I2NSF Working Group S. Hares Internet-Draft Huawei Intended status: Standards Track J. Jeong Expires:September 29, 2019January 26, 2020 J. Kim Sungkyunkwan University R. Moskowitz HTT Consulting Q. Lin HuaweiMarch 28,July 25, 2019 I2NSF Capability YANG Data Modeldraft-ietf-i2nsf-capability-data-model-04draft-ietf-i2nsf-capability-data-model-05 Abstract This document defines a YANG data model for the capabilities of various Network Security Functions (NSFs) in the Interface to Network Security Functions (I2NSF) framework tocetrallycentrally manage the capabilities ofvariosthe various NSFs. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire onSeptember 29, 2019.January 26, 2020. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 4 4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5. YANG Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 6 5.1.Capabilities ofNetwork Security Function. .(NSF) Capabilities . . . . . . 6 6. YANG Data Modules . . . . . . . . . . . . . . . . . . . . . . 9 6.1. I2NSF Capability YANG Data Module . . . . . . . . . . . . 9 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 38 8. Security Considerations . . . . . . . . . . . . . . . . . . .3938 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1. Normative References . . . . . . . . . . . . . . . . . . 39 9.2. Informative References . . . . . . . . . . . . . . . . .4041 Appendix A. Configuration Examples . . . . . . . . . . . . . . . 43 A.1. Example 1: Registration for Capabilities of General Firewall . . . . . . . . . . . . . . . . . . . . . . . . 43 A.2. Example 2: Registration for Capabilities of Time based Firewall . . . . . . . . . . . . . . . . . . . . . . . . 44 A.3. Example 3: Registration for Capabilities of Web Filter . 45 A.4. Example 4: Registration for Capabilities of VoIP/VoLTE Filter . . . . . . . . . . . . . . . . . . . . . . . . . 45 A.5. Example 5: Registration for Capabilities of HTTP and HTTPS Flood Mitigation . . . . . . . . . . . . . . . . . 46 Appendix B. Changes from draft-ietf-i2nsf-capability-data-model-03model-04 . . . . . . . . . . . . . . . . . . . . . .4247 AppendixB.C. Acknowledgments . . . . . . . . . . . . . . . . . .4247 AppendixC.D. Contributors . . . . . . . . . . . . . . . . . . . .4248 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .4248 1. Introduction As the industry becomes more sophisticated and network devices (e.g., Internet of Things, Self-driving vehicles, and VoIP/VoLTE smartphones), service providers have a lot of problemsmentioneddescribed in [RFC8192]. To resolve these problems,[i2nsf-nsf-cap-im][draft-ietf-i2nsf-capability] specifies the information model of the capabilities of Network Security Functions (NSFs). This document provides a YANG data modelusing YANG[RFC6020][RFC7950] that defines the capabilities of NSFs to centrally manage the capabilities of those security devices. The security devices can register their own capabilities into a Network Operator Management (Mgmt) System (i.e., Security Controller) with this YANG data model through the registration interface [RFC8329]. With the capabilities of those security devicesregisteredmaintained centrally, those security devices can be easily managed [RFC8329]. This YANG data model is based on the information model for I2NSF NSF capabilities[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. This YANG data model uses an "Event-Condition-Action" (ECA) policy model that is used as the basis for the design of I2NSF Policy as described in [RFC8329] and[i2nsf-nsf-cap-im]. Rules.[draft-ietf-i2nsf-capability].. The"ietf- i2nsf-capability""ietf-i2nsf-capability" YANG module defined in this document provides the following features: o Definition for general capabilities of network security functions. o Definition for event capabilities of generic network securityfunction.functions. o Definition for condition capabilities of generic network securityfunction.functions. o Definition for condition capabilities of advanced network securityfunction.functions. o Definition for action capabilities of generic network securityfunction.functions. o Definition for resolution strategy capabilities of generic network securityfunction.functions. o Definition for default action capabilities of generic network securityfunction.functions. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119][RFC8174]. 3. Terminology This document uses the terminology described in[i2nsf-terminology][i2nsf-nsf-cap-im] [RFC8431][supa-policy-info-model].[draft-ietf-i2nsf-terminology][draft-ietf-i2nsf-capability] [RFC8431][draft-ietf-supa-generic-policy-info-model]. Especially, the following terms are from[supa-policy-info-model]:[draft-ietf-supa-generic-policy-info-model]: o Data Model: A data model is a representation of concepts of interest to an environment in a form that is dependent on data repository, data definition language, query language, implementation language, and protocol. o Information Model: An information model is a representation of concepts of interest to an environment in a form that is independent of data repository, data definition language, query language, implementation language, and protocol. 3.1. Tree Diagrams A simplified graphical representation of the data model is used in this document. The meaning of the symbols in these diagrams[RFC8340]isas follows: o Brackets "[" and "]" enclose list keys. o Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only). o Symbols after data node names: "?" means an optional node and "*" denotes a "list" and "leaf-list". o Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":"). o Ellipsis ("...") stands for contents of subtrees that are not shown.referred from [RFC8340]. 4. Overview This sectionexplainsprovides as overview of how the YANG data model can be used in the I2NSF framework described in [RFC8329]. Figure 1 shows the capabilities of NSFs in I2NSF Framework. As shown in this figure, an NSF Developer's Mgmt System can register NSFswithand the capabilities that the network security device can support. To register NSFs in this way, the Developer's Mgmt System utilizes this standardized capabilities YANG data model through its registration interface. With the capabilities of those network security devicesregisteredmaintained centrally, those security devices can be easily managed, which can resolvethe a lotmany of the problems described in [RFC8192]. Thefollowing showsusecases.cases are described below. Note[i2nsf-nsf-yang]that the NSF-Facing Interface is used to configure the security policy rules of the generic network security functions [draft-ietf-i2nsf-nsf-facing-interface-dm], and[i2nsf-advanced-nsf-dm]the NSF Monitoring Interface is used to configure the security policy rules of advanced network security functions [draft-dong-i2nsf-asf-config], respectively, according to the capabilities ofnetwork security devices registed inNSFs registered with the I2NSF Framework. +-------------------------------------------------------+ | I2NSF User (e.g., Overlay Network Mgmt, Enterprise | | Network Mgmt, another network domain's mgmt, etc.) | +--------------------+----------------------------------+ | Consumer-Facing Interface | | |I2NSF+-----------------+------------+ Registration +-------------+ | Network Operator Mgmt System | Interface | Developer's | | (i.e., Security Controller) | < --------- > | Mgmt System | +-----------------+------------+ +-------------+ | New NSF | E = {} NSF-Facing Interface | C = {IPv4, IPv6} | A = {Allow, Deny} | +---------------+----+------------+-----------------+ | | | | +---+---+ +---+---+ +---+---+ +---+---+ | NSF-1 | ... | NSF-m | | NSF-1 | ... | NSF-n | ... +-------+ +-------+ +-------+ +-------+ NSF-1 NSF-m