Elliptic Curves for Security

Abstract

This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7748.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
1. Introduction

Since the initial standardization of Elliptic Curve Cryptography (ECC [RFC6090]) in [SEC1], there has been significant progress related to both efficiency and security of curves and implementations. Notable examples are algorithms protected against certain side-channel attacks, various "special" prime shapes that allow faster modular arithmetic, and a larger set of curve models from which to choose. There is also concern in the community regarding the generation and potential weaknesses of the curves defined by NIST [NIST].

This memo specifies two elliptic curves ("curve25519" and "curve448") that lend themselves to constant-time implementation and an exception-free scalar multiplication that is resistant to a wide range of side-channel attacks, including timing and cache attacks. They are Montgomery curves (where \(v^2 = u^3 + A*u^2 + u \)) and thus have birationally equivalent Edwards versions. Edwards curves support the fastest (currently known) complete formulas for the elliptic-curve group operations, specifically the Edwards curve \(x^2 + y^2 = 1 + d*x^2*y^2 \) for primes \(p \) when \(p = 3 \mod 4 \), and the twisted Edwards curve \(-x^2 + y^2 = 1 + d*x^2*y^2 \) when \(p = 1 \mod 4 \). The maps to/from the Montgomery curves to their (twisted) Edwards equivalents are also given.
This memo also specifies how these curves can be used with the Diffie-Hellman protocol for key agreement.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Notation

Throughout this document, the following notation is used:

- p Denotes the prime number defining the underlying field.
- $GF(p)$ The finite field with p elements.
- A An element in the finite field $GF(p)$, not equal to -2 or 2.
- d A non-zero element in the finite field $GF(p)$, not equal to 1, in the case of an Edwards curve, or not equal to -1, in the case of a twisted Edwards curve.
- $order$ The order of the prime-order subgroup.
- P A generator point defined over $GF(p)$ of prime order.
- $U(P)$ The u-coordinate of the elliptic curve point P on a Montgomery curve.
- $V(P)$ The v-coordinate of the elliptic curve point P on a Montgomery curve.
- $X(P)$ The x-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
- $Y(P)$ The y-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
- u, v Coordinates on a Montgomery curve.
- x, y Coordinates on a (twisted) Edwards curve.
4. Recommended Curves

4.1. Curve25519

For the ~128-bit security level, the prime $2^{255} - 19$ is recommended for performance on a wide range of architectures. Few primes of the form $2^c - s$ with s small exist between 2^{250} and 2^{521}, and other choices of coefficient are not as competitive in performance. This prime is congruent to 1 mod 4, and the derivation procedure in Appendix A results in the following Montgomery curve

$$v^2 = u^3 + A*u^2 + u$$
called "curve25519":

- $p = 2^{255} - 19$
- $A = 486662$
- $\text{order} = 2^{252} + 0x14def9dea2f79cd65812631a5cf5d3ed$
- $\text{cofactor} = 8$
- $U(P) = 9$
- $V(P) = 14781619447589544791020593568409986887264606134616475288968488183775586237401$

The base point is $u = 9$, $v = 14781619447589544791020593568409986887264606134616475288968488183775586237401$.

This curve is birationally equivalent to a twisted Edwards curve $-x^2 + y^2 = 1 + d*x^2*y^2$, called "edwards25519", where:

- $p = 2^{255} - 19$
- $d = 37095705934669439343138083508754565189542113879843219016388785533085940283555$
- $\text{order} = 2^{252} + 0x14def9dea2f79cd65812631a5cf5d3ed$
- $\text{cofactor} = 8$
- $X(P) = 1511221349535400772501151409588531511454012693041857206046113283949847762202$
- $Y(P) = 46316835694926478169428394003475163141307993866625622565783033603165251855960$

The birational maps are:

\[(u, v) = ((1+y)/(1-y), \sqrt{-486664}*u/x)\]
\[(x, y) = (\sqrt{-486664}*u/v, (u-1)/(u+1))\]

The Montgomery curve defined here is equal to the one defined in [curve25519], and the equivalent twisted Edwards curve is equal to the one defined in [ed25519].

