

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

ops RFC and Internet-Draft Index

Index

	anima

	bmwg

	dime

	dnsop

	grow

	mboned

	netconf

	netmod

	opsawg

	opsec

	radext

	sidrops

	v6ops

anima RFC and Internet-Draft Index

Index

Active

	draft-ietf-anima-autonomic-control-plane-19 An Autonomic Control Plane (ACP)

	draft-ietf-anima-bootstrapping-keyinfra-19 Bootstrapping Remote Secure Key Infrastructures (BRSKI)

	draft-ietf-anima-constrained-voucher-02 Constrained Voucher Artifacts for Bootstrapping Protocols

	draft-ietf-anima-grasp-15 A Generic Autonomic Signaling Protocol (GRASP)

	draft-ietf-anima-grasp-api-03 Generic Autonomic Signaling Protocol Application Program Interface (GRASP API)

	draft-ietf-anima-prefix-management-07 Autonomic IPv6 Edge Prefix Management in Large-scale Networks

	draft-ietf-anima-reference-model-10 A Reference Model for Autonomic Networking

RFC

	RFC8366 A Voucher Artifact for Bootstrapping Protocols

	RFC8368 Using an Autonomic Control Plane for Stable Connectivity of Network Operations, Administration, and Maintenance (OAM)

Related Active

	draft-bernardos-anima-fog-monitoring-00 Autonomic setup of fog monitoring agents

	draft-carpenter-anima-asa-guidelines-06 Guidelines for Autonomic Service Agents

	draft-carpenter-anima-grasp-bulk-03 Transferring Bulk Data over the GeneRic Autonomic Signaling Protocol (GRASP)

	draft-carpenter-anima-l2acp-scenarios-00 Scenarios and Requirements for Layer 2 Autonomic Control Planes

	draft-carpenter-limited-domains-06 Limited Domains and Internet Protocols

	draft-choi-anima-trust-networking-01 Trust networking and procedures for Autonomic Networking

	draft-friel-anima-brski-over-802dot11-00 BRSKI over IEEE 802.11

	draft-fries-anima-brski-async-enroll-00 Support of asynchronous Enrollment in BRSKI

	draft-galis-anima-autonomic-slice-networking-05 Autonomic Slice Networking

	draft-lear-eap-teap-brski-02 Bootstrapping Key Infrastructure over EAP

	draft-liu-anima-grasp-distribution-10 Information Distribution in Autonomic Networking

	draft-nmdt-anima-management-bootstrap-01 Anima Bootstrapping for Network Management

	draft-rfmesh-anima-iot-management-01 ANI Applied in IoT Network Management

	draft-richardson-anima-smarkaklink-00 BRSKI enrollment of with disconnected Registrars -- smarkaklink

	draft-vanderstok-anima-constrained-join-proxy-01 Constrained Join Proxy for Bootstrapping Protocols

Related Replaced

	draft-friel-brski-over-802dot11-01 BRSKI over IEEE 802.11

bmwg RFC and Internet-Draft Index

Index

Active

	draft-ietf-bmwg-evpntest-01 Benchmarking Methodology for EVPN and PBB-EVPN

	draft-ietf-bmwg-ngfw-performance-00 Benchmarking Methodology for Network Security Device Performance

RFC

	RFC1242 Benchmarking Terminology for Network Interconnection Devices

	RFC1944 Benchmarking Methodology for Network Interconnect Devices

	RFC2285 Benchmarking Terminology for LAN Switching Devices

	RFC2432 Terminology for IP Multicast Benchmarking

	RFC2647 Benchmarking Terminology for Firewall Performance

	RFC2761 Terminology for ATM Benchmarking

	RFC2889 Benchmarking Methodology for LAN Switching Devices

	RFC3116 Methodology for ATM Benchmarking

	RFC3133 Terminology for Frame Relay Benchmarking

	RFC3134 Terminology for ATM ABR Benchmarking

	RFC3222 Terminology for Forwarding Information Base (FIB) based Router Performance

	RFC3511 Benchmarking Methodology for Firewall Performance

	RFC3918 Methodology for IP Multicast Benchmarking

	RFC4061 Benchmarking Basic OSPF Single Router Control Plane Convergence

	RFC4062 OSPF Benchmarking Terminology and Concepts

	RFC4063 Considerations When Using Basic OSPF Convergence Benchmarks

	RFC4098 Terminology for Benchmarking BGP Device Convergence in the Control Plane

	RFC4689 Terminology for Benchmarking Network-layer Traffic Control Mechanisms

	RFC4814 Hash and Stuffing: Overlooked Factors in Network Device Benchmarking

	RFC4883 Benchmarking Terminology for Resource Reservation Capable Routers

	RFC5180 IPv6 Benchmarking Methodology for Network Interconnect Devices

	RFC5695 MPLS Forwarding Benchmarking Methodology for IP Flows

	RFC6201 Device Reset Characterization

	RFC6412 Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence

	RFC6413 Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence

	RFC6414 Benchmarking Terminology for Protection Performance

	RFC6645 IP Flow Information Accounting and Export Benchmarking Methodology

	RFC6815 Applicability Statement for RFC 2544: Use on Production Networks Considered Harmful

	RFC6894 Methodology for Benchmarking MPLS Traffic Engineered (MPLS-TE) Fast Reroute Protection

	RFC6985 IMIX Genome: Specification of Variable Packet Sizes for Additional Testing

	RFC7501 Terminology for Benchmarking Session Initiation Protocol (SIP) Devices: Basic Session Setup and Registration

	RFC7502 Methodology for Benchmarking Session Initiation Protocol (SIP) Devices: Basic Session Setup and Registration

	RFC7640 Traffic Management Benchmarking

	RFC7654 Benchmarking Methodology for In-Service Software Upgrade (ISSU)

	RFC7747 Basic BGP Convergence Benchmarking Methodology for Data-Plane Convergence

	RFC8161 Benchmarking the Neighbor Discovery Protocol

	RFC8172 Considerations for Benchmarking Virtual Network Functions and Their Infrastructure

	RFC8204 Benchmarking Virtual Switches in the Open Platform for NFV (OPNFV)

	RFC8219 Benchmarking Methodology for IPv6 Transition Technologies

	RFC8238 Data Center Benchmarking Terminology

	RFC8239 Data Center Benchmarking Methodology

	RFC8455 Terminology for Benchmarking Software-Defined Networking (SDN) Controller Performance

	RFC8456 Benchmarking Methodology for Software-Defined Networking (SDN) Controller Performance

Related Active

	draft-balarajah-bmwg-ngfw-performance-05 Benchmarking Methodology for Network Security Device Performance

	draft-dcn-bmwg-containerized-infra-00 Considerations for Benchmarking Network Performance in Containerized Infrastructures

	draft-kishjac-bmwg-evpnvpwstest-01 Benchmarking Methodology for EVPN VPWS

	draft-morton-bmwg-b2b-frame-05 Updates for the Back-to-back Frame Benchmark in RFC 2544

	draft-morton-bmwg-multihome-evpn-01 Benchmarks and Methods for Multihomed EVPN

	draft-rosa-bmwg-vnfbench-03 Methodology for VNF Benchmarking Automation

	draft-skommu-bmwg-nvp-03 Considerations for Benchmarking Network Virtualization Platforms

	draft-vassilev-bmwg-network-interconnect-tester-00 A YANG Data Model for Network Interconnect Tester Management

	draft-vikjac-bmwg-evpnmultest-01 Benchmarking Methodology for EVPN Multicasting

	draft-vpolak-bmwg-plrsearch-01 Probabilistic Loss Ratio Search for Packet Throughput (PLRsearch)

dime RFC and Internet-Draft Index

Index

Active

	draft-ietf-dime-agent-overload-11 Diameter Agent Overload and the Peer Overload Report

	draft-ietf-dime-doic-rate-control-11 Diameter Overload Rate Control

	draft-ietf-dime-group-signaling-12 Diameter Group Signaling

	draft-ietf-dime-load-09 Diameter Load Information Conveyance

RFC

	RFC5447 Diameter Mobile IPv6: Support for Network Access Server to Diameter Server Interaction

	RFC5624 Quality of Service Parameters for Usage with Diameter

	RFC5719 Updated IANA Considerations for Diameter Command Code Allocations

	RFC5729 Clarifications on the Routing of Diameter Requests Based on the Username and the Realm

	RFC5777 Traffic Classification and Quality of Service (QoS) Attributes for Diameter

	RFC5778 Diameter Mobile IPv6: Support for Home Agent to Diameter Server Interaction

	RFC5779 Diameter Proxy Mobile IPv6: Mobile Access Gateway and Local Mobility Anchor Interaction with Diameter Server

	RFC5866 Diameter Quality-of-Service Application

	RFC6408 Diameter Straightforward-Naming Authority Pointer (S-NAPTR) Usage

	RFC6733 Diameter Base Protocol

	RFC6734 Diameter Attribute-Value Pairs for Cryptographic Key Transport

	RFC6735 Diameter Priority Attribute-Value Pairs

	RFC6736 Diameter Network Address and Port Translation Control Application

	RFC6737 The Diameter Capabilities Update Application

	RFC6738 Diameter IKEv2 SK: Using Shared Keys to Support Interaction between IKEv2 Servers and Diameter Servers

	RFC6942 Diameter Support for the EAP Re-authentication Protocol (ERP)

	RFC7068 Diameter Overload Control Requirements

	RFC7075 Realm-Based Redirection In Diameter

	RFC7155 Diameter Network Access Server Application

	RFC7156 Diameter Support for Proxy Mobile IPv6 Localized Routing

	RFC7423 Diameter Applications Design Guidelines

	RFC7660 Diameter Congestion and Filter Attributes

	RFC7678 Attribute-Value Pairs for Provisioning Customer Equipment Supporting IPv4-Over-IPv6 Transitional Solutions

	RFC7683 Diameter Overload Indication Conveyance

	RFC7944 Diameter Routing Message Priority

	RFC7966 Security at the Attribute-Value Pair (AVP) Level for Non-neighboring Diameter Nodes: Scenarios and Requirements

	RFC8506 Diameter Credit-Control Application

dnsop RFC and Internet-Draft Index

Index

Active

	draft-ietf-dnsop-7706bis-03 Running a Root Server Local to a Resolver

	draft-ietf-dnsop-algorithm-update-07 Algorithm Implementation Requirements and Usage Guidance for DNSSEC

	draft-ietf-dnsop-alt-tld-11 The ALT Special Use Top Level Domain

	draft-ietf-dnsop-aname-02 Address-specific DNS aliases (ANAME)

	draft-ietf-dnsop-attrleaf-16 DNS Scoped Data Through "Underscore" Naming of Attribute Leaves

	draft-ietf-dnsop-attrleaf-fix-07 DNS Attrleaf Changes: Fixing Specifications with Underscored Node Name Use

	draft-ietf-dnsop-dns-capture-format-10 C-DNS: A DNS Packet Capture Format

	draft-ietf-dnsop-dns-tcp-requirements-03 DNS Transport over TCP - Operational Requirements

	draft-ietf-dnsop-extended-error-05 Extended DNS Errors

	draft-ietf-dnsop-multi-provider-dnssec-01 Multi Provider DNSSEC models

	draft-ietf-dnsop-no-response-issue-13 A Common Operational Problem in DNS Servers - Failure To Communicate.

	draft-ietf-dnsop-rfc2845bis-03 Secret Key Transaction Authentication for DNS (TSIG)

	draft-ietf-dnsop-rfc7816bis-01 DNS Query Name Minimisation to Improve Privacy

	draft-ietf-dnsop-serve-stale-04 Serving Stale Data to Improve DNS Resiliency

RFC

	RFC2870 Root Name Server Operational Requirements

	RFC3258 Distributing Authoritative Name Servers via Shared Unicast Addresses

	RFC3901 DNS IPv6 Transport Operational Guidelines

	RFC4074 Common Misbehavior Against DNS Queries for IPv6 Addresses

	RFC4339 IPv6 Host Configuration of DNS Server Information Approaches

	RFC4472 Operational Considerations and Issues with IPv6 DNS

	RFC4641 DNSSEC Operational Practices

	RFC4697 Observed DNS Resolution Misbehavior

	RFC4892 Requirements for a Mechanism Identifying a Name Server Instance

	RFC5358 Preventing Use of Recursive Nameservers in Reflector Attacks

	RFC6168 Requirements for Management of Name Servers for the DNS

	RFC6303 Locally Served DNS Zones

	RFC6304 AS112 Nameserver Operations

	RFC6305 I'm Being Attacked by PRISONER.IANA.ORG!

	RFC6781 DNSSEC Operational Practices, Version 2

	RFC6841 A Framework for DNSSEC Policies and DNSSEC Practice Statements

	RFC7344 Automating DNSSEC Delegation Trust Maintenance

	RFC7477 Child-to-Parent Synchronization in DNS

	RFC7534 AS112 Nameserver Operations

	RFC7535 AS112 Redirection Using DNAME

	RFC7583 DNSSEC Key Rollover Timing Considerations

	RFC7646 Definition and Use of DNSSEC Negative Trust Anchors

	RFC7686 The ".onion" Special-Use Domain Name

	RFC7706 Decreasing Access Time to Root Servers by Running One on Loopback

	RFC7719 DNS Terminology

	RFC7766 DNS Transport over TCP - Implementation Requirements

	RFC7793 Adding 100.64.0.0/10 Prefixes to the IPv4 Locally-Served DNS Zones Registry

	RFC7816 DNS Query Name Minimisation to Improve Privacy

	RFC7828 The edns-tcp-keepalive EDNS0 Option

	RFC7871 Client Subnet in DNS Queries

	RFC7873 Domain Name System (DNS) Cookies

	RFC7901 CHAIN Query Requests in DNS

	RFC8020 NXDOMAIN: There Really Is Nothing Underneath

	RFC8027 DNSSEC Roadblock Avoidance

	RFC8078 Managing DS Records from the Parent via CDS/CDNSKEY

	RFC8109 Initializing a DNS Resolver with Priming Queries

	RFC8145 Signaling Trust Anchor Knowledge in DNS Security Extensions (DNSSEC)

	RFC8198 Aggressive Use of DNSSEC-Validated Cache

	RFC8244 Special-Use Domain Names Problem Statement

	RFC8482 Providing Minimal-Sized Responses to DNS Queries That Have QTYPE=ANY

	RFC8490 DNS Stateful Operations

	RFC8499 DNS Terminology

	RFC8501 Reverse DNS in IPv6 for Internet Service Providers

	RFC8509 A Root Key Trust Anchor Sentinel for DNSSEC

Related Active

	draft-arnt-yao-dnsop-root-data-caching-00 Decreasing Fetch time of Root Data by Additional Caching Rules

	draft-bellis-dnsop-edns-tags-00 DNS EDNS Tags

	draft-bellis-dnsop-http-record-00 A DNS Resource Record for HTTP

	draft-dulaunoy-dnsop-passive-dns-cof-05 Passive DNS - Common Output Format

	draft-fujiwara-dnsop-fragment-attack-01 Measures against cache poisoning attacks using IP fragmentation in DNS

	draft-hoffman-dns-special-labels-00 IANA Registry for Special Labels in the DNS

	draft-lhotka-dnsop-iana-class-type-yang-01 YANG Types for DNS Classes and Resource Record Types

	draft-livingood-dnsop-auth-dnssec-mistakes-04 Responsibility for Authoritative DNS and DNSSEC Mistakes

	draft-livingood-dnsop-dont-switch-resolvers-04 In Case of DNSSEC Validation Failures, Do Not Change Resolvers

	draft-mglt-dnsop-dnssec-validator-requirements-07 DNSSEC Validator Requirements

	draft-moonesamy-dnsop-special-use-label-registry-00 Special-Use Labels

	draft-moura-dnsop-authoritative-recommendations-03 Recommendations for Authoritative Servers Operators

	draft-pskim-dnsop-namesystem-iotobject-00 A Naming System for IOT Objects

	draft-pusateri-dnsop-private-subdomains-00 Private DNS Subdomains

	draft-pusateri-dnsop-update-timeout-02 DNS TIMEOUT Resource Record

	draft-schaller-dnsop-lnp-00 Local Naming Protocol -- LNP (v.1.0)

	draft-song-dnsop-dualstack-ecs-00 Client Dualstack Subnets in DNS Queries

	draft-sonoda-dnsop-lb-00 IP geolocation load balancing Resource Record

	draft-sury-toorop-dns-cookies-algorithms-00 Algorithms for Domain Name System (DNS) Cookies construction

	draft-wessels-dns-zone-digest-06 Message Digest for DNS Zones

	draft-york-dnsop-cname-at-apex-publisher-view-01 CNAME at apex - a website publisher perspective

	draft-york-dnsop-deploying-dnssec-crypto-algs-06 Observations on Deploying New DNSSEC Cryptographic Algorithms

	draft-zhang-dnsop-weighted-address-records-00 New weighted resource record for traffic scheduling

grow RFC and Internet-Draft Index

Index

Active

	draft-ietf-grow-bmp-adj-rib-out-03 Support for Adj-RIB-Out in BGP Monitoring Protocol (BMP)

	draft-ietf-grow-bmp-local-rib-02 Support for Local RIB in BGP Monitoring Protocol (BMP)

	draft-ietf-grow-bmp-registries-change-00 Revision to Registration Procedures for Multiple BMP Registries

	draft-ietf-grow-rpki-as-cones-01 RPKI Autonomous Systems Cones: A Profile To Define Sets of Autonomous Systems Numbers To Facilitate BGP Filtering

	draft-ietf-grow-wkc-behavior-03 Well-Known Community Policy Behavior

RFC

	RFC4085 Embedding Globally-Routable Internet Addresses Considered Harmful

	RFC4264 BGP Wedgies

	RFC4384 BGP Communities for Data Collection

	RFC4451 BGP MULTI_EXIT_DISC (MED) Considerations

	RFC4632 Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan

	RFC4786 Operation of Anycast Services

	RFC6198 Requirements for the Graceful Shutdown of BGP Sessions

	RFC6382 Unique Origin Autonomous System Numbers (ASNs) per Node for Globally Anycasted Services

	RFC6396 Multi-Threaded Routing Toolkit (MRT) Routing Information Export Format

	RFC6397 Multi-Threaded Routing Toolkit (MRT) Border Gateway Protocol (BGP) Routing Information Export Format with Geo-Location Extensions

	RFC6441 Time to Remove Filters for Previously Unallocated IPv4 /8s

	RFC6752 Issues with Private IP Addressing in the Internet

	RFC6769 Simple Virtual Aggregation (S-VA)

	RFC6774 Distribution of Diverse BGP Paths

	RFC7682 Considerations for Internet Routing Registries (IRRs) and Routing Policy Configuration

	RFC7789 Impact of BGP Filtering on Inter-Domain Routing Policies

	RFC7854 BGP Monitoring Protocol (BMP)

	RFC7908 Problem Definition and Classification of BGP Route Leaks

	RFC7948 Internet Exchange BGP Route Server Operations

	RFC7999 BLACKHOLE Community

	RFC8050 Multi-Threaded Routing Toolkit (MRT) Routing Information Export Format with BGP Additional Path Extensions

	RFC8195 Use of BGP Large Communities

	RFC8212 Default External BGP (EBGP) Route Propagation Behavior without Policies

	RFC8326 Graceful BGP Session Shutdown

	RFC8327 Mitigating the Negative Impact of Maintenance through BGP Session Culling

Related Active

	draft-adkp-grow-ixpcommunities-00 BGP Large Communities applications for IXP Route Servers

	draft-chen-grow-enhanced-as-loop-detection-00 Enhanced AS-Loop Detection for BGP

	draft-gu-grow-bmp-route-leak-detection-01 BMP for BGP Route Leak Detection

	draft-gu-grow-bmp-vpn-te-00 VPN Traffic Engineering Using BMP

	draft-sa-grow-maxprefix-02 BGP Maximum Prefix Limits

	draft-scudder-grow-bmp-peer-up-00 BMP Peer Up Message Namespace

	draft-shishio-grow-isp-rfd-implement-survey-05 Route Flap Damping Deployment Status Survey

	draft-szarecki-grow-abstract-nh-scaleout-peering-00 Use of Abstract NH in Scale-Out peering architecture

	draft-xu-grow-bmp-route-policy-attr-trace-00 BGP Route Policy and Attribute Trace Using BMP

mboned RFC and Internet-Draft Index

Index

Active

	draft-ietf-mboned-dc-deploy-05 Multicast in the Data Center Overview

	draft-ietf-mboned-deprecate-interdomain-asm-03 Deprecating ASM for Interdomain Multicast

	draft-ietf-mboned-driad-amt-discovery-02 DNS Reverse IP AMT Discovery

	draft-ietf-mboned-ieee802-mcast-problems-04 Multicast Considerations over IEEE 802 Wireless Media

	draft-ietf-mboned-multicast-yang-model-01 Multicast YANG Data Model

RFC

	RFC2365 Administratively Scoped IP Multicast

	RFC2588 IP Multicast and Firewalls

	RFC2770 GLOP Addressing in 233/8

	RFC2776 Multicast-Scope Zone Announcement Protocol (MZAP)