NSF-1 NSF-n E = {} E = {user} E = {dev} E = {time} C = {IPv4} C = {IPv6} C = {IPv4, IPv6} C = {IPv4} A = {Allow, Deny} A = {Allow, Deny} A = {Allow, Deny} A = {Allow, Deny}DeveloperDeveloper's Mgmt System ADeveloperDeveloper's Mgmt System B Figure 1: Capabilities of NSFs in I2NSF Framework o If a network manager wants to apply security policy rulesabout blocking maliciousto block malicious users, it is a tremendous burden to apply all ofthesethe needed rules to NSFsone by one.one-by-one. This problem can be resolved by managing the capabilities of NSFs. If network manager wants to block malicious users with IPv6, the network manager sends the security policy rulesabout blockingto block the users to the Network Operator Mgmt System using I2NSF user (i.e., a web browser or a software). When the Network Operator Mgmt System receives the security policy rules, it automatically sends that security policy rules to appropriate NSFs (i.e., NSF-m inDeveloperDeveloper's Mgmt System A and NSF-1 inDeveloperDeveloper's Mgmt System B) which can support the capabilities (i.e., IPv6). Therefore, an I2NSF User need not consider NSFs where toapplywhich NSFs therules.rules apply. o If NSFsfindencounter the malicious packets, it is a tremendous burden for the network manager to apply the ruleabout blockingto block the malicious packets to NSFsone by one.one-by-one. This problem can be resolved by managing the capabilities of NSFs. If NSFsfindencounter the suspiciouspackets with IPv4,IPv4 packets, they can ask the Network Operator Mgmt System for information about the suspicious IPv4 packetswith IPv4.in order to alter specific rules and/or configurations. When the Network Operator Mgmt System receives information, it inspects the information about thesuspicious packets with IPv4.suspiciou IPv4 packets. If the suspicious packets are determined to be malicious packets, the Network Operator Mgmt System creates and sends the security policyrule againstrules blocking malicious packets to appropriate NSFs (i.e., NSF-1 inDeveloperDeveloper's Mgmt System A and NSF-1 and NSF-n inDeveloperDeveloper's Mgmt System B) which can support the capabilities (i.e., IPv4). Therefore, the new security policyrule againstrules blocking malicious packets can be applied to appropriate NSFs withoutintervention of humans.humans intervention. 5. YANG Tree Diagram This section shows an YANG tree diagram of capabilities for network security functions, as defined in the[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. 5.1.Capabilities ofNetwork Security Function (NSF) Capabilities This section shows YANG tree diagram forcapabilities of network security functions.NSF capabilities. module: ietf-i2nsf-capability +--rwnsfnsf* [nsf-name] +--rw nsf-name string +--rw time-capabilities* enumeration +--rw event-capabilities | +--rwsystem-event-capa*system-event-capability* identityref | +--rwsystem-alarm-capa*system-alarm-capability* identityref +--rw condition-capabilities | +--rw generic-nsf-capabilities | | +--rwipv4-capa*ipv4-capability* identityref | | +--rwipv6-capa*ipv6-capability* identityref | | +--rwtcp-capa*tcp-capability* identityref | | +--rwudp-capa*udp-capability* identityref | | +--rwicmp-capa*icmp-capability* identityref | +--rw advanced-nsf-capabilities | | +--rwantivirus-capa*anti-virus-capability* identityref | | +--rwantiddos-capa*anti-ddos-capability* identityref | | +--rwips-capa*ips-capability* identityref | | +--rwurl-capa*url-capability* identityref | | +--rwvoip-volte-capa*voip-volte-capability* identityref | +--rw context-capabilities* identityref +--rw action-capabilities | +--rwingress-action-capa*ingress-action-capability* identityref | +--rwegress-action-capa*egress-action-capability* identityref | +--rwlog-action-capa*log-action-capability* identityref +--rw resolution-strategy-capabilities* identityref +--rw default-action-capabilities* identityref +--rw ipsec-method* identityref Figure 2: YANG Tree Diagram for Capabilities of Network Security Functions This YANG tree diagram showscapabilities of network security functions. TheNSF capabilities. The model includes NSF capabilities. The NSF capabilities include time capabilities, event capabilities, condition capabilities, action capabilities, resolution strategy capabilities, and default action capabilities. Time capabilities are used to specify the capabilities to specify when to execute the I2NSF policy rule. The time capabilities are definedasin terms of absolute time and periodic time. The absolute time means the exact time to start or end. The periodic time means repeated time like day, week, or month. Event capabilities are used to specify capabilities how to trigger the evaluation of the condition clause of the I2NSF Policy Rule. The defined event capabilities are defined as system event and system alarm. The event capability can be extended according to specific vendor condition features. The event capability is described in detail in[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. Condition capabilities are used to specify capabilities of a set of attributes, features, and/or values that are to be compared with a set of known attributes, features, and/or values in order to determine whether or not the set of actions in that (imperative) I2NSF policy rule can beexecuted or not.executed. The conditioncapability is classified as conditioncapabilities are classified in terms of generic network security functions and advanced network security functions. The condition capabilities of generic network security functions are defined as IPv4 capability, IPv6 capability,tcpTCP capability,udpUDP capability, andicmpICMP capability. The condition capabilities of advanced network security functions are defined asantivirusanti-virus capability,antiddosanti-ddos capability,ipsIPS capability,httpHTTP capability, and VoIP/VoLTE capability. The condition capability can be extended according to specific vendor condition features. The condition capability is described in detail in[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. Action capabilitiesisare used to specify capabilities of how to control and monitor aspects of flow-based NSFs when the event and condition clauses are satisfied. The action capabilities are defined asingress actioningress-action capability,egress actionegress-action capability, andloglog- action capability. The action capability can be extended according to specific vendor action features. The action capability is described in detail in[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. Resolution strategy capabilities are used to specify capabilities of how to resolve conflicts that occur between the actions of the same or different policy rules that are matched and contained in this particular NSF. The resolution strategy capabilities are defined as First Matching Rule (FMR), Last Matching Rule (LMR), Prioritized Matching Rule(PMR)(PMR), Prioritized Matching Rule with Errors (PMRE), and Prioritized Matching Rule with No Errors (PMRN). The resolution strategycapabilitycapabilities can be extended according to specific vendor action features. The resolution strategy capability is described in detail in[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. Default action capabilities are used to specify capabilities of how to execute I2NSF policyrulerules when no rule matches a packet. The default action capabilities are defined as pass, drop, reject, alert, and mirror. The default action capability can be extended according to specific vendor action features. The default action capability is described in detail in[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. IPsec method capabilities are used to specify capabilities of how to support an Internetkey exchangeKey Exchange (IKE) for the security communication. The default action capabilities are defined asikeIKE andikeless.IKE-less. The default action capability can be extended according to specific vendor action features. The default action capability is described in detail in [draft-ietf-i2nsf-sdn-ipsec-flow-protection]. 