4.2. Curve448

For the ~224-bit security level, the prime \(2^{448} - 2^{224} - 1\) is recommended for performance on a wide range of architectures. This prime is congruent to 3 mod 4, and the derivation procedure in Appendix A results in the following Montgomery curve, called "curve448":

\[
p = 2^{448} - 2^{224} - 1
\]
\[
A = 156326
\]

order \(2^{446} - \) \\
\[
0x8335dc163bb124b65129c96fde933d8d723a70aad873d6d54a7bb0d
\]

cofactor 4

\[U(P) = 5\]

\[V(P) = 355293926785568175264127502063783334808976399387714271831880898 435169088786967410029326737658645509101427741472681058389859595290 606362\]

This curve is birationally equivalent to the Edwards curve \(x^2 + y^2 = 1 + d*x^2*y^2\) where:

\[
p = 2^{448} - 2^{224} - 1
\]
\[
d = 61197585074452917616042322096555317543219696871016626328968936415 08786004263647489178559928366020414768678979989378147065462815545 017
\]

order \(2^{446} - \) \\
\[
0x8335dc163bb124b65129c96fde933d8d723a70aad873d6d54a7bb0d
\]

cofactor 4
The birational maps are:

\[(u, v) = ((y-1)/(y+1), \text{sqrt}(156324)*u/x)\]
\[(x, y) = (\text{sqrt}(156324)*u/v, (1+u)/(1-u))\]

Both of those curves are also 4-isogenous to the following Edwards curve \(x^2 + y^2 = 1 + d*x^2*y^2\), called "edwards448", where:

\[p = 2^{448} - 2^{224} - 1\]
\[d = -39081\]
\[\text{order} = 2^{446} - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d\]
\[\text{cofactor} = 4\]

The 4-isogeny maps between the Montgomery curve and this Edwards curve are:

\[(u, v) = (y^2/x^2, (2 - x^2 - y^2)*y/x^3)\]
\[(x, y) = (4*v*(u^2 - 1)/(u^4 - 2*u^2 + 4*v^2 + 1), -(u^5 - 2*u^3 - 4*u*v^2 + u)/\]
\[\quad (u^5 - 2*u^2*v^2 - 2*u^3 - 2*v^2 + u))\]

The curve edwards448 defined here is also called "Goldilocks" and is equal to the one defined in [goldilocks].
5. The X25519 and X448 Functions

The "X25519" and "X448" functions perform scalar multiplication on the Montgomery form of the above curves. (This is used when implementing Diffie-Hellman.) The functions take a scalar and a u-coordinate as inputs and produce a u-coordinate as output. Although the functions work internally with integers, the inputs and outputs are 32-byte strings (for X25519) or 56-byte strings (for X448) and this specification defines their encoding.

The u-coordinates are elements of the underlying field GF(2^255 - 19) or GF(2^448 - 2^224 - 1) and are encoded as an array of bytes, u, in little-endian order such that \(u[0] + 256^1 u[1] + 256^2 u[2] + \ldots + 256^{(n-1)} u[n-1] \) is congruent to the value modulo p and \(u[n-1] \) is minimal. When receiving such an array, implementations of X25519 (but not X448) MUST mask the most significant bit in the final byte. This is done to preserve compatibility with point formats that reserve the sign bit for use in other protocols and to increase resistance to implementation fingerprinting.

Implementations MUST accept non-canonical values and process them as if they had been reduced modulo the field prime. The non-canonical values are \(2^{255} - 19 \) through \(2^{255} - 1 \) for X25519 and \(2^{448} - 2^{224} - 1 \) through \(2^{448} - 1 \) for X448.