	RFC3138 Extended Assignments in 233/8

	RFC3170 IP Multicast Applications: Challenges and Solutions

	RFC3171 IANA Guidelines for IPv4 Multicast Address Assignments

	RFC3180 GLOP Addressing in 233/8

	RFC3446 Anycast Rendevous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)

	RFC3956 Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address

	RFC4608 Source-Specific Protocol Independent Multicast in 232/8

	RFC4609 Protocol Independent Multicast - Sparse Mode (PIM-SM) Multicast Routing Security Issues and Enhancements

	RFC4611 Multicast Source Discovery Protocol (MSDP) Deployment Scenarios

	RFC4624 Multicast Source Discovery Protocol (MSDP) MIB

	RFC5110 Overview of the Internet Multicast Routing Architecture

	RFC5132 IP Multicast MIB

	RFC5771 IANA Guidelines for IPv4 Multicast Address Assignments

	RFC5790 Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols

	RFC6034 Unicast-Prefix-Based IPv4 Multicast Addresses

	RFC6308 Overview of the Internet Multicast Addressing Architecture

	RFC6450 Multicast Ping Protocol

	RFC6676 Multicast Addresses for Documentation

	RFC7450 Automatic Multicast Tunneling

	RFC8313 Use of Multicast across Inter-domain Peering Points

	RFC8487 Mtrace Version 2: Traceroute Facility for IP Multicast

Related Active

	draft-jholland-mboned-ambi-01 Asymmetric Manifest-Based Integrity

netconf RFC and Internet-Draft Index

Index

Active

	draft-ietf-netconf-crypto-types-05 Common YANG Data Types for Cryptography

	draft-ietf-netconf-keystore-08 YANG Data Model for a Centralized Keystore Mechanism

	draft-ietf-netconf-netconf-client-server-10 NETCONF Client and Server Models

	draft-ietf-netconf-netconf-event-notifications-17 Dynamic subscription to YANG Events and Datastores over NETCONF

	draft-ietf-netconf-notification-capabilities-01 YangPush Notification Capabilities

	draft-ietf-netconf-notification-messages-05 Notification Message Headers and Bundles

	draft-ietf-netconf-restconf-client-server-10 RESTCONF Client and Server Models

	draft-ietf-netconf-restconf-notif-13 Dynamic subscription to YANG Events and Datastores over RESTCONF

	draft-ietf-netconf-ssh-client-server-11 YANG Groupings for SSH Clients and SSH Servers

	draft-ietf-netconf-subscribed-notifications-23 Subscription to YANG Event Notifications

	draft-ietf-netconf-tls-client-server-10 YANG Groupings for TLS Clients and TLS Servers

	draft-ietf-netconf-trust-anchors-03 YANG Data Model for Global Trust Anchors

	draft-ietf-netconf-udp-pub-channel-05 UDP based Publication Channel for Streaming Telemetry

	draft-ietf-netconf-yang-push-22 Subscription to YANG Datastores

	draft-ietf-netconf-zerotouch-29 Secure Zero Touch Provisioning (SZTP)

RFC

	RFC4741 NETCONF Configuration Protocol

	RFC4742 Using the NETCONF Configuration Protocol over Secure SHell (SSH)

	RFC4743 Using NETCONF over the Simple Object Access Protocol (SOAP)

	RFC4744 Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (BEEP)

	RFC5277 NETCONF Event Notifications

	RFC5539 NETCONF over Transport Layer Security (TLS)

	RFC5717 Partial Lock Remote Procedure Call (RPC) for NETCONF

	RFC6022 YANG Module for NETCONF Monitoring

	RFC6241 Network Configuration Protocol (NETCONF)

	RFC6242 Using the NETCONF Protocol over Secure Shell (SSH)

	RFC6243 With-defaults Capability for NETCONF

	RFC6470 Network Configuration Protocol (NETCONF) Base Notifications

	RFC6536 Network Configuration Protocol (NETCONF) Access Control Model

	RFC7589 Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication

	RFC7895 YANG Module Library

	RFC8040 RESTCONF Protocol

	RFC8071 NETCONF Call Home and RESTCONF Call Home

	RFC8072 YANG Patch Media Type

	RFC8341 Network Configuration Access Control Model

	RFC8525 YANG Library

	RFC8526 NETCONF Extensions to Support the Network Management Datastore Architecture

	RFC8527 RESTCONF Extensions to Support the Network Management Datastore Architecture

Related Active

	draft-bierman-netconf-module-tag-ops-00 Module Tag Operations

	draft-kwatsen-netconf-http-client-server-00 YANG Groupings for HTTP Clients and HTTP Servers

	draft-kwatsen-netconf-tcp-client-server-00 YANG Groupings for TCP Clients and TCP Servers

	draft-wu-netconf-nmda-compatibility-01 NMDA protocol operation Backwards-Compatibility with Legacy Devices

	draft-wu-netconf-restconf-factory-restore-03 Factory default Setting

	draft-zheng-netconf-inline-action-capability-02 Inline Action Capability for NETCONF

	draft-zhou-netconf-multi-stream-originators-04 Subscription to Multiple Stream Originators

netmod RFC and Internet-Draft Index

Index

Active

	draft-ietf-netmod-artwork-folding-01 Handling Long Lines in Inclusions in Internet-Drafts and RFCs

	draft-ietf-netmod-intf-ext-yang-07 Common Interface Extension YANG Data Models

	draft-ietf-netmod-module-tags-07 YANG Module Tags

	draft-ietf-netmod-nmda-diff-00 Comparison of NMDA datastores

	draft-ietf-netmod-sub-intf-vlan-model-05 Sub-interface VLAN YANG Data Models

	draft-ietf-netmod-syslog-model-26 A YANG Data Model for Syslog Configuration

	draft-ietf-netmod-yang-data-ext-02 YANG Data Structure Extensions

	draft-ietf-netmod-yang-instance-file-format-02 YANG Instance Data File Format

RFC

	RFC6020 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

	RFC6021 Common YANG Data Types

	RFC6087 Guidelines for Authors and Reviewers of YANG Data Model Documents

	RFC6110 Mapping YANG to Document Schema Definition Languages and Validating NETCONF Content

	RFC6244 An Architecture for Network Management Using NETCONF and YANG

	RFC6643 Translation of Structure of Management Information Version 2 (SMIv2) MIB Modules to YANG Modules

	RFC6991 Common YANG Data Types

	RFC7223 A YANG Data Model for Interface Management

	RFC7224 IANA Interface Type YANG Module

	RFC7277 A YANG Data Model for IP Management

	RFC7317 A YANG Data Model for System Management

	RFC7407 A YANG Data Model for SNMP Configuration

	RFC7950 The YANG 1.1 Data Modeling Language

	RFC7951 JSON Encoding of Data Modeled with YANG

	RFC7952 Defining and Using Metadata with YANG

	RFC8022 A YANG Data Model for Routing Management

	RFC8199 YANG Module Classification

	RFC8340 YANG Tree Diagrams

	RFC8342 Network Management Datastore Architecture (NMDA)

	RFC8343 A YANG Data Model for Interface Management

	RFC8344 A YANG Data Model for IP Management

	RFC8348 A YANG Data Model for Hardware Management

	RFC8349 A YANG Data Model for Routing Management (NMDA Version)

	RFC8407 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

	RFC8519 YANG Data Model for Network Access Control Lists (ACLs)

	RFC8528 YANG Schema Mount

Related Active

	draft-boucadair-netmod-softwire-iftunnel-00 A Tunnel Extension to the Interface Management YANG Module

	draft-chopps-netmod-geo-location-01 YANG Geo Location

	draft-clemm-netmod-push-smart-filters-01 Smart Filters for Push Updates

	draft-ranade-netmod-yang-push-extension-02 Extensions to Yang Push

	draft-rwilton-netmod-yang-packages-01 YANG Packages

	draft-sambo-netmod-yang-fsm-04 YANG model for finite state machine

	draft-schoenw-netmod-rfc6991-bis-01 Common YANG Data Types

	draft-shytyi-netmod-vysm-00 Virtualization YANG Servise Model (VYSM)

	draft-vassilev-netmod-network-bridge-01 A YANG Data Model for Network Bridge Management

	draft-verdt-netmod-yang-semver-00 YANG Semantic Versioning for Modules

	draft-verdt-netmod-yang-solutions-00 YANG Versioning Potential Solutions

	draft-verdt-netmod-yang-versioning-reqs-02 YANG Module Versioning Requirements

	draft-wang-netmod-module-revision-management-01 A YANG Data Model for module revision management

	draft-wilton-netmod-yang-ver-selection-00 YANG Schema Version Selection

	draft-wu-netmod-base-notification-nmda-02 NMDA Base Notification for Applied Intended Configuration

	draft-wu-netmod-factory-default-02 Factory default Setting

	draft-wwx-netmod-event-yang-01 A YANG Data model for Policy based Event Management

opsawg RFC and Internet-Draft Index

Index

Active

	draft-ietf-opsawg-ipfix-bgp-community-12 Export BGP community information in IP Flow Information Export (IPFIX)

	draft-ietf-opsawg-tacacs-12 The TACACS+ Protocol

RFC

	RFC5343 Simple Network Management Protocol (SNMP) Context EngineID Discovery

	RFC5674 Alarms in Syslog

	RFC5675 Mapping Simple Network Management Protocol (SNMP) Notifications to SYSLOG Messages

	RFC5676 Definitions of Managed Objects for Mapping SYSLOG Messages to Simple Network Management Protocol (SNMP) Notifications

	RFC5706 Guidelines for Considering Operations and Management of New Protocols and Protocol Extensions

	RFC5935 Expressing SNMP SMI Datatypes in XML Schema Definition Language

	RFC6291 Guidelines for the Use of the "OAM" Acronym in the IETF

	RFC6340 Textual Conventions for the Representation of Floating-Point Numbers

	RFC6632 An Overview of the IETF Network Management Standards

	RFC7124 Ethernet in the First Mile Copper (EFMCu) Interfaces MIB

	RFC7276 An Overview of Operations, Administration, and Maintenance (OAM) Tools

	RFC7289 Carrier-Grade NAT (CGN) Deployment with BGP/MPLS IP VPNs

	RFC7424 Mechanisms for Optimizing Link Aggregation Group (LAG) and Equal-Cost Multipath (ECMP) Component Link Utilization in Networks

	RFC7448 MIB Transfer from the IETF to the IEEE 802.3 WG

	RFC7494 IEEE 802.11 Medium Access Control (MAC) Profile for Control and Provisioning of Wireless Access Points (CAPWAP)

	RFC7547 Management of Networks with Constrained Devices: Problem Statement and Requirements

	RFC7548 Management of Networks with Constrained Devices: Use Cases

	RFC7630 HMAC-SHA-2 Authentication Protocols in the User-based Security Model (USM) for SNMPv3

	RFC7666 Management Information Base for Virtual Machines Controlled by a Hypervisor

	RFC7860 HMAC-SHA-2 Authentication Protocols in User-Based Security Model (USM) for SNMPv3

	RFC8309 Service Models Explained

	RFC8350 Alternate Tunnel Encapsulation for Data Frames in Control and Provisioning of Wireless Access Points (CAPWAP)

	RFC8512 A YANG Module for Network Address Translation (NAT) and Network Prefix Translation (NPT)

	RFC8520 Manufacturer Usage Description Specification

Related Active

	draft-evenwu-opsawg-yang-composed-vpn-03 YANG Data Model for Composed VPN Service Delivery

	draft-jilongwang-opsawg-nrc-01 Framework for Network Resources Categorization

	draft-lear-opsawg-mud-bw-profile-00 Network QoS Expectations Extensions for MUD

	draft-richardson-opsawg-securehomegateway-mud-01 MUD processing and extensions for Secure Home Gateway Project

	draft-song-opsawg-ifit-framework-01 In-situ Flow Information Telemetry Framework

	draft-song-opsawg-ntf-03 Network Telemetry Framework

	draft-sun-opsawg-sdwan-service-model-02 A YANG Data Model for SD-WAN VPN Service Delivery

	draft-wkumari-opsawg-sdi-03 Secure Device Install

	draft-zheng-opsawg-tacacs-yang-01 Yang data model for Terminal Access Controller Access Control System Plus

opsec RFC and Internet-Draft Index

Index

Active

	draft-ietf-opsec-ipv6-eh-filtering-06 Recommendations on the Filtering of IPv6 Packets Containing IPv6 Extension Headers

	draft-ietf-opsec-urpf-improvements-01 Enhanced Feasible-Path Unicast Reverse Path Filtering

	draft-ietf-opsec-v6-16 Operational Security Considerations for IPv6 Networks

RFC

	RFC4778 Operational Security Current Practices in Internet Service Provider Environments

	RFC5635 Remote Triggered Black Hole Filtering with Unicast Reverse Path Forwarding (uRPF)

	RFC6039 Issues with Existing Cryptographic Protection Methods for Routing Protocols

	RFC6094 Summary of Cryptographic Authentication Algorithm Implementation Requirements for Routing Protocols

	RFC6192 Protecting the Router Control Plane

	RFC6274 Security Assessment of the Internet Protocol Version 4

	RFC7123 Security Implications of IPv6 on IPv4 Networks

	RFC7126 Recommendations on Filtering of IPv4 Packets Containing IPv4 Options

	RFC7359 Layer 3 Virtual Private Network (VPN) Tunnel Traffic Leakages in Dual-Stack Hosts/Networks

	RFC7404 Using Only Link-Local Addressing inside an IPv6 Network

	RFC7454 BGP Operations and Security

	RFC7610 DHCPv6-Shield: Protecting against Rogue DHCPv6 Servers

	RFC7707 Network Reconnaissance in IPv6 Networks

radext RFC and Internet-Draft Index

Index

Active

	draft-ietf-radext-coa-proxy-10 Dynamic Authorization Proxying in Remote Authorization Dial-In User Service Protocol (RADIUS)

RFC

	RFC4282 The Network Access Identifier

	RFC4372 Chargeable User Identity

	RFC4590 RADIUS Extension for Digest Authentication

	RFC4668 RADIUS Authentication Client MIB for IPv6

	RFC4669 RADIUS Authentication Server MIB for IPv6

	RFC4670 RADIUS Accounting Client MIB for IPv6

	RFC4671 RADIUS Accounting Server MIB for IPv6

	RFC4672 RADIUS Dynamic Authorization Client MIB

	RFC4673 RADIUS Dynamic Authorization Server MIB

	RFC4675 RADIUS Attributes for Virtual LAN and Priority Support

	RFC4818 RADIUS Delegated-IPv6-Prefix Attribute

	RFC4849 RADIUS Filter Rule Attribute

	RFC5080 Common Remote Authentication Dial In User Service (RADIUS) Implementation Issues and Suggested Fixes

	RFC5090 RADIUS Extension for Digest Authentication

	RFC5176 Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)

	RFC5607 Remote Authentication Dial-In User Service (RADIUS) Authorization for Network Access Server (NAS) Management

	RFC5997 Use of Status-Server Packets in the Remote Authentication Dial In User Service (RADIUS) Protocol

	RFC6158 RADIUS Design Guidelines

	RFC6421 Crypto-Agility Requirements for Remote Authentication Dial-In User Service (RADIUS)

	RFC6613 RADIUS over TCP

	RFC6614 Transport Layer Security (TLS) Encryption for RADIUS

	RFC6911 RADIUS Attributes for IPv6 Access Networks

	RFC6929 Remote Authentication Dial In User Service (RADIUS) Protocol Extensions

	RFC7268 RADIUS Attributes for IEEE 802 Networks

	RFC7360 Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS

	RFC7499 Support of Fragmentation of RADIUS Packets

	RFC7542 The Network Access Identifier

	RFC7585 Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS Based on the Network Access Identifier (NAI)

	RFC7930 Larger Packets for RADIUS over TCP

	RFC8044 Data Types in RADIUS

	RFC8045 RADIUS Extensions for IP Port Configuration and Reporting

Related Active

	draft-boucadair-radext-tcpm-converter-01 RADIUS Extensions for 0-RTT TCP Converters

sidrops RFC and Internet-Draft Index

Index

Active

	draft-ietf-sidrops-bgpsec-algs-rfc8208-bis-04 BGPsec Algorithms, Key Formats, and Signature Formats

	draft-ietf-sidrops-bgpsec-rollover-04 BGPsec Router Certificate Rollover

	draft-ietf-sidrops-https-tal-07 Resource Public Key Infrastructure (RPKI) Trust Anchor Locator

	draft-ietf-sidrops-lta-use-cases-05 Use Cases for Localized Versions of the RPKI

	draft-ietf-sidrops-rp-03 Requirements for Resource Public Key Infrastructure (RPKI) Relying Parties

	draft-ietf-sidrops-rpkimaxlen-01 The Use of Maxlength in the RPKI

	draft-ietf-sidrops-rtr-keying-04 Router Keying for BGPsec

	draft-ietf-sidrops-signed-tal-02 RPKI Signed Object for Trust Anchor Keys

RFC

	RFC8481 Clarifications to BGP Origin Validation Based on Resource Public Key Infrastructure (RPKI)

	RFC8488 RIPE NCC's Implementation of Resource Public Key Infrastructure (RPKI) Certificate Tree Validation

Related Active

	draft-azimov-sidrops-aspa-profile-01 A Profile for Autonomous System Provider Authorization

	draft-azimov-sidrops-aspa-verification-01 Verification of AS_PATH Using the Resource Certificate Public Key Infrastructure and Autonomous System Provider Authorization

	draft-borchert-sidrops-bgpsec-state-unverified-00 BGPsec Validation State Unverified

	draft-borchert-sidrops-rpki-state-unverified-01 RPKI Route Origin Validation State Unverified

	draft-sriram-sidrops-drop-invalid-policy-02 Origin Validation Policy Considerations for Dropping Invalid Routes

	draft-va-sidrops-deploy-reconsidered-01 Deployment of Reconsidered Validation in the Resource Public Key Infrastructure (RPKI)

	draft-yan-sidrops-roa-considerations-02 Problem Statement and Considerations for ROAs issued with Multiple Prefixes

	draft-ymbk-sidrops-ov-egress-00 BGP RPKI-Based Origin Validation on Export

	draft-ymbk-sidrops-ov-signal-02 Origin Validation Signaling

v6ops RFC and Internet-Draft Index

Index

Active

	draft-ietf-v6ops-nat64-deployment-03 NAT64/464XLAT Deployment Guidelines in Operator and Enterprise Networks

	draft-ietf-v6ops-nat64-srv-00 NAT64/DNS64 detection via SRV Records

	draft-ietf-v6ops-transition-ipv4aas-15 Requirements for IPv6 Customer Edge Routers to Support IPv4 Connectivity as-a-Service

RFC

	RFC3574 Transition Scenarios for 3GPP Networks

	RFC3750 Unmanaged Networks IPv6 Transition Scenarios

	RFC3789 Introduction to the Survey of IPv4 Addresses in Currently Deployed IETF Standards Track and Experimental Documents

	RFC3790 Survey of IPv4 Addresses in Currently Deployed IETF Internet Area Standards Track and Experimental Documents

	RFC3791 Survey of IPv4 Addresses in Currently Deployed IETF Routing Area Standards Track and Experimental Documents

	RFC3792 Survey of IPv4 Addresses in Currently Deployed IETF Security Area Standards Track and Experimental Documents

	RFC3793 Survey of IPv4 Addresses in Currently Deployed IETF Sub-IP Area Standards Track and Experimental Documents

	RFC3794 Survey of IPv4 Addresses in Currently Deployed IETF Transport Area Standards Track and Experimental Documents

	RFC3795 Survey of IPv4 Addresses in Currently Deployed IETF Application Area Standards Track and Experimental Documents

	RFC3796 Survey of IPv4 Addresses in Currently Deployed IETF Operations
draft-adkp-grow-ixpcommunities-00 - BGP Large Communities applications for IXP Route Servers

draft-adkp-grow-ixpcommunities-00 - BGP Large Communities applications for IXP R

Index
Back 5
Prev
Next
Forward 5

Global Routing Operations

Internet-Draft

Updates: 7947,7948 (if approved)

Intended status: Informational

Expires: September 12, 2019

M. Aelmans

Juniper Networks

S. Konstantaras

AMS-IX

S. Plug

ECIX - Megaport

C. Dietzel

DE-CIX

March 11, 2019

BGP Large Communities applications for IXP Route Servers

draft-adkp-grow-ixpcommunities-00

Abstract

 This document presents suggestion and examples for application of BGP
 Large Communities [RFC8092] at Internet Exchange Points (IXPs).
 Suggestions are based on operational experiences from IXP operators
 and members. Any IXP operator or IXP member can consider using these
 communities. The document specifically focusses on Route Server
 [RFC7947] deployments in IXP context [RFC7948].