6. YANG Data Modules 6.1. I2NSF Capability YANG Data Module This section introducesana YANG data module forcapabilities ofnetwork securityfunctions,functions capabilities, as defined in the[i2nsf-nsf-cap-im].[draft-ietf-i2nsf-capability]. <CODE BEGINS> file"ietf-i2nsf-capability@2019-03-28.yang""ietf-i2nsf-capability@2019-07-24.yang" module ietf-i2nsf-capability { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"; prefixiicapa;nsfcap; organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact "WG Web: <http://tools.ietf.org/wg/i2nsf> WG List: <mailto:i2nsf@ietf.org> WG Chair:Adrian Farrel <mailto:Adrain@olddog.co.uk> WG Chair:Linda Dunbar<mailto:Linda.duhbar@huawei.com><mailto:ldunbar@futurewei.com> WG Chair: Yoav Nir <mailto:ynir.ietf@gmail.com> Editor: Susan Hares <mailto:shares@ndzh.com> Editor: Jaehoon Paul Jeong <mailto:pauljeong@skku.edu> Editor: Jinyong Tim Kim <mailto:timkim@skku.edu>"; description "This module describes a capability model for I2NSF devices. Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8341; see the RFC itself for full legal notices."; revision"2019-03-28"{"2019-07-24"{ description "Initial revision."; reference "RFC XXXX: I2NSF Capability YANG Data Model"; } /* * Identities */ identity event { description "Base identity forevent of policy.";I2NSF policy events."; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - Event"; } identitysystem-event-capasystem-event-capability { base event; description "Identity for systemevent";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identitysystem-alarm-capasystem-alarm-capability { base event; description "Identity for systemalarm";alarms"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity access-violation { basesystem-event-capa;system-event-capability; description "Identity for access violationamong systemevents"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System event"; } identity configuration-change { basesystem-event-capa;system-event-capability; description "Identity for configuration changeamong systemevents"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System event"; } identity memory-alarm { basesystem-alarm-capa;system-alarm-capability; description "Identity for memory alarmamong system alarms";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity cpu-alarm { basesystem-alarm-capa;system-alarm-capability; description "Identity forcpuCPU alarmamong system alarms";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity disk-alarm { basesystem-alarm-capa;system-alarm-capability; description "Identity for disk alarmamong system alarms";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity hardware-alarm { basesystem-alarm-capa;system-alarm-capability; description "Identity for hardware alarmamong system alarms";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity interface-alarm { basesystem-alarm-capa;system-alarm-capability; description "Identity for interface alarmamong system alarms";events"; reference"draft-hong-i2nsf-nsf-monitoring-data-model-06"draft-ietf-i2nsf-nsf-monitoring-data-model-01 - System alarm"; } identity condition { description "Base identity forconditions of policy";policy conditions"; } identitycontext-capacontext-capability { base condition; description "Identity forcapabilities ofcontextcondition";condition capabilities"; } identity acl-number { basecontext-capa;context-capability; description "Identity foraclACL numbercapability of context condition";condition capability"; } identity application { basecontext-capa;context-capability; description "Identity for applicationcapability of context condition";condition capability"; } identity target { basecontext-capa;context-capability; description "Identity for targetcapability of context condition";condition capability"; } identity user { basecontext-capa;context-capability; description "Identity for usercapability of context condition";condition capability"; } identity group { basecontext-capa;context-capability; description "Identity for groupcapability of context condition";condition capability"; } identity geography { basecontext-capa;context-capability; description "Identity for geographycapability of context condition";condition capability"; } identityipv4-capaipv4-capability { base condition; description "Identity forcapabilities ofIPv4condition";condition capabilities"; reference "RFC 791: Internet Protocol"; } identity exact-ipv4-header-length { baseipv4-capa;ipv4-capability; description "Identity forexact header length capability ofexact-match IPv4condition";header-length condition capability"; reference "RFC 791: Internet Protocol - Header Length"; } identity range-ipv4-header-length { baseipv4-capa;ipv4-capability; description "Identity forrange header length capability ofrange-match IPv4condition";header-length condition capability"; reference "RFC 791: Internet Protocol - Header Length"; } identity ipv4-tos { baseipv4-capa;ipv4-capability; description "Identity fortype of service capability ofIPv4condition";Type-Of-Service (TOS) condition capability"; reference "RFC 791: Internet Protocol - Type of Service"; } identity exact-ipv4-total-length { baseipv4-capa;ipv4-capability; description "Identity forexactexact-match IPv4 total lengthcapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Total Length"; } identity range-ipv4-total-length { baseipv4-capa;ipv4-capability; description "Identity forrangerange-match IPv4 total lengthcapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Total Length"; } identity ipv4-id { baseipv4-capa;ipv4-capability; description "Identity for identificationcapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Identification"; } identity ipv4-fragment-flags { baseipv4-capa;ipv4-capability; description "Identity for IPv4 fragment flagscapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Fragmentation Flags"; } identity exact-ipv4-fragment-offset { baseipv4-capa;ipv4-capability; description "Identity forexactexact-match IPv4 fragment offsetcapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Fragmentation Offset"; } identity range-ipv4-fragment-offset { baseipv4-capa;ipv4-capability; description "Identity forrangerange-match IPv4 fragment offsetcapability of IPv4 condition";condition capability"; reference "RFC 791: Internet Protocol - Fragmentation Offset"; } identity exact-ipv4-ttl { baseipv4-capa;ipv4-capability; description "Identity forexact time to live capability ofexact-match IPv4condition";Time-To-Live (TTL) condition capability"; reference "RFC 791: Internet Protocol - Time To Live (TTL)"; } identity range-ipv4-ttl { baseipv4-capa;ipv4-capability; description "Identity forrange time to live capability ofrange-match IPv4condition";Time-To-Live (TTL) condition capability"; reference "RFC 791: Internet Protocol - Time To Live (TTL)"; } identity ipv4-protocol { baseipv4-capa;ipv4-capability; description "Identity forprotocol capability ofIPv4condition";protocol condition capability"; reference "RFC 790: Assigned numbers - Assigned Internet Protocol Number RFC 791: Internet Protocol - Protocol"; } identity exact-ipv4-address { baseipv4-capa;ipv4-capability; description "Identity forexact address capability ofexact-match IPv4condition";address condition capability"; reference "RFC 791: Internet Protocol - Address"; } identity range-ipv4-address { baseipv4-capa;ipv4-capability; description "Identity forrange-address capability ofrange-match IPv4condition";address condition capability"; reference "RFC 791: Internet Protocol - Address"; } identityipv4-ipoptsipv4-ip-opts { baseipv4-capa;ipv4-capability; description "Identity foroption capability ofIPv4condition";option condition capability"; reference "RFC 791: Internet Protocol - Options"; } identityipv4-sameip { base ipv4-capa; description "Identity for sameIP capability of IPv4 condition"; } identity ipv4-geoipipv4-geo-ip { baseipv4-capa;ipv4-capability; description "Identity for geographycapabilitycondition capability"; reference "draft-ietf-i2nsf-capability-04: Information Model ofIPv4 condition";NSFs Capabilities - Geo-IP"; } identityipv6-capaipv6-capability { base condition; description "Identity forcapabilities ofIPv6condition";condition capabilities"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification"; } identity ipv6-traffic-class { baseipv6-capa;ipv6-capability; description "Identity for IPv6 traffic classcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Traffic Class"; } identity exact-ipv6-flow-label { baseipv6-capa;ipv6-capability; description "Identity forexactexact-match IPv6 flow labelcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Flow Label"; } identity range-ipv6-flow-label { baseipv6-capa;ipv6-capability; description "Identity forrangerange-match IPv6 flow labelcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Flow Label"; } identity exact-ipv6-payload-length { baseipv6-capa;ipv6-capability; description "Identity forexactexact-match IPv6 payload lengthcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Payload Length"; } identity range-ipv6-payload-length { baseipv6-capa;ipv6-capability; description "Identity forrangerange-match IPv6 payload lengthcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Payload Length"; } identity ipv6-next-header { baseipv6-capa;ipv6-capability; description "Identity for IPv6 next headercapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header"; } identity exact-ipv6-hop-limit { baseipv6-capa;ipv6-capability; description "Identity forexactexact-match IPv6 hop limitcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Hop Limit"; } identity range-ipv6-hop-limit { baseipv6-capa;ipv6-capability; description "Identity forrangerange-match IPv6 hop limitcapability of IPv6 condition";condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Hop Limit"; } identity exact-ipv6-address { baseipv6-capa;ipv6-capability; description "Identity forexact address capability ofexact-match IPv6condition";address condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Address"; } identity range-ipv6-address { baseipv6-capa;ipv6-capability; description "Identity forrange address capability ofrange-match IPv6condition";address condition capability"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Address"; } identitytcp-capatcp-capability { base condition; description "Identity forcapabilities of tcp condition";TCP condition capabilities"; reference "RFC 793: Transmission Control Protocol"; } identity exact-tcp-port-num { basetcp-capa;tcp-capability; description "Identity forexactexact-match TCP port numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Port Number"; } identity range-tcp-port-num { basetcp-capa;tcp-capability; description "Identity forrangerange-match TCP port numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Port Number"; } identity exact-tcp-seq-num { basetcp-capa;tcp-capability; description "Identity forexactexact-match TCP sequence numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Sequence Number"; } identity range-tcp-seq-num { basetcp-capa;tcp-capability; description "Identity forrangerange-match TCP sequence numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Sequence Number"; } identity exact-tcp-ack-num { basetcp-capa;tcp-capability; description "Identity forexactexact-match TCP acknowledgement numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Acknowledgement Number"; } identity range-tcp-ack-num { basetcp-capa;tcp-capability; description "Identity forrangerange-match TCP acknowledgement numbercapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Acknowledgement Number"; } identity exact-tcp-window-size { basetcp-capa;tcp-capability; description "Identity forexactexact-match TCP window sizecapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Window Size"; } identity range-tcp-window-size { basetcp-capa;tcp-capability; description "Identity forrangerange-match TCP window sizecapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Window Size"; } identity tcp-flags { basetcp-capa;tcp-capability; description "Identity for TCP flagscapability of tcp condition";condition capability"; reference "RFC 793: Transmission Control Protocol - Flags"; } identityudp-capaudp-capability { base condition; description "Identity forcapabilities of udp condition";UDP condition capabilities"; reference "RFC 768: User Datagram Protocol"; } identity exact-udp-port-num { baseudp-capa;udp-capability; description "Identity forexactexact-match UDP port numbercapability of udp condition";condition capability"; reference "RFC 768: User Datagram Protocol - Port Number"; } identity range-udp-port-num { baseudp-capa;udp-capability; description "Identity forrangerange-match UDP port numbercapability of udp condition";condition capability"; reference "RFC 768: User Datagram Protocol - Port Number"; } identity exact-udp-total-length { baseudp-capa;udp-capability; description "Identity forexactexact-match UDP total-lengthcapability of udp condition";condition capability"; reference "RFC 768: User Datagram Protocol - Total Length"; } identity range-udp-total-length { baseudp-capa;udp-capability; description "Identity forrangerange-match UDP total-lengthcapability of udp condition";condition capability"; reference "RFC 768: User Datagram Protocol - Total Length"; } identityicmp-capaicmp-capability { base condition; description "Identity forcapabilities of icmp condition";ICMP condition capabilities"; reference "RFC 792: Internet Control Message Protocol"; } identity icmp-type { baseicmp-capa;icmp-capability; description "Identity foricmpICMP typecapability of icmp condition";condition capability"; reference "RFC 792: Internet Control Message Protocol"; } identityurl-capaurl-capability { base condition; description "Identity forcapabilities of url condition";URL condition capabilities"; } identity pre-defined { baseurl-capa;url-capability; description "Identity for URL pre-definedcapabilities of url condition";condition capabilities"; } identity user-defined { baseurl-capa;url-capability; description "Identity for URL user-definedcapabilities of url condition";condition capabilities"; } identitylog-action-capalog-action-capability { description "Identity forcapabilities of log action";log-action capabilities"; } identity rule-log { baselog-action-capa;log-action-capability; description "Identity for rule logcapability of log action";log-action capability"; } identity session-log { baselog-action-capa;log-action-capability; description "Identity for session logcapability of log action";log-action capability"; } identityingress-action-capaingress-action-capability { description "Identity forcapabilities of ingress action";ingress-action capabilities"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Action"; } identityegress-action-capaegress-action-capability { description "Base identity foregressegress-action capabilities"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Egress action"; } identitydefault-action-capadefault-action-capability { description "Identity