base icmp-type; description "Identity for normal router advertisement in router advertisement types"; reference "RFC 792: Internet Control Message Protocol"; } identity does-not-route-common-traffic { base icmp-type; description "Identity for does not route common traffic in router advertisement types"; reference "RFC 792: Internet Control Message Protocol"; } identity time-to-live-exceeded-in-transit { base icmp-type; description "Identity for time to live exceeded in transit in time exceeded types"; reference "RFC 792: Internet Control Message Protocol"; } identity fragment-reassembly-time-exceeded { base icmp-type; description "Identity for fragment reassembly time exceeded in time exceeded types"; reference "RFC 792: Internet Control Message Protocol"; } identity pointer-indicates-the-error { base icmp-type; description "Identity for pointer indicates the error in parameter problem types"; reference "RFC 792: Internet Control Message Protocol"; } identity missing-a-required-option { base icmp-type; description "Identity for missing a required option in parameter problem types"; reference "RFC 792: Internet Control Message Protocol"; } identity bad-length { base icmp-type; description "Identity for bad length in parameter problem types"; reference "RFC 792: Internet Control Message Protocol"; } identity bad-spi { base icmp-type; description "Identity for bad spi"; reference "RFC 792: Internet Control Message Protocol"; } identity authentication-failed { base icmp-type; description "Identity for authentication failed"; reference "RFC 792: Internet Control Message Protocol"; } identity decompression-failed { base icmp-type; description "Identity for decompression failed"; reference "RFC 792: Internet Control Message Protocol"; } identity decryption-failed { base icmp-type; description "Identity for decryption failed"; reference "RFC 792: Internet Control Message Protocol"; } identity need-authentication { base icmp-type; description "Identity for need authentication"; reference "RFC 792: Internet Control Message Protocol"; } identity need-authorization { base icmp-type; description "Identity for need authorization"; reference "RFC 792: Internet Control Message Protocol"; } identity req-no-error { base icmp-type; description "Identity for request with no error in extended echo request types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity rep-no-error { base icmp-type; description "Identity for reply with no error in extended echo reply types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity malformed-query { base icmp-type; description "Identity for malformed query in extended echo reply types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity no-such-interface { base icmp-type; description "Identity for no such interface in extended echo reply types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity no-such-table-entry { base icmp-type; description "Identity for no such table entry in extended echo reply types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity multiple-interfaces-satisfy-query { base icmp-type; description "Identity for multiple interfaces satisfy query in extended echo reply types"; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; } identity target-device { description "Base identity for target devices"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model"; } identity computer { base target-device; description "Identity for computer such as personal computer (PC) and server"; } identity mobile-phone { base target-device; description "Identity for mobile-phone such as smartphone and cellphone"; } identity voip-volte-phone { base target-device; description "Identity for voip-volte-phone"; } identity tablet { base target-device; description "Identity for tablet"; } identity network-infrastructure-device { base target-device; description "Identity for network infrastructure devices such as switch, router, and access point"; } identity iot { base target-device; description "Identity for IoT (Internet of Things)"; } identity vehicle { base target-device; description "Identity for vehicle that connects to and shares data through the Internet"; } identity content-security-control { description "Base identity for content security control"; reference "RFC 8329: Framework for Interface to Network Security Functions - Flow-Based NSF Capability Characterization draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model"; } identity firewall { base content-security-control; description "Identity for firewall that monitors incoming and outgoing network traffic and permits or blocks data packets based on a set of security rules."; } identity antivirus { base content-security-control; description "Identity for antivirus that prevents, scans, detects and deletes viruses from a computer"; } identity ips { base content-security-control; description "Identity for IPS (Intrusion Prevention System) that prevents malicious activity within a network"; } identity ids { base content-security-control; description "Identity for IDS (Intrusion Detection System) that detects malicious activity within a network"; } identity url-filtering { base content-security-control; description "Identity for url filtering that limits access by comparing the web traffic's URL with the URLs for web filtering in a database"; } identity mail-filtering { base content-security-control; description "Identity for mail filtering that filters out a malicious email message by comparing its sender email address with the email addresses of malicious users in a database"; } identity file-blocking { base content-security-control; description "Identity for file blocking that blocks the download or upload of malicious files with the information of suspicious files in a database"; } identity pkt-capture { base content-security-control; description "Identity for packet capture that intercepts a packet that is crossing or moving over a specific network."; } identity application-control { base content-security-control; description "Identity for application control that filters out the packets of malicious applications with the information of those applications in a database"; } identity voip-volte { base content-security-control; description "Identity for VoIP/VoLTE security service that filters out the packets of malicious users with a blacklist of malicious users in a database"; } identity attack-mitigation-control { description "Base identity for attack mitigation control"; reference "RFC 8329: Framework for Interface to Network Security Functions - Flow-Based NSF Capability Characterization draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model"; } identity syn-flood { base attack-mitigation-control; description "Identity for syn flood that weakens the SYN flood attack"; } identity udp-flood { base attack-mitigation-control; description "Identity for udp flood that weakens the UDP flood attack"; } identity icmp-flood { base attack-mitigation-control; description "Identity for icmp flood that weakens the ICMP flood attack"; } identity ip-frag-flood { base attack-mitigation-control; description "Identity for ip frag flood that weakens the IP fragmentation flood attack"; } identity http-and-https-flood { base attack-mitigation-control; description "Identity for http and https flood that weakens the HTTP and HTTPS flood attack"; } identity dns-flood { base attack-mitigation-control; description "Identity for dns flood that weakens the DNS flood attack"; } identity dns-amp-flood { base attack-mitigation-control; description "Identity for dns amp flood that weakens the DNS amplification flood attack"; } identity ntp-amp-flood { base attack-mitigation-control; description "Identity for ntp amp flood that weakens the NTP amplification flood attack"; } identity ssl-ddos { base attack-mitigation-control; description "Identity for ssl ddos that weakens the SSL DDoS attack"; } identity ip-sweep { base attack-mitigation-control; description "Identity for ip sweep that weakens the IP sweep attack"; } identity port-scanning { base attack-mitigation-control; description "Identity for port scanning that weakens the port scanning attack"; } identity ping-of-death { base attack-mitigation-control; description "Identity for ping-of-death that weakens the ping-of-death attack"; } identity teardrop { base attack-mitigation-control; description "Identity for teardrop that weakens the teardrop attack"; } identity oversized-icmp { base attack-mitigation-control; description "Identity for oversized icmp that weakens the oversized icmp attack"; } identity tracert { base attack-mitigation-control; description "Identity for tracert that weakens the tracert attack"; } identity ingress-action { description "Base identity for action"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Ingress Action"; } identity egress-action { description "Base identity for egress action"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Egress Action"; } identity default-action { description "Base identity for default action"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Default Action"; } identity pass { base ingress-action; base egress-action; base default-action; description "Identity for pass"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Actions and Default Action"; } identity drop { base ingress-action; base egress-action; base default-action; description "Identity for drop"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Actions and Default Action"; } identity reject { base ingress-action; base egress-action; base default-action; description "Identity for reject"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Actions and Default Action"; } identity alert { base ingress-action; base egress-action; base default-action; description "Identity for alert"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Actions and Default Action"; } identity mirror { base ingress-action; base egress-action; base default-action; description "Identity for mirror"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Actions and Default Action"; } identity log-action { description "Base identity for log action"; } identity rule-log { base log-action; description "Identity for rule log"; } identity session-log { base log-action; description "Identity for session log"; } identity invoke-signaling { base egress-action; description "Identity for invoke signaling"; } identity tunnel-encapsulation { base egress-action; description "Identity for tunnel encapsulation"; } identity forwarding { base egress-action; description "Identity for forwarding"; } identity redirection { base egress-action; description "Identity for redirection"; } identity resolution-strategy { description "Base identity for resolution strategy"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } identity fmr { base resolution-strategy; description "Identity for First Matching Rule (FMR)"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } identity lmr { base resolution-strategy; description "Identity for Last Matching Rule (LMR)"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } identity pmr { base resolution-strategy; description "Identity for Prioritized Matching Rule (PMR)"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } identity pmre { base resolution-strategy; description "Identity for Prioritized Matching Rule with Errors (PMRE)"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } identity pmrn { base resolution-strategy; description "Identity for Prioritized Matching Rule with No Errors (PMRN)"; reference "draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Resolution Strategy"; } /* * Typedefs */ typedef start-time-type { type union { type string { pattern '\d{2}:\d{2}:\d{2}(\.