The following functions implement this in Python, although the Python code is not intended to be performant nor side-channel free. Here, the "bits" parameter should be set to 255 for X25519 and 448 for X448:

<CODE BEGINS>
 def decodeLittleEndian(b, bits):
 return sum([b[i] << 8*i for i in range((bits+7)/8)])

 def decodeUCoordinate(u, bits):
 u_list = [ord(b) for b in u]
 # Ignore any unused bits.
 if bits % 8:
 u_list[-1] &= (1<<(bits%8))-1
 return decodeLittleEndian(u_list, bits)

 def encodeUCoordinate(u, bits):
 u = u % p
 return ''.join([chr((u >> 8*i) & 0xff) for i in range((bits+7)/8)])
<CODE ENDS>
Scalars are assumed to be randomly generated bytes. For X25519, in order to decode 32 random bytes as an integer scalar, set the three least significant bits of the first byte and the most significant bit of the last to zero, set the second most significant bit of the last byte to 1 and, finally, decode as little-endian. This means that the resulting integer is of the form 2^{254} plus eight times a value between 0 and $2^{251} - 1$ (inclusive). Likewise, for X448, set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1. This means that the resulting integer is of the form 2^{447} plus four times a value between 0 and $2^{445} - 1$ (inclusive).

```python
def decodeScalar25519(k):
    k_list = [ord(b) for b in k]
    k_list[0] &= 248
    k_list[31] &= 127
    k_list[31] |= 64
    return decodeLittleEndian(k_list, 255)

def decodeScalar448(k):
    k_list = [ord(b) for b in k]
    k_list[0] &= 252
    k_list[55] |= 128
    return decodeLittleEndian(k_list, 448)
```

To implement the X25519(k, u) and X448(k, u) functions (where k is the scalar and u is the u-coordinate), first decode k and u and then perform the following procedure, which is taken from [curve25519] and based on formulas from [montgomery]. All calculations are performed in GF(p), i.e., they are performed modulo p. The constant a_{24} is $(486662 - 2) / 4 = 121665$ for curve25519/X25519 and $(156326 - 2) / 4 = 39081$ for curve448/X448.
For $t = \text{bits} - 1$ down to 0:

\[
\begin{align*}
k_t &= (k >> t) & 1 \\
\text{swap} &= k_t \\
\text{// Conditional swap; see text below.} \\
(x_2, x_3) &= \text{cswap}(\text{swap}, x_2, x_3) \\
(z_2, z_3) &= \text{cswap}(\text{swap}, z_2, z_3) \\
\text{swap} &= k_t \\
A &= x_2 + z_2 \\
AA &= A^2 \\
B &= x_2 - z_2 \\
BB &= B^2 \\
E &= AA - BB \\
C &= x_3 + z_3 \\
D &= x_3 - z_3 \\
DA &= D * A \\
CB &= C * B \\
x_3 &= (DA + CB)^2 \\
z_3 &= x_1 * (DA - CB)^2 \\
x_2 &= AA * BB \\
z_2 &= E * (AA + a24 * E) \\
\text{// Conditional swap; see text below.} \\
(x_2, x_3) &= \text{cswap}(\text{swap}, x_2, x_3) \\
(z_2, z_3) &= \text{cswap}(\text{swap}, z_2, z_3) \\
\text{Return } x_2 * (z_2^{(p - 2)})
\end{align*}
\]

(Note that these formulas are slightly different from Montgomery’s original paper. Implementations are free to use any correct formulas.)

Finally, encode the resulting value as 32 or 56 bytes in little-endian order. For X25519, the unused, most significant bit MUST be zero.
The cswap function SHOULD be implemented in constant time (i.e., independent of the swap argument). For example, this can be done as follows:

\[
\text{cswap}(\text{swap}, x_2, x_3):
\]
\[
dummy = \text{mask}(\text{swap}) \text{ AND } (x_2 \text{ XOR } x_3)
\]
\[
x_2 = x_2 \text{ XOR } dummy
\]
\[
x_3 = x_3 \text{ XOR } dummy
\]
\[
\text{Return } (x_2, x_3)
\]

Where mask(swap) is the all-1 or all-0 word of the same length as \(x_2\) and \(x_3\), computed, e.g., as mask(swap) = 0 - swap.