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Justification

	3. Suggested Large BGP Community Standard List

	4. Security Considerations

	5. IANA Considerations

	6. Acknowledgments

	7. Appendix: Implementation Guidance

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 This document presents suggestions for the application of BGP Large
 Communities [RFC8092] to IXP operators and members using the BGP
 [RFC4271] protocol. It adds specific suggestions for the operators
 and members of IXPs deploying BGP Large Communities as suggested in
 [RFC8195].

2. Justification

 Networks operating in the DFZ tend to exchange routing information at
 multiple IXP in order to improve redundancy and geographical
 optimization. Besides 'the typical' IXP members an increasing amount
 of enterprise networks connect to IXPs. They have additional
 requirements. In order to offer a uniform mode of operation across
 different IXPs there is a need to provide standards.

3. Suggested Large BGP Community Standard List

 This list proposes a standard to use in IXP operations for the use of
 BGP Large Communities. It was first published at the EURO-IX website
 [EURO-IX].

 The tables below provide a per 'section' divided overview of Large
 Community usage.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on | Priority |
| | | | export | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
RS:0:PEERAS	Do not		recommended	0
	advertise			
	to PEERAS			
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+				
RS:1:PEERAS	Advertise	Only useful	recommended	1
	to PEERAS	in		
		combination		
		with RS:0:0		
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+				
RS:2:ms	Do not	ms = Latency	recommended	2
	announce to	of peer in		
	peers	ms		
	higher than			
	ms			
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 1: Direct filtering RS:0-99:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on | Priority |
| | | | export | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| RS:101:PEERAS | Prepend to PEERAS | | yes | 3 |
| | once | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| RS:102:PEERAS | Prepend to PEERAS | | yes | 3 |
| | twice | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| RS:103:PEERAS | Prepend to PEERAS | | yes | 3 |
| | three times | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
RS:111:ms	Prepend once to		yes	3
	peers higher than			
	ms			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+				
RS:112:ms	Prepend twice to		yes	3
	peers higher than			
	ms			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+				
RS:113:ms	Prepend three to		yes	3
	peers higher than			
	ms			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 2: AS Path prepending RS:100-199:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on export | Priority |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| | | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 3: Unassigned RS:200-899:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on export | Priority |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| | | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 4: Informational RS:1000-1999:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
Range	Description	Notes	Strip
			on
			export

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| RS:1000:1 | RPKI VALID | Prefix is RPKI | yes |
| | | VALID | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| RS:1000:2 | RPKI UNKNOWN | Prefix is RPKI | yes |
| | | UNKNOWN | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| RS:1000:3 | RPKI NOT CHECKED | | yes |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
RS:1000:4‑*	Prefix is RPKI		yes
	INVALID because of		
	$REASON		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:1	IRRDB VALID	Prefix exists in	yes
		IRRDB	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:2	IRRDB NOT CHECKED	Prefix was not	yes
		checked in IRRDB	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:3	MORE SPECIFIC THAN	Prefix does not	yes
	IRRDB	exist in IRRDB,	
		but a less	
		specific does	
		valid entry	
		exists	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:4	IRRDB Prefix not	Prefix was not	yes
	found in AS‑SET or	found in the	
	aut‑num	peer's as‑set	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:5	IRRDB INVALID	Origin AS not in	yes
	ORIGIN AS	peer AS‑SET	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1001:6	IRRDB INVALID	Prefix not found	yes
	PREFIX FOR ORIGIN	in origin AS	
	AS		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1002:1‑*	TRACER (RS #)	IXP assigned ID	no
		for route server	
		instance	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1003:ms	Measured RTT for	IXP measured	yes
	advertising peer	round trip time	
		for peer in ms	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1004:$peerAS	Incoming Peer AS	Use Autonomous	yes
		System Number of	
		the incoming	

| | | member for that | |
| | | route | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
RS:1005:1	AS Object, Route	Meant as a	yes
	Object and	transitioning	
	Organization NOT	mechanism until	
	from the same	full RPKI	
	region	deployment	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1005:2	AS Object, Route	yes	
	Object and		
	Organization from		
	within the same		
	region		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1005:3	AS Object, Route	yes	
	Object and		
	Organization from		
	within the same		
	region Not checked		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+

 Table 5: Informational tags RS:1000-1099:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
Range	Description	Notes	Strip
			on
			export
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:1	Prefix length too		
	long		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:2	Prefix length too		
	short		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:3	Bogon Prefix		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:4	Bogon AS		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:5	AS path too long		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:6	AS path too short		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:7	as‑path.first !=		
	peeras		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:8	next hop IP != peer		
	IP		

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
RS:1101:9	IRRDB Prefix not	Prefix was not	
	found in AS‑SET or	found in the	
	aut‑num	peer's as‑set	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:10	Origin AS not in		
	peer AS‑SET		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:11	Prefix not found in		
	origin AS		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:12	Prefix is RPKI		
	UNKNOWN		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:13	Prefix is RPKI		
	INVALID		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:14	Transit‑free ASN in		
	AS‑Path		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+			
RS:1101:15	Too many BGP		
	communities set on		
	prefix		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+

 Table 6: Informational RS:1000-1999:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
Range	Description	Notes	Strip
			on
			export
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1102:1	Advertising peer	Advertising peer does	
	declines prefix	not want you to	
		receive prefix	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1102:2	You declined	You do not want to	
	prefix from	receive prefix from	
	advertising peer	advertising peer	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+			
RS:1102:3	Maximum number of		
	BGP communities		
	exceeded		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+

 Table 7: Route was filtered on export RS:1102:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on export |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 8: Unassigned RS:1200-1899:*

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Range | Description | Notes | Strip on export |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Free to use informational communities

 Table 9: IXP Specific RS:1900-1999:*

4. Security Considerations

 Operators should note the recommendations in Section 11 of BGP
 Operations and Security [RFC7454] and handle BGP Large Communities
 with their ASN in the Global Administrator field similarly.

5. IANA Considerations

6. Acknowledgments

 The authors would like to thank Colby Barth (Juniper Networks) and
 Bijal Sanghani (EURO-IX) for their support, insightful review, and
 comments.

7. Appendix: Implementation Guidance

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC7454]
 Durand, J., Pepelnjak, I., and G. Doering, "BGP Operations
 and Security", BCP 194, RFC 7454, DOI 10.17487/RFC7454,
 February 2015, <https://www.rfc-editor.org/info/rfc7454>.

 [RFC7947]
 Jasinska, E., Hilliard, N., Raszuk, R., and N. Bakker,
 "Internet Exchange BGP Route Server", RFC 7947,
 DOI 10.17487/RFC7947, September 2016,
 <https://www.rfc-editor.org/info/rfc7947>.

 [RFC7948]
 Hilliard, N., Jasinska, E., Raszuk, R., and N. Bakker,
 "Internet Exchange BGP Route Server Operations", RFC 7948,
 DOI 10.17487/RFC7948, September 2016,
 <https://www.rfc-editor.org/info/rfc7948>.

 [RFC8092]
 Heitz, J., Ed., Snijders, J., Ed., Patel, K., Bagdonas,
 I., and N. Hilliard, "BGP Large Communities Attribute",
 RFC 8092, DOI 10.17487/RFC8092, February 2017,
 <https://www.rfc-editor.org/info/rfc8092>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [EURO-IX]
 EURO-IX, "Large BGP Communities", April 2018,
 <https://www.euro-ix.net/en/forixps/
 large-bgp-communities/>.

 [RFC8195]
 Snijders, J., Heasley, J., and M. Schmidt, "Use of BGP
 Large Communities", RFC 8195, DOI 10.17487/RFC8195, June
 2017, <https://www.rfc-editor.org/info/rfc8195>.

Authors' Addresses

Melchior Aelmans
Juniper Networks
Boeing Avenue 240
Schiphol‑Rijk 1119 PZ
The Netherlands

 Email: maelmans@juniper.net

Stavros Konstantaras
AMS‑IX
Frederiksplein 42
Amsterdam 1017 XN
The Netherlands

 Email: stavros.konstantaras@ams-ix.net

Stefan Plug
ECIX ‑ Megaport
Tauentzienstr. 11
Berlin 10789
Germany

 Email: spl@ecix.net

Christoph Dietzel
DE‑CIX
Lindleystr. 12
Frankfurt am Main 60314
Germany

 Email: christoph.dietzel@de-cix.net

draft-arnt-yao-dnsop-root-data-caching-00 - Decreasing Fetch time of Root Data by Additional Caching Rules

draft-arnt-yao-dnsop-root-data-caching-00 - Decreasing Fetch time of Root Data b

Index
Back 5
Prev
Next
Forward 5

dnsop

Internet-Draft

Intended status: Standards Track

Expires: August 16, 2019

A. Gulbrandsen

J. Yao

CNNIC

February 12, 2019

Decreasing Fetch time of Root Data by Additional Caching Rules

draft-arnt-yao-dnsop-root-data-caching-00

Abstract

 Some DNS recursive resolvers have long round trip times to the
 nearest DSN root server, which has been an obstacle to DNS query
 performance. In order to decrease root record fetch time without
 introducing a new source of errors, this document proposes a root-
 specific modification to the caching rules.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 16, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Design Considerations

	4. Changes
	 4.1. Impact on the resolver

	 4.2. Impact on the root servers

	 4.3. Impact on the network

	5. System Requirements

	6. Difference between this mechanism and RFC7706 based mechanism

	7. Security Considerations

	8. Change History
	 8.1. draft-arnt-yao-dnsop-root-data-caching: Version 00

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 Some DNS recursive resolvers suffer from long round trip times to the
 nearest DSN root server, which has been an obstacle to DNS query
 performance.

 A particular characteristic of the root zone is that when cached, its
 data is usable for very different queries: An MTA that wishes to send
 mail to Google needs the NS records for .com, and so does a web
 browser that wishes to open the Bing home page. Other public zones
 (such as .co.uk and .gen.nz, and perhaps tumblr.com) are shared among
 some queries, the root zone is used for all.

 This suggests that caching rules that are appropriate to the rest of
 the DNS tree may not be ideal for the root zone.

 We propose to refresh root zone data probabilistically when it
 expires, instead of when needed.

2. Terminology

 The basic key words such as "MUST", "MUST NOT", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "MAY", and "MAYNOT" are to be interpreted as
 described in [RFC2119].

 The basic DNS terms used in this specification are defined in the
 documents [RFC1034] and [RFC1035].

3. Design Considerations

 o The RRs in the root zone do not change frequently.

 o The root zone is not large, compared to the RAM of even smallish
 resolvers.

 o DNSSEC[RFC4033][RFC4034][RFC4035] protects the data origin
 authentication and data integrity.

4. Changes

 When an RR in a resolver's cache expires and is in the root zone,
 then the resolver immediately refreshes it. There are no protocol
 changes or extensions.

 Assuming that the lookup frequency for a root-zone RR drops by half
 for every additional week, (ie. half of all RRs that looked up
 repeatedly are looked up every week, a quarter every second week, an
 eighth every third week, etc), this eliminates root-zone delay as a
 timing factor for more than 99.999% of queries through this resolver.

 In practice, this should mean that unintentional clearing of the
 resolver's cache (e.g. as a side effect of restarting the resolver)
 is the next biggest contributor to slow queries.

 OPEN ISSUE: Or perhaps better, only with 95% likelihood? If the
 resolver refreshes it with 100% certainty, then the resolver
 necessarily grows to storing all of the root-zone RRs it has needed
 forever. If the resolver refreshes it 95% of the time and root-zone
 RRs have a TTL of around a week, then an unused root-zone RR has
 around 50% chance of being discarded after three months. The
 resolver will perform around 12 DNS queries that turn out, in
 hindsight, not to be necessary. The text below assumes 95%
 likelihood.

4.1. Impact on the resolver

 The resolver is able to answer DNS queries quickly for all root RRs
 that have been used in the past several months, instead of the past
 week. The cost in additional processing and RAM is negligible; there
 are no additional tasks that can go wrong.

4.2. Impact on the root servers

 The root servers one additional query per TTL (usually week) per
 resolver and RR, for the RRs that have been needed by that resolver
 in the past, but will not be needed in the coming week. The queries
 arrive evenly. They do not peak around a particular time, but are
 distributed as the normal traffic.

4.3. Impact on the network

 There is no additional network traffic related to ongoing use of the
 network (or DNS). There are also no savings. However, some packets
 are sent earlier than they would be withot this document.

 Around 25 additional packets are transmitted (two per week over a
 period of some months) when a the users of a particular resolver stop
 using a particular root-zone RR.

5. System Requirements

 In order to implement the mechanism described in this document:

 o The system MUST be able to validate DNSSEC resource records.

 o The system MUST have an up-to-date copy of the DNS root key.

6. Difference between this mechanism and RFC7706 based mechanism

 The following features are considered to be different compared to
 RFC7706 based mechanism:

 o This document retrieves single RRs (or probably sets, as required
 by DNSSSEC validation). RFC7706 retrieves the entire zone.

 o This document requires no actions by human administrators.

 o This document provides only a probabilistic performance
 improvement; RFC 7706 provides a guarantee.

7. Security Considerations

 None.

8. Change History

 RFC Editor: Please remove this section.

8.1. draft-arnt-yao-dnsop-root-data-caching: Version 00

 o Decreasing fetch time of root data by additional caching rules

9. References

9.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

9.2. Informative References

 [Root-loopback]

 Kumari, W. and P. Hoffman, "Decreasing Access Time to Root
 Servers by Running One on Loopback", November 2015,
 <https://tools.ietf.org/html/rfc7706>.

Authors' Addresses

 Arnt Gulbrandsen

 Email: arnt@gulbrandsen.priv.no

Jiankang Yao
CNNIC
4 South 4th Street,Zhongguancun,Haidian District
Beijing, Beijing 100190
China

Phone: +86 10 5881 3007
Email: yaojk@cnnic.cn

draft-azimov-sidrops-aspa-profile-01 - A Profile for Autonomous System Provider Authorization

draft-azimov-sidrops-aspa-profile-01 - A Profile for Autonomous System Provider

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: July 10, 2019

A. Azimov

E. Uskov

Qrator Labs

R. Bush

Internet Initiative Japan

K. Patel

Arrcus

J. Snijders

NTT

R. Housley

Vigil Security

January 6, 2019

A Profile for Autonomous System Provider Authorization

draft-azimov-sidrops-aspa-profile-01

Abstract

 This document defines a standard profile for Autonomous System
 Provider Authorization in the Resource Public Key Infrastructure. An
 Autonomous System Provider Authorization is a digitally signed object
 that provides a means of verifying that a Customer Autonomous System
 holder has authorized a Provider Autonomous System to be its upstream
 provider and for the Provider to send prefixes received from the
 Customer Autonomous System in all directions including providers and
 peers.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. The ASPA Content Type

	3. The ASPA eContent
	 3.1. version

	 3.2. AFI

	 3.3. customerASID

	 3.4. providerASID

	4. ASPA Validation

	5. ASN.1 Module for the ASPA Content Type

	6. IANA Considerations

	7. Security Considerations

	8. Acknowledgments

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 The primary purpose of the Resource Public Key Infrastructure (RPKI)
 is to improve routing security. (See [RFC6480] for more
 information.) As part of this infrastructure, a mechanism is needed
 to verify that a Provider AS (PAS) has permission from a Customer AS
 (CAS) holder to send routes in all directions. The digitally signed
 Autonomous System Provider Authorization (ASPA) object provides this
 verification mechanism.

 The ASPA uses the template for RPKI digitally signed objects
 [RFC6488], which defines a Cryptographic Message Syntax (CMS)
 [RFC5652] wrapper for the ASPA content as well as a generic
 validation procedure for RPKI signed objects. As ASPAs need to be
 validated with RPKI certificates issued by the current
 infrastructure, we assume the mandatory-to-implement algorithms in
 [RFC6485], or its successor.

 To complete the specification of the ASPA (see Section 4 of
 [RFC6488]), this document defines:

 1. The object identifier (OID) that identifies the ASPA signed
 object. This OID appears in the eContentType field of the
 encapContentInfo object as well as the content-type signed
 attribute within the signerInfo structure).

 2. The ASN.1 syntax for the ASPA content, which is the payload
 signed by the CAS. The ASPA content is encoded using the ASN.1
 [X680] Distinguished Encoding Rules (DER) [X690].

 3. The steps required to validate an ASPA beyond the validation
 steps specified in [RFC6488]).

2. The ASPA Content Type

 The content-type for an ASPA is defined as id-cct-ASPA, which has the
 numerical value of 1.2.840.113549.1.9.16.1.TBD. This OID MUST appear
 both within the eContentType in the encapContentInfo structure as
 well as the content-type signed attribute within the signerInfo
 structure (see [RFC6488]).

3. The ASPA eContent

 The content of an ASPA identifies the Customer AS (CAS) as well as
 the Provider AS (PAS) that is authorized to further propagate
 announcements received from the customer. If customer has multiple
 providers, it issues multiple ASPAs, one for each provider AS. An
 ASPA is formally defined as:

 ct-ASPA CONTENT-TYPE ::=

 { ASProviderAttestation IDENTIFIED BY id-ct-ASPA }

 id-ct-ASPA OBJECT IDENTIFIER ::= { id-ct TBD }

ASProviderAttestation ::= SEQUENCE {
 version [0] ASPAVersion DEFAULT v0,
 AFI AddressFamilyIdentifier,
 customerASID ASID,
 providerASID ASID }

ASPAVersion ::= INTEGER { v0(0) }

 AddressFamilyIdentifier ::= INTEGER

 ASID ::= INTEGER

 Note that this content appears as the eContent within the
 encapContentInfo as specified in [RFC6488].

3.1. version

 The version number of the ASProviderAttestation MUST be v0.

3.2. AFI

 The AFI field contains Address Family Identifier for which the
 relation between customer and provider ASes is authorized. Presently
 defined values for the Address Family Identifier field are specified
 in the IANA's Address Family Numbers registry [IANA-AF].

3.3. customerASID

 The customerASID field contains the AS number of the Autonomous
 System that authorizes an upstream provider (listed in the
 providerASId) to propagate prefixes in the specified address family
 other ASes.

3.4. providerASID

 The providerASID contains the AS number that is authorized to further
 propagate announcements in the specified address family received from
 the customer.

4. ASPA Validation

 Before a relying party can use an ASPA to validate a routing
 announcement, the relying party MUST first validate the ASPA object
 itself. To validate an ASPA, the relying party MUST perform all the
 validation checks specified in [RFC6488] as well as the following
 additional ASPA-specific validation step.

 o The autonomous system identifier delegation extension [RFC3779] is
 present in the end-entity (EE) certificate (contained within the
 ASPA), and the customer AS number in the ASPA is contained within
 the set of AS numbers specified by the EE certificate's autonomous
 system identifier delegation extension.