\d+)?' + '(Z|[\+\-]\d{2}:\d{2})'; } type enumeration { enum right-away { description "Immediate rule execution in the system."; } } } description "Start time when the rules are applied."; } typedef end-time-type { type union { type string { pattern '\d{2}:\d{2}:\d{2}(\.\d+)?' + '(Z|[\+\-]\d{2}:\d{2})'; } type enumeration { enum infinitely { description "Infinite rule execution in the system."; } } } description "End time when the rules are applied."; } typedef day-type { type enumeration { enum sunday { description "Sunday for periodic day"; } enum monday { description "Monday for periodic day"; } enum tuesday { description "Tuesday for periodic day"; } enum wednesday { description "Wednesday for periodic day";"This represents Wednesday."; }enumidentity thursday { base day; description"Thursday for periodic day";"This represents Thursday."; }enumidentity friday { base day; description"Friday for periodic day";"This represents Friday."; }enumidentity saturday { base day; description"Saturday for periodic day"; }"This represents Saturday."; } identity sunday { base day; description "Thiscan be used for the rules to be applied according to periodic day";represents Sunday."; } /* * Typedefs */ typedefmonth-typetime { typeenumeration { enum january { description "January for periodic month"; } enum february { description "February for periodic month"; } enum march { description "March for periodic month"; } enum april { description "April for periodic month"; } enum may { description "May for periodic month"; } enum june { description "June for periodic month"; } enum july { description "July for periodic month"; } enum august { description "August for periodic month"; } enum september { description "September for periodic month"; } enum october { description "October for periodic month"; } enum november { description "November for periodic month"; } enum decemberstring {description "December for periodic month"; }pattern '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.\d+)?' + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?'; } description"This can be used for the rules to be applied according to periodic month";"The time type represents an instance of time of zero-duration that recurs every day."; } /* * Groupings */ groupingipv4 { list ipv4-addressipv4-prefix {key "ipv4";description "The list of IPv4 addresses."; leaf ipv4 { type inet:ipv4-address; description "The value of IPv4 address."; } choice subnet { description "The subnet can be specified as a prefix length or netmask."; leaf prefix-length { type uint8 { range "0..32"; } description "The length of the subnet prefix."; } leaf netmask { type yang:dotted-quad; description "The subnet specified as a netmask."; } }} description "Grouping for an IPv4 address";reference "RFC 791: Internet Protocol - IPv4 address RFC 8344: A YANG Data Model for IP Management"; } groupingipv6ipv6-prefix {list ipv6-address { key "ipv6";description "The list of IPv6 addresses."; leaf ipv6 { type inet:ipv6-address; description "The value of IPv6 address."; } leaf prefix-length { type uint8 { range "0..128"; } description "The length of the subnet prefix."; }} description "Grouping for an IPv6 address";reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - IPv6 address RFC 8344: A YANG Data Model for IP Management"; } groupingpkt-sec-ipv4ipv4-range {choice match-type { description "There are two types of security policy IPv4 address matching - exact match and range match."; case exact-match { uses ipv4;description"Exact"Range match foranthe IPv4 addresses. If only one value is needed, then set both start and end to the same value. The end IPv4 address MUST be equal or greater than the start IPv4 address.";} case range-match { list range-ipv4-address { key "start-ipv4-address end-ipv4-address";leafstart-ipv4-addressstart { type inet:ipv4-address; description "Starting IPv4 address for a range match."; } leafend-ipv4-addressend { type inet:ipv4-address; description "Ending IPv4 address for a range match."; }description "Range match for an IPv4 address."; } } } description "Grouping for an IPv4 address.";reference "RFC 791: Internet Protocol- IPv4 address"; } grouping pkt-sec-ipv6 { choice match-type { description "There are two types of security policy IPv6 address matching - exact match and range match."; case exact-match- IPv4 address"; } grouping ipv6-range {uses ipv6;description"Exact"Range match foranthe IPv6 addresses. If only one value is needed, then set both start and end to the same value. The end IPv6 address number MUST be equal to or greater than the start IPv6 address.";} case range-match { list range-ipv6-address { key "start-ipv6-address end-ipv6-address";leafstart-ipv6-addressstart { type inet:ipv6-address; description "Starting IPv6 address for a range match."; } leafend-ipv6-addressend { type inet:ipv6-address; description "Ending IPv6 address for a range match."; }description "Range match for an IPv6 address."; } } } description "Grouping for IPv6 address.";reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - IPv6 address"; } groupingpkt-sec-port-numberipv4-address { description "Grouping for IPv4 address. IPv4 address can be in the form of prefix or range."; choice match-type { description"There are two types"Choose between Prefix or Range"; case prefix { list ipv4-prefix { key "ipv4"; uses ipv4-prefix; description "The list ofsecurity policy TCP/UDP port matching - exact matchIPv4 addresses specified with an IPv4 address andrange match.";a prefix-length or a netmask."; } } caseexact-matchrange {leaf-list port-numlist ipv4-range {type inet:port-number;key "start end"; uses ipv4-range; description"Exact match"The list of IPv4 address specified with a start IPv4 address and an end IPv4 address. If only one value is needed, then set both start and end to the same value."; } } } } grouping ipv6-address { description "Grouping for IPv6 address. IPv6 address can be in the form of prefix or range."; choice match-type { description "Choose between Prefix or Range"; case prefix { list ipv6-prefix { key "ipv6"; uses ipv6-prefix; description "The list of IPv6 addresses specified with an IPv6 address and aport number.";prefix-length."; } } caserange-matchrange { listrange-port-numipv6-range { key"start-port-num end-port-num";"start end"; uses ipv6-range; description "The list of IPv6 address specified with a start IPv6 address and an end IPv6 address. If only one value is needed, then set both start and end to the same value."; } } } } grouping port-range { leafstart-port-numstart { type inet:port-number; description "Starting port number for a range match."; }leaf end-port-num { type inet:port-number;leaf end { type inet:port-number; must '. >= ../start' { error-message "The end port number MUST be equal to or greater than the start port number."; } description "Ending port number for a range match."; } description "Range match fora port number."; } } } description "Grouping forthe portnumber.";numbers. If only one value is needed, then set both start and end to the same value."; reference "RFC 793: Transmission Control Protocol - Port number RFC 768: User Datagram Protocol - PortNumber";Number RFC 4960: Stream Control Transmission Protocol - Port number RFC 4340: Datagram Congestion Control Protocol (DCCP) - Port number"; } /* * Data nodes */containerlist i2nsf-security-policy { key "system-policy-name"; description "Container for security policy including a set of security rules according to certain logic, i.e., their similarity or mutual relations, etc. The network security policy can be applied to both the unidirectional and bidirectional traffic across the NSF. The I2NSF security policies use the Event-Condition-Action (ECA) policy model "; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview";list system-policy { key "system-policy-name"; description "The system-policy represents there could be multiple system policies in one NSF, and each system policy is used by one virtual instance of the NSF/device.";leaf system-policy-name { type string; description "The name of the policy. This must be unique."; } leaf priority-usage { type identityref { basepriority-usage-type;priority-usage; } default priority-by-order; description "Priority usage type for security policy rule: priority by order and priority by number"; } leaf resolution-strategy { type identityref { base resolution-strategy; } default fmr; description "The resolution strategies that can be used to specify how to resolve conflicts that occur between actions of the same or different policy rules that are matched and contained in this particular NSF"; reference"draft-ietf-i2nsf-capability-data-model-15:"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Resolution strategy"; } leaf default-action { type identityref { base default-action; } defaultalert;mirror; description "This default action can be used to specify a predefined action when no other alternative action was matched by the currently executing I2NSF Policy Rule. An analogy is the use of a default statement in a C switch statement."; reference"draft-ietf-i2nsf-capability-data-model-15:"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Default Action"; } list rules { key "rule-name"; description "This is a rule for network security functions."; leaf rule-name { type string; description "The name of the rule."; } leaf rule-description { type string; description "This description gives more information about rules."; } leaf rule-priority { type uint8 { range "1..255"; } description "The priority keyword comes with a mandatory numeric value which can range from 1 till 255. Note that a higher number means a