5.1. Side-Channel Considerations

X25519 and X448 are designed so that fast, constant-time implementations are easier to produce. The procedure above ensures that the same sequence of field operations is performed for all values of the secret key, thus eliminating a common source of side-channel leakage. However, this alone does not prevent all side-channels by itself. It is important that the pattern of memory accesses and jumps not depend on the values of any of the bits of \(k\). It is also important that the arithmetic used not leak information about the integers modulo \(p\), for example by having \(b^c\) be distinguishable from \(c^c\). On some architectures, even primitive machine instructions, such as single-word division, can have variable timing based on their inputs.

Side-channel attacks are an active research area that still sees significant, new results. Implementors are advised to follow this research closely.
5.2. Test Vectors

Two types of tests are provided. The first is a pair of test vectors for each function that consist of expected outputs for the given inputs. The inputs are generally given as 64 or 112 hexadecimal digits that need to be decoded as 32 or 56 binary bytes before processing.

X25519:

Input scalar:
\[a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4 \]
Input scalar as a number (base 10):
\[31029842492115040904895560451863089656 \]
\[472772604678260265531221036453811406496 \]
Input u-coordinate:
\[e6db87583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c \]
Input u-coordinate as a number (base 10):
\[3442643403391959451155107781188821651 \]
\[316167215306631574996226621102155684838 \]
Output u-coordinate:
\[c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552 \]

Input scalar:
\[4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d \]
Input scalar as a number (base 10):
\[35156891815674817266734212754503633747 \]
\[128614016119564763269015315466259359304 \]
Input u-coordinate:
\[e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493 \]
Input u-coordinate as a number (base 10):
\[88838573511839298940907593866106493194 \]
\[17338800022198945255395922347792736741 \]
Output u-coordinate:
\[95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957 \]
X448:

Input scalar:
3d262fddfb9ec8e88495266feael9a34d28882acef045104d01ae121700a779c984c24f8cdd784f6f44943eba368f54b29259a4f1c600ad3
Input scalar as a number (base 10):
599189175373896402783756016145213256157230856
085026129926891459468622403380588640249457727
6838694219244304045221642549886377526240828
Input u-coordinate:
06fce640fa3487bfda5f6cf2d5263f8aad88334c0d07437f020f98f9
814dc031dd3d3c8c91c6a2583fa5429db94ada18aa7f6b4ef8a086
Input u-coordinate as a number (base 10):
382239910810173301162299612348993707031416365
24057132514834655922438025162094455820962429
142971339584360034337310079791515425363953830
Output u-coordinate:
ce3e4f95a60dc6697da1db1d85e6afbd79b50a2412d7546d5f239fe14fbaadeb445fc66a0b0779d9822396111e21766282f73dd96b6f
Input scalar:
203d494228b8399352665ddca42f9de8f6f6009080e0d4610b021f8c5
38345d7c7c3e8406e2546d3315c44e0a5b4371282dd2c8d5be3095f
Input scalar as a number (base 10):
63935433590697059279259481534862372832525155
2520896105640001332122152890562527156973881
96893431140034556820392940963925541994577184
Input u-coordinate:
0ffcc2ff93c5d3305b0b7d9e55d4c1af5b52f8e9a19b6201b
165d015894e56c4d3570be52fe205e28a7b891c6fde71ce8d157db
Input u-coordinate as a number (base 10):
62276179775832544462922068431234180649590390
024811299761625153767228042600197997696167956
13477074499669026763415942799832340166786063
Output u-coordinate:
884a02576239ff7a2f2f632db6a9ff37047ac13568e1e30f63c4a7
ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d
The second type of test vector consists of the result of calling the function in question a specified number of times. Initially, set \(k \) and \(u \) to be the following values:

For X25519:
\[
0900
\]

For X448:
\[
0500
00
\]

For each iteration, set \(k \) to be the result of calling the function and \(u \) to be the old value of \(k \). The final result is the value left in \(k \).

