draft-ietf-core-block-17.txt   draft-ietf-core-block-18.txt 
CoRE Working Group C. Bormann CoRE Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track Z. Shelby, Ed. Intended status: Standards Track Z. Shelby, Ed.
Expires: September 10, 2015 ARM Expires: March 17, 2016 ARM
March 09, 2015 September 14, 2015
Block-wise transfers in CoAP Block-wise transfers in CoAP
draft-ietf-core-block-17 draft-ietf-core-block-18
Abstract Abstract
CoAP is a RESTful transfer protocol for constrained nodes and CoAP is a RESTful transfer protocol for constrained nodes and
networks. Basic CoAP messages work well for the small payloads we networks. Basic CoAP messages work well for the small payloads we
expect from temperature sensors, light switches, and similar expect from temperature sensors, light switches, and similar
building-automation devices. Occasionally, however, applications building-automation devices. Occasionally, however, applications
will need to transfer larger payloads -- for instance, for firmware will need to transfer larger payloads -- for instance, for firmware
updates. With HTTP, TCP does the grunt work of slicing large updates. With HTTP, TCP does the grunt work of slicing large
payloads up into multiple packets and ensuring that they all arrive payloads up into multiple packets and ensuring that they all arrive
skipping to change at page 2, line 10 skipping to change at page 2, line 10
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 10, 2015. This Internet-Draft will expire on March 17, 2016.
Copyright Notice Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 8, line 23 skipping to change at page 8, line 23
a request to retrieve a specific block number ("control usage"), a request to retrieve a specific block number ("control usage"),
the M bit MUST be sent as zero and ignored on reception. (In a the M bit MUST be sent as zero and ignored on reception. (In a
Block1 Option in a response, the M flag is used to indicate Block1 Option in a response, the M flag is used to indicate
atomicity, see below.) atomicity, see below.)
SZX: Block Size. The block size is represented as three-bit SZX: Block Size. The block size is represented as three-bit
unsigned integer indicating the size of a block to the power of unsigned integer indicating the size of a block to the power of
two. Thus block size = 2**(SZX + 4). The allowed values of SZX two. Thus block size = 2**(SZX + 4). The allowed values of SZX
are 0 to 6, i.e., the minimum block size is 2**(0+4) = 16 and the are 0 to 6, i.e., the minimum block size is 2**(0+4) = 16 and the
maximum is 2**(6+4) = 1024. The value 7 for SZX (which would maximum is 2**(6+4) = 1024. The value 7 for SZX (which would
indicate a block size of 2048) is reserved, i.e. MUST NOT be sent indicate a block size of 2048) is reserved, i.e. MUST NOT be sent
and MUST lead to a 4.00 Bad Request response code upon reception and MUST lead to a 4.00 Bad Request response code upon reception
in a request. in a request.
There is no default value for the Block1 and Block2 Options. Absence There is no default value for the Block1 and Block2 Options. Absence
of one of these options is equivalent to an option value of 0 with of one of these options is equivalent to an option value of 0 with
respect to the value of NUM and M that could be given in the option, respect to the value of NUM and M that could be given in the option,
i.e. it indicates that the current block is the first and only block i.e. it indicates that the current block is the first and only block
of the transfer (block number 0, M bit not set). However, in of the transfer (block number 0, M bit not set). However, in
contrast to the explicit value 0, which would indicate an SZX of 0 contrast to the explicit value 0, which would indicate an SZX of 0
and thus a size value of 16 bytes, there is no specific explicit size and thus a size value of 16 bytes, there is no specific explicit size
skipping to change at page 31, line 47 skipping to change at page 31, line 47
9. References 9. References
9.1. Normative References 9.1. Normative References
[I-D.ietf-core-observe] [I-D.ietf-core-observe]
Hartke, K., "Observing Resources in CoAP", draft-ietf- Hartke, K., "Observing Resources in CoAP", draft-ietf-
core-observe-16 (work in progress), December 2014. core-observe-16 (work in progress), December 2014.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", RFC 7252, June 2014. Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
RFC7252, June 2014,
<http://www.rfc-editor.org/info/rfc7252>.
9.2. Informative References 9.2. Informative References
[REST] Fielding, R., "Architectural Styles and the Design of [REST] Fielding, R., "Architectural Styles and the Design of
Network-based Software Architectures", Ph.D. Dissertation, Network-based Software Architectures", Ph.D. Dissertation,
University of California, Irvine, 2000, University of California, Irvine, 2000,
<http://www.ics.uci.edu/~fielding/pubs/dissertation/ <http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf>. fielding_dissertation.pdf>.
[RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs): over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals", RFC Overview, Assumptions, Problem Statement, and Goals", RFC
4919, August 2007. 4919, DOI 10.17487/RFC4919, August 2007,
<http://www.rfc-editor.org/info/rfc4919>.
[RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
"Transmission of IPv6 Packets over IEEE 802.15.4 "Transmission of IPv6 Packets over IEEE 802.15.4
Networks", RFC 4944, September 2007. Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
<http://www.rfc-editor.org/info/rfc4944>.
[RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
Format", RFC 6690, August 2012. Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
<http://www.rfc-editor.org/info/rfc6690>.
[RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
Constrained-Node Networks", RFC 7228, May 2014. Constrained-Node Networks", RFC 7228, DOI 10.17487/
RFC7228, May 2014,
<http://www.rfc-editor.org/info/rfc7228>.
[RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
(HTTP/1.1): Message Syntax and Routing", RFC 7230, June Protocol (HTTP/1.1): Message Syntax and Routing", RFC
2014. 7230, DOI 10.17487/RFC7230, June 2014,
<http://www.rfc-editor.org/info/rfc7230>.
[RFC7233] Fielding, R., Lafon, Y., and J. Reschke, "Hypertext [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233, "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",
June 2014. RFC 7233, DOI 10.17487/RFC7233, June 2014,
<http://www.rfc-editor.org/info/rfc7233>.
Authors' Addresses Authors' Addresses
Carsten Bormann Carsten Bormann
Universitaet Bremen TZI Universitaet Bremen TZI
Postfach 330440 Postfach 330440
Bremen D-28359 Bremen D-28359
Germany Germany
Phone: +49-421-218-63921 Phone: +49-421-218-63921
Email: cabo@tzi.org Email: cabo@tzi.org
Zach Shelby (editor) Zach Shelby (editor)
ARM ARM
150 Rose Orchard 150 Rose Orchard
San Jose, CA 95134 San Jose, CA 95134
USA USA
Phone: +1-408-203-9434 Phone: +1-408-203-9434
Email: zach.shelby@arm.com Email: zach.shelby@arm.com
 End of changes. 14 change blocks. 
18 lines changed or deleted 29 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/