5. ASN.1 Module for the ASPA Content Type

RPKI‑ASPA‑2018
 { iso(1) member‑body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs‑9(9) smime(16) modules(0) id‑mod‑rpki‑aspa‑2018(TBD2) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS

CONTENT‑TYPE
FROM CryptographicMessageSyntax‑2010 ‑‑ RFC 6268
 { iso(1) member‑body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs‑9(9) smime(16) modules(0) id‑mod‑cms‑2009(58) } ;

 ContentSet CONTENT-TYPE ::= { ct-ASPA, ... }

‑‑
‑‑ ASPA Content Type
‑‑

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-ASPA OBJECT IDENTIFIER ::= { id-ct TBD }

 ct-ASPA CONTENT-TYPE ::=

 { TYPE ASProviderAttestation IDENTIFIED BY id-ct-ASPA }

ASProviderAttestation ::= SEQUENCE {
 version [0] ASPAVersion DEFAULT v0,
 AFI AddressFamilyIdentifier,
 customerASID ASID,
 providerASID ASID }

ASPAVersion ::= INTEGER { v0(0) }

 AddressFamilyIdentifier ::= INTEGER

 ASID ::= INTEGER

 END

6. IANA Considerations

 Please add the id-mod-rpki-aspa-2018 to the SMI Security for S/MIME
 Module Identifier (1.2.840.113549.1.9.16.0) registry
 (https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xml#security-smime-0) as follows:

Decimal | Description | Specification
‑‑‑
TBD2 | id‑mod‑rpki‑aspa‑2018 | [ThisRFC]

 Please add the ASPA to the SMI Security for S/MIME CMS Content Type
 (1.2.840.113549.1.9.16.1) registry (https://www.iana.org/assignments/
 smi-numbers/smi-numbers.xml#security-smime-1) as follows:

Decimal | Description | Specification
‑‑‑
TBD | id‑ct‑ASPA | [ThisRFC]

 Please add the ASPA to the RPKI Signed Object registry
 (https://www.iana.org/assignments/rpki/rpki.xhtml#signed-objects) as
 follows:

Name | OID | Specification
‑‑‑
ASPA | 1.2.840.113549.1.9.16.1.TBD | [ThisRFC]

7. Security Considerations

8. Acknowledgments

9. References

9.1. Normative References

 [IANA-AF]
 IANA, "Address Family Numbers",
 <http://www.iana.org/numbers.html>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3779]
 Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779,
 DOI 10.17487/RFC3779, June 2004,
 <https://www.rfc-editor.org/info/rfc3779>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6485]
 Huston, G., "The Profile for Algorithms and Key Sizes for
 Use in the Resource Public Key Infrastructure (RPKI)",
 RFC 6485, DOI 10.17487/RFC6485, February 2012,
 <https://www.rfc-editor.org/info/rfc6485>.

 [RFC6488]
 Lepinski, M., Chi, A., and S. Kent, "Signed Object
 Template for the Resource Public Key Infrastructure
 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,
 <https://www.rfc-editor.org/info/rfc6488>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [X680]
 ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation",
 ITU-T Recommendation X.680, 2015.

 [X690]
 ITU-T, "Information Technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, 2015.

9.2. Informative References

 [RFC6480]
 Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

Authors' Addresses

Alexander Azimov
Qrator Labs

 Email: a.e.azimov@gmail.com

Eugene Uskov
Qrator Labs

 Email: eu@qrator.net

Randy Bush
Internet Initiative Japan

 Email: randy@psg.com

Keyur Patel
Arrcus, Inc.

 Email: keyur@arrcus.com

Job Snijders
NTT Communications
Theodorus Majofskistraat 100
Amsterdam 1065 SZ
The Netherlands

 Email: job@ntt.net

Russ Housley
Vigil Security, LLC
918 Spring Knoll Drive
Herndon, VA 20170
USA

 Email: housley@vigilsec.com

draft-azimov-sidrops-aspa-verification-01 - Verification of AS_PATH Using the Resource Certificate Public Key Infrastructure and Autonomous System Provider Authorization

draft-azimov-sidrops-aspa-verification-01 - Verification of AS_PATH Using the Re

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

A. Azimov

E. Bogomazov

Qrator Labs

R. Bush

Internet Initiative Japan

K. Patel

Arrcus, Inc.

J. Snijders

NTT

October 22, 2018

Verification of AS_PATH Using the Resource Certificate Public Key Infrastructure and Autonomous System Provider Authorization

draft-azimov-sidrops-aspa-verification-01

Abstract

 This document defines the semantics of an Autonomous System Provider
 Authorization object in the Resource Public Key Infrastructure to
 verify the AS_PATH attribute of routes advertised in the Border
 Gateway Protocol.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Anomaly Propagation

	3. Autonomous System Provider Authorization

	4. Customer-Provider Verification Procedure

	5. AS_PATH Verification

	6. Disavowal of Provider Authorizaion

	7. Siblings (Complex Relations)

	8. Security Considerations

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

 The Border Gateway Protocol (BGP) was designed with no mechanisms to
 validate BGP attributes. Two consequences are BGP Hijacks and BGP
 Route Leaks [RFC7908]. BGP extensions are able to partially solve
 these problems. For example, ROA-based Origin Validation [RFC6483]
 can be used to detect and filter accidental mis-originations, and
 [I-D.ymbk-idr-bgp-eotr-policy] can be used to detect accidental route
 leaks. While these upgrades to BGP are quite useful, they still rely
 on transitive BGP attributes, i.e. AS_PATH, that can be manipulated
 by attackers.

 BGPSec [RFC8205] was designed to solve the problem of AS_PATH
 validation. Unfortunately, strict cryptographic validation brought
 unaffordable computational overhead for BGP routers. BGPSec also
 proved to be vulnerable to downgrade attacks that can nullify all the
 work of AS_PATH signing. As a result, to abuse the AS_PATH or any
 other signed transit attribute, an attacker merely needs to downgrade
 to 'old' BGP-4.

 An alternative approach was introduced with soBGP
 [I-D.white-sobgp-architecture]. Instead of strong cryptographic
 AS_PATH validation, it was suggested to create an AS_PATH security
 function based on a shared database of ASN adjacencies. While such
 an approach has reasonable computational cost, the two side
 adjacencies don't provide a way to automate anomaly detection without
 high adoption rate - an attacker can easily up a one-way adjacency.
 SO-BGP suggested sharing data about adjacencies using additional BGP
 messages, which is recursively complex thus significantly increasing
 adoption complexity. In addition, the general goal to verify all
 AS_PATHs was not achievable given the indirect adjacencies at
 internet exchange points.

 Instead of the general goal of checking AS_PATH correctness, this
 document focuses on solving real-world operational problems -
 automatic detection of malicious hijacks and route leaks. To achieve
 this goal a new AS_PATH verification procedure is defined which is
 able to automatically detect invalid (malformed) AS_PATHs in
 announcements that are received from customers and peers. This
 procedure uses a shared signed database of customer-to-provider
 relationships that is built using a new RPKI object - Autonomous
 System Provider Authorization (ASPA). This technique provides
 benefits for the participants even in a state of early adoption.

2. Anomaly Propagation

 Both route leaks and hijacks have similar effects on ISP operations -
 they redirect traffic, resulting in increased latency, packet loss,
 or possible MiTM attacks. But the level of risk depends
 significantly on the propagation of these BGP anomalies. For
 example, a hijack that is propagated only to customers may
 concentrate traffic in a particular ISP's customer cone; while if the
 anomaly is propagated through peers, upstreams, or reaches Tier-1
 networks, thus distributing globally, traffic may be redirected at
 the level of entire countries and/or global providers.

 The ability to constrain propagation of BGP anomalies to upstreams
 and peers, without requiring support from the source of the anomaly
 (which is critical if source has malicious intent), should
 significantly improve the security of inter-domain routing and solve
 the majority of problems.

3. Autonomous System Provider Authorization

 As described in [RFC6480], the RPKI is based on a hierarchy of
 resource certificates that are aligned to the Internet Number
 Resource allocation structure. Resource certificates are X.509
 certificates that conform to the PKIX profile [RFC5280], and to the
 extensions for IP addresses and AS identifiers [RFC3779]. A resource
 certificate is a binding by an issuer of IP address blocks and
 Autonomous System (AS) numbers to the subject of a certificate,
 identified by the unique association of the subject's private key
 with the public key contained in the resource certificate. The RPKI
 is structured so that each current resource certificate matches a
 current resource allocation or assignment.

 ASPAs are digitally signed objects that bind a selected AFI Provider
 AS number to a Customer AS number (in terms of BGP announcements not
 business), and are signed by the holder of the Customer AS. An ASPA
 attests that a Customer AS holder (CAS) has authorized a particular
 Provider AS (PAS) to propagate the Customer's IPv4/IPv6 announcements
 onward, e.g. to the Provider's upstream providers or peers. The ASPA
 record profile is described in [I-D.azimov-sidrops-aspa-profile].

4. Customer-Provider Verification Procedure

 This section describes an abstract procedure that checks that pair of
 ASNs (AS1, AS2) is included in the set of signed ASPAs. The
 semantics of its usa are defined in next section. The procedure
 takes (AS1, AS2, ROUTE_AFI) as input parameters and returns three
 types of results: "valid", "invalid" and "unknown".

 A relying party (RP) must have access to a local cache of the
 complete set of cryptographically valid ASPAs when performing
 customer-provider verification procedure.

 1. Retrieve all cryptographically valid ASPAs in a selected AFI with
 a customer value of AS1. This selection forms the set of
 "candidate ASPAs."

 2. If the set of candidate ASPAs is empty, then the procedure exits
 with an outcome of "unknown."

 3. If there is at least one candidate ASPA where the provider field
 is AS2, then the procedure exits with an outcome of "valid."

 4. Otherwise, the procedure exits with an outcome of "invalid."

 Since an AS1 may have different set providers in different AFI, it
 should also have different set of corresponding ASPAs. In this case,
 the output of this procedure with input (AS1, AS2, ROUTE_AFI) may
 have different output for different ROUTE_AFI values.

5. AS_PATH Verification

 The AS_PATH attribute identifies the autonomous systems through which
 an UPDATE message has passed. AS_PATH may contain two types of
 components: ordered AS_SEQes and unordered AS_SETs, as defined in
 [RFC4271].

 The value of each AS_SEQ component can be described as set of pairs
 {(AS(I), prepend(I)), (AS(I-1), prepend(I-1))...}. In this case, the
 sequence {AS(I), AS(I-1),...} represents different ASNs, that packet
 should pass towards the destination. When a route is received from a
 customer or a literal peer, each pair (AS(I-1), AS(I)) MUST belong to
 customer-provider or sibling relationship. If there are other types
 of relationships, it means that the route was leaked or the AS_PATH
 attribute was malformed. The goal of the above procedure is to check
 the correctness of this statement.

 For 32-bit AS number compatible BGP speakers, if a route from
 ROUTE_AFI address family is received from a customer or peer, its
 AS_PATH MUST be verified as follows:

 1. If the closest AS in the AS_PATH is not the receiver's neighbor
 ASN then procedure halts with the outcome "invalid";

 2. If in one of AS_SEQ segments there is a pair (AS(I-1), AS(I)),
 and customer-provider verification procedure (Section 4) with
 parameters (AS(I-1), AS(I), ROUTE_AFI) returns "invalid" then the
 procedure also halts with the outcome "invalid";

 3. If the AS_PATH has at least one AS_SET segment then procedure
 halts with the outcome "unverifiable";

 4. Otherwise, the procedure halts with an outcome of "valid".

 For BGP speakers that are not 32-bit AS compatible, the above
 procedure is slightly different. In point 2 if at least one AS(I-1),
 AS(I) is equal to AS_TRANS(23456), the corresponding pair must be
 passed without check using the customer-provider verification
 procedure.

 If the output of the AS_PATH verification procedure is "invalid" the
 LOCAL_PREF SHOULD be set to 0 or the route MAY be dropped. If an
 "invalid" route has no alternative route(s) and it is propagated to
 other ASes despite the above, it MUST be marked with the
 GRACEFUL_SHUTDOWN community to avoid possible stable oscillations,
 when an unchecked route received from a provider becomes preferred
 over an invalid route received from a customer. This also allows
 customers to detect malformed routes received from upstream
 providers.

 If the output of the AS_PATH verification procedure is 'unverifiable'
 it means that AS_PATH can't be fully verified. Such routes should be
 treated with caution and SHOULD be processed the same way as
 "invalid" routes. This policy goes with full correspondence to
 [I-D.kumari-deprecate-as-set-confed-set].

 The above AS_PATH verification procedure is able to check routes
 received from customers and peers. The ASPA mechanism combined with
 BGP Roles [I-D.ietf-idr-bgp-open-policy] and ROA-based Origin
 Validation [RFC6483] provide a fully automated solution to detect and
 filter hijacks and route leaks, including malicious ones.

6. Disavowal of Provider Authorizaion

 An ASPA is a positive attestation that an AS holder has authorized
 its provider to redistribute received routes to the provider's
 providers and peers. This does not preclude the provider AS from
 redistribution to its other customers. By creating an ASPA where the
 provider AS is 0, the customer indicates that no provider should
 further announce its routes. Specifically, AS 0 is reserved to
 identify provider-free networks, Internet exchange meshes, etc.

 An ASPA with a provider AS of 0 is a statement by the customer AS
 that the its routes should not be received by any relying party AS
 from any of its customers or peers.

 By convention, an ASPA with a provider AS of 0 should be the only
 ASPA issued by a given AS holder; although this is not a strict
 requirement. A provider 0 ASPA may coexist with ASPAs that have
 different provider AS values; though in such cases, the presence or
 absence of the provider AS 0 ASPA does not alter the AS_PATH
 verification procedure.

7. Siblings (Complex Relations)

 There are peering relationships which can not be described as
 strictly simple peer-peer or customer-provider; e.g. when both
 parties are intentionally sending prefixes received from each other
 to their peers and/or upstreams.

 In this case, two symmetric ASPAs records {(AS1, AS2), (AS2, AS1)}
 must be created by AS1 and AS2 respectively.

8. Security Considerations

 ASPA issuers should be aware of the verification implication in
 issuing an ASPA - an ASPA implicitly invalidates all routes passed to
 upstream providers other than the provider ASs listed in the
 collection of ASPAs. It is the Customer AS's duty to maintain a
 correct set of ASPAs.

 While the ASPA provides a check of an AS_PATH for routes received
 from customers and peers, it doesn't provide full support for routes
 that are received from upstream providers. So, this mechanism
 guarantees detection of both malicious and accidental route leaks and
 provides partial support for detection of malicious hijacks: upstream
 transit ISPs will still be able to send hijacked prefixes with
 malformed AS_PATHs to their customers.

9. Acknowledgments

 The authors wish to thank authors of [RFC6483] since its text was
 used as an example while writing this document.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [I-D.azimov-sidrops-aspa-profile]

 Azimov, A., Uskov, E., Bush, R., Patel, K., Snijders, J.,
 and R. Housley, "A Profile for Autonomous System Provider
 Authorization", draft-azimov-sidrops-aspa-profile-00 (work
 in progress), June 2018.

 [I-D.ietf-idr-bgp-open-policy]

 Azimov, A., Bogomazov, E., Bush, R., Patel, K., and K.
 Sriram, "Route Leak Prevention using Roles in Update and
 Open messages", draft-ietf-idr-bgp-open-policy-02 (work in
 progress), January 2018.

 [I-D.kumari-deprecate-as-set-confed-set]

 Kumari, W. and K. Sriram, "Deprecation of AS_SET and
 AS_CONFED_SET in BGP", draft-kumari-deprecate-as-set-
 confed-set-12 (work in progress), July 2018.

 [I-D.white-sobgp-architecture]

 White, R., "Architecture and Deployment Considerations for
 Secure Origin BGP (soBGP)", draft-white-sobgp-
 architecture-02 (work in progress), June 2006.

 [I-D.ymbk-idr-bgp-eotr-policy]

 Azimov, A., Bogomazov, E., Bush, R., and K. Patel, "Route
 Leak Detection and Filtering using Roles in Update and
 Open messages", draft-ymbk-idr-bgp-eotr-policy-02 (work in
 progress), March 2018.

 [RFC3779]
 Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779,
 DOI 10.17487/RFC3779, June 2004,
 <https://www.rfc-editor.org/info/rfc3779>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6480]
 Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

 [RFC6483]
 Huston, G. and G. Michaelson, "Validation of Route
 Origination Using the Resource Certificate Public Key
 Infrastructure (PKI) and Route Origin Authorizations
 (ROAs)", RFC 6483, DOI 10.17487/RFC6483, February 2012,
 <https://www.rfc-editor.org/info/rfc6483>.

 [RFC7908]
 Sriram, K., Montgomery, D., McPherson, D., Osterweil, E.,
 and B. Dickson, "Problem Definition and Classification of
 BGP Route Leaks", RFC 7908, DOI 10.17487/RFC7908, June
 2016, <https://www.rfc-editor.org/info/rfc7908>.

 [RFC8205]
 Lepinski, M., Ed. and K. Sriram, Ed., "BGPsec Protocol
 Specification", RFC 8205, DOI 10.17487/RFC8205, September
 2017, <https://www.rfc-editor.org/info/rfc8205>.

Authors' Addresses

Alexander Azimov
Qrator Labs

 Email: aa@qrator.net

Eugene Bogomazov
Qrator Labs

 Email: eb@qrator.net

Randy Bush
Internet Initiative Japan

 Email: randy@psg.com

Keyur Patel
Arrcus, Inc.

 Email: keyur@arrcus.com

Job Snijders
NTT Communications
Theodorus Majofskistraat 100
Amsterdam 1065 SZ
The Netherlands

 Email: job@ntt.net

draft-balarajah-bmwg-ngfw-performance-05 - Benchmarking Methodology for Network Security Device Performance

draft-balarajah-bmwg-ngfw-performance-05 - Benchmarking Methodology for Network

Index
Back 5
Prev
Next
Forward 5

Benchmarking Methodology Working Group

Internet-Draft

Intended status: Informational

Expires: April 17, 2019

B. Balarajah

C. Rossenhoevel

EANTC AG

October 14, 2018

Benchmarking Methodology for Network Security Device Performance

draft-balarajah-bmwg-ngfw-performance-05

Abstract

 This document provides benchmarking terminology and methodology for
 next-generation network security devices including next-generation
 firewalls (NGFW), intrusion detection and prevention solutions (IDS/
 IPS) and unified threat management (UTM) implementations. The
 document aims to strongly improve the applicability, reproducibility,
 and transparency of benchmarks and to align the test methodology with
 today's increasingly complex layer 7 application use cases. The main
 areas covered in this document are test terminology, traffic profiles
 and benchmarking methodology for NGFWs to start with.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements

	3. Scope

	4. Test Setup
	 4.1. Testbed Configuration

	 4.2. DUT/SUT Configuration

	 4.3. Test Equipment Configuration
	 4.3.1. Client Configuration

	 4.3.2. Backend Server Configuration

	 4.3.3. Traffic Flow Definition

	 4.3.4. Traffic Load Profile

	5. Test Bed Considerations

	6. Reporting
	 6.1. Key Performance Indicators

	7. Benchmarking Tests
	 7.1. Throughput Performance With NetSecOPEN Traffic Mix
	 7.1.1. Objective

	 7.1.2. Test Setup

	 7.1.3. Test Parameters

	 7.1.4. Test Procedures and expected Results

	 7.2. TCP/HTTP Connections Per Second
	 7.2.1. Objective

	 7.2.2. Test Setup

	 7.2.3. Test Parameters

	 7.2.4. Test Procedures and Expected Results

	 7.3. HTTP Transaction per Second
	 7.3.1. Objective

	 7.3.2. Test Setup

	 7.3.3. Test Parameters

	 7.3.4. Test Procedures and Expected Results

	 7.4. TCP/HTTP Transaction Latency
	 7.4.1. Objective

	 7.4.2. Test Setup

	 7.4.3. Test Parameters

	 7.4.4. Test Procedures and Expected Results

	 7.5. HTTP Throughput
	 7.5.1. Objective

	 7.5.2. Test Setup

	 7.5.3. Test Parameters

	 7.5.4. Test Procedures and Expected Results

	 7.6. Concurrent TCP/HTTP Connection Capacity
	 7.6.1. Objective

	 7.6.2. Test Setup

	 7.6.3. Test Parameters

	 7.6.4. Test Procedures and expected Results

	 7.7. TCP/HTTPS Connections per second
	 7.7.1. Objective

	 7.7.2. Test Setup

	 7.7.3. Test Parameters

	 7.7.4. Test Procedures and expected Results

	 7.8. HTTPS Transaction per Second
	 7.8.1. Objective

	 7.8.2. Test Setup

	 7.8.3. Test Parameters

	 7.8.4. Test Procedures and Expected Results

	 7.9. HTTPS Transaction Latency
	 7.9.1. Objective

	 7.9.2. Test Setup

	 7.9.3. Test Parameters

	 7.9.4. Test Procedures and Expected Results

	 7.10. HTTPS Throughput
	 7.10.1. Objective

	 7.10.2. Test Setup

	 7.10.3. Test Parameters

	 7.10.4. Test Procedures and Expected Results

	 7.11. Concurrent TCP/HTTPS Connection Capacity
	 7.11.1. Objective

	 7.11.2. Test Setup

	 7.11.3. Test Parameters

	 7.11.4. Test Procedures and expected Results

	8. Formal Syntax

	9. IANA Considerations

	10. Acknowledgements

	11. Contributors

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. NetSecOPEN Basic Traffic Mix

	Authors' Addresses

1. Introduction

 15 years have passed since IETF recommended test methodology and
 terminology for firewalls initially ([RFC2647], [RFC3511]). The
 requirements for network security element performance and
 effectiveness have increased tremendously since then. Security
 function implementations have evolved to more advanced areas and have
 diversified into intrusion detection and prevention, threat
 management, analysis of encrypted traffic, etc. In an industry of
 growing importance, well-defined and reproducible key performance
 indicators (KPIs) are increasingly needed: They enable fair and
 reasonable comparison of network security functions. All these
 reasons have led to the creation of a new next-generation firewall
 benchmarking document.