forcapabilities of default action";default-action capabilities"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Default action"; } identity pass { baseingress-action-capa;ingress-action-capability; baseegress-action-capa;egress-action-capability; basedefault-action-capa;default-action-capability; description "Identity forpass";pass action capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Actions and default action"; } identity drop { baseingress-action-capa;ingress-action-capability; baseegress-action-capa;egress-action-capability; basedefault-action-capa;default-action-capability; description "Identity fordrop";drop action capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Actions and default action"; } identity reject { baseingress-action-capa;ingress-action-capability; baseegress-action-capa;egress-action-capability; basedefault-action-capa;default-action-capability; description "Identity forreject";reject action capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Actions and default action"; } identity alert { baseingress-action-capa;ingress-action-capability; baseegress-action-capa;egress-action-capability; basedefault-action-capa;default-action-capability; description "Identity foralert";alert action capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Actions and default action"; } identity mirror { baseingress-action-capa;ingress-action-capability; baseegress-action-capa;egress-action-capability; basedefault-action-capa;default-action-capability; description "Identity formirror";mirror action capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Actions and default action"; } identity invoke-signaling { baseegress-action-capa;egress-action-capability; description "Identity for invokesignaling";signaling action capability"; } identity tunnel-encapsulation { baseegress-action-capa;egress-action-capability; description "Identity for tunnelencapsulation";encapsulation action capability"; } identity forwarding { baseegress-action-capa;egress-action-capability; description "Identity forforwarding";forwarding action capability"; } identity redirection { baseegress-action-capa;egress-action-capability; description "Identity forredirection";redirection action capability"; } identityresolution-strategy-caparesolution-strategy-capability { description "Base identity for resolutionstrategy";strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identity fmr { baseresolution-strategy-capa;resolution-strategy-capability; description "Identity for First Matching Rule(FMR)";(FMR) resolution strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identity lmr { baseresolution-strategy-capa;resolution-strategy-capability; description "Identity for Last Matching Rule(LMR)";(LMR) resolution strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identity pmr { baseresolution-strategy-capa;resolution-strategy-capability; description "Identity for Prioritized Matching Rule(PMR)";(PMR) resolution strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identity pmre { baseresolution-strategy-capa;resolution-strategy-capability; description "Identity for Prioritized Matching Rule with Errors(PMRE)";(PMRE) resolution strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identity pmrn { baseresolution-strategy-capa;resolution-strategy-capability; description "Identity for Prioritized Matching Rule with No Errors(PMRN)";(PMRN) resolution strategy capability"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution Strategy"; } identityadvanced-nsf-capaadvanced-nsf-capability { description "Base identity for advanced network security function (NSF) capabilities"; reference "RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } identityantivirus-capaanti-virus-capability { baseadvanced-nsf-capa;advanced-nsf-capability; description "Identity forantivirusadvanced NSF anti-virus capabilities"; reference "RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antivirus";Anti-virus"; } identityantiddos-capaanti-ddos-capability { baseadvanced-nsf-capa;advanced-nsf-capability; description "Identity forantiddosadvanced NSF anti-ddos capabilities"; reference "RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-ddos"; } identityips-capaips-capability { baseadvanced-nsf-capa;advanced-nsf-capability; description "Identity forIPSadvanced NSF Intrusion Prevention System (IPS) capabilities"; reference "RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller - Intrusion Prevention System"; } identityvoip-volte-capavoip-volte-capability { baseadvanced-nsf-capa;advanced-nsf-capability; description "Identity for advanced NSF VoIP/VoLTE capabilities"; reference "RFC 3261: SIP: Session Initiation Protocol RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } identity detect { baseantivirus-capa;anti-virus-capability; description "Identity for advanced NSF anti-virus detectcapabilities of antivirus";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antivirus";Anti-virus"; } identity exception-application { baseantivirus-capa;anti-virus-capability; description "Identity for advanced NSF anti-virus exception applicationcapabilities of antivirus";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antivirus";Anti-virus"; } identity exception-signature { baseantivirus-capa;anti-virus-capability; description "Identity for advanced NSF anti-virus exception signaturecapabilities of antivirus";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antivirus";Anti-virus"; } identity whitelists { baseantivirus-capa;anti-virus-capability; description "Identity for advanced NSF anti-virus whitelistscapabilities of antivirus";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antivirus";Anti-virus"; } identity syn-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS syn flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity udp-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity forudpadvanced NSF anti-DDoS UDP flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity http-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS http flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity https-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS https flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity dns-request-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS dns request flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity dns-reply-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS dns reply flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity icmp-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS icmp flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity sip-flood-action { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS sip flood actioncapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity detect-mode { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS detect modecapabilities of antiddos";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identitybaseline-learnbaseline-learning { baseantiddos-capa;anti-ddos-capability; description "Identity for advanced NSF anti-DDoS baselinelearn capabilities of antiddos";learning capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller -Antiddos";Anti-DDoS"; } identity signature-set { baseips-capa;ips-capability; description "Identity for advanced NSF IPS signature setcapabilities of IPS";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller - Intrusion Prevention System"; } identity ips-exception-signature { baseips-capa;ips-capability; description "Identity foripsadvanced NSF IPS exception signaturecapabilities of IPS";capability"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller - Intrusion Prevention System"; } identity voice-id { basevoip-volte-capa;voip-volte-capability; description "Identity for advanced NSF VoIP/VoLTE voice-idcapabilities of VoIP/VoLTE";capability"; reference "RFC 3261: SIP: Session Initiation Protocol"; } identity user-agent { basevoip-volte-capa;voip-volte-capability; description "Identity for advanced NSF VoIP/VoLTE user agentcapabilities of VoIP/VoLTE";capability"; reference "RFC 3261: SIP: Session Initiation Protocol"; } identityipsec-capaipsec-capability { description "Base identity for anIPsec";IPsec capabilities"; } identity ike { baseipsec-capa;ipsec-capability; description "Identity for anIKE";IPSec Internet Key Exchange (IKE) capability"; } identity ikeless { baseipsec-capa;ipsec-capability; description "Identity for anIKEless";IPSec without Internet Key Exchange (IKE) capability"; } /* * Grouping */ grouping nsf-capabilities { description"Capabilities of network security funtion";"Network Security Funtion (NSF) Capabilities"; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structure draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Capability Information Model Design"; leaf-list time-capabilities { type enumeration { enum absolute-time { description"Capabilities of absolute time."absolute time capabilities. If network security function has the absolute time capability, the network security function supports rule execution according to absolute time."; } enum periodic-time { description"Capabilities of periodic time."periodic time capabilities. If network security function has the periodic time capability, the network security function supports rule execution according to periodic time."; } } description"This is capabilities for time";"Time capabilities"; } container event-capabilities { description "Capabilities of events. If network security function has the event capabilities, the network security functions supports rule execution according to system event and system alarm."; reference "RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structure draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Design Principles and ECA Policy Model Overviewdraft-hong-i2nsf-nsf-monitoring-data-model-06:draft-ietf-i2nsf-nsf-monitoring-data-model-01: A YANG Data Model for Monitoring I2NSF Network Security Functions - System Alarm and System Events"; leaf-listsystem-event-capasystem-event-capability { type identityref { basesystem-event-capa;system-event-capability; } description"Capabilities for a system event";"System event capabilities"; } leaf-listsystem-alarm-capasystem-alarm-capability { type identityref { basesystem-alarm-capa;system-alarm-capability; } description"Capabilities for a system alarm";"System alarm Capabilities"; } } container condition-capabilities { description"Capabilities of conditions.";"Conditions capabilities."; container generic-nsf-capabilities { description"Capabilities of conditions."Conditions capabilities. If a network security function has the condition capabilities, the network security function supports rule execution according to conditions of IPv4, IPv6,foruth layer,TCP, UDP, ICMP, and payload."; reference "RFC 791: Internet Protocol RFC 792: Internet Control Message Protocol RFC 793: Transmission Control Protocol RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header RFC 8329: Framework for Interface to Network Security Functions - I2NSF Flow Security Policy Structure draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Design Principles and ECA Policy Model Overview"; leaf-listipv4-capaipv4-capability { type identityref { baseipv4-capa;ipv4-capability; } description"Capabilities for an IPv4 packet";"IPv4 packet capabilities"; reference "RFC 791: Internet Protocol"; } leaf-listipv6-capaipv6-capability { type identityref { baseipv6-capa;ipv6-capability; } description"Capabilities for an IPv6 packet";"IPv6 packet capabilities"; reference "RFC2460:8200: Internet Protocol, Version 6 (IPv6) Specification - Next Header"; } leaf-listtcp-capatcp-capability { type identityref { basetcp-capa;tcp-capability; } description"Capabilities for a tcp packet";"TCP packet capabilities"; reference "RFC 793: Transmission Control Protocol"; } leaf-listudp-capaudp-capability { type identityref { baseudp-capa;udp-capability; } description"Capabilities for an udp packet";"UDP packet capabilities"; reference "RFC 768: User Datagram Protocol"; } leaf-listicmp-capaicmp-capability { type identityref { baseicmp-capa;icmp-capability; } description"Capabilities for an ICMP packet";"ICMP packet capabilities"; reference "RFC2460:8200: Internet Protocol, Version 6(IPv6) ";(IPv6)"; } } container advanced-nsf-capabilities { description"Capabilities of advanced network security functions,"Advanced Network Security Function (NSF) capabilities, such asanti virus, anti DDoS,anti-virus, anti-DDoS, IPS, and VoIP/VoLTE."; reference "RFC 8329: Framework for Interface to Network Security Functions - Differences from ACL Data Models draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; leaf-listantivirus-capaanti-virus-capability { type identityref { baseantivirus-capa;anti-virus-capability; } description"Capabilities for an antivirus";"Anti-virus capabilities"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } leaf-listantiddos-capaanti-ddos-capability { type identityref { baseantiddos-capa;anti-ddos-capability; } description"Capabilities for an antiddos";"Anti-ddos capabilities"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } leaf-listips-capaips-capability { type identityref { baseips-capa;ips-capability; } description"Capabilities for an ips";"Intrusion Prevention System (IPS) capabilities"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } leaf-listurl-capaurl-capability { type identityref { baseurl-capa;url-capability; } description"Capabilities for a url category";"URL capabilities"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } leaf-listvoip-volte-capavoip-volte-capability { type identityref { basevoip-volte-capa;voip-volte-capability; } description"Capabilities for a voip"VoIP andvolte";VoLTE capabilities"; reference "draft-dong-i2nsf-asf-config-01: Configuration of Advanced Security Functions with I2NSF Security Controller"; } } leaf-list context-capabilities { type identityref { basecontext-capa;context-capability; } description"Capabilities for a"Security contextsecurity";capabilities"; } } container action-capabilities { description"Capabilities of actions."Action capabilities. If network security function has the action capabilities,the network security functionit supportsrule execution according to actions.";the attendant actions for policy rules."; leaf-listingress-action-capaingress-action-capability { type identityref { baseingress-action-capa;ingress-action-capability; } description"Capabilities for an action";"Ingress-action capabilities"; } leaf-listegress-action-capaegress-action-capability { type identityref { baseegress-action-capa;egress-action-capability; } description"Capabilities for an egress action";"Egress-action capabilities"; } leaf-listlog-action-capalog-action-capability { type identityref { baselog-action-capa;log-action-capability; } description"Capabilities for a log action";"Log-action capabilities"; } } leaf-list resolution-strategy-capabilities { type identityref { baseresolution-strategy-capa;resolution-strategy-capability; } description"Capabilities for a resolution strategy."Resolution strategy capabilities. The resolution strategies can be used to specify how to resolve conflicts that occur between the actions of the same or different policy rules that are matched for the smae packet andcontained in thisby particular NSF"; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Resolution strategy"; } leaf-list