higher priority"; } leaf rule-enable { type boolean; description "True is enable. False is not enable."; } leaf session-aging-time { type uint16; units "second"; description "This is session aging time."; } container long-connection { description "This is long-connection"; leaf enable { type boolean; description "True is enable. False is not enable."; } leaf duration { type uint16; description "This is the duration of the long-connection."; } } containertime-intervalsevent { description "An event is defined as any important occurrence in time of a change in the system being managed, and/or in the environment of the system being managed. When used in the context of policy rules for a flow-based NSF, it is used to determine whether the Condition clause of the Policy Rule can be evaluated or not. Examples of an I2NSF event include time and user actions (e.g., logon, logoff, and actions that violate any ACL.)."; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structure draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - Alarms, Events, Logs, and Counters"; leaf event-clause-description { type string; description "Description for an event clause"; } container time { description "Timezoneto determine when therules are applied";policy should be applied"; leaf start-date-time { type yang:date-and-time; description "This is the start date and time for a security policy rule."; } leaf end-date-time { type yang:date-and-time; description "This is the end date and time for a policy rule. The policy rule will stop working after the specified end-date-time."; } containerabsolute-time-interval {period{ when "../frequency!='only-once'"; description"Rule execution according to"This represents theabsoluterepetition time.The absolute time interval meansIn theexact time to start or end.";case where the frequency is weekly, the days can be set."; leaf start-time { typestart-time-type; default right-away;time; description"Start"This is a period's start timewhen the rules are applied";for an event."; } leaf end-time { typeend-time-type; default infinitely;time; description"End"This is a period's end timewhen the rules are applied"; }for an event."; }container periodic-time-intervalleaf-list day { when "../../frequency='weekly'"; type identityref{ base day; } min-elements 1; description"Rule execution according to the periodic time. The periodic time interval means"This represents the repeatedtime such as a day, week, or month."; containerday{ description "Rule execution according to day."; leaf every-day { type boolean; default true; description "Rule executionof everyday";week (e.g., Monday and Tuesday). More than one day can be specified."; } leaf-listspecific-daydate { when"../every-day = 'false'";"../../frequency='monthly'"; typeday-type; description "Rule execution according to specific day"; }int32{ range "1..31"; }container month { description "Rule execution according to month."; leaf every-month { type boolean; default true;min-elements 1; description"Rule execution"This represents the repeated date of everyday";month. More than one date can be specified."; } leaf-listspecific-monthmonth { when"../every-month = 'false'";"../../frequency='yearly'"; typemonth-type;string{ pattern '\d{2}-\d{2}'; } min-elements 1; description"Rule execution according to"This represents the repeated date and monthday"; }of every year. More than one can be specified. A pattern used here is Month and Date (MM-DD)."; } } leaf frequency { type enumeration { enum only-once { description "This represents that the rule is immediately enforcedonly once and not repeated. The policy will continuously be active from the start-time to the end-time."; }container event-clause-containerenum daily { description"An event"This represents that the rule isdefined as any important occurrence in time ofenforced on achange indaily basis. The policy will be repeated daily until thesystem being managed, and/or inend-date."; } enum weekly { description "This represents that theenvironment ofrule is enforced on a weekly basis. The policy will be repeated weekly until thesystem being managed. When used inend-date. The repeated days can be specified."; } enum monthly { description "This represents that thecontext of policy rules for a flow-based NSF, itrule isused to determine whetherenforced on a monthly basis. The policy will be repeated monthly until theCondition clause ofend-date."; } enum yearly { description "This represents that thePolicy Rule canrule is enforced on a yearly basis. The policy will beevaluated or not. Examples of an I2NSF event include time and user actions (e.g., logon, logoff, and actions that violate any ACL.)."; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structure draft-ietf-i2nsf-capability-data-model-15: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview draft-ietf-i2nsf-nsf-monitoring-data-model-04: I2NSF NSF Monitoring YANG Data Model - Alarms, Events, Logs, and Counters"; leaf event-clause-description { type string;repeated yearly until the end-date."; } } default only-once; description"Description for an event clause";"This represents how frequently the rule should be enforced."; } } container event-clauses { description "System Event Clause - either a system event or system alarm"; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overviewdraft-ietf-i2nsf-nsf-monitoring-data-model-04:draft-ietf-i2nsf-nsf-monitoring-data-model-08: I2NSF NSF Monitoring YANG Data Model - Alarms, Events, Logs, and Counters"; leaf-list system-event { type identityref { base system-event; } description "The security policy rule according to system events."; } leaf-list system-alarm { type identityref { base system-alarm; } description "The security policy rule according to system alarms."; } } } containercondition-clause-containercondition { description "A condition is defined as a set of attributes, features, and/or values that are to be compared with a set of known attributes, features, and/or values in order to determine whether or not the set of Actions in that (imperative) I2NSF Policy Rule can be executed or not. Examples of I2NSF Conditions include matching attributes of a packet or flow, and comparing the internal state of an NSF to a desired state."; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG DataModel - Design Principles and ECA Policy Model Overview"; leaf condition-clause-description { type string; description "DescriptionModel - Design Principles and ECA Policy Model Overview"; leaf condition-clause-description { type string; description "Description for a condition clause."; } container ethernet { description "The purpose of this container is to represent layer 2 packet header information to determine the set of policy actions in this ECA policy rule should be executed or not."; reference "IEEE 802.3: IEEE Standard for Ethernet"; leaf ethernet-description { type string; description "The MAC Condition description"; } leaf-list source-address { type yang:mac-address; description "The condition for source Media Access Control (MAC) Address of a Layer 2 packet. Multiple source MAC Addresses can be given in a single rule."; reference "IEEE 802.3: IEEE Standard for Ethernet"; } leaf-list destination-address { type yang:mac-address; description "The condition for destination Media Access Control (MAC) Address of a Layer 2 packet. Multiple destination MAC Addresses can be given in a single rule."; reference "IEEE 802.3: IEEE Standard for Ethernet"; } leaf-list ether-type { type uint16; description "The condition for matching the 2-octet of IEEE 802.3 Length/Type field. Can be specified with decimal or hexadecimal from 0 through 65535 (0xFFFF) A value from 0 through 1500 (0x05DC) specifies the number of MAC client data octets contained in the subsequent MAC Client Data Field of the basic frame A value greater than or equal to 1536 (0x0600) specifies that the Length/Type field indicates Ethertype of the MAC client protocol"; reference "IEEE 802.3: IEEE Standard fora condition clause.";Ethernet"; } } containerpacket-security-ipv4-conditionipv4 { description "The purpose of this container is to represent IPv4 packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; reference "RFC 791: Internet Protocol"; leafipv4-descriptiondescription { type string; description "ipv4 condition textual description."; }container pkt-sec-ipv4-header-length { choice match-type { description "Security policy IPv4 Header length match - exact match and range match."; case exact-match { leaf-list ipv4-header-length { type uint8 { range "5..15"; } description "Exact match for an IPv4 header length."; } } case range-match {listrange-ipv4-header-lengthheader-length { key"start-ipv4-header-length end-ipv4-header-length";"start end"; leafstart-ipv4-header-length {start{ type uint8 { range "5..15"; } description "Starting IPv4 header length for a range match."; } leafend-ipv4-header-lengthend { type uint8 { range "5..15"; } must '. >= ../start' { error-message "The end header length MUST be equal to or greater than the start header length."; } description "Ending IPv4 header length for a range match."; } description"Range match for an IPv4 header length."; } } } description"The security policy rule according to IPv4 headerlength.";length. If only one value is needed, then set both start and end to the same value."; reference "RFC 791: Internet Protocol - Header length"; } leaf-listpkt-sec-ipv4-tosdscp { typeidentityref { base type-of-service; }inet:dscp; description "The security policy rule according to IPv4 type ofservice.";service for DSCP."; reference "RFC 791: Internet Protocol - Type ofservice"; } container pkt-sec-ipv4-total-length { choice match-type { description "Security policyservice RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4total length matching - exact matchandrange match."; case exact-match { leaf-list ipv4-total-length { type uint16; description "Exact match for an IPv4 total length."; }IPv6 Headers."; }case range-match {listrange-ipv4-total-lengthtotal-length { key"start-ipv4-total-length end-ipv4-total-length";"start end"; leafstart-ipv4-total-lengthstart { type uint16; description "Starting IPv4 total length for a range match."; } leafend-ipv4-total-lengthend { type uint16; must '. >= ../start' { error-message "The end total length MUST be equal to or greater than the start total length."; } description "Ending IPv4 total length for a range match."; } description"Range match for an IPv4 total length."; } } } description"The security policy rule according to IPv4 totallength.";length. If only one value is needed, then set both start and end to the same value."; reference "RFC 791: Internet Protocol - Total