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Scope

 This document provides testing terminology and testing methodology
 for next-generation firewalls and related security functions. It
 covers two main areas: Performance benchmarks and security
 effectiveness testing. The document focuses on advanced, realistic,
 and reproducible testing methods. Additionally, it describes test
 bed environments, test tool requirements and test result formats.

4. Test Setup

 Test setup defined in this document is applicable to all benchmarking
 test scenarios described in Section 7.

4.1. Testbed Configuration

 Testbed configuration MUST ensure that any performance implications
 that are discovered during the benchmark testing aren't due to the
 inherent physical network limitations such as number of physical
 links and forwarding performance capabilities (throughput and
 latency) of the network devise in the testbed. For this reason, this
 document recommends avoiding external devices such as switch and
 router in the testbed as possible.

 However, in the typical deployment, the security devices (DUT/SUT)
 are connected to routers and switches which will reduce the number of
 entries in MAC or ARP tables of the DUT/SUT. If MAC or ARP tables
 have many entries, this may impact the actual DUT/SUT performance due
 to MAC and ARP/ND table lookup processes. Therefore, it is
 RECOMMENDED to connect Layer 3 device(s) between test equipment and
 DUT/SUT as shown in Figure 1.

 If the test equipment is capable to emulate layer 3 routing
 functionality and there is no need for test equipment ports
 aggregation, it is RECOMMENDED to configure the test setup as shown
 in Figure 2.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |Aggregation Switch/| | | | Aggregation Switch/|
 | Router +‑‑‑‑‑‑+ DUT/SUT +‑‑‑‑‑‑+ Router |
 | | | | | |
 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Emulated Router(s)				Emulated Router(s)	
	(Optional)				(Optional)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Clients				Servers	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
Test Equipment		Test Equipment				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Testbed Setup - Option 1

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
	Emulated Router(s)						Emulated Router(s)	
	(Optional)	+‑‑‑‑‑ DUT/SUT +‑‑‑‑‑+ (Optional)						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
	Clients				Servers			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
Test Equipment		Test Equipment						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: Testbed Setup - Option 2

4.2. DUT/SUT Configuration

 A unique DUT/SUT configuration MUST be used for all benchmarking
 tests described in Section 7. Since each DUT/SUT will have their own
 unique configuration, testers SHOULD configure their device with the
 same parameters that would be used in the actual deployment of the
 device or a typical deployment. Users MUST enable security features
 on the DUT/SUT to achieve maximum security coverage for a specific
 deployment scenario.

 This document attempts to define the recommended security features
 which SHOULD be consistently enabled for all the benchmarking tests
 described in Section 7. The table 1 below describes the RECOMMENDED
 sets of feature list which SHOULD be configured on the DUT/SUT.

 Based on customer use case, user can take a decision to enable or
 disable SSL inspection feature for "Throughput Performance with
 NetSecOPEN Traffic Mix" test scenario described in Section 7.1

 To improve repeatability, a summary of the DUT configuration
 including description of all enabled DUT/SUT features MUST be
 published with the benchmarking results.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | NGFW |
+‑‑+
		Included	Added to
DUT Features	Feature	in initial	future
		Scope	Scope
+‑‑+			
SSL Inspection	x	x	
+‑‑+			
IDS/IPS	x	x	
+‑‑+			
Web Filtering	x		x
+‑‑+			
Antivirus	x	x	
+‑‑+			
Anti Spyware	x	x	
+‑‑+			
Anti Botnet	x	x	
+‑‑+			
DLP	x		x
+‑‑+			
DDoS	x		x
+‑‑+			
Certificate	x		x
Validation			
+‑‑+			
Logging and	x	x	
Reporting			
+‑‑+			
Application	x	x	
Identification			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+

 Table 1: DUT/SUT Feature List

 In summary, DUT/SUT SHOULD be configured as follows:

 o All security inspection enabled

 o Disposition of all traffic is logged - Logging to an external
 device is permissible

 o CVEs matching the following characteristics when serving the NVD

 * CVSS Version: 2

 * CVSS V2 Metrics: AV:N/Au:N/I:C/A:C

 * AV=Attack Vector, Au=Authentication, I=Integrity and
 A=Availability

 * CVSS V2 Severity: High (7-10)

 * If doing a group test the published start date and published
 end date should be the same

 o Geographical location filtering and Application Identification and
 Control configured to be triggered based on a site or application
 from the defined traffic mix

 In addition, it is also RECOMMENDED to configure a realistic number
 of access policy rules on the DUT/SUT. This document determines the
 number of access policy rules for three different class of DUT/SUT.
 The classification of the DUT/SUT MAY be based on its maximum
 supported firewall throughput performance number defined in the
 vendor data sheet. This document classifies the DUT/SUT in three
 different categories; namely small, medium, and maximum.

 The RECOMMENDED throughput values for the following classes are:

 Extra Small (XS) - supported throughput less than 1Gbit/s

 Small (S) - supported throughput less than 5Gbit/s

 Medium (M) - supported throughput greater than 5Gbit/s and less than
 10Gbit/s

 Large (L) - supported throughput greater than 10Gbit/s

 The access rule defined in the table 2 MUST be configured from top to
 bottom in correct order shown in the table. The configured access
 policy rule MUST NOT block the test traffic used for the benchmarking
 test scenarios.

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	UD/SUT
	lCssification
	#ules
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+	
	Match
Rules Type	Criteria
+‑‑‑+	
Application	Application
layer	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ ‑‑+	
Transport	Src IP and
layer	TCP/UDP
	Dst ports
+‑‑‑+	
IP layer	Src/Dst IP
+‑‑‑+	
Application	Application
layer	
+‑‑‑+	
Transport	Src IP and
layer	TCP/UDP
	Dst ports
+‑‑‑+	
IP layer	Src IP
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

 Table 2: DUT/SUT Access List

4.3. Test Equipment Configuration

 In general, test equipment allows configuring parameters in different
 protocol level. These parameters thereby influencing the traffic
 flows which will be offered and impacting performance measurements.
 This document specifies common test equipment configuration
 parameters applicable for all test scenarios defined in Section 7.
 Any test scenario specific parameters are described under test setup
 section of each test scenario individually.

4.3.1. Client Configuration

 This section specifies which parameters SHOULD be considered while
 configuring clients using test equipment. Also, this section
 specifies the recommended values for certain parameters.

4.3.1.1. TCP Stack Attributes

 The TCP stack SHOULD use a TCP Reno variant, which include congestion
 avoidance, back off and windowing, retransmission, and recovery on
 every TCP connection between client and server endpoints. The
 default IPv4 and IPv6 MSS segments size MUST be set to 1460 bytes and
 1440 bytes respectively and a TX and RX receive windows of 32768
 bytes. Client initial congestion window MUST NOT exceed 10 times the
 MSS. Delayed ACKs are permitted and the maximum client delayed Ack
 MUST NOT exceed 10 times the MSS before a forced ACK. Up to 3
 retries SHOULD be allowed before a timeout event is declared. All
 traffic MUST set the TCP PSH flag to high. The source port range
 SHOULD be in the range of 1024 - 65535. Internal timeout SHOULD be
 dynamically scalable per RFC 793. Client SHOULD initiate and close
 TCP connections. TCP connections MUST be closed via FIN.

4.3.1.2. Client IP Address Space

 The sum of the client IP space SHOULD contain the following
 attributes. The traffic blocks SHOULD consist of multiple unique,
 discontinuous static address blocks. A default gateway is permitted.
 The IPv4 ToS byte or IPv6 traffic class should be set to '00' or
 '000000' respectively.

 The following equation can be used to determine the required total
 number of client IP address.

 Desired total number of client IP = Target throughput [Mbit/s] /
 Throughput per IP address [Mbit/s]

 (Idea 1) 6-7 Mbps per IP (e.g. 1,400-1,700 IPs per 10Gbit/s

 throughput)

 (Idea 2) 0.1-0.2 Mbps per IP (e.g. 50,000-100,000 IPs per 10Gbit/s

 throughput)

 Based on deployment and use case scenario, client IP addresses SHOULD
 be distributed between IPv4 and IPv6 type. This document recommends
 using the following ratio(s) between IPv4 and IPv6:

 (Idea 1) 100 % IPv4, no IPv6

 (Idea 2) 80 % IPv4, 20 % IPv6

 (Idea 3) 50 % IPv4, 50 % IPv6

 (Idea 4) 0 % IPv4, 100 % IPv6

4.3.1.3. Emulated Web Browser Attributes

 The emulated web browser contains attributes that will materially
 affect how traffic is loaded. The objective is to emulate a modern,
 typical browser attributes to improve realism of the result set.

 For HTTP traffic emulation, the emulated browser MUST negotiate HTTP
 1.1. HTTP persistency MAY be enabled depending on test scenario.
 The browser MAY open multiple TCP connections per Server endpoint IP
 at any time depending on how many sequential transactions are needed
 to be processed. Within the TCP connection multiple transactions MAY
 be processed if the emulated browser has available connections. The
 browser SHOULD advertise a User-Agent header. Headers MUST be sent
 uncompressed. The browser SHOULD enforce content length validation.

 For encrypted traffic, the following attributes shall define the
 negotiated encryption parameters. The tests MUST use TLSv1.2 or
 higher with a record size of 16383, commonly used cipher suite and
 key strength. Depending on test scenario, Session reuse or ticket
 resumption MAY be used for subsequent connections to the same Server
 endpoint IP. The client endpoint MUST send TLS Extension Server Name
 Indication (SNI) information when opening a security tunnel. Cipher
 suite and certificate size should be defined in the parameter session
 of each test scenario.

4.3.2. Backend Server Configuration

 This document specifies which parameters should be considerable while
 configuring emulated backend servers using test equipment.

4.3.2.1. TCP Stack Attributes

 The TCP stack SHOULD use a TCP Reno variant, which include congestion
 avoidance, back off and windowing, retransmission, and recovery on
 every TCP connection between client and server endpoints. The
 default IPv4 and IPv6 MSS segment size MUST be set to 1460 bytes and
 1440 bytes respectively and a TX and RX receive windows of at least
 32768 bytes. Server initial congestion window MUST NOT exceed 10
 times the MSS. Delayed ACKs are permitted and the maximum server
 delayed Ack MUST NOT exceed 10 times the MSS before a forced ACK. Up
 to 3 retries SHOULD be allowed before a timeout event is declared.
 All traffic MUST set the TCP PSH flag to high. The source port range
 SHOULD be in the range of 1024 - 65535. Internal timeout should be
 dynamically scalable per RFC 793.

4.3.2.2. Server Endpoint IP Addressing

 The server IP blocks SHOULD consist of unique, discontinuous static
 address blocks with one IP per Server Fully Qualified Domain Name
 (FQDN) endpoint per test port. The IPv4 ToS byte and IPv6 traffic
 class bytes should be set to '00' and '000000' respectively.

4.3.2.3. HTTP / HTTPS Server Pool Endpoint Attributes

 The server pool for HTTP SHOULD listen on TCP port 80 and emulate
 HTTP version 1.1 with persistence. The server MUST advertise a
 server type. For HTTPS server, TLS 1.2 or higher MUST be used with a
 record size of 16383 bytes and ticket resumption or Session ID reuse
 SHOULD be enabled based on test scenario. The server MUST listen on
 port TCP 443. The server shall serve a certificate to the client.
 It is REQUIRED that the HTTPS server also check Host SNI information
 with the FQDN. Cipher suite and certificate size should be defined
 in the parameter section of each test scenario.

4.3.3. Traffic Flow Definition

 The section describes the traffic pattern between the client and
 server endpoints. At the beginning of the test, the server endpoint
 initializes and will be in a ready to accept connection state
 including initialization of the TCP stack as well as bound HTTP and
 HTTPS servers. When a client endpoint is needed, it will initialize
 and be given attributes such as the MAC and IP address. The behavior
 of the client is to sweep though the given server IP space,
 sequentially generating a recognizable service by the DUT. Thus, a
 balanced, mesh between client endpoints and server endpoints will be
 generated in a client port server port combination. Each client
 endpoint performs the same actions as other endpoints, with the
 difference being the source IP of the client endpoint and the target
 server IP pool. The client shall use Fully Qualified Domain Names
 (FQDN) in Host Headers and for TLS Server Name Indication (SNI).

4.3.3.1. Description of Intra-Client Behavior

 Client endpoints are independent of other clients that are
 concurrently executing. When a client endpoint initiates traffic,
 this section describes how the client steps though different
 services. Once initialized, the client should randomly hold (perform
 no operation) for a few milliseconds to allow for better
 randomization of start of client traffic. The client will then
 either open a new TCP connection or connect to a TCP persistence
 stack still open to that specific server. At any point that the
 service profile may require encryption, a TLS encryption tunnel will
 form presenting the URL request to the server. The server will then
 perform an SNI name check with the proposed FQDN compared to the
 domain embedded in the certificate. Only when correct, will the
 server process the HTTPS response object. The initial response
 object to the server MUST NOT have a fixed size; its size is based on
 benchmarking tests described in Section 7. Multiple additional sub-
 URLs (response objects on the service page) MAY be requested
 simultaneously. This may or may not be to the same server IP as the
 initial URL. Each sub-object will also use a conical FQDN and URL
 path, as observed in the traffic mix used.

4.3.4. Traffic Load Profile

 The loading of traffic is described in this section. The loading of
 a traffic load profile has five distinct phases: Init, ramp up,
 sustain, ramp down, and collection.

 During the Init phase, test bed devices including the client and
 server endpoints should negotiate layer 2-3 connectivity such as MAC
 learning and ARP. Only after successful MAC learning or ARP/ND
 resolution shall the test iteration move to the next phase. No
 measurements are made in this phase. The minimum RECOMMEND time for
 Init phase is 5 seconds. During this phase, the emulated clients
 SHOULD NOT initiate any sessions with the DUT/SUT, in contrast, the
 emulated servers should be ready to accept requests from DUT/SUT or
 from emulated clients.

 In the ramp up phase, the test equipment SHOULD start to generate the
 test traffic. It SHOULD use a set approximate number of unique
 client IP addresses actively to generate traffic. The traffic should
 ramp from zero to desired target objective. The target objective
 will be defined for each benchmarking test. The duration for the
 ramp up phase MUST be configured long enough, so that the test
 equipment does not overwhelm DUT/SUT's supported performance metrics
 namely; connections per second, concurrent TCP connections, and
 application transactions per second. The RECOMMENDED time duration
 for the ramp up phase is 180-300 seconds. No measurements are made
 in this phase.

 In the sustain phase, the test equipment SHOULD continue generating
 traffic to constant target value for a constant number of active
 client IPs. The RECOMMENDED time duration for sustain phase is 600
 seconds. This is the phase where measurements occur.

 In the ramp down/close phase, no new connections are established, and
 no measurements are made. The time duration for ramp up and ramp
 down phase SHOULD be same. The RECOMMENDED duration of this phase is
 between 180 to 300 seconds.

 The last phase is administrative and will be when the tester merges
 and collates the report data.

5. Test Bed Considerations

 This section recommends steps to control the test environment and
 test equipment, specifically focusing on virtualized environments and
 virtualized test equipment.

 1. Ensure that any ancillary switching or routing functions between
 the system under test and the test equipment do not limit the
 performance of the traffic generator. This is specifically
 important for virtualized components (vSwitches, vRouters).

 2. Verify that the performance of the test equipment matches and
 reasonably exceeds the expected maximum performance of the system
 under test.

 3. Assert that the test bed characteristics are stable during the
 entire test session. Several factors might influence stability
 specifically for virtualized test beds, for example additional
 workloads in a virtualized system, load balancing and movement of
 virtual machines during the test, or simple issues such as
 additional heat created by high workloads leading to an emergency
 CPU performance reduction.

 Test bed reference pre-tests help to ensure that the desired traffic
 generator aspects such as maximum throughput and the network
 performance metrics such as maximum latency and maximum packet loss
 are met.

 Once the desired maximum performance goals for the system under test
 have been identified, a safety margin of 10% SHOULD be added for
 throughput and subtracted for maximum latency and maximum packet
 loss.

 Test bed preparation may be performed either by configuring the DUT
 in the most trivial setup (fast forwarding) or without presence of
 DUT.

6. Reporting

 This section describes how the final report should be formatted and
 presented. The final test report MAY have two major sections;
 Introduction and result sections. The following attributes SHOULD be
 present in the introduction section of the test report.

 1. The name of the NetSecOPEN traffic mix (see Appendix A) MUST be
 prominent.

 2. The time and date of the execution of the test MUST be prominent.

 3. Summary of testbed software and Hardware details

 A. DUT Hardware/Virtual Configuration

 + This section SHOULD clearly identify the make and model of
 the DUT

 + The port interfaces, including speed and link information
 MUST be documented.

 + If the DUT is a virtual VNF, interface acceleration such
 as DPDK and SR-IOV MUST be documented as well as cores
 used, RAM used, and the pinning / resource sharing
 configuration. The Hypervisor and version MUST be
 documented.

 + Any additional hardware relevant to the DUT such as
 controllers MUST be documented

 B. DUT Software

 + The operating system name MUST be documented

 + The version MUST be documented

 + The specific configuration MUST be documented

 C. DUT Enabled Features

 + Specific features, such as logging, NGFW, DPI MUST be
 documented

 + Attributes of those featured MUST be documented

 + Any additional relevant information about features MUST be
 documented

 D. Test equipment hardware and software

 + Test equipment vendor name

 + Hardware details including model number, interface type

 + Test equipment firmware and test application software
 version

 4. Results Summary / Executive Summary

 1. Results should resemble a pyramid in how it is reported, with
 the introduction section documenting the summary of results
 in a prominent, easy to read block.

 2. In the result section of the test report, the following
 attributes should be present for each test scenario.

 a. KPIs MUST be documented separately for each test
 scenario. The format of the KPI metrics should be
 presented as described in Section 6.1.

 b. The next level of details SHOULD be graphs showing each
 of these metrics over the duration (sustain phase) of the
 test. This allows the user to see the measured
 performance stability changes over time.

6.1. Key Performance Indicators

 This section lists KPIs for overall benchmarking tests scenarios.
 All KPIs MUST be measured during the of sustain phase of the traffic
 load profile described in Section 4.3.4. All KPIs MUST be measured
 from the result output of test equipment.

o Concurrent TCP Connections
 This key performance indicator measures the average concurrent
 open TCP connections in the sustaining period.

o TCP Connections Per Second
 This key performance indicator measures the average established
 TCP connections per second in the sustaining period. For "TCP/
 HTTP(S) Connection Per Second" benchmarking test scenario, the KPI

 is measured average established and terminated TCP connections per
 second simultaneously.

o Application Transactions Per Second
 This key performance indicator measures the average successfully
 completed application transactions per second in the sustaining
 period.

o TLS Handshake Rate
 This key performance indicator measures the average TLS 1.2 or
 higher session formation rate within the sustaining period.

o Throughput
 This key performance indicator measures the average Layer 2
 throughput within the sustaining period as well as average packets
 per seconds within the same period. The value of throughput
 SHOULD be presented in Gbit/s rounded to two places of precision
 with a more specific kbps in parenthesis. Optionally, goodput MAY
 also be logged as an average goodput rate measured over the same
 period. Goodput result SHALL also be presented in the same format
 as throughput.

o URL Response time / Time to Last Byte (TTLB)
 This key performance indicator measures the minimum, average and
 maximum per URL response time in the sustaining period. The
 latency is measured at Client and in this case would be the time
 duration between sending a GET request from Client and the
 receival of the complete response from the server.

o Application Transaction Latency
 This key performance indicator measures the minimum, average and
 maximum the amount of time to receive all objects from the server.
 The value of application transaction latency SHOULD be presented
 in millisecond rounded to zero decimal.

o Time to First Byte (TTFB)
 This key performance indicator will measure minimum, average and
 maximum the time to first byte. TTFB is the elapsed time between
 sending the SYN packet from the client and receiving the first
 byte of application date from the DUT/SUT. TTFB SHOULD be
 expressed in millisecond.