default-action-capabilities { type identityref { basedefault-action-capa;default-action-capability; } description"Capabilities for a default action."Default action capabilities. A default action is used to execute I2NSF policyrulerules when no rule matches a packet. The default action is defined as pass, drop, reject, alert,andor mirror."; reference "draft-ietf-i2nsf-capability-04: Information Model of NSFs Capabilities - Default action"; } leaf-list ipsec-method { type identityref { baseipsec-capa;ipsec-capability; } description"Capabilities for an IPsec method";"IPsec method capabilities"; reference " draft-ietf-i2nsf-sdn-ipsec-flow-protection-04"; } } /* * Data nodes */containerlist nsf { key "nsf-name"; description "The list ofcapabilitiesNetwork security Function (NSF) capabilities"; leaf nsf-name { type string; mandatory true; description "The name of network security function";uses nsf-capabilities;} } } <CODE ENDS> Figure 3: YANG Data Module of I2NSF Capability 7. IANA Considerations This document requests IANA to register the following URI in the "IETF XML Registry" [RFC3688]:URI:Uri: urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. This document requests IANA to register the following YANG module in the "YANG Module Names" registry [RFC7950]. name: ietf-i2nsf-capability namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability prefix:iicapansfcap reference: RFC XXXX 8. Security Considerations The YANG module specified in this document defines a data schema designed to be accessed through network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the required transport secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the required transport secure transport is TLS [RFC8446]. The NETCONF access control model [RFC8341] provides a means of restricting access to specific NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability: o ietf-i2nsf-capability: The attacker may provide incorrect information of the security capability of any target NSF by illegally modifying this. Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability: o ietf-i2nsf-capability: The attacker may gather the security capability information of any target NSF and misuse the information for subsequent attacks. 9. References 9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March1997.1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261, June 2002, <https://www.rfc-editor.org/info/rfc3261>. [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020,October 2010. [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", RFC 6087,DOI10.17487/RFC6087, January 2011, <https://www.rfc-editor.org/info/rfc6087>.10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>. [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>. [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.[RFC6991] Schoenwaelder,[RFC768] Postel, J.,Ed., "Common YANG Data Types","User Datagram Protocol", RFC6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.768, August 1980. [RFC790] Postel, J., "Assigned Numbers", RFC 790, September 1981. [RFC791] Postel, J., "Internet Protocol", RFC 791, September 1981. [RFC792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981. [RFC793] Postel, J., "Transmission Control Protocol", RFC 793, September 1981. [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August2016.2016, <https://www.rfc-editor.org/info/rfc7950>. [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [RFC8192] Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R., and J. Jeong, "Interface to Network Security Functions (I2NSF): Problem Statement and Use Cases", RFC 8192, DOI 10.17487/RFC8192, July2017.2017, <https://www.rfc-editor.org/info/rfc8192>. [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>. [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, DOI 10.17487/RFC8329, February2018.2018, <https://www.rfc-editor.org/info/rfc8329>. [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>. [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>. [RFC8431] Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini, S., and N. Bahadur, "A YANG Data Model for the Routing Information Base (RIB)", RFCRFC8431,8431, DOI 10.17487/RFC8431, September2018.2018, <https://www.rfc-editor.org/info/rfc8431>. [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>. 9.2. Informative References[draft-ietf-i2nsf-sdn-ipsec-flow-protection] Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez- Garcia, "Software-Defined Networking (SDN)-based IPsec Flow Protection", draft-ietf-i2nsf-sdn-ipsec-flow- protection-04 (work in progress), March 2019. [i2nsf-advanced-nsf-dm][draft-dong-i2nsf-asf-config] Pan, W. and L. Xia, "Configuration of Advanced Security Functions with I2NSF Security Controller", draft-dong- i2nsf-asf-config-01 (work in progress), October 2018.[i2nsf-nsf-cap-im][draft-ietf-i2nsf-capability] Xia, L., Strassner, J., Basile, C., and D. Lopez, "Information Model of NSFs Capabilities", draft-ietf-i2nsf-capability-04i2nsf-capability-05 (work in progress),October 2018. [i2nsf-nsf-yang]April 2019. [draft-ietf-i2nsf-nsf-facing-interface-dm] Kim, J., Jeong, J., Park, J., Hares, S., and Q. Lin, "I2NSF Network Security Function-Facing Interface YANG Data Model",draft-ietf-i2nsf-nsf-facing-interface-dm-04draft-ietf-i2nsf-nsf-facing-interface-dm-07 (work in progress),MarchJuly 2019.[i2nsf-terminology][draft-ietf-i2nsf-nsf-monitoring-data-model] Jeong, J., Chung, C., Hares, S.,Strassner, J., Lopez, D.,Xia, L., and H. Birkholz,"Interface to Network Security Functions (I2NSF) Terminology", draft-ietf-i2nsf-terminology-07"I2NSF NSF Monitoring YANG Data Model", draft-ietf-i2nsf- nsf-monitoring-data-model-01 (work in progress),JanuaryJuly 2019.[supa-policy-info-model] Strassner, J., Halpern, J.,[draft-ietf-i2nsf-sdn-ipsec-flow-protection] Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez- Garcia, "Software-Defined Networking (SDN)-based IPsec Flow Protection", draft-ietf-i2nsf-sdn-ipsec-flow- protection-05 (work in progress), July 2019. [draft-ietf-i2nsf-terminology] Hares, S., Strassner, J., Lopez, D., Xia, L., and H. Birkholz, "Interface to Network Security Functions (I2NSF) Terminology", draft-ietf-i2nsf-terminology-08 (work in progress), July 2019. [draft-ietf-supa-generic-policy-info-model] Strassner, J., Halpern, J., and S. Meer, "Generic Policy Information Model for Simplified Use of Policy Abstractions (SUPA)", draft-ietf-supa-generic-policy-info- model-03 (work in progress), May 2017. Appendix A. Configuration Examples This section shows configuration examples of "ietf-i2nsf-capability" module for capabilities registration of general firewall. A.1. Example 1: Registration for Capabilities of General Firewall This section shows a configuration example for capabilities registration of general firewall. <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <nsf-name>general_firewall</nsf-name> <condition-capabilities> <generic-nsf-capabilities> <ipv4-capability>ipv4-protocol</ipv4-capability> <ipv4-capability>exact-ipv4-address</ipv4-capability> <ipv4-capability>range-ipv4-address</ipv4-capability> <tcp-capability>exact-fourth-layer-port-num</tcp-capability> <tcp-capability>range-fourth-layer-port-num</tcp-capability> </generic-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capability>pass</ingress-action-capability> <ingress-action-capability>drop</ingress-action-capability> <ingress-action-capability>alert</ingress-action-capability> <egress-action-capability>pass</egress-action-capability> <egress-action-capability>drop</egress-action-capability> <egress-action-capability>alert</egress-action-capability> </action-capabilities> </nsf> Figure 4: Configuration XML for Capabilities Registration of General Firewall Figure 4 shows the configuration XML for capabilities registration of general firewall and its capabilities are as follows. 