X25519:

After one iteration:
\[422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079\]

After 1,000 iterations:
\[684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51\]

After 1,000,000 iterations:
\[7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424\]

X448:

After one iteration:
\[3f482c8a9f19b01e6c46ee9711d9dc14fd4bf67af30765c2ae2b846a\]
\[4d23a8cd0db897086239492caf350b51f833868b9bc2b3bca9cf4113\]

After 1,000 iterations:
\[aa3b4749d55b9daf1e5b0028826c467274ce3ebbd5c17b975e09d4\]
\[af6c67cf10d087202db88286e2b79fcee3ec353ef54faa26e219f38\]

After 1,000,000 iterations:
\[077f453681caca3693198420bbe515cae0002472519b3e67661a7e89\]
\[cab94695c8f4bcd66e61b9b9c946da8d524de3d69bd9d66b997e37\]
6. Diffie-Hellman

6.1. Curve25519

The X25519 function can be used in an Elliptic Curve Diffie-Hellman (ECDH) protocol as follows:

Alice generates 32 random bytes in a[0] to a[31] and transmits K_A = X25519(a, 9) to Bob, where 9 is the u-coordinate of the base point and is encoded as a byte with value 9, followed by 31 zero bytes.

Bob similarly generates 32 random bytes in b[0] to b[31], computes K_B = X25519(b, 9), and transmits it to Alice.

Using their generated values and the received input, Alice computes X25519(a, K_B) and Bob computes X25519(b, K_A).

Both now share K = X25519(a, X25519(b, 9)) = X25519(b, X25519(a, 9)) as a shared secret. Both MAY check, without leaking extra information about the value of K, whether K is the all-zero value and abort if so (see below). Alice and Bob can then use a key-derivation function that includes K, K_A, and K_B to derive a symmetric key.

The check for the all-zero value results from the fact that the X25519 function produces that value if it operates on an input corresponding to a point with small order, where the order divides the cofactor of the curve (see Section 7). The check may be performed by ORing all the bytes together and checking whether the result is zero, as this eliminates standard side-channels in software implementations.

Test vector:

Alice’s private key, a:
77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a

Alice’s public key, X25519(a, 9):
8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eb4a98eaa9b4e6a

Bob’s private key, b:
5dab087e624a84b79e17f8b3800eb6f3bb1292618b6fd1c2f8b27ff88e0eb

Bob’s public key, X25519(b, 9):
de9ed7b7dcb14d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f

Their shared secret, K:
4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3e161742
6.2. Curve448

The X448 function can be used in an ECDH protocol very much like the X25519 function.

If X448 is to be used, the only differences are that Alice and Bob generate 56 random bytes (not 32) and calculate $K_A = \text{X448}(a, 5)$ or $K_B = \text{X448}(b, 5)$, where 5 is the u-coordinate of the base point and is encoded as a byte with value 5, followed by 55 zero bytes.

As with X25519, both sides MAY check, without leaking extra information about the value of K, whether the resulting shared K is the all-zero value and abort if so.

Test vector:

Alice’s private key, a:
9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28d
d9c9ba5f574a9419744897391006382a6f127ab1d9ac2d8c0a5987265b
Alice’s public key, X448(a, 5):
9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63ffa73d2c
22c5d9bb836647241d953d40c5b12da88120d53177f80e532c41fa0
Bob’s private key, b:
1c306a7ac2a0e2e0990b294470cb389e6453772b075811d8fad0d1d
6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d
Bob’s public key, X448(b, 5):
3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bd0d4f345b430
27d8b972fc3e34fb4232a13ca706dcb57aec3da0e0a7b6c1e7bf33609
Their shared secret, K:
07fff4181ac6cc95e1c16a94a0f74d12da232ce40a77552281d282b
b60c0b56fd2464c335543936521c24403085d59a449a5037514a879d