7. Benchmarking Tests

7.1. Throughput Performance With NetSecOPEN Traffic Mix

7.1.1. Objective

 Using NetSecOPEN traffic mix, determine the maximum sustainable
 throughput performance supported by the DUT/SUT. (see Appendix A for
 details about traffic mix)

7.1.2. Test Setup

 Test bed setup MUST be configured as defined in Section 4. Any test
 scenario specific test bed configuration changes MUST be documented.

7.1.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.1.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

 This test scenario is RECOMMENDED to perform twice; one with SSL
 inspection feature enabled and the second scenario with SSL
 inspection feature disabled on the DUT/SUT.

7.1.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 noted for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Traffic load objective or specification type (e.g. Throughput,
 SimUsers and etc.)

 Target throughput: It can be defined based on requirements.
 Otherwise it represents aggregated line rate of interface(s) used
 in the DUT/SUT

 Initial throughput: 10% of the "Target throughput"

7.1.3.3. Traffic Profile

 Traffic profile: Test scenario MUST be run with a single application
 traffic mix profile (see Appendix A for details about traffic mix).
 The name of the NetSecOPEN traffic mix MUST be documented.

7.1.3.4. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transaction MUST be less than 0.01%
 of total attempt transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated TCP
 connections

c. Maximum deviation (max. dev) of application transaction time or
 TTLB (Time To Last Byte) MUST be less than X (The value for "X"
 will be finalized and updated after completion of PoC test)
 The following equation MUST be used to calculate the deviation of
 application transaction latency or TTLB
 max. dev = max((avg_latency ‑ min_latency),(max_latency ‑
 avg_latency)) / (Initial latency)
 Where, the initial latency is calculated using the following
 equation. For this calculation, the latency values (min', avg'
 and max') MUST be measured during test procedure step 1 as
 defined in Section 7.1.4.1.
 The variable latency represents application transaction latency
 or TTLB.
 Initial latency:= min((avg' latency ‑ min' latency) | (max'
 latency ‑ avg' latency))

 d. Maximum value of Time to First Byte MUST be less than X

7.1.3.5. Measurement

 Following KPI metrics MUST be reported for this test scenario.

 Mandatory KPIs: average Throughput, average Concurrent TCP
 connections, TTLB/application transaction latency (minimum, average
 and maximum) and average application transactions per second

 Optional KPIs: average TCP connections per second, average TLS
 handshake rate and TTFB

7.1.4. Test Procedures and expected Results

 The test procedures are designed to measure the throughput
 performance of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps.

7.1.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to generate test
 traffic at "initial throughput" rate as described in the parameters
 section. The test equipment SHOULD follow the traffic load profile
 definition as described in Section 4.3.4. The DUT/SUT SHOULD reach
 the "initial throughput" during the sustain phase. Measure all KPI
 as defined in Section 7.1.3.5. The measured KPIs during the sustain
 phase MUST meet acceptance criteria "a" and "b" defined in
 Section 7.1.3.4.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to step 2.

7.1.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to generate traffic at "Target throughput"
 rate defined in the parameter table. The test equipment SHOULD
 follow the traffic load profile definition as described in
 Section 4.3.4. The test equipment SHOULD start to measure and record
 all specified KPIs. The frequency of KPI metric measurements MUST be
 less than 5 seconds. Continue the test until all traffic profile
 phases are completed.

 The DUT/SUT is expected to reach the desired target throughput during
 the sustain phase. In addition, the measured KPIs MUST meet all
 acceptance criteria. Follow the step 3, if the KPI metrics do not
 meet the acceptance criteria.

7.1.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.2. TCP/HTTP Connections Per Second

7.2.1. Objective

 Using HTTP traffic, determine the maximum sustainable TCP connection
 establishment rate supported by the DUT/SUT under different
 throughput load conditions.

 To measure connections per second, test iterations MUST use different
 fixed HTTP response object sizes defined in the test equipment
 configuration parameters section 7.2.3.2.

7.2.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.2.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.2.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.2.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target connections per second: Initial value from product data sheet
 (if known)

 Initial connections per second: 10% of "Target connections per
 second"

 The client SHOULD negotiate HTTP 1.1 and close the connection with
 FIN immediately after completion of one transaction. In each test
 iteration, client MUST send GET command requesting a fixed HTTP
 response object size.

 The RECOMMENDED response object sizes are 1, 2, 4, 16, 64 KByte

7.2.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transaction MUST be less than 0.01%
 of total attempt transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated TCP
 connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate

 d. Concurrent TCP connections SHOULD be constant during steady
 state. The deviation of concurrent TCP connections MUST be less
 than 10%. This confirms that DUT open and close the TCP
 connections almost at the same rate

7.2.3.4. Measurement

 Following KPI metrics MUST be reported for each test iteration.

 Mandatory KPIs: average TCP connections per second, average
 Throughput and Average Time to First Byte (TTFB).

7.2.4. Test Procedures and Expected Results

 The test procedure is designed to measure the TCP connections per
 second rate of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps. This
 test procedure MAY be repeated multiple times with different IP
 types; IPv4 only, IPv6 only and IPv4 and IPv6 mixed traffic
 distribution.

7.2.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial connections per second" as defined in the parameters
 section. The traffic load profile SHOULD be defined as described in
 the section 4.3.4.

 The DUT/SUT SHOULD reach the "initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet the acceptance criteria a, b, c, and d defined in section
 7.3.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.2.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in the section
 4.3.4.

 During the ramp up and sustain phase of each test iteration, other
 KPIs such as throughput, concurrent TCP connections and application
 transactions per second MUST NOT reach to the maximum value the DUT/
 SUT can support. The test results for specific test iterations
 SHOULD NOT be reported, if the above mentioned KPI (especially
 throughput) reaches to the maximum value. (Example: If the test
 iteration with 64Kbyte of HTTP response object size reached the
 maximum throughput limitation of the DUT, the test iteration MAY be
 interrupted and the result for 64kbyte SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 MUST meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.2.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable connections per second
 within the acceptance criteria.

7.3. HTTP Transaction per Second

7.3.1. Objective

 Using HTTP 1.1 traffic, determine the maximum sustainable HTTP
 transactions per second supported by the DUT/SUT under different
 throughput load conditions.

 To measure transactions per second performance under a variety of DUT
 Security inspection load conditions, each test iteration MUST use
 different fixed HTTP response object sizes defined in the test
 equipment configuration parameters section 7.3.3.2.

7.3.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.3.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.3.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.3.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Transactions per second: Initial value from product data sheet
 (if known)

 Initial Transactions per second: 10% of "Target Transactions per
 second"

 Test scenario SHOULD be run with a single traffic profile with
 following attributes:

 The client MUST negotiate HTTP 1.1 and close the connections with FIN
 immediately after completion of 10 transactions. In each test
 iteration, client MUST send GET command requesting a fixed HTTP
 response object size. The RECOMMENDED object sizes are 1, 16 and 64
 KByte

7.3.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be zero

 b. Number of Terminated HTTP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated HTTP
 sessions

 c. Traffic should be forwarded at a constant rate

 d. Average Time to TCP First Byte MUST be constant and not increase
 more than 10%

 e. The deviation of concurrent TCP connection Must be less than 10%

7.3.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario.

 average TCP Connections per second, average Throughput, Average Time
 to TCP First Byte and average application transaction latency.

7.3.4. Test Procedures and Expected Results

 The test procedure is designed to measure the HTTP transactions per
 second of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps. This
 test procedure MAY be repeated multiple times with different IP
 types; IPv4 only, IPv6 only and IPv4 and IPv6 mixed traffic
 distribution.

7.3.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial HTTP transactions per second" as defined in the parameters
 section. The traffic load profile CAN be defined as described in the
 section 4.3.4.

 The DUT/SUT SHOULD reach the "initial HTTP transactions per second"
 before the sustain phase. The measured KPIs during the sustain phase
 MUST meet the acceptance criteria a, b, c, and d defined in section
 7.3.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.3.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target HTTP transactions per
 second" defined in the parameters table. The test equipment SHOULD
 follow the traffic load profile definition as described in the
 section 4.3.4.

 During the ramp up and sustain phase of each test iteration, other
 KPIs such as throughput, concurrent TCP connections and connection
 per second MUST NOT reach to the maximum value the DUT/SUT can
 support. The test results for specific test iterations SHOULD NOT be
 reported, if the above mentioned KPI (especially throughput) reaches
 to the maximum value. (Example: If the test iteration with 64Kbyte
 of HTTP response object size reached the maximum throughput
 limitation of the DUT, the test iteration MAY be interrupted and the
 result for 64kbyte SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target HTTP transactions
 per second at the sustain phase. In addition, the measured KPIs MUST
 meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.3.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable HTTP transactions per
 second within the acceptance criteria. Final test iteration MUST be
 performed for the test duration defined in Section 4.3.4.

7.4. TCP/HTTP Transaction Latency

7.4.1. Objective

 Using HTTP traffic, determine the average HTTP transaction latency
 when DUT is running with sustainable HTTP transactions per second
 supported by the DUT/SUT under different HTTP response object sizes.

 Test iterations MUST be performed with different HTTP response object
 sizes twice, one with a single transaction and the other with
 multiple transactions within a single TCP connection. For
 consistency both single and multiple transaction test needs to be
 configured with HTTP 1.1.

7.4.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.4.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.4.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.4.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target connections per second:50% of the value measured in test
 scenario TCP/HTTP Connections Per Second (Section 7.2)

 Initial connections per second: 10% of "Target connections per
 second"

 HTTP transaction per TCP connection: one test scenario with single
 transaction and another scenario with 10 transactions

 Test scenario SHOULD be run with a single traffic profile with
 following attributes:

 To measure application transaction latency with a single connection
 per transaction and a single connection with multiple transactions
 the tests should run twice:

 1st test run: The client MUST negotiate HTTP 1.1 and close the
 connection with FIN immediately after completion of the transaction.

 2nd test run: The client MUST negotiate HTTP 1.1 and close the
 connection after 10 transactions (GET and RESPONSE) within a single
 TCP connection.

 HTTP 1.1 with GET command requesting a single 1, 16 or 64 Kbyte
 objects. For each test iteration, client MUST request a single HTTP
 response object size.

7.4.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile. Ramp up and
 ramp down phase SHOULD NOT be considered.

 Generica criteria:

 a. Number of failed Application transaction MUST be zero.

 b. Number of Terminated TCP connection due to unexpected TCP RST
 sent by DUT/SUT MUST be zero.

 c. During the sustain phase, traffic should be forwarded at a
 constant rate.

 d. During the sustain phase, Average connect time and average
 transaction time MUST be constant and latency deviation SHOULD
 not increase more than 10%.

 e. Concurrent TCP connections should be constant during steady
 state. This confirms the DUT opens and closes TCP connections at
 the same rate.

 f. After ramp up the DUT MUST achieve the target connections per
 second objective defined in the parameter section 7.4.3.2 and it
 remains in that state for the entire test duration (sustain
 phase).

7.4.3.4. Measurement

 Following KPI metrics MUST be reported for each test scenario and
 HTTP response object sizes separately:

 average TCP connections per second and average application
 transaction latency needs to be recorded.

 All KPI's are measured once the target connections per second
 achieves the steady state.

7.4.4. Test Procedures and Expected Results

 The test procedure is designed to measure the average application
 transaction latencies or TTLB when the DUT is operating close to 50%
 of its maximum achievable connections per second. , This test
 procedure CAN be repeated multiple times with different IP types
 (IPv4 only, IPv6 only and IPv4 and IPv6 mixed traffic distribution),
 HTTP response object sizes and single and multiple transactions per
 connection scenarios.

7.4.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial connections per second" as defined in the parameters
 section. The traffic load profile CAN be defined as described in the
 section 4.3.4.

 The DUT/SUT SHOULD reach the "initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet the acceptance criteria a, b, c, d ,e and f defined in section
 7.4.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.4.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in the section
 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach to the maximum value that DUT/SUT can support. The
 test results for specific test iterations SHOULD NOT be reported, if
 the above mentioned KPI (especially throughput) reaches to the
 maximum value. (Example: If the test iteration with 64Kbyte of HTTP
 response object size reached the maximum throughput limitation of the
 DUT, the test iteration MAY be interrupted and the result for 64kbyte
 SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.4.4.3. Step 3: Test Iteration

 Determine the maximum achievable connections per second within the
 acceptance criteria and measure the latency values.

7.5. HTTP Throughput

7.5.1. Objective

 Determine the throughput for HTTP transactions varying the HTTP
 response object size.

7.5.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.5.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.5.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.5.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Throughput: Initial value from product data sheet (if known)

 Number of HTTP response object requests (transactions) per
 connection: 10

 HTTP response object size: 16KB, 64KB, 256KB and mixed objects
 defined in the table

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Object size (KByte) | Number of requests/ |
| | Weight |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0.2 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 6 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 8 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 9 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 10 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 25 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 26 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 35 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 59 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 347 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 3: Mixed Objects

7.5.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile

 a. Number of failed Application transaction MUST be less than 0.01%
 of attempt transaction.

 b. Traffic should be forwarded constantly.

 c. The deviation of concurrent TCP connection Must be less than 10%

 d. The deviation of average HTTP transaction latency MUST be less
 than 10%

7.5.3.4. Measurement

 The KPI metrics MUST be reported for this test scenario:

 Average Throughput, concurrent connections, and average TCP
 connections per second.

7.5.4. Test Procedures and Expected Results

 The test procedure is designed to measure HTTP throughput of the DUT/
 SUT. The test procedure consists of three major steps. This test
 procedure MAY be repeated multiple times with different IPv4 and IPv6
 traffic distribution and HTTP response object sizes.

7.5.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial throughput" as defined in the parameters section.

 The traffic load profile SHOULD be defined as described in
 Section 4.3.4. The DUT/SUT SHOULD reach the "initial throughput"
 during the sustain phase. Measure all KPI as defined in
 Section 7.5.3.4.

 The measured KPIs during the sustain phase MUST meet the acceptance
 criteria "a" defined in Section 7.5.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.5.4.2. Step 2: Test Run with Target Objective

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target throughput at the
 sustain phase. In addition, the measured KPIs must meet all
 acceptance criteria.

 Perform the test separately for each HTTP response object size (16k,
 64k, 256k and mixed HTTP response objects).

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.5.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.6. Concurrent TCP/HTTP Connection Capacity

7.6.1. Objective

 Determine the maximum number of concurrent TCP connections that DUT/
 SUT sustains when using HTTP traffic.

7.6.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.6.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.6.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.6.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 noted for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target concurrent connection: Initial value from product data
 sheet (if known)

 Initial concurrent connection: 10% of "Target concurrent
 connection"

 The client must negotiate HTTP 1.1 with persistence and each client
 MAY open multiple concurrent TCP connections per server endpoint IP.

 Each client sends 10 GET commands requesting 1Kbyte HTTP response
 object in the same TCP connection (10 transactions/TCP connection)
 and the delay (think time) between the transaction MUST be X seconds.
 The value for think time (X) MUST be defined to achieve 15% of
 maximum throughput measured in test scenario 7.5.

 The established connections SHOULD remain open until the ramp down
 phase of the test. During the ramp down phase, all connections
 should be successfully closed with FIN.

7.6.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transaction MUST be zero

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated TCP
 connections

 c. During the sustain phase, traffic should be forwarded constantly
 at the rate defined in the parameter section 7.6.3.2

 d. During the sustain phase, the maximum deviation (max. dev) of
 application transaction latency or TTLB (Time To Last Byte) MUST
 be less than 10%

7.6.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 average Throughput, max. Min. Avg. Concurrent TCP connections, TTLB/
 application transaction latency (minimum, average and maximum) and
 average application transactions per second.

7.6.4. Test Procedures and expected Results

 The test procedure is designed to measure the concurrent TCP
 connection capacity of the DUT/SUT at the sustaining period of
 traffic load profile. The test procedure consists of three major
 steps. This test procedure MAY be repeated multiple times with
 different IPv4 and IPv6 traffic distribution.

7.6.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure test equipment to generate background traffic ad defined in
 section 7.6.3.2. Measure throughput, concurrent TCP connections, and
 TCP connections per second.

 While generating the background traffic, configure another traffic
 profile on the test equipment to establish "initial concurrent TCP
 connections" defined in the section 7.6.3.2. The traffic load
 profile CAN be defined as described in the section Error: Reference
 source not found.

 During the sustain phase, the DUT/SUT SHOULD reach the "initial
 concurrent TCP connections" plus concurrent TCP connections measured
 in background traffic. The measured KPIs during the sustain phase
 MUST meet the acceptance criteria "a" and "b" defined in the section
 Error: Reference source not found

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.6.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target concurrent TCP
 connections" defined in the parameters table. The test equipment
 SHOULD follow the traffic load profile definition as described in
 Section 4.3.4.

 Configure test equipment to establish "Target concurrent TCP
 connections" minus concurrent TCP connections measured in background
 traffic. The test equipment SHOULD follow the traffic load profile
 definition as described in the section Error: Reference source not
 found.

 During the ramp up and sustain phase, the other KPIs such as
 throughput, TCP connections per second and application transactions
 per second MUST NOT reach to the maximum value that the DUT/SUT can
 support.

 The test equipment SHOULD start to measure and record KPIs defined in
 section 7.6.3.4. The frequency of measurement MUST be less than 5
 seconds. Continue the test until all traffic profile phases are
 completed.

 The DUT/SUT is expected to reach the desired target concurrent
 connection at the sustain phase. In addition, the measured KPIs must
 meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.6.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable concurrent TCP
 connections capacity within the acceptance criteria.

7.7. TCP/HTTPS Connections per second

7.7.1. Objective

 Using HTTPS traffic, determine the maximum sustainable SSL/TLS
 session establishment rate supported by the DUT/SUT under different
 throughput load conditions.

 Test iterations MUST include common cipher suites and key strengths
 as well as forward looking stronger keys. Specific test iterations
 MUST include ciphers and keys defined in the parameter section
 7.7.3.2

 For each cipher suite and key strengths, test iterations MUST use a
 single HTTPS response object size defined in the test equipment
 configuration parameters section 7.7.3.2 to measure connections per
 second performance under a variety of DUT Security inspection load
 conditions.

7.7.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.7.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.7.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.7.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target connections per second: Initial value from product data sheet
 (if known)

 Initial connections per second: 10% of "Target connections per
 second"

 Ciphers and keys:

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha256 and Supported group:
 sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithmn: rsa_pkscs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha384 and Supported group:
 sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithmn: rsa_pkcs1_sha384 and Supported group: secp256)

 The client MUST negotiate HTTPS 1.1 and close the connection with FIN
 immediately after completion of one transaction. In each test
 iteration, client MUST send GET command requesting a fixed HTTPS
 response object size. The RECOMMENDED object sizes are 1, 2, 4, 16,
 64 Kbyte.

 Each client connection MUST perform a full handshake with server
 certificate (no Certificate on client side) and MUST NOT use session
 reuse or resumption. TLS record size MAY be optimized for the HTTPS
 response object size up to a record size of 16K.

7.7.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria:

 a. Number of failed Application transaction MUST be less than 0.01%
 of attempt transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated TCP
 connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate

 d. Concurrent TCP connections SHOULD be constant during steady
 state. This confirms that DUT open and close the TCP connections
 at the same rate

7.7.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 Mandatory KPIs: average TCP connections per second, average
 Throughput and Average Time to TCP First Byte.

7.7.4. Test Procedures and expected Results

 The test procedure is designed to measure the TCP connections per
 second rate of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps. This
 test procedure MAY be repeated multiple times with different IPv4 and
 IPv6 traffic distribution.

7.7.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial connections per second" as defined in the parameters
 section. The traffic load profile CAN be defined as described in the
 section 4.3.4.

 The DUT/SUT SHOULD reach the "initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet the acceptance criteria a, b, c, and d defined in section
 7.7.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.7.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in the section
 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach to the maximum value the DUT/SUT can support. The
 test results for specific test iteration SHOULD NOT be reported, if
 the above mentioned KPI (especially throughput) reaches to the
 maximum value. (Example: If the test iteration with 64Kbyte of HTTPS
 response object size reached the maximum throughput limitation of the
 DUT, the test iteration can be interrupted and the result for 64kbyte
 SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.7.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable connections per second
 within the acceptance criteria.

7.8. HTTPS Transaction per Second

7.8.1. Objective

 Using HTTPS traffic, determine the maximum sustainable HTTPS
 transactions per second supported by the DUT/SUT under different
 throughput load conditions.