1. The name of the NSF is general_firewall. 2. The NSF can inspect protocol, exact IPv4 address, and range IPv4 address for IPv4 packets. 3. The NSF can inspect exact port number and range port number for fourth layer packets. 4. The NSF can control whether the packets are allowed to pass, drop, or alert. A.2. Example 2: Registration for Capabilities of Time based Firewall This section shows a configuration example for capabilities registration of time based firewall. <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <nsf-name>time_based_firewall</nsf-name> <time-capabilities>absolute-time</time-capabilities> <time-capabilities>periodic-time</time-capabilities> <condition-capabilities> <generic-nsf-capabilities> <ipv4-capability>ipv4-protocol</ipv4-capability> <ipv4-capability>exact-ipv4-address</ipv4-capability> <ipv4-capability>range-ipv4-address</ipv4-capability> </generic-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capability>pass</ingress-action-capability> <ingress-action-capability>drop</ingress-action-capability> <ingress-action-capability>alert</ingress-action-capability> <egress-action-capability>pass</egress-action-capability> <egress-action-capability>drop</egress-action-capability> <egress-action-capability>alert</egress-action-capability> </action-capabilities> </nsf> Figure 5: Configuration XML for Capabilities Registration of Time based Firewall Figure 5 shows the configuration XML for capabilities registration of time based firewall and its capabilities are as follows. 1. The name of the NSF is time_based_firewall. 2. The NSF can execute the security policy rule according to absolute time and periodic time. 3. The NSF can inspect protocol, exact IPv4 address, and range IPv4 address for IPv4 packets. 4. The NSF can control whether the packets are allowed to pass, drop, or alert. A.3. Example 3: Registration for Capabilities of Web Filter This section shows a configuration example for capabilities registration of web filter. <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <nsf-name>web_filter</nsf-name> <condition-capabilities> <advanced-nsf-capabilities> <url-capability>user-defined</url-capability> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capability>pass</ingress-action-capability> <ingress-action-capability>drop</ingress-action-capability> <ingress-action-capability>alert</ingress-action-capability> <egress-action-capability>pass</egress-action-capability> <egress-action-capability>drop</egress-action-capability> <egress-action-capability>alert</egress-action-capability> </action-capabilities> </nsf> Figure 6: Configuration XML for Capabilities Registration of Web Filter Figure 6 shows the configuration XML for capabilities registration of web filter and its capabilities are as follows. 1. The name of the NSF is web_filter. 2. The NSF can inspect url for http and https packets. 3. The NSF can control whether the packets are allowed to pass, drop, or alert. A.4. Example 4: Registration for Capabilities of VoIP/VoLTE Filter This section shows a configuration example for capabilities registration of VoIP/VoLTE filter. <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <nsf-name>voip_volte_filter</nsf-name> <condition-capabilities> <advanced-nsf-capabilities> <voip-volte-capability>voice-id</voip-volte-capability> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capability>pass</ingress-action-capability> <ingress-action-capability>drop</ingress-action-capability> <ingress-action-capability>alert</ingress-action-capability> <egress-action-capability>pass</egress-action-capability> <egress-action-capability>drop</egress-action-capability> <egress-action-capability>alert</egress-action-capability> </action-capabilities> </nsf> Figure 7: Configuration XML for Capabilities Registration of VoIP/ VoLTE Filter Figure 7 shows the configuration XML for capabilities registration of VoIP/VoLTE filter and its capabilities are as follows. 1. The name of the NSF is voip_volte_filter. 2. The NSF can inspect voice id for VoIP/VoLTE packets. 3. The NSF can control whether the packets are allowed to pass, drop, or alert. A.5. Example 5: Registration for Capabilities of HTTP and HTTPS Flood Mitigation This section shows a configuration example for capabilities registration of http and https flood mitigation. <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability"> <nsf-name>http_and_https_flood_mitigation</nsf-name> <condition-capabilities> <advanced-nsf-capabilities> <anti-ddos-capability>http-flood-action</anti-ddos-capability> <anti-ddos-capability>https-flood-action</anti-ddos-capability> </advanced-nsf-capabilities> </condition-capabilities> <action-capabilities> <ingress-action-capability>pass</ingress-action-capability> <ingress-action-capability>drop</ingress-action-capability> <ingress-action-capability>alert</ingress-action-capability> <egress-action-capability>pass</egress-action-capability> <egress-action-capability>drop</egress-action-capability> <egress-action-capability>alert</egress-action-capability> </action-capabilities> </nsf> Figure 8: Configuration XML for Capabilities Registration of HTTP and HTTPS Flood Mitigation Figure 8 shows the configuration XML for capabilities registration of http and https flood mitigation and its capabilities are as follows. 1. The name of the NSF is http_and_https_flood_mitigation. 2. The location of the NSF is 221.159.112.140. 3. The NSF can control the amount of packets for http and https packets. 4. The NSF can control whether the packets are allowed to pass, drop, or alert. Appendix B. Changes fromdraft-ietf-i2nsf-capability-data-model-03draft-ietf-i2nsf-capability-data-model-04 The following changes are made from draft-ietf-i2nsf-capability-data-model-03: o We added a leaf-list for IPsec method capabilities (e.g., ike and ikeless).model-04: oWe changed http capa fieldsThe version is revised according tourl category capa fields. o We added context capa fields (e.g., acl number, application, target, users, group,the comments from Acee Lindem andgeography).Carl Moberg who are YANG doctors for review. AppendixB.C. Acknowledgments This work was supported by Instituteforof Information &communicationsCommunications TechnologyPromotionPlanning & Evaluation (IITP) grant funded by the Koreagovernment (MSIP) (No.R-20160222-002755,MSIT (Ministry of Science and ICT) (R-20160222-002755, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning). AppendixC.D. Contributors This document is made by the group effort of I2NSF working group. Many people actively contributed to this document. The following are considered co-authors: o Hyoungshick Kim (Sungkyunkwan University) o Daeyoung Hyun (Sungkyunkwan University) o Dongjin Hong (Sungkyunkwan University) o Liang Xia (Huawei) o Jung-Soo Park (ETRI) o Tae-Jin Ahn (Korea Telecom) o Se-Hui Lee (Korea Telecom) Authors' Addresses Susan Hares Huawei 7453 Hickory Hill Saline, MI 48176 USA Phone: +1-734-604-0332 EMail: shares@ndzh.com Jaehoon Paul Jeong Department ofSoftwareComputer Science and Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 299 4957 Fax: +82 31 290 7996 EMail: pauljeong@skku.edu URI: http://iotlab.skku.edu/people-jaehoon-jeong.php Jinyong Tim Kim Department of Electronic, Electrical and Computer Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 10 8273 0930 EMail: timkim@skku.edu Robert Moskowitz HTT Consulting Oak Park, MI USA Phone: +1-248-968-9809 EMail: rgm@htt-consult.com Qiushi Lin Huawei Huawei Industrial Base Shenzhen, Guangdong 518129 China EMail: linqiushi@huawei.com