length"; } leaf-listpkt-sec-ipv4-ididentification { type uint16; description "The security policy rule according to IPv4 identification."; reference "RFC 791: Internet Protocol - Identification"; } leaf-listpkt-sec-ipv4-fragment-flagsfragment-flags { type identityref{ base fragmentation-flags-type; } description "The security policy rule according to IPv4 fragment flags."; reference "RFC 791: Internet Protocol - Fragment flags"; } container pkt-sec-ipv4-fragment-offset { choice match-type { description "There are two types to configure a security policy for IPv4 fragment offset, such as exact match and range match."; case exact-match { leaf-list ipv4-fragment-offset { type uint16 { range "0..16383";{ base fragmentation-flags; } description"Exact match for an"The security policy rule according to IPv4 fragmentoffset."; }flags."; reference "RFC 791: Internet Protocol - Fragment flags"; }case range-match {listrange-ipv4-fragment-offsetfragment-offset { key"start-ipv4-fragment-offset end-ipv4-fragment-offset";"start end"; leafstart-ipv4-fragment-offsetstart { type uint16 { range "0..16383"; } description "Starting IPv4 fragment offset for a range match."; } leafend-ipv4-fragment-offsetend { type uint16 { range "0..16383"; } must '. >= ../start' { error-message "The end fragment offset MUST be equal or greater than the start fragment offset."; } description "Ending IPv4 fragment offset for a range match."; } description"Range match for an IPv4 fragment offset."; } } } description"The security policy rule according to IPv4 fragment offset."; reference "RFC 791: Internet Protocol - Fragment offset"; }container pkt-sec-ipv4-ttl { choice match-type { description "There are two types to configure a security policy for IPv4 TTL, such as exact match and range match."; case exact-match { leaf-list ipv4-ttl { type uint8; description "Exact match for an IPv4 TTL."; } } case range-match {listrange-ipv4-ttlttl { key"start-ipv4-ttl end-ipv4-ttl";"start end"; leafstart-ipv4-ttlstart { type uint8; description "Starting IPv4 TTL for a range match."; } leafend-ipv4-ttlend { type uint8; must '. >= ../start' { error-message "The end TTL MUST be equal or greater than the start TTL."; } description "Ending IPv4 TTL for a range match."; } description"Range match for an IPv4 TTL."; } } } description"The security policy rule according to IPv4 time-to-live(TTL).";(TTL). If only one value is needed, then set both start and end to the same value."; reference "RFC 791: Internet Protocol - Time to live"; } leaf-listpkt-sec-ipv4-protocolprotocol { typeidentityref { base protocol; }uint8; description "The security policy rule according to IPv4protocol.";protocol header field."; reference "RFC 791: Internet Protocol -Protocol";Protocol IANA: Assigned Internet Protocol Numbers"; } containerpkt-sec-ipv4-srcsource-address { usespkt-sec-ipv4;ipv4-address; description "The security policy rule according to IPv4 source address."; reference "RFC 791: Internet Protocol - IPv4 Address"; } containerpkt-sec-ipv4-destdestination-address { usespkt-sec-ipv4;ipv4-address; description "The security policy rule according to IPv4 destination address."; reference "RFC 791: Internet Protocol - IPv4 Address"; } leaf-listpkt-sec-ipv4-ipoptsipopts { type identityref { base ipopts; } description "The security policy rule according to IPv4 options."; reference "RFC 791: Internet Protocol - Options"; }leaf pkt-sec-ipv4-same-ip { type boolean; description "Match on packets with the same IPv4 source and IPv4 destination address."; } leaf-list pkt-sec-ipv4-geo-ip { type string; description "The geo-ip keyword enables you to match on source and destination IP addresses of network traffic and to see to which country it belongs."; reference "ISO 3166: Codes for the representation of names of countries and their subdivisions"; }} containerpacket-security-ipv6-conditionipv6 { description "The purpose of this container is to represent IPv6 packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification"; leafipv6-description { type string; description "This isdescriptionfor ipv6 condition."; } leaf-list pkt-sec-ipv6-traffic-class{ typeidentityref { base traffic-class; } description "The security policy rule according to IPv6 traffic class."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic class"; } container pkt-sec-ipv6-flow-label { choice match-type {string; description"There are two types to configure a security policy for IPv6 flow label, such as exact match and range match."; case exact-match {"This is description for ipv6 condition."; } leaf-listipv6-flow-labeldscp { typeuint32 { range "0..1048575"; }inet:dscp; description"Exact match"The security policy rule according to IPv6 traffic class foranDSCP."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic class RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6flow label."; }Headers."; }case range-match {listrange-ipv6-flow-labelflow-label { key"start-ipv6-flow-label end-ipv6-flow-label";"start end"; leafstart-ipv6-flow-labelstart { typeuint32 { range "0..1048575"; }inet:ipv6-flow-label; description "Starting IPv6 flow label for a range match."; } leafend-ipv6-flow-labelend { typeuint32inet:ipv6-flow-label; must '. >= ../start' {range "0..1048575";error-message "The end flow label MUST be equal or greater than the start flow label."; } description "Ending IPv6 flow label for a range match."; } description"Range match for an IPv6 flow label."; } } } description"The security policy rule according to IPv6 flowlabel.";label. If only one value is needed, then set both start and end to the same value."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Flow label"; }container pkt-sec-ipv6-payload-length { choice match-type { description "There are two types to configure a security policy for IPv6 payload length, such as exact match and range match."; case exact-match { leaf-list ipv6-payload-length { type uint16; description "Exact match for an IPv6 payload length."; } } case range-match {listrange-ipv6-payload-lengthpayload-length { key"start-ipv6-payload-length end-ipv6-payload-length";"start end"; leafstart-ipv6-payload-lengthstart { type uint16; description "Starting IPv6 payload length for a range match."; } leafend-ipv6-payload-lengthend { type uint16; must '. >= ../start' { error-message "The end payload length MUST be equal or greater than the start payload length."; } description "Ending IPv6 payload length for a range match."; } description"Range match for an IPv6 payload length."; } } } description"The security policy rule according to IPv6 payloadlength.";length. If only one value is needed, then set both start and end to the same value."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Payload length"; } leaf-listpkt-sec-ipv6-next-headernext-header { typeidentityref { base next-header; }uint8; description "The security policy rule according to IPv6 next header."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Nextheader"; } container pkt-sec-ipv6-hop-limit { choice match-type { description "There are two types to configure a security policy for IPv6 hop limit, such as exact match and range match."; case exact-match { leaf-list ipv6-hop-limit { type uint8; description "Exact match for an IPv6 hop limit."; }header IANA: Assigned Internet Protocol Numbers"; }case range-match {listrange-ipv6-hop-limithop-limit { key"start-ipv6-hop-limit end-ipv6-hop-limit";"start end"; leafstart-ipv6-hop-limitstart { type uint8; description "Start IPv6 hop limit for a range match."; } leafend-ipv6-hop-limitend { type uint8; must '. >= ../start' { error-message "The end hop limit MUST be equal or greater than the start hop limit."; } description "End IPv6 hop limit for a range match."; } description"Range match for an IPv6 hop limit."; } } } description"The security policy rule according toIPv6 hop limit.";IPv6 hop limit. If only one value is needed, then set both start and end to the same value."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - Hop limit"; } containerpkt-sec-ipv6-srcsource-address { usespkt-sec-ipv6;ipv6-address; description "The security policy rule according to IPv6 source address."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - IPv6 address"; } containerpkt-sec-ipv6-destdestination-address { usespkt-sec-ipv6;ipv6-address; description "The security policy rule according to IPv6 destination address."; reference "RFC 8200: Internet Protocol, Version 6 (IPv6) Specification - IPv6 address"; } } containerpacket-security-tcp-conditiontcp { description "The purpose of this container is to represent TCP packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; reference "RFC 793: Transmission Control Protocol"; leaftcp-descriptiondescription { type string; description "This is description for tcp condition."; }container pkt-sec-tcp-src-port-numlist source-port-number { key "start end"; usespkt-sec-port-number;port-range; description "The security policy rule according to tcp source port number."; reference "RFC 793: Transmission Control Protocol - Port number"; }container pkt-sec-tcp-dest-port-numlist destination-port-number { key "start end"; usespkt-sec-port-number;port-range; description "The security policy rule according to tcp destination port number."; reference "RFC 793: Transmission Control Protocol - Port number"; } leaf-listpkt-sec-tcp-flagsflags { type identityref { base tcp-flags; } description "The security policy rule according to tcp flags."; reference "RFC 793: Transmission Control Protocol - Flags"; } } containerpacket-security-udp-conditionudp { description "The purpose of this container is to represent UDP packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; reference "RFC793: Transmission Control768: User Datagram Protocol"; leafudp-descriptiondescription { type string; description "This is description for udp condition."; } containerpkt-sec-udp-src-port-numsource-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to udp source port number."; reference "RFC 768: User Datagram Protocol -Total Length";Port Number"; } containerpkt-sec-udp-dest-port-numdestination-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to udp destination port number."; reference "RFC 768: User Datagram Protocol -Total Length"; } container pkt-sec-udp-total-length { choice match-type { description "There are two types to configure a security policy for udp sequence number, such as exact match and range match."; case exact-match { leaf-list udp-total-length { type uint32; description "Exact match for an udp-total-length."; }Port Number"; }case range-match {listrange-udp-total-lengthtotal-length { key"start-udp-total-length end-udp-total-length";"start end"; leafstart-udp-total-lengthstart { type uint32; description "Start udp total length for a range match."; } leafend-udp-total-lengthend { type uint32; must '. >= ../start' { error-message "The end hop limit MUST be equal or greater than the start hop limit."; } description "End udp total length for a range match."; } description"Range match for a udp total length."; } } } description"The security policy rule according to udp totallength.";length. If only one value is needed, then set both start and end to the same value"; reference "RFC 768: User Datagram Protocol - Total Length"; } } containerpacket-security-sctp-conditionsctp { description "The purpose of this container is to represent SCTP packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; leafsctp-descriptiondescription { type string; description "This is description for sctp condition."; } containerpkt-sec-sctp-src-port-numsource-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to sctp source port number."; reference "RFC 4960: Stream Control Transmission Protocol - Port number"; } containerpkt-sec-sctp-dest-port-numdestination-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to sctp destination port number."; reference "RFC 4960: Stream Control Transmission Protocol -Total Length";Port Number"; } leaf-listpkt-sec-sctp-verification-tagverification-tag { type uint32; description "The security policy rule according to udp total length."; reference "RFC 4960: Stream Control Transmission Protocol - Verification Tag"; } leaf-listpkt-sec-sctp-chunk-typechunk-type { type uint8; description "The security policy rule according to sctp chunk type ID Value."; reference "RFC 4960: Stream Control Transmission Protocol - Chunk Type"; } } containerpacket-security-dccp-conditiondccp { description "The purpose of this container is to represent DCCP packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; leafdccp-descriptiondescription { type string; description "This is description for dccp condition."; } containerpkt-sec-dccp-src-port-numsource-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to dccp source port number."; reference "RFC 4340: Datagram Congestion Control Protocol (DCCP) - Port number"; } containerpkt-sec-dccp-dest-port-numdestination-port-number { usespkt-sec-port-number;port-range; description "The security policy rule according to dccp destination port number."; reference "RFC 4340: Datagram Congestion Control Protocol (DCCP) - Port number"; } leaf-listpkt-sec-dccp-service-codeservice-code { type uint32; description "The security policy rule according to dccp service code."; reference "RFC 4340: Datagram Congestion Control Protocol (DCCP) - Service Codes RFC 5595: The Datagram Congestion Control Protocol(DCCP) Service Codes(DCCP) Service Codes RFC 6335: Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry - Service Code"; } } list icmp { key "version"; description "The purpose of this container is to represent ICMP packet header information to determine if the set of policy actions in this ECA policy rule should be executed or not."; reference "RFC 792: Internet Control Message Protocol RFC 8335: PROBE: A Utility for Probing Interfaces"; leaf description { type string; description "This is description for icmp condition."; } leaf version { type enumeration { enum icmpv4 { value "1"; description "The ICMPv4 Protocol as defined in RFC 792"; } enum icmpv6 { value "2"; description "The ICMPv6 Protocol as defined in RFC 4443"; } } description "The ICMP version to be matched. This value affected the type and code values."; reference "RFC 792: Internet Control Message Protocol RFC6335:4443: InternetAssigned Numbers Authority (IANA) ProceduresControl Message Protocol (ICMPv6) for theManagement of the Service Name and TransportInternet ProtocolPort Number Registry - Service Code"; }Version 6 (IPv6) Specification"; }container packet-security-icmp-conditionleaf-list type { type uint8; description "Thepurposesecurity policy rule according to ICMPv4 or ICMPv6 type header field. The value of thiscontainerleaf-list isto represent ICMP packet header information to determine ifaffected by thesetvalue ofpolicy actions in this ECA policy rule should be executed or not.";the leaf version. If the version value is icmpv4, the type follows the IANA ICMP Parameters. If the version value is icmpv6, the type follows the IANA ICMPv6 Parameters."; reference "RFC 792: Internet Control Message Protocol RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 8335: PROBE: A Utility for ProbingInterfaces"; leaf icmp-description { type string; description "This is description for icmp condition.";Interfaces IANA: Internet Control Message Protocol (ICMP) Parameters IANA: Internet Control Message Protocol version 6 (ICMPv6) Parameters"; } leaf-listpkt-sec-icmp-type-and-codecode { typeidentityref { base icmp-type; }uint8; description "The security policy rule according to ICMPv4 or ICMPv6 code header field. The value of this leaf-list is affected by the value of the leaf version. If the version value is icmpv4, the code follows the IANA ICMP parameters. If the version value is icmpv6, the code follows the IANA ICMPv6 parameters."; reference "RFC 792: Internet Control Message Protocol RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 8335: PROBE: A Utility for ProbingInterfaces";Interfaces IANA: Internet Control Message Protocol (ICMP) Parameters IANA: Internet Control Message Protocol version 6 (ICMPv6) Parameters"; } } containerpacket-security-url-category-conditionurl-category { description "Condition for url category"; leafurl-category-descriptiondescription { type string; description "This is description for the condition of a URL's category such as SNS sites, game sites, ecommerce sites, company sites, and university sites."; } leaf-list pre-defined-category { type string; description "This is pre-defined-category."; } leaf-list user-defined-category { type string; description "This user-defined-category."; } } containerpacket-security-voice-conditionvoice { description "For the VoIP/VoLTE security system, a VoIP/ VoLTE security system can monitor each VoIP/VoLTE flow and manage VoIP/VoLTE security rules controlled by a centralized server for VoIP/VoLTE security service (called VoIP IPS). The VoIP/VoLTE security system controls each switch for the VoIP/VoLTE call flow management by manipulating the rules that can be added, deleted, or modified dynamically."; reference "RFC 3261: SIP: Session Initiation Protocol"; leafvoice-descriptiondescription { type string; description "This is description for voice condition."; } leaf-listpkt-sec-src-voice-idsource-voice-id { type string; description "The security policy rule according to a source voice ID for VoIP and VoLTE."; } leaf-listpkt-sec-dest-voice-iddestination-voice-id { type string; description "The security policy rule according to a destination voice ID for VoIP and VoLTE."; } leaf-listpkt-sec-user-agentuser-agent { type string; description "The security policy rule according to an user agent for VoIP and VoLTE."; } } containerpacket-security-ddos-conditionddos { description "Condition for DDoS attack."; leafddos-descriptiondescription { type string; description "This is description for ddos condition."; } leafpkt-sec-alert-packet-ratealert-packet-rate { type uint32; units "pps"; description "The alert rate of flood detection for packets per second (PPS) of an IP address."; } leafpkt-sec-alert-flow-ratealert-flow-rate { type uint32; description "The alert rate of flood detection for flows per second of an IP address."; } leaf alert-byte-rate { type uint32; units "BPS"; description "The alert rate of flood detection forflows per second of an IP address.";bytes per second of an IP address."; } } container anti-virus { description "Condition for antivirus"; leaf-list profile { type string; description "The security profile for antivirus. This is used to update the security profile for improving the security. The security profile is used to scan the viruses."; }leaf pkt-sec-alert-byte-rateleaf-list exception-files { typeuint32; units "BPS";string; description "Thealert rate of flood detection for bytes per secondtype or name ofan IP address.";the files to be excluded by the anti-virus. This can be used to keep the known harmless files."; } } containerpacket-security-payload-conditionpayload { description "Condition for packet payload"; leaf packet-payload-description { type string; description "This is description for payload condition."; } leaf-listpkt-payload-contentpayload-content { type string; description "This is a condition for packet payload content."; } } containercontext-conditioncontext { description "Condition for context"; leaf context-description { type string; description "This is description for context condition."; } containerapplication-conditionapplication { description "Condition for application"; leafapplication-descriptiondescription { type string; description "This is description for application condition."; } leaf-listapplication-objectobject { type string; description "This is application object."; } leaf-listapplication-groupgroup { type string; description "This is application group."; } leaf-listapplication-labellabel { type string; description "This is application label."; } container category { description "This is application category"; list application-category { key "nameapplication-subcategory";subcategory"; description "This is application category list"; leaf name { type string; description "This is name for application category."; } leafapplication-subcategorysubcategory { type string; description "This is application subcategory."; } } } } containertarget-conditiontarget { description "Condition for target"; leaftarget-descriptiondescription { type string; description "This is description for target condition. Vendors can write instructions for target condition that vendor made"; }container device-sec-context-condleaf-list device { type identityref { base target-device; } description "The device attribute that can identify a device, including the device type (i.e., router, switch, pc, ios, or android) and the device's owner as well.";leaf-list target-device { type identityref { base target-device; } description "Leaf list for target devices"; }} } containerusers-conditionusers { description "Condition for users"; leaf users-description { type string; description "This is the description for users' condition."; } listuser{user { key "user-id"; description "The user(or user group) informationwith whichnetworkthe traffic flow isassociated: Theassociated can be identified by either a userhas many attributes such as name, id, password, type, authentication mode and so on.id or user name. The user-to-IP address mapping isoften used in the