7. Security Considerations

The security level (i.e., the number of "operations" needed for a brute-force attack on a primitive) of curve25519 is slightly under the standard 128-bit level. This is acceptable because the standard security levels are primarily driven by much simpler, symmetric primitives where the security level naturally falls on a power of two. For asymmetric primitives, rigidly adhering to a power-of-two security level would require compromises in other parts of the design, which we reject. Additionally, comparing security levels between types of primitives can be misleading under common threat models where multiple targets can be attacked concurrently [bruteforce].
The ~224-bit security level of curve448 is a trade-off between performance and paranoia. Large quantum computers, if ever created, will break both curve25519 and curve448, and reasonable projections of the abilities of classical computers conclude that curve25519 is perfectly safe. However, some designs have relaxed performance requirements and wish to hedge against some amount of analytical advance against elliptic curves and thus curve448 is also provided.

Protocol designers using Diffie-Hellman over the curves defined in this document must not assume "contributory behaviour". Specially, contributory behaviour means that both parties' private keys contribute to the resulting shared key. Since curve25519 and curve448 have cofactors of 8 and 4 (respectively), an input point of small order will eliminate any contribution from the other party's private key. This situation can be detected by checking for the all-zero output, which implementations MAY do, as specified in Section 6. However, a large number of existing implementations do not do this.

Designers using these curves should be aware that for each public key, there are several publicly computable public keys that are equivalent to it, i.e., they produce the same shared secrets. Thus using a public key as an identifier and knowledge of a shared secret as proof of ownership (without including the public keys in the key derivation) might lead to subtle vulnerabilities.

Designers should also be aware that implementations of these curves might not use the Montgomery ladder as specified in this document, but could use generic, elliptic-curve libraries instead. These implementations could reject points on the twist and could reject non-minimal field elements. While not recommended, such implementations will interoperate with the Montgomery ladder specified here but may be trivially distinguishable from it. For example, sending a non-canonical value or a point on the twist may cause such implementations to produce an observable error while an implementation that follows the design in this text would successfully produce a shared key.

8. References

8.1. Normative References

8.2. Informative References

[brainpool]
ECC Brainpool, "ECC Brainpool Standard Curves and Curve Generation", October 2005,

[bruteforce]
Bernstein, D., "Understanding brute force", April 2005,

[curve25519]
Bernstein, D., "Curve25519: new Diffie-Hellman speed records", 2006,

[goldilocks]
Hamburg, M., "Ed448-Goldilocks, a new elliptic curve", 2015,

[montgomery]
Montgomery, P., "Speeding the Pollard and Elliptic Curve Methods of Factorization", January 1987,

[reducing] Menezes, A., Okamoto, T., and S. Vanstone, "Reducing elliptic curve logarithms to logarithms in a finite field", DOI 10.1109/18.259647, 1993,

DOI 10.17487/RFC6090, February 2011,
[safecurves]

[satoh]

[SEC1]

[semaev]

[smart]
Appendix A. Deterministic Generation

This section specifies the procedure that was used to generate the above curves; specifically, it defines how to generate the parameter A of the Montgomery curve $y^2 = x^3 + Ax^2 + x$. This procedure is intended to be as objective as can reasonably be achieved so that it’s clear that no untoward considerations influenced the choice of curve. The input to this process is p, the prime that defines the underlying field. The size of p determines the amount of work needed to compute a discrete logarithm in the elliptic curve group, and choosing a precise p depends on many implementation concerns. The performance of the curve will be dominated by operations in GF(p), so carefully choosing a value that allows for easy reductions on the intended architecture is critical. This document does not attempt to articulate all these considerations.

The value $(A-2)/4$ is used in several of the elliptic curve point arithmetic formulas. For simplicity and performance reasons, it is beneficial to make this constant small, i.e., to choose A so that $(A-2)$ is a small integer that is divisible by four.

For each curve at a specific security level:

1. The trace of Frobenius MUST NOT be in {0,1} in order to rule out the attacks described in [smart], [sato12], and [semaev], as in [brainpool] and [safecurves].