 To measure transactions per second performance under a variety of DUT
 Security inspection load conditions, each test iteration MUST use
 different fixed HTTPS transaction object sizes defined in the test
 equipment configuration parameters section 7.8.3.2.

 Test iterations MUST include common cipher suites and key strengths
 as well as forward looking stronger keys. Specific test iterations
 MUST include the ciphers and keys defined in the parameter section
 7.8.3.2.

7.8.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.8.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.8.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.8.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Transactions per second: Initial value from product data sheet
 (if known)

 Initial Transactions per second: 10% of "Target Transactions per
 second"

 Ciphers and keys:

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha256 and Supported group:
 sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithmn: rsa_pkscs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha384 and Supported group:
 sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithmn: rsa_pkcs1_sha384 and Supported group: secp256)

 The client MUST negotiate HTTPS 1.1 and close the connection with FIN
 immediately after completion of 10 transactions.

 HTTPS 1.1 with GET command requesting a single 1, 16 and 64 KByte
 objects.

 Each client connection MUST perform a full handshake with server
 certificate and SHOULD NOT use session reuse or resumption.

 TLS record size MAY be optimized for the object size up to a record
 size of 16K.

7.8.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile. Ramp up and
 ramp down phase SHOULD NOT be considered.

 a. Number of failed Application transactions MUST be zero

 b. Number of Terminated HTTP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated HTTP
 sessions

 c. Average Time to TCP First Byte MUST be constant and not increase
 more than 10%

 d. The deviation of concurrent TCP connection Must be less than 10%

7.8.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario.

 average TCP connections per second, average Throughput, Average Time
 to TCP First Byte and average application transaction latency.

7.8.4. Test Procedures and Expected Results

 The test procedure is designed to measure the HTTPS transactions per
 second rate of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps. This
 test procedure MAY be repeated multiple times with different IPv4 and
 IPv6 traffic distribution, HTTPS response object sizes and ciphers
 and keys.

7.8.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial HTTPS transactions per second" as defined in the parameters
 section. The traffic load profile CAN be defined as described in the
 section 4.3.4.

 The DUT/SUT SHOULD reach the "initial HTTPS transactions per second"
 before the sustain phase. The measured KPIs during the sustain phase
 MUST meet the acceptance criteria a, b, c, and d defined in section
 7.8.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.8.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target HTTPS transactions per
 second" defined in the parameters table. The test equipment SHOULD
 follow the traffic load profile definition as described in the
 section 4.3.4.

 During the ramp up and sustain phase of each test iteration, other
 KPIs such as throughput, concurrent TCP connections and connections
 per second MUST NOT reach to the maximum value the DUT/SUT can
 support. The test results for specific test iterations SHOULD NOT be
 reported, if the above mentioned KPI (especially throughput) reaches
 to the maximum value. (Example: If the test iteration with 64Kbyte
 of HTTP response object size reached the maximum throughput
 limitation of the DUT, the test iteration MAY be interrupted and the
 result for 64kbyte SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 The DUT/SUT is expected to reach the desired target HTTPS
 transactions per second rate at the sustain phase. In addition, the
 measured KPIs must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.8.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable HTTPS transactions per
 second within the acceptance criteria. Final test iteration MUST be
 performed for the test duration defined in Section 4.3.4.

7.9. HTTPS Transaction Latency

7.9.1. Objective

 Using HTTPS traffic, determine the average HTTPS transaction latency
 when DUT is running with sustainable HTTPS transactions per second
 supported by the DUT/SUT under different HTTPS response object size.

 Test iterations MUST be performed with different HTTPS response
 object sizes twice, one with a single transaction and the other with
 multiple transactions within a single TCP connection.

7.9.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.9.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.9.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.9.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Cipher suites and key size: ECDHE-ECDSA-AES256-GCM-SHA384 with
 Secp521 bits key size (Signature Hash Algorithmn:
 ecdsa_secp256r1_sha384 and Supported group: sepc521r1)

 Target connections per second:50% of the value measured in test
 scenario TCP/HTTPS Connections per second (Section 7.7)

 Initial Transactions per second: 10% of "Target Transactions per
 second"

 HTTPS transaction per connection: one test scenario with a single
 transaction and another scenario with 10 transactions

 Test scenario SHOULD be run with a single traffic profile with
 following attributes:

 To measure application transaction latency with a single connection
 per transaction and single connection with multiple transactions the
 tests should run twice:

 1st test run: The client MUST negotiate HTTPS 1.1 and close the
 connection with FIN immediately after completion of the transaction.

 2nd test run: The client MUST negotiate HTTPS 1.1 and close the
 connection after 10 transactions (GET and RESPONSE) within a single
 TCP connection.

 HTTPS 1.1 with GET command requesting a single 1, 16 or 64 Kbyte
 objects. For each test iteration, client MUST request a single HTTPS
 response object size.

7.9.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile. Ramp up and
 ramp down phase SHOULD NOT be considered.

 Generic creteria:

 a. Number of failed Application transactions MUST be zero

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be zero.

 c. During the sustain phase, traffic should be forwarded at a
 constant rate.

 d. During the sustain phase and average application transaction
 latency MUST be constant and latency deviation SHOULD NOT
 increase more than 10%.

 e. Concurrent TCP connections SHOULD be constant during steady
 state. This confirms the DUT opens and closes the TCP
 connections at the same rate.

 f. After ramp up the DUT MUST achieve the target connections per
 second objective defined in the parameter section and remain in
 that state for the entire duration of the sustain phase.

7.9.3.4. Measurement

 Following KPI metrics MUST be reported for each test scenario and
 HTTPS response object sizes separately:

 average TCP connections per second and average application
 transaction latency or TTLB needs to be recorded.

 All KPI's are measured once the target connections per second
 achieves the steady state.

7.9.4. Test Procedures and Expected Results

 The test procedure is designed to measure average application
 transaction latency or TTLB when the DUT is operating close to 50% of
 its maximum achievable connections per second. , This test procedure
 CAN be repeated multiple times with different IP types (IPv4 only,
 IPv6 only and IPv4 and IPv6 mixed traffic distribution), HTTPS
 response object sizes and single and multiple transactions per
 connection scenarios.

7.9.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial connections per second" as defined in the parameters
 section. The traffic load profile CAN be defined as described in the
 section 4.3.4.

 The DUT/SUT SHOULD reach the "initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet the acceptance criteria a, b, c, d ,e and f defined in section
 7.4.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.9.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in the section
 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach to the maximum value the DUT/SUT can support.

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 must meet all acceptance criteria.

 The DUT/SUT is expected to reach the desired target HTTPS
 transactions per second rate at the sustain phase. In addition, the
 measured KPIs must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.9.4.3. Step 3: Test Iteration

 Determine the maximum achievable connections per second within the
 acceptance criteria and measure the latency values.

7.10. HTTPS Throughput

7.10.1. Objective

 Determine the throughput for HTTPS transactions varying the HTTPS
 response object size.

 Test iterations MUST include common cipher suites and key strengths
 as well as forward looking stronger keys. Specific test iterations
 MUST include the ciphers and keys defined in the parameter section
 7.10.3.2.

7.10.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.10.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.10.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.10.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section 4.3. Following parameters MUST
 be documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Throughput: Initial value from product data sheet (if known)

 Number of HTPPS response object requests (transactions) per
 connection: 10

 Ciphers and keys:

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha256 and Supported group:
 sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithmn: rsa_pkscs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithmn: ecdsa_secp256r1_sha384 and Supported group:
 sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithmn: rsa_pkcs1_sha384 and Supported group: secp256)

 HTTPS response object size: 16KB, 64KB, 256KB and mixed object
 defined in the table below.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Object size (KByte) | Number of requests/ |
| | Weight |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0.2 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 6 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 8 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 9 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 10 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 25 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 26 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 35 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 59 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 347 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 4: Mixed Objects

 Each client connection MUST perform a full handshake with server
 certificate (no Certificate on client side) and 50% of connection
 SHOULD use session reuse or resumption.

 TLS record size MAY be optimized for the HTTPS response object size
 up to a record size of 16K.

7.10.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transaction MUST be less than 0.01%
 of attempt transaction.

 b. Traffic should be forwarded constantly.

 c. The deviation of concurrent TCP connection Must be less than 10%

 d. The deviation of average application transaction latency MUST be
 less than 10%

7.10.3.4. Measurement

 The KPI metrics MUST be reported for this test scenario:

 Average Throughput, concurrent connections, and average TCP
 connections per second.

7.10.4. Test Procedures and Expected Results

 The test procedure consists of three major steps. This test
 procedure MAY be repeated multiple times with different IPv4 and IPv6
 traffic distribution and HTTPS response object sizes.

7.10.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial throughput" as defined in the parameters section.

 The traffic load profile should be defined as described in
 Section 4.3.4. The DUT/SUT SHOULD reach the "initial throughput"
 during the sustain phase. Measure all KPI as defined in
 Section 7.10.3.4.

 The measured KPIs during the sustain phase MUST meet the acceptance
 criteria "a" defined in Section 7.10.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.10.4.2. Step 2: Test Run with Target Objective

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target throughput at the
 sustain phase. In addition, the measured KPIs must meet all
 acceptance criteria.

 Perform the test separately for each HTTPS response object size (16k,
 64k, 256k and mixed HTTPS response objects).

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.10.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.11. Concurrent TCP/HTTPS Connection Capacity

7.11.1. Objective

 Determine the maximum number of concurrent TCP connections that DUT/
 SUT sustains when using HTTPS traffic.

7.11.2. Test Setup

 Test bed setup SHOULD be configured as defined in section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.11.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.11.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in the
 section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.11.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in the section Error: Reference source not
 found. Following parameters MUST be documented for this test
 scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Cipher suites and key size: ECDHE-ECDSA-AES256-GCM-SHA384 with
 Secp521 bits key size (Signature Hash Algorithmn:
 ecdsa_secp256r1_sha384 and Supported group: sepc521r1)

 Target concurrent connection: Initial value from product data
 sheet (if known)

 Initial concurrent connection: 10% of "Target concurrent
 connection"

 Maximum connections per second during ramp up phase: 50% of
 maximum connections per second measured in test scenario TCP/HTTPS
 Connections per second (Section 7.7)

 Throughput for background traffic: 10% of maximum throughput
 measured in test scenario HTTPS Throughput (Section 7.10)7.10
 using an HTTPS response object size of 16Kbyte with a matching
 cipher and key size to what is being tested in this test

 The client must perform HTTPS transaction with persistence and each
 client can open multiple concurrent TCP connections per server
 endpoint IP.

 Each client sends 10 times of GET commands requesting 1Kbyte HTTPS
 response object in the same TCP connections (10 transactions/TCP
 connection) and the delay (think time) between the transaction MUST
 be X seconds. The value for think time (X) MUST be defined to
 achieve 15% of maximum throughput measured in test scenario 7.10.

 The established connections (except background traffic connection)
 SHOULD remain open until the end phase of the test. During the ramp
 down phase, all connections should be successfully closed with FIN.

7.11.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be zero.

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.01% of total initiated TCP
 connections

 c. During the sustain phase, traffic should be forwarded constantly
 at the rate defined in the parameter section 7.11.3.2

 d. During the sustain phase, then maximum deviation (max. dev) of
 application transaction latency or TTLB (Time To Last Byte) MUST
 be less than 10%

7.11.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 Average Throughput, max. Min. Avg. Concurrent TCP connections, TTLB/
 application transaction latency and average application transactions
 per second

7.11.4. Test Procedures and expected Results

 The test procedure is designed to measure the concurrent TCP
 connection capacity of the DUT/SUT at the sustaining period of
 traffic load profile. The test procedure consists of three major
 steps. This test procedure MAY be repeated multiple times with
 different IPv4 and IPv6 traffic distribution.

7.11.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be "UP" status.

 Configure test equipment to generate background traffic ad defined in
 section 7.3.11.2. Measure throughput, concurrent TCP connections,
 and connections per second.

 While generating the background traffic, configure another traffic
 profile on the test equipment to establish "initial concurrent TCP
 connections" defined in the section 7.11.3.2. The traffic load
 profile CAN be defined as described in the section Error: Reference
 source not found

 During the sustain phase, the DUT/SUT SHOULD reach the "initial
 concurrent TCP connections" plus concurrent TCP connections measured
 in background traffic. The measured KPIs during the sustain phase
 MUST meet the acceptance criteria "a" and "b" defined in the section
 Error: Reference source not found

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.11.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target concurrent TCP
 connections" minus concurrent TCP connections measured in background
 traffic. The test equipment SHOULD follow the traffic load profile
 definition as described in the section 4.3.4

 During the ramp up and sustain phase, the other KPIs such as
 throughput, TCP connections per second and application transactions
 per second MUST NOT reach to the maximum value that the DUT/SUT can
 support.

 The test equipment SHOULD start to measure and record KPIs defined in
 section 7.11.3.4. The frequency of measurement MUST be less than 5
 seconds. Continue the test until all traffic profile phases are
 completed.

 The DUT/SUT is expected to reach the desired target concurrent TCP
 connections at the sustain phase. In addition, the measured KPIs
 must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.11.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable concurrent TCP
 connections within the acceptance criteria.

8. Formal Syntax

9. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

10. Acknowledgements

 Acknowledgements will be added in the future release.

11. Contributors

 The authors would like to thank the many people that contributed
 their time and knowledge to this effort.

 Specifically to the co-chairs of the NetSecOPEN Test Methodology
 working group and the NetSecOPEN Security Effectiveness working group
 - Alex Samonte, Aria Eslambolchizadeh, Carsten Rossenhoevel and David
 DeSanto.

 Additionally the following people provided input, comments and spent
 time reviewiing the myriad of drafts. If we have missed anyone the
 fault is entirely our own. Thanks to - Amritam Putatunda,
 Balamuhunthan Balarajah, Brian Monkman, Chris Chapman, Chris Pearson,
 Chuck McAuley, David White, Jurrie Van Den Breekel, Michelle Rhines,
 Rob Andrews, Samaresh Nair, and Tim Winters.

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [RFC2647]
 Newman, D., "Benchmarking Terminology for Firewall
 Performance", RFC 2647, DOI 10.17487/RFC2647, August 1999,
 <https://www.rfc-editor.org/info/rfc2647>.

 [RFC3511]
 Hickman, B., Newman, D., Tadjudin, S., and T. Martin,
 "Benchmarking Methodology for Firewall Performance",
 RFC 3511, DOI 10.17487/RFC3511, April 2003,
 <https://www.rfc-editor.org/info/rfc3511>.

Appendix A. NetSecOPEN Basic Traffic Mix

 A traffic mix for testing performance of next generation firewalls
 MUST scale to stress the DUT based on real-world conditions. In
 order to achieve this the following MUST be included:

 o Clients connecting to multiple different server FQDNs per
 application

 o Clients loading apps and pages with connections and objects in
 specific orders

 o Multiple unique certificates for HTTPS/TLS

 o A wide variety of different object sizes

 o Different URL paths

 o Mix of HTTP and HTTPS

 A traffic mix for testing performance of next generation firewalls
 MUST also facility application identification using different
 detection methods with and without decryption of the traffic. Such
 as:

 o HTTP HOST based application detection

 o HTTPS/TLS Server Name Indication (SNI)

 o Certificate Subject Common Name (CN)

 The mix MUST be of sufficient complexity and volume to render
 differences in individual apps as statistically insignificant. For
 example, changes in like to like apps - such as one type of video
 service vs. another both consist of larger objects whereas one news
 site vs. another both typically have more connections then other apps
 because of trackers and embedded advertising content. To achieve
 sufficient complexity, a mix MUST have:

 o Thousands of URLs each client walks thru

 o Hundreds of FQDNs each client connects to

 o Hundreds of unique certificates for HTTPS/TLS

 o Thousands of different object sizes per client in orders matching
 applications

 The following is a description of what a popular application in an
 enterprise traffic mix contains.

 Table 5 lists the FQDNs, number of transactions and bytes transferred
 as an example client interacts with Office 365 Outlook, Word, Excel,
 Powerpoint, Sharepoint and Skype.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Office365 FQDN | Bytes | Transaction |
+==+
| r1.res.office365.com | 14,056,960 | 192 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | 6,731,019 | 22 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | 6,269,492 | 42 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| swx.cdn.skype.com | 6,100,027 | 12 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | 6,036,947 | 41 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| spoprod‑a.akamaihd.net | 3,904,250 | 25 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑excel‑15.cdn.office.net | 2,767,941 | 16 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| outlook.office365.com | 2,047,301 | 86 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shellprod.msocdn.com | 1,008,370 | 11 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | 932,080 | 25 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| res.delve.office.com | 760,146 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑powerpoint‑15.cdn.office.net | 557,604 | 3 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| appsforoffice.microsoft.com | 511,171 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| powerpoint.officeapps.live.com | 471,625 | 14 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| excel.officeapps.live.com | 342,040 | 14 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑officeapps‑15.cdn.office.net | 331,343 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir0a.online.lync.com | 66,930 | 15 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| portal.office.com | 13,956 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| config.edge.skype.com | 6,911 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

| clientlog.portal.office.com | 6,608 | 8 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir.online.lync.com | 4,343 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| graph.microsoft.com | 2,289 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| nam.loki.delve.office.com | 1,812 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.microsoftonline.com | 464 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.windows.net | 232 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 5: Office365

 Clients MUST connect to multiple server FQDNs in the same order as
 real applications. Connections MUST be made when the client is
 interacting with the application and NOT first setup up all
 connections. Connections SHOULD stay open per client for subsequent
 transactions to the same FQDN similar to how a web browser behaves.
 Clients MUST use different URL Paths and Object sizes in orders as
 they are observed in real Applications. Clients MAY also setup
 multiple connections per FQDN to process multiple transactions in a
 sequence at the same time. Table 6 has a partial example sequence of
 the Office 365 Word application transactions.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| FQDN | URL Path | Object |
| | | size |
+===+
| company1‑my.sharepoint.com | /personal... | 23,132 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | /we/WsaUpload.ashx | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/.../blank.js | 454 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/.../ | 23,254 |
| | initstrings.js | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/.../init.js | 292,740 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /ScriptResource... | 102,774 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /ScriptResource... | 40,329 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /WebResource... | 23,063 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | /we/wordeditorframe. | 60,657 |

| | aspx... | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/_layouts/.../ | 454 |
| | blank.js | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | /we/s/.../ | 19,201 |
| | EditSurface.css | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | /we/s/.../ | 221,397 |
| | WordEditor.css | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
s1‑officeapps‑15.cdn.office.net	/we/s/.../	107,571
	Microsoft	
	Ajax.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	39,981
	wacbootwe.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑officeapps‑15.cdn.office.net	/we/s/.../	51,749
	CommonIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	6,050
	Compat.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	54,158
	Box4Intl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	24,946
	WoncaIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	53,515
	WordEditorIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	1,978,712
	WordEditorExp.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../jSanity.js	10,912
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
word‑edit.officeapps.live.com	/we/OneNote.ashx	145,708
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 6: Office365 Word Transactions

 For application identification the HTTPS/TLS traffic MUST include
 realistic Certificate Subject Common Name (CN) data as well as Server
 Name Indications. For example, a DUT may detect Facebook Chat
 traffic by inspecting the certificate and detecting *.facebook.com in
 the certificate subject CN and subsequently detect the word chat in
 the FQDN 5-edge-chat.facebook.com and identify traffic on the
 connection to be Facebook Chat.

 Table 7 includes further examples in SNI and CN pairs for several
 FQDNs of Office 365.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Server Name Indication (SNI) | Certificate Subject |
| | Common Name (CN) |
+===+
| r1.res.office365.com | *.res.outlook.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.windows.net | graph.windows.net |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir0a.online.lync.com | *.online.lync.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.microsoftonline.com | stamp2.login.microsoftonline.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir.online.lync.com | *.online.lync.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| graph.microsoft.com | graph.microsoft.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| outlook.office365.com | outlook.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| appsforoffice.microsoft.com | appsforoffice.microsoft.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 7: Office365 SNI and CN Pairs Examples

 NetSecOPEN has provided a reference enterprise perimeter traffic mix
 with dozens of applications, hundreds of connections, and thousands
 of transactions.

 The enterprise perimeter traffic mix consists of 70% HTTPS and 30%
 HTTP by Bytes, 58% HTTPS and 42% HTTP by Transactions. By
 connections with a single connection per FQDN the mix consists of 43%
 HTTPS and 57% HTTP. With multiple connections per FQDN the HTTPS
 percentage is higher.