security policyassumed toidentify the user. Besides, an NSF is aware of the IP address of the userbe provided byathe unified user management system vianetwork. Based on name-address association, an NSF is able to enforce the security functions over the given user (or user group)";network."; leaf user-id { type uint32; description "The ID of the user."; } leaf user-name { type string; description "The name of the user."; } } list group { key "group-id"; description "The user(or user group) informationgroup with whichnetworkthe traffic flow isassociated:associated can be identified by either a group id or group name. Theuser has many attributes such as name, id, password, type, authentication modegroup-to-IP address andso on. id is often used in the security policyuser-to-group mappings are assumed toidentify the user. Besides, an NSF is aware of the IP address of the userbe provided byathe unified user management system vianetwork. Based on name-address association, an NSF is able to enforce the security functions over the given user (or user group)";network."; leaf group-id { type uint32; description "The ID of the group."; } leaf group-name { type string; description "The name of the group."; } } leaf security-group { type string; description "security-group."; } } containergeography-context-condition { description "Condition for generic context"; leaf geography-context-description { type string; description "This is description for generic context condition. Vendors can write instructions for generic context condition that vendor made"; } containergeography-location { description "The location which network traffic flow is associated with. The region can be the geographical location such as country, province, and city, as well as the logical network location such as IP address, network section, and network domain."; leaf description { type string; description "This is description for generic context condition. Vendors can write instructions for generic context condition that vendor made"; } leaf-listsrc-geography-locationsource { type string; description "The src-geography-location is a geographical location mapped into an IP address. It matches the mapped IP address to the source IP address of the traffic flow."; reference "ISO 3166: Codes for the representation of names of countries and their subdivisions"; } leaf-listdest-geography-locationdestination { type string; description "The dest-geography-location is a geographical location mapped into an IP address. It matches the mapped IP address to the destination IP address of the traffic flow."; reference "ISO 3166: Codes for the representation of names of countries and their subdivisions"; } } } }}containeraction-clause-containeraction { description "An action is used to control and monitor aspects of flow-based NSFs when the event and condition clauses are satisfied. NSFs provide security functions by executing various Actions. Examples of I2NSF Actions include providing intrusion detection and/or protection, web and flow filtering, and deep packet inspection for packets and flows."; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview"; leaf action-clause-description { type string; description "Description for an action clause."; } container packet-action { description "Action for packets"; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview"; leaf ingress-action { type identityref { base ingress-action; } description"Action:"Ingress Action: pass, drop,reject, alert,rate-limit, and mirror."; } leaf egress-action { type identityref { base egress-action; } description "Egress action: pass, drop,reject, alert,rate-limit, mirror, invoke-signaling, tunnel-encapsulation, forwarding, and redirection."; } leaf log-action { type identityref { base log-action; } description "Log action: rule log and session log"; } } container flow-action { description "Action for flows"; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structuredraft-ietf-i2nsf-capability-data-model-15:draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - Design Principles and ECA Policy Model Overview"; leaf ingress-action { type identityref { base ingress-action; } description "Action: pass, drop,reject, alert,rate-limit, and mirror."; } leaf egress-action { type identityref { base egress-action; } description "Egress action: pass, drop,reject, alert,rate-limit, mirror, invoke-signaling, tunnel-encapsulation, forwarding, and redirection."; } leaf log-action { type identityref { base log-action; } description "Log action: rule log and session log"; } } container advanced-action { description "If the packet needs to be additionally inspected, the packet is passed to advanced network security functions according to the profile. The profile means the types of NSFs where the packet will be forwarded in order to additionally inspect the packet. The advanced action activates Service Function Chaining (SFC) for further inspection of a packet."; reference"RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL"draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG DataModels";Model - YANG Tree Diagram"; leaf-list content-security-control { type identityref { base content-security-control; } description "Content-security-control is the NSFs that inspect the payload of the packet. TheProfileprofile for the types of NSFs for mitigation is divided into content security control and attack-mitigation-control. Content security control:antivirus,ips,ids,url filtering,mail filtering, file blocking, file isolate, packet capture, application control, voipanti-virus, andvolte.";voip-volte-filter. This can be extended according to the provided NSFs."; reference "draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - YANG Tree Diagram"; } leaf-list attack-mitigation-control { type identityref { base attack-mitigation-control; } description "Attack-mitigation-control is the NSFs that weaken the attacks related to a denial of service and reconnaissance. TheProfileprofile for the types of NSFs for mitigation is divided into content security control and attack-mitigation-control. Attack mitigation control:syn flood, udp flood, icmp flood, ip frag flood, ipv6 related, http flood, https flood, dns flood, dns amp flood, ssl ddos,Anti-DDoS or DDoS mitigator. This can be extended according to the provided NSFs such as mitigators for ip sweep, port scanning, ping of death, teardrop, oversized icmp, and tracert."; reference "draft-ietf-i2nsf-capability-data-model-17: I2NSF Capability YANG Data Model - YANG Tree Diagram"; } } } } container rule-group { description "This is rule group"; list groups { key "group-name"; description "This is a group for rules"; leaf group-name { type string; description "This is a group for rules"; } container rule-range { description "This is a rule range."; leaf start-rule { type string; description "This is a start rule"; } leaf end-rule { type string; description "This is a end rule"; } } leaf enable { type boolean; description "This is enable False is not enable."; } leaf description { type string; description "This is a description for rule-group"; } } } } }}<CODE ENDS> Figure 5: YANG Data Module of I2NSF NSF-Facing-Interface 5. XML Configuration Examples of Low-Level Security Policy Rules This section shows XML configuration examples of low-level security policy rules that are delivered from the Security Controller to NSFs over the NSF-Facing Interface. For security requirements, we assume that the NSFs (i.e., General firewall, Time-based firewall, URL filter, VoIP/VoLTE filter, and http and https flood mitigation ) described inSection Configuration Examplesof [I-D.ietf-i2nsf-capability-data-model] are registered in the I2NSF framework. With the registered NSFs, we show configuration examples for security policy rules of network security functions according to the following three security requirements: (i) Block Social Networking Service (SNS) access during business hours, (ii) Block malicious VoIP/VoLTE packets coming to the company, and (iii) Mitigate http and https flood attacks on company web server. 5.1. Security Requirement 1: Block Social Networking Service (SNS) Access during Business Hours This section shows a configuration example for blocking SNS access during business hours in IPv4 networks or IPv6 networks. <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>sns_access</system-policy-name> <rules> <rule-name>block_sns_access_during_operation_time</rule-name><time-intervals> <absolute-time-interval><event> <time> <start-date-time>2021-03-11T09:00:00.00Z</start-date-time> <end-date-time>2021-12-31T18:00:00.00Z</end-date-time> <period> <start-time>09:00:00Z</start-time> <end-time>18:00:00Z</end-time></absolute-time-interval> </time-intervals> <condition-clause-container> <packet-security-ipv4-condition> <pkt-sec-ipv4-src> <range-ipv4-address> <start-ipv4-address>192.0.2.11</start-ipv4-address> <end-ipv4-address>192.0.2.90</end-ipv4-address> </range-ipv4-address> </pkt-sec-ipv4-src> </packet-security-ipv4-condition> </condition-clause-container> <action-clause-container><day>monday</day> <day>tuesday</day> <day>wednesday</day> <day>thursday</day> <day>friday</day> </period> </time> <frequency>weekly</frequency> </event> <condition> <ipv4> <source-address> <ipv4-range> <start>192.0.2.11</start> <end>192.0.2.90</end> </ipv4-range> </source-address> </ipv4> </condition> <action> <advanced-action><content-security-control>url-filtering</content-security-control><content-security-control> url-filtering </content-security-control> </advanced-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 6: Configuration XML for Time-based Firewall to Block SNS Access during Business Hours in IPv4 Networks <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>sns_access</system-policy-name> <rules> <rule-name>block_sns_access_during_operation_time</rule-name><time-intervals> <absolute-time-interval><event> <time> <start-date-time>2021-03-11T09:00:00.00Z</start-date-time> <end-date-time>2021-12-31T18:00:00.00Z</end-date-time> <period> <start-time>09:00:00Z</start-time> <end-time>18:00:00Z</end-time></absolute-time-interval> </time-intervals> <condition-clause-container> <packet-security-ipv6-condition> <pkt-sec-ipv6-src> <range-ipv6-address> <start-ipv6-address>2001:DB8:0:1::11</start-ipv6-address> <end-ipv6-address>2001:DB8:0:1::90</end-ipv6-address> </range-ipv6-address> </pkt-sec-ipv6-src> </packet-security-ipv6-condition> </condition-clause-container> <action-clause-container><day>monday</day> <day>tuesday</day> <day>wednesday</day> <day>thursday</day> <day>friday</day> </period> </time> <frequency>weekly</frequency> </event> <condition> <ipv6> <source-address> <ipv6-range> <start>2001:DB8:0:1::11</start> <end>2001:DB8:0:1::90</end> </ipv6-range> </source-address> </ipv6> </condition> <action> <advanced-action><content-security-control>url-filtering</content-security-control><content-security-control> url-filtering </content-security-control> </advanced-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 7: Configuration XML for Time-based Firewall to Block SNS Access during Business Hours in IPv6 Networks <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>sns_access</system-policy-name> <rules> <rule-name>block_sns_access_during_operation_time</rule-name><time-intervals> <absolute-time-interval> <start-time>09:00:00Z</start-time> <end-time>18:00:00Z</end-time> </absolute-time-interval> </time-intervals> <condition-clause-container> <packet-security-url-category-condition> <user-defined-category>SNS_1</user-defined-category> <user-defined-category>SNS_2</user-defined-category> </packet-security-url-category-condition><condition> <url-category> <user-defined>SNS_1</user-defined> <user-defined>SNS_2</user-defined> </url-category> </condition-clause-container> <action-clause-container><flow-action><packet-action> <egress-action>drop</egress-action></flow-action></packet-action> </action-clause-container> </rules></system-policy></i2nsf-security-policy> Figure 8: Configuration XML for Web Filter to Block SNS Access during Business Hours Figure 6 (or Figure 7) and Figure 8 show the configuration XML documents for time-based firewall and web filter to block SNS access during business hours in IPv4 networks (or IPv6 networks). For the security requirement, two NSFs (i.e., a time-based firewall and a web filter) were used because one NSF cannot meet the security requirement. The instances of XML documents for the time-based firewall and the web filter are as follows: Note that a detailed data model for the configuration of the advanced network security function (i.e., web filter) can be defined as an extension in future. Time-based Firewall is as follows: 1. The name of the system policy is sns_access. 2. The name of the rule is block_sns_access_during_operation_time. 3. The rule is started from 2021-03-11 at 9 a.m. to 2021-12-31 at 6 p.m. 4. The rule is operated weekly every weekday (i.e., Monday, Tuesday, Wednesday, Thursday, and Friday) during the business hours (i.e., from 9 a.m. to 6p.m.). 4.p.m.) . 5. The rule inspects a source IPv4 address (i.e., from 192.0.2.11 to 192.0.2.90) to inspect the outgoing packets of employees. For the case of IPv6 networks, the rule inspects a source IPv6 address (i.e., from 2001:DB8:0:1::11 to 2001:DB8:0:1::90) to inspect the outgoing packets of employees.5.6. If the outgoing packets match the rules above, the time-based firewall sends the packets to url filtering for additional inspection because the time-based firewall can not inspect contents of the packets for the SNS URL. Web Filter is as follows: 1. The name of the system policy is sns_access. 2. The name of the rule is block_SNS_1_and_SNS_2. 3. The rule inspects URL address to block the access packets to the SNS_1 or the SNS_2. 4. If the outgoing packets match the rules above, the packets are blocked. 5.2. Security Requirement 2: Block Malicious VoIP/VoLTE Packets Coming to a Company This section shows a configuration example for blocking malicious VoIP/VoLTE packets coming to a company. <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>voip_volte_inspection</system-policy-name> <rules> <rule-name>block_malicious_voice_id</rule-name><condition-clause-container> <packet-security-ipv4-condition> <pkt-sec-ipv4-dest> <range-ipv4-address> <start-ipv4-address>192.0.2.11</start-ipv4-address> <end-ipv4-address>192.0.2.90</end-ipv4-address> </range-ipv4-address> </pkt-sec-ipv4-dest> </packet-security-ipv4-condition> <packet-security-tcp-condition> <pkt-sec-tcp-dest-port-num> <port-num>5060</port-num> <port-num>5061</port-num> </pkt-sec-tcp-dest-port-num> </packet-security-tcp-condition> </condition-clause-container> <action-clause-container><condition> <ipv4> <destination-address> <ipv4-range> <start>192.0.2.11</start> <end>192.0.2.90</end> </ipv4-range> </destination-address> </ipv4> <tcp> <destination-port-number> <start>5060</start> <start>5061</end> </destination-port-number> </tcp> </condition> <action> <advanced-action><content-security-control>voip-volte</content-security-control><content-security-control> voip-volte-filter </content-security-control> </advanced-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 9: Configuration XML for General Firewall to Block Malicious VoIP/VoLTE Packets Coming to a Company <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>voip_volte_inspection</system-policy-name> <rules> <rule-name>block_malicious_voice_id</rule-name><condition-clause-container> <packet-security-voice-condition> <pkt-sec-src-voice-id>user1@voip.malicious.example.com</pkt-sec-src-voice-id> <pkt-sec-src-voice-id>user2@voip.malicious.example.com</pkt-sec-src-voice-id> </packet-security-voice-condition> </condition-clause-container> <action-clause-container><condition> <voice> <source-voice-id> user1@voip.malicious.example.com </source-voice-id> <source-voice-id> user2@voip.malicious.example.com </source-voice-id> </voice> </condition> <action> <flow-action> <ingress-action>drop</ingress-action> </flow-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 10: Configuration XML for VoIP/VoLTE Filter to Block Malicious VoIP/VoLTE Packets Coming to a Company Figure 9 and Figure 10 show the configuration XML documents for general firewall and VoIP/VoLTE filter to block malicious VoIP/VoLTE packets coming to a company. For the security requirement, two NSFs (i.e., a general firewall and a VoIP/VoLTE filter) were used because one NSF can not meet the security requirement. The instances of XML documents for the general firewall and the VoIP/VoLTE filter are as follows: Note that a detailed data model for the configuration of the advanced network security function (i.e., VoIP/VoLTE filter) can be described as an extension in future. General Firewall is as follows: 1. The name of the system policy is voip_volte_inspection. 2. The name of the rule is block_malicious_voip_volte_packets. 3. The rule inspects a destination IPv4 address (i.e., from 192.0.2.11 to 192.0.2.90) to inspect the packets coming into the company. 4. The rule inspects a port number (i.e., 5060 and 5061) to inspect VoIP/VoLTE packet. 5. If the incoming packets match the rules above, the general firewall sends the packets to VoIP/VoLTE filter for additional inspection because the general firewall can not inspect contents of the VoIP/VoLTE packets. VoIP/VoLTE Filter is as follows: 1. The name of the system policy is malicious_voice_id. 2. The name of the rule is block_malicious_voice_id. 3. The rule inspects the voice id of the VoIP/VoLTE packets to block the malicious VoIP/VoLTE packets (i.e., user1@voip.malicious.example.com and user2@voip.malicious.example.com). 4. If the incoming packets match the rules above, the packets are blocked. 5.3. Security Requirement 3: Mitigate HTTP and HTTPS Flood Attacks on a Company Web Server This section shows a configuration example for mitigating http and https flood attacks on a company web server. <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>flood_attack_mitigation</system-policy-name> <rules> <rule-name>mitigate_http_and_https_flood_attack</rule-name><condition-clause-container> <packet-security-ipv4-condition> <pkt-sec-ipv4-dest> <ipv4-address> <ipv4>192.0.2.11</ipv4> </ipv4-address> </pkt-sec-ipv4-dest> </packet-security-ipv4-condition> <packet-security-tcp-condition> <pkt-sec-tcp-dest-port-num> <port-num>80</port-num> <port-num>443</port-num> </pkt-sec-tcp-dest-port-num> </packet-security-tcp-condition> </condition-clause-container> <action-clause-container><condition> <ipv4> <destination-address> <ipv4-range> <start>192.0.2.11</start> <end>192.0.2.11</end> </ipv4-range> </destination-address> </ipv4> <tcp> <destination-port-number> <start>80</start> <end>80</end> </destination-port> <destination-port-number> <start>443</start> <end>443</end> </destination-port> </tcp> </condition> <action> <advanced-action><attack-mitigation-control>http-and-https-flood<attack-mitigation-control> anti-ddos </attack-mitigation-control> </advanced-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 11: Configuration XML for General Firewall to Mitigate HTTP and HTTPS Flood Attacks on a Company Web Server <i2nsf-security-policy xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf"><system-policy><system-policy-name>flood_attack_mitigation</system-policy-name> <rules> <rule-name>mitigate_http_and_https_flood_attack</rule-name><condition-clause-container> <packet-security-ddos-condition> <pkt-sec-alert-packet-rate>100</pkt-sec-alert-packet-rate> </packet-security-ddos-condition> </condition-clause-container> <action-clause-container><condition> <ddos> <alert-packet-rate>1000</alert-packet-rate> </ddos> </condition> <action> <flow-action> <ingress-action>drop</ingress-action> </flow-action></action-clause-container></action> </rules></system-policy></i2nsf-security-policy> Figure 12: Configuration XML forHTTP and HTTPS Flood Attack MitigationAnti-DDoS to Mitigate HTTP and HTTPS Flood Attacks on a Company Web Server Figure 11 and Figure 12 show the configuration XML documents for general firewall and http and https flood attack mitigation to mitigate http and https flood attacks on a company web server. For the security requirement, two NSFs (i.e., a general firewall and a http and https flood attack mitigation) were used because one NSF can not meet the security requirement. The instances of XML documents for the general firewall and http and https flood attack mitigation are as follows: Note that a detailed data model for the configuration of the advanced network security function (i.e., http and https flood attack mitigation) can be defined as an extension in future. General Firewall is as follows: 1. The name of the system policy is flood_attack_mitigation. 2. The name of the rule is mitigate_http_and_https_flood_attack. 3. The rule inspects a destination IPv4 address (i.e., 192.0.2.11) to inspect the access packets coming into the company web server. 4. The rule inspects a port number (i.e., 80 and 443) to inspect http and https packet. 5. If the packets match the rules above, the general firewall sends the packets tohttp and https flood attack mitigationanti-DDoS for additional inspection because the general firewall can not control the amount of packets for http and https packets. Anti DDoS for HTTP and HTTPS Flood Attack Mitigation is as follows: 1. The name of the system policy ishttp_and_https_flood_attack_mitigation.flood_attack_mitigation. 