2. MOV Degree [reducing]: the embedding degree MUST be greater than $(order - 1) / 100$, as in [brainpool] and [safecurves].

3. CM Discriminant: discriminant D MUST be greater than 2^{100}, as in [safecurves].
A.1. $p = 1 \text{ mod } 4$

For primes congruent to 1 mod 4, the minimal cofactors of the curve and its twist are either $\{4, 8\}$ or $\{8, 4\}$. We choose a curve with the latter cofactors so that any algorithms that take the cofactor into account don’t have to worry about checking for points on the twist, because the twist cofactor will be the smaller of the two.

To generate the Montgomery curve, we find the minimal, positive A value such that $A > 2$ and $(A-2)$ is divisible by four and where the cofactors are as desired. The find1Mod4 function in the following Sage script returns this value given p:

<CODE BEGINS>
def findCurve(prime, curveCofactor, twistCofactor):
 F = GF(prime)
 for A in xrange(3, int(1e9)):
 if (A-2) % 4 != 0:
 continue
 try:
 E = EllipticCurve(F, [0, A, 0, 1, 0])
 except:
 continue
 groupOrder = E.order()
 twistOrder = 2*(prime+1)-groupOrder
 if (groupOrder % curveCofactor == 0 and
 is_prime(groupOrder // curveCofactor) and
 twistOrder % twistCofactor == 0 and
 is_prime(twistOrder // twistCofactor)):
 return A
 def find1Mod4(prime):
 assert((prime % 4) == 1)
 return findCurve(prime, 8, 4)
<CODE ENDS>

Generating a curve where $p = 1 \text{ mod } 4$
A.2. \(p = 3 \mod 4 \)

For a prime congruent to 3 mod 4, both the curve and twist cofactors can be 4, and this is minimal. Thus, we choose the curve with these cofactors and minimal, positive \(A \) such that \(A > 2 \) and \((A-2)\) is divisible by four. The \texttt{find3Mod4} function in the following Sage script returns this value given \(p \):

<CODE BEGINS>
def find3Mod4(prime):
 assert((prime % 4) == 3)
 return findCurve(prime, 4, 4)
<CODE ENDS>

Generating a curve where \(p = 3 \mod 4 \)

A.3. Base Points

The base point for a curve is the point with minimal, positive \(u \) value that is in the correct subgroup. The \texttt{findBasepoint} function in the following Sage script returns this value given \(p \) and \(A \):

<CODE BEGINS>
def findBasepoint(prime, A):
 F = GF(prime)
 E = EllipticCurve(F, [0, A, 0, 1, 0])
 for uInt in range(1, 1e3):
 u = F(uInt)
 v2 = u^3 + A*u^2 + u
 if not v2.is_square():
 continue
 v = v2.sqrt()
 point = E(u, v)
 pointOrder = point.order()
 if pointOrder > 8 and pointOrder.is_prime():
 return point
<CODE ENDS>

Generating the base point
Acknowledgements

This document is the result of a combination of draft-black-rpgecc-01 and draft-turner-thecurve25519function-01. The following authors of those documents wrote much of the text and figures but are not listed as authors on this document: Benjamin Black, Joppe W. Bos, Craig Costello, Patrick Longa, Michael Naehrig, Watson Ladd, and Rich Salz.

The authors would also like to thank Tanja Lange, Rene Struik, Rich Salz, Ilari Liusvaara, Deirdre Connolly, Simon Josefsson, Stephen Farrell, Georg Nestmann, Trevor Perrin, and John Mattsson for their reviews and contributions.

The X25519 function was developed by Daniel J. Bernstein in [curve25519].

Authors’ Addresses

Adam Langley
Google
345 Spear Street
San Francisco, CA 94105
United States

Email: agl@google.com

Mike Hamburg
Rambus Cryptography Research
425 Market Street, 11th Floor
San Francisco, CA 94105
United States

Email: mike@shiftleft.org

Sean Turner
sn3rd

Email: sean@sn3rd.com