2. The name of the rule is100_per_second.mitigate_http_and_https_flood_attack. 3. The rule controls the http and https packets according to the amount of incomingpackets.packets (1000 packets per second). 4. If the incoming packets match the rules above, the packets are blocked. 6. IANA Considerations This document requests IANA to register the following URI in the "IETF XML Registry" [RFC3688]: URI: urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. This document requests IANA to register the following YANG module in the "YANG Module Names" registry [RFC7950][RFC8525]. name: ietf-i2nsf-policy-rule-for-nsf namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-policy-rule-for-nsf prefix: nsfintf reference: RFC XXXX 7. Security Considerations The YANG module specified in this document defines a data schema designed to be accessed through network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the required secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the required secure transport is TLS [RFC8446]. The NETCONF access control model [RFC8341] provides a means of restricting access to specific NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:o* ietf-i2nsf-policy-rule-for-nsf: Writing to almost any element of this YANG module would directly impact on the configuration of NSFs, e.g., completely turning off security monitoring and mitigation capabilities; altering the scope of this monitoring and mitigation; creating an overwhelming logging volume to overwhelm downstream analytics or storage capacity; creating logging patterns which are confusing; or rendering useless trained statistics or artificial intelligence models. Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:o* ietf-i2nsf-policy-rule-for-nsf: The attacker may gather the security policy information of any target NSFs and misuse the security policy information for subsequent attacks.In this YANG data module, note thatPolicy rules identifying theidentity information ofspecified users and user groups can beexchanged for security policy configuration based on a user's information. This implied that to improve the network security there is a tradeoff between a user's information privacy and network security. For container users-conditionsspecified with "rules/condition/context/users". As with other data in this YANGdatamodule,the identitythis user informationof users can be exchanged betweenis provided by the Security Controllerand an NSF for security policy configuration based on users' information. Thus, for this exchange ofto theidentity information of users, thereNSFs and isa proportional relationship betweenprotected via therelease level of a user's privacy informationtransport andthe network security strength of an NSF.access control mechanisms described above. 8. Acknowledgments This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea MSIT (Ministry of Science and ICT) (R-20160222-002755, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning). This work was supported in part by the IITP (2020-0-00395, Standard Development of Blockchain based Network Management Automation Technology). 9. Contributors This document is made by the group effort of I2NSF working group. Many people actively contributed to this document, such as Acee Lindem and Roman Danyliw. The authors sincerely appreciate their contributions. The following are co-authors of this document: Patrick Lingga Department of Computer Science and Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon, Gyeonggi-do 16419 Republic of Korea EMail: patricklink@skku.edu Hyoungshick Kim Department of Computer Science and Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon, Gyeonggi-do 16419 Republic of Korea EMail: hyoung@skku.edu Daeyoung Hyun Department of Computer Science and Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon, Gyeonggi-do 16419 Republic of Korea EMail: dyhyun@skku.edu Dongjin Hong Department of Electronic, Electrical and Computer Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon, Gyeonggi-do 16419 Republic of Korea EMail: dong.jin@skku.edu Liang Xia Huawei 101 Software Avenue Nanjing, Jiangsu 210012 China EMail: Frank.Xialiang@huawei.com Tae-Jin Ahn Korea Telecom 70 Yuseong-Ro, Yuseong-Gu Daejeon, 305-811 Republic of Korea EMail: taejin.ahn@kt.com Se-Hui Lee Korea Telecom 70 Yuseong-Ro, Yuseong-Gu Daejeon, 305-811 Republic of Korea EMail: sehuilee@kt.com 10. References 10.1. Normative References[I-D.ietf-i2nsf-capability-data-model] Hares, S., Jeong, J., Kim, J., Moskowitz, R., and Q. Lin, "I2NSF Capability YANG Data Model", draft-ietf-i2nsf- capability-data-model-15 (work in progress), January 2021. [I-D.ietf-i2nsf-sdn-ipsec-flow-protection] Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez- Garcia, "Software-Defined Networking (SDN)-based IPsec Flow Protection", draft-ietf-i2nsf-sdn-ipsec-flow- protection-12 (work in progress), October 2020.[RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768, August 1980, <https://www.rfc-editor.org/info/rfc768>. [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, September 1981, <https://www.rfc-editor.org/info/rfc791>. [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, DOI 10.17487/RFC0792, September 1981, <https://www.rfc-editor.org/info/rfc792>. [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, <https://www.rfc-editor.org/info/rfc793>. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI 10.17487/RFC2474, December 1998, <https://www.rfc-editor.org/info/rfc2474>. [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261, June 2002, <https://www.rfc-editor.org/info/rfc3261>. [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.[RFC4443] Conta, A., Deering, S.,[RFC4340] Kohler, E., Handley, M., andM. Gupta, Ed., "InternetS. Floyd, "Datagram Congestion ControlMessage Protocol (ICMPv6) for the InternetProtocolVersion 6 (IPv6) Specification", STD 89,(DCCP)", RFC4443,4340, DOI10.17487/RFC4443,10.17487/RFC4340, March 2006,<https://www.rfc-editor.org/info/rfc4443>.<https://www.rfc-editor.org/info/rfc4340>. [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol", RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://www.rfc-editor.org/info/rfc4960>. [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>. [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>. [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>. [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S. Cheshire, "Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry", BCP 165, RFC 6335, DOI 10.17487/RFC6335, August 2011, <https://www.rfc-editor.org/info/rfc6335>. [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>. [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>. [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>. [RFC8335] Bonica, R., Thomas, R., Linkova, J., Lenart, C., and M. Boucadair, "PROBE: A Utility for Probing Interfaces", RFC 8335, DOI 10.17487/RFC8335, February 2018, <https://www.rfc-editor.org/info/rfc8335>. [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>. [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>. [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>. [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>. [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>. [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K., and R. Wilton, "YANG Library", RFC 8525, DOI 10.17487/RFC8525, March 2019, <https://www.rfc-editor.org/info/rfc8525>.10.2. Informative References[I-D.ietf-i2nsf-capability-data-model] Hares, S., Jeong, J. (., Kim, J. (., Moskowitz, R., and Q. Lin, "I2NSF Capability YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-capability-data-model-17, 14 August 2021, <https://www.ietf.org/archive/id/draft- ietf-i2nsf-capability-data-model-17.txt>. [I-D.ietf-i2nsf-nsf-monitoring-data-model] Jeong,J.,J. (., Lingga, P., Hares, S., Xia,L.,L. (., and H. Birkholz, "I2NSF NSF Monitoring Interface YANG Data Model",draft- ietf-i2nsf-nsf-monitoring-data-model-04 (workWork inprogress), September 2020. [IANA-Protocol-Numbers] "Assigned Internet Protocol Numbers", Available: https://www.iana.org/assignments/protocol- numbers/protocol-numbers.xhtml, January 2021. [ISO-Country-Codes] "Codes for the representation of names of countries and their subdivisions", ISO 3166, September 2018.Progress, Internet-Draft, draft-ietf- i2nsf-nsf-monitoring-data-model-08, 29 April 2021, <https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf- monitoring-data-model-08.txt>. 10.2. Informative References [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018, <https://www.rfc-editor.org/info/rfc8329>. [I-D.ietf-i2nsf-consumer-facing-interface-dm] Jeong, J. (., Chung, C., Ahn, T., Kumar, R., and S. Hares, "I2NSF Consumer-Facing Interface YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-consumer- facing-interface-dm-13, 8 March 2021, <https://www.ietf.org/archive/id/draft-ietf-i2nsf- consumer-facing-interface-dm-13.txt>. [ISO-Country-Codes] "Codes for the representation of names of countries and their subdivisions", ISO 3166, September 2018, <https://www.iso.org/iso-3166-country-codes.html>. [IANA-Protocol-Numbers] Internet Assigned Numbers Authority (IANA), "Internet Control Message Procotol (ICMP) Parameters", September 2020, <https://www.iana.org/assignments/icmp-parameters/ icmp-parameters.xhtml>. [IANA-ICMP-Parameters] Internet Assigned Numbers Authority (IANA), "Assigned Internet Protocol Numbers", February 2021, <https://www.iana.org/assignments/protocol-numbers/ protocol-numbers.xhtml>. [IEEE-802.3] Institute of Electrical and Electronics Engineers, "IEEE Standard for Ethernet", 2018, <https://ieeexplore.ieee.org/document/8457469/>. Authors' Addresses Jinyong (Tim) Kim (editor) Department of Electronic, Electrical and Computer Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-GuSuwon,Suwon Gyeonggi-Do 16419 Republic of Korea Phone: +82 10 8273 0930EMail:Email: timkim@skku.edu Jaehoon (Paul) Jeong (editor) Department of Computer Science and Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-GuSuwon,Suwon Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 299 4957Fax: +82 31 290 7996 EMail:Email: pauljeong@skku.edu URI: http://iotlab.skku.edu/people-jaehoon-jeong.php Jung-Soo Park Electronics and Telecommunications Research Institute 218 Gajeong-Ro, Yuseong-Gu Daejeon 34129 Republic of Korea Phone: +82 42 860 6514EMail:Email: pjs@etri.re.kr Susan Hares Huawei 7453 Hickory Hill Saline, MI 48176USAUnited States of America Phone: +1-734-604-0332EMail:Email: shares@ndzh.com Qiushi Lin Huawei Huawei Industrial BaseShenzhen,Shenzhen Guangdong518129518129, ChinaEMail:Email: linqiushi@huawei.com