 Table 8 is a summary of the NetSecOPEN enterprise perimeter traffic
 mix sorted by bytes with unique FQDNs and transactions per
 applications.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application | FQDNs | Transactions | Bytes |
+===+
| Office365 | 26 | 558 | 52,931,947 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

| Box | 4 | 90 | 23,276,089 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Salesforce | 6 | 365 | 23,137,548 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Gmail | 13 | 139 | 16,399,289 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Linkedin | 10 | 206 | 15,040,918 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DailyMotion | 8 | 77 | 14,751,514 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| GoogleDocs | 2 | 71 | 14,205,476 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikia | 15 | 159 | 13,909,777 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Foxnews | 82 | 499 | 13,758,899 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Yahoo Finance | 33 | 254 | 13,134,011 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Youtube | 8 | 97 | 13,056,216 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Facebook | 4 | 207 | 12,726,231 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CNBC | 77 | 275 | 11,939,566 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Lightreading | 27 | 304 | 11,200,864 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BusinessInsider | 16 | 142 | 11,001,575 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Alexa | 5 | 153 | 10,475,151 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CNN | 41 | 206 | 10,423,740 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Twitter Video | 2 | 72 | 10,112,820 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Cisco Webex | 1 | 213 | 9,988,417 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Slack | 3 | 40 | 9,938,686 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Google Maps | 5 | 191 | 8,771,873 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SpectrumIEEE | 7 | 145 | 8,682,629 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Yelp | 9 | 146 | 8,607,645 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Vimeo | 12 | 74 | 8,555,960 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikihow | 11 | 140 | 8,042,314 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

| Netflix | 3 | 31 | 7,839,256 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Instagram | 3 | 114 | 7,230,883 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Morningstar | 30 | 150 | 7,220,121 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Docusign | 5 | 68 | 6,972,738 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Twitter | 1 | 100 | 6,939,150 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Tumblr | 11 | 70 | 6,877,200 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Whatsapp | 3 | 46 | 6,829,848 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Imdb | 16 | 251 | 6,505,227 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NOAAgov | 1 | 44 | 6,316,283 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IndustryWeek | 23 | 192 | 6,242,403 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Spotify | 18 | 119 | 6,231,013 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AutoNews | 16 | 165 | 6,115,354 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Evernote | 3 | 47 | 6,063,168 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NatGeo | 34 | 104 | 6,026,344 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BBC News | 18 | 156 | 5,898,572 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Investopedia | 38 | 241 | 5,792,038 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Pinterest | 8 | 102 | 5,658,994 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Succesfactors | 2 | 112 | 5,049,001 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AbaJournal | 6 | 93 | 4,985,626 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Pbworks | 4 | 78 | 4,670,980 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NetworkWorld | 42 | 153 | 4,651,354 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| WebMD | 24 | 280 | 4,416,736 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| OilGasJournal | 14 | 105 | 4,095,255 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Trello | 5 | 39 | 4,080,182 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

| BusinessWire | 5 | 109 | 4,055,331 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Dropbox | 5 | 17 | 4,023,469 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Nejm | 20 | 190 | 4,003,657 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| OilGasDaily | 7 | 199 | 3,970,498 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Chase | 6 | 52 | 3,719,232 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MedicalNews | 6 | 117 | 3,634,187 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Marketwatch | 25 | 142 | 3,291,226 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Imgur | 5 | 48 | 3,189,919 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NPR | 9 | 83 | 3,184,303 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Onelogin | 2 | 31 | 3,132,707 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Concur | 2 | 50 | 3,066,326 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Service‑now | 1 | 37 | 2,985,329 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Apple itunes | 14 | 80 | 2,843,744 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BerkeleyEdu | 3 | 69 | 2,622,009 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MSN | 39 | 203 | 2,532,972 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Indeed | 3 | 47 | 2,325,197 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MayoClinic | 6 | 56 | 2,269,085 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Ebay | 9 | 164 | 2,219,223 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| UCLAedu | 3 | 42 | 1,991,311 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ConstructionDive | 5 | 125 | 1,828,428 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EducationNews | 4 | 78 | 1,605,427 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BofA | 12 | 68 | 1,584,851 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ScienceDirect | 7 | 26 | 1,463,951 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Reddit | 8 | 55 | 1,441,909 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

| FoodBusinessNews | 5 | 49 | 1,378,298 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Amex | 8 | 42 | 1,270,696 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Weather | 4 | 50 | 1,243,826 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikipedia | 3 | 27 | 958,935 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Bing | 1 | 52 | 697,514 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ADP | 1 | 30 | 508,654 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Grand Total | 983 | 10021 | 569,819,095 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 8: Summary of NetSecOPEN Enterprise Perimeter Traffic Mix

Authors' Addresses

Balamuhunthan Balarajah
EANTC AG
Salzufer 14
Berlin 10587
Germany

 Email: balarajah@eantc.de

Carsten Rossenhoevel
EANTC AG
Salzufer 14
Berlin 10587
Germany

 Email: cross@eantc.de

draft-bellis-dnsop-edns-tags-00 - DNS EDNS Tags

draft-bellis-dnsop-edns-tags-00 - DNS EDNS Tags

Index
Back 5
Prev
Next
Forward 5

DNSOP Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 5, 2019

R. Bellis

A. Clegg

ISC

March 04, 2019

DNS EDNS Tags

draft-bellis-dnsop-edns-tags-00

Abstract

 This document describes EDNS Tags, a mechanism by which DNS clients
 and servers can transmit an opaque data field which has no defined
 semantic meaning other than as previously agreed between the client
 and server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 5, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Description
	 3.1. Packet Validation Rules

	 3.2. Error Handling

	 3.3. Wire Format
	 3.3.1. EDNS-Client-Tag

	 3.3.2. EDNS-Server-Tag

	4. Security Considerations

	5. Implementation status

	6. Privacy Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. Normative References

	Authors' Addresses

1. Introduction

 This document describes EDNS Tags, a mechanism by which DNS clients
 and servers [RFC1034] can transmit an opaque data field which has no
 defined semantic meaning other than as previously agreed between the
 client and server operators.

 The tag is a single 16 bit field stored within the RDATA of an
 EDNS(0) OPT RR as described in [RFC6891].

 Two EDNS options are defined to allow for the detection of servers
 that incorrectly echo responses verbatim. The EDNS-Client-Tag option
 may only appear in client requests, and the EDNS-Server-Tag may only
 appear in responses from servers.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Description

 The values of the individual bits within a tag are not defined to
 have any semantic meaning in this specification. Their
 interpretation is defined entirely by bi-lateral agreement between
 client and server operators. The definitions for EDNS-Client-Tag and
 EDNS-Server-Tag values MAY be different.

 Operators are free to partition the bits within that field as they
 see fit; for example it could be used to transmit up to 16 separate
 boolean flags, or perhaps to transmit a 10 bit numeric value combined
 a 2 bit value and four boolean flags.

 Possible use cases for EDNS-Client-Tags include:

 o client-controlled selection of a DNS-based security filter

 o marking a packet passing through a proxy with transport-related
 information

 Use cases for EDNS-Server-Tags are still to be determined. The
 option is specified here for symmetry and in anticipation of new use
 cases being discovered.

3.1. Packet Validation Rules

 The OPT RR in a DNS request packet (QR = 0) MUST NOT contain an EDNS-
 Server-Tag option. A request packet MUST NOT contain more than one
 EDNS-Client-Tag option.

 The OPT RR in a DNS response packet (QR = 1) MUST NOT contain an
 EDNS-Client-Tag option. A response packet MUST NOT contain more than
 one EDNS-Server-Tag option.

 An EDNS-Server-Tag option MUST NOT be sent unless the corresponding
 client query contained an EDNS-Client-Tag option.

3.2. Error Handling

 Clients MUST discard any response packet that breaches any applicable
 packet validation rule.

 Servers MUST respond with a FORMERR in accordance with Section 7 of
 [RFC6891] on receipt of a request that breaches any applicable packet
 validation rule.

3.3. Wire Format

 The format of the EDNS options are as follows, to be stored within
 the RDATA of an OPT RR as specified in [RFC6891]:

3.3.1. EDNS-Client-Tag

 +0 (MSB) +1 (LSB)
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
0: | OPTION‑CODE (TBD1) |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑|‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
2: | OPTION‑LENGTH (2) |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑|‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
4: | CLIENT‑TAG‑DATA |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

 OPTION-CODE: The option code identifier (TBD1).

 OPTION-LENGTH: Size (in octets) of OPTION-DATA. MUST be 2.

 CLIENT-TAG-DATA: The tag field sent from client to server.

3.3.2. EDNS-Server-Tag

 +0 (MSB) +1 (LSB)
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
0: | OPTION‑CODE (TBD2) |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑|‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
2: | OPTION‑LENGTH (2) |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑|‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
4: | SERVER‑TAG‑DATA |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

 OPTION-CODE: The option code identifier (TBD2).

 OPTION-LENGTH: Size (in octets) of OPTION-DATA. MUST be 2.

 SERVER-TAG-DATA: The tag field sent from server to client.

4. Security Considerations

 Client tags are under the control of the client software and as such
 (and in the absence of any other mechanism to authenticate the
 client's identity) this mechanism is not appropriate for applications
 where the DNS server operator wishes to contractually differentiate
 service based on the presence (or absence) of any particular tag.

5. Implementation status

 TBC.

6. Privacy Considerations

 Tags are opaque fields that encode only a limited amount of
 information. The size of the data field in this specification is
 chosen to offer a compromise between offering sufficient content to
 be technically useful while also limiting the scope for it to be used
 to transmit Personally Identifiable Information.

7. IANA Considerations

 IANA has assigned the following EDNS(0) Option Codes:

Value Name Status Reference
‑‑
TBD1 EDNS‑Client‑Tag Standard RFCXXXX
TBD2 EDNS‑Server‑Tag Standard RFCXXXX

 << Note to IANA - please assign an even value to TBD1, and the next
 consecutive odd value to TBD2. This allows the least-significant bit
 of the option value to be compared against the packet's QR bit >>

8. Acknowledgements

 The authors wish to particularly thank Brian Conry, Peter van Dijk
 and Matthijs Mekking for early review and feedback on this document.

9. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Authors' Addresses

Ray Bellis
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City CA 94063
USA

Phone: +1 650 423 1200
Email: ray@isc.org

Alan Clegg
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City CA 94063
USA

Phone: +1 650 423 1200
Email: aclegg@isc.org

draft-bellis-dnsop-http-record-00 - A DNS Resource Record for HTTP

draft-bellis-dnsop-http-record-00 - A DNS Resource Record for HTTP

Index
Back 5
Prev
Next
Forward 5

DNSOP Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 8, 2019

R. Bellis

ISC

November 04, 2018

A DNS Resource Record for HTTP

draft-bellis-dnsop-http-record-00

Abstract

 This document specifies an "HTTP" resource record type for the DNS to
 facilitate the lookup of the server hostname of HTTP(s) URIs. It is
 intended to replace the use of CNAME records for this purpose, and in
 the process provides a solution for the inability of the DNS to allow
 a CNAME to be placed at the apex of a domain name.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 8, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Description
	 3.1. Wire Format

	 3.2. Presentation Format

	 3.3. Server Operation

	 3.4. Client Operation

	4. Security Considerations

	5. Implementation status

	6. Privacy Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Author's Address

1. Introduction

 It is very common for HTTP(s) URIs to contain a domain name that is
 not the same as the hostname of the actual server that hosts the
 content.

 This is typically achieved via a CNAME record where the owner name of
 that record (the "Alias") is the domain name from the URI and the
 Canonical name field in its RDATA corresponds with the target
 hostname (although it should be noted that this strictly a violation
 of the original design semantics of the CNAME record).

 It is also impossible to store a CNAME at the apex of a domain name,
 which causes signficant difficulties if you wish to redirect your
 domain name without a "www" prefix to a content delivery network
 (CDN). The only portable solution at the moment is to determine the
 IP address records of the content host and insert them directly at
 the apex of the zone, but this is brittle, and prevents the correct
 operation of typical CDN features.

 While there have been previous attempts to promote the use of the SRV
 record instead of CNAME records, there have been concerns raised
 about the performance impact of the additional DNS lookup an SRV
 record would typically require.

 To achieve equivalent end-user performance as existing CNAME-based
 solutions, this document permits recursive resolvers to pre-emptively
 look up the target of an HTTP Record and return the corresponding
 records to the client. While this feature is not mandatory it is
 hoped that support would over time become near ubiquitous.

 Also, the presence of the Port field in an SRV record is incompatible
 with the "Same Origin" security policy enforced by web browsers and
 in practise the load-balancing / fallback capabilities of the SRV
 record are not widely used either, and non-DNS based solutions for
 this are already widely deployed for HTTP traffic.

 This document therefore specifies a minimal "HTTP" resource record
 type for the DNS to facilitate the redirection from the domain name
 portion of an HTTP(s) URI to the server hostname and thence to A or
 AAAA records. It is specifically intended to replace the use of
 CNAME records for this purpose, and in the process provides a
 solution for the inability of the DNS to allow a CNAME to be placed
 at the apex of a domain name.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Description

 The owner name of an HTTP RR is the domain name portion of an HTTP(s)
 URI.

 The use of underscore label prefixes (e.g. _http._tcp) was
 considered, but rejected since it prohibits the use of wildcard
 records which us a valuable technique for offering per-customer
 domain prefixes without requiring that every prefix be individually
 provisioned.

3.1. Wire Format

 The RDATA of an HTTP RR is a domain name in uncompressed wire format.

3.2. Presentation Format

 The RDATA of an HTTP RR is presented as a domain name in standard
 master file format.

3.3. Server Operation

 Recursive resolvers MAY on receiving a request for an HTTP record
 look up the A and AAAA records for the target (either from cache, or
 via new iterative queries) and include the results in the Additional
 Section of the response.

 If the recursive resolver is performing DNSSEC resolution but is
 unable to validate the A or AAAA responses it MUST NOT include them
 in the response unless the client has specified the +CD (checking
 disabled) flag.

 Where EDNS Client Subnet [RFC7871] is configured on the resolver
 those A and AAAA lookups MUST be performed as if the client had made
 those queries directly to the resolver.

3.4. Client Operation

 HTTP clients supporting this specification MUST issue parallel DNS
 requests for the A, AAAA and HTTP records for the domain portion of
 an http: or https: URI.

 If an HTTP record is returned, the client MUST either use the A and
 AAAA records contained in the Additional Section of the response, or
 issue further parallel requests for the A and AAAA records
 corresponding to the domain name in the RDATA of the HTTP record and
 then use those IP addresses to access the URI.

 If the original A and AAAA lookups return IP addresses these MUST
 only be used if no HTTP record is returned.

 << the above needs more text around timing, happy eyeballs, etc. >>

4. Security Considerations

 TBD

5. Implementation status

 << RFC Editor Note: Please remove this entire section prior to
 publication as an RFC. >>

6. Privacy Considerations

 TBD (if any)

7. IANA Considerations

 << a copy of the RFC 6895 IANA RR TYPE application template will
 appear here >>

8. Acknowledgements

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC7871]
 Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <https://www.rfc-editor.org/info/rfc7871>.

Author's Address

Ray Bellis
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City CA 94063
USA

Phone: +1 650 423 1200
Email: ray@isc.org

draft-bernardos-anima-fog-monitoring-00 - Autonomic setup of fog monitoring agents

draft-bernardos-anima-fog-monitoring-00 - Autonomic setup of fog monitoring agen

Index
Back 5
Prev
Next
Forward 5

ANIMA WG

Internet-Draft

Intended status: Experimental

Expires: September 11, 2019

CJ. Bernardos

UC3M

A. Mourad

InterDigital

March 10, 2019

Autonomic setup of fog monitoring agents

draft-bernardos-anima-fog-monitoring-00

Abstract

 The concept of fog computing has emerged driven by the Internet of
 Things (IoT) due to the need of handling the data generated from the
 end-user devices. The term fog is referred to any networked
 computational resource in the continuum between things and cloud. In
 fog computing, functions can be stiched together composing a service
 function chain. These functions might be hosted on resources that
 are inherently heterogeneous, volatile and mobile. This means that
 resources might appear and disappear, and the connectivity
 characteristics between these resources may also change dynamically.
 This calls for new orchestration solutions able to cope with dynamic
 changes to the resources in runtime or ahead of time (in anticipation
 through prediction) as opposed to today's solutions which are
 inherently reactive and static or semi-static.

 A fog monitoring solution can be used to help predicting events so an
 action can be taken before an event actually takes place. This
 solution is composed of agents running on the fog nodes plus a
 controller hosted at another device (running in the infrastructure or
 in another fog node). Since fog environments are inherently volatile
 and extremely dynamic, it is convenient to enable the use of
 autonomic technologies to autonomously set-up the fog monitoring
 platform. This document aims at presenting this use case as well as
 specifying how to use GRASP as needed in this scenario.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Problem statement

	 1.2. Fog monitoring framework

	2. Terminology

	3. Autonomic setup of fog monitoring framework

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgments

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Authors' Addresses

1. Introduction

 The concept of fog computing has emerged driven by the Internet of
 Things (IoT) due to the need of handling the data generated from the
 end-user devices. The term fog is referred to any networked
 computational resource in the continuum between things and cloud. A
 fog node may therefore be an infrastructure network node such as an
 eNodeB or gNodeB, an edge server, a customer premises equipment
 (CPE), or even a user equipment (UE) terminal node such as a laptop,
 a smartphone, or a computing unit on-board a vehicle, robot or drone.

 In fog computing, functions might be organized in service function
 chains (SFCs), hosted on resources that are inherently heterogeneous,
 volatile and mobile. This means that resources might appear and
 disappear, and the connectivity characteristics between these
 resources may also change dynamically. This calls for new
 orchestration solutions able to cope with dynamic changes to the
 resources in runtime or ahead of time (in anticipation through
 prediction) as opposed to today's solutions which are inherently
 reactive and static or semi-static.

1.1. Problem statement

 Figure 1 shows an exemplary scenario of a (robot) network service. A
 robot device has its (navigation) control application running in the
 fog away from the robot, as a network service in the form of an SFC
 "F1-F2" (e.g., F1 might be in charge of identifying obstacles and F2
 takes decisions on the robot navigation). Initially the function F1
 is assumed to be hosted at a fog node A and F2 at fog node B. At a
 given point of time, fog node A becomes unavailable (e.g., due to low
 battery issues or the fog node A moving away from the coverage of the
 robot). There is therefore a need to predict the need of migrating/
 moving the function F1 to another node (e.g., fog node C in the
 figure), and this needs to be done prior to the fog/edge node
 becoming no longer capable/available. Such dynamic migration cannot
 be dealt with in today's orchestration solutions, which are rather
 reactive and static or semi-static (e.g., resources may fail, but
 this is an exceptional event, happening with low frequency, and only
 scaling actions are supported to react to SLA-related events).

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | ==== |
 ‑‑‑‑‑‑+F1+‑‑‑‑‑‑‑‑‑‑
 / | | ==== | | \
 / | +‑‑‑‑‑‑+ | \
 | | fog node C | \
 | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ \
 | \
 | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑\‑‑‑‑‑‑‑‑‑‑
 | | ==== | | \==== | | | | |
 | ‑‑‑‑‑‑‑‑‑‑‑+F1+‑‑‑‑‑‑‑‑‑‑‑‑+F2| |
 |/ | | ==== | | | | ==== | |
 o | +‑‑‑‑‑‑+ | | +‑‑‑‑‑‑+ |
 | | fog node A | | fog node B |
‑‑‑‑‑‑‑‑+‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| |
‑‑0‑‑‑‑0‑‑

 Figure 1: Example scenario

 Existing frameworks rely on monitoring platforms that react to
 resource failure events and ensure that negotiated SLAs are met.
 However these are not designed to predict events likely to happen in
 a volatile fog environment, such as resources moving away, resources
 becoming unavailable due to battery issues or just changes in
 availability of the resources because of variations of the use of the
 local resources on the nodes. Besides, it is not feasible in this
 kind of volatile and extremely mobile environment to perform a
 continuous monitoring and reporting of every possible parameter on
 all the nodes hosting resources, as this would not scale and would
 consume many resources and generate extra overhead.

 In volatile and mobile environments, prediction (make-before-break)
 is needed, as pure reaction (break-before-make) is not enough. This
 prediction is not generic, and depends on the nature of the network
 service/SFC: the functions of the SFC, the connectivity between them,
 the service-specific requirements, etc. Monitoring has to be setup
 differently on the nodes, depending on the specifics of the network
 service. Besides, in order to act proactively and predict what might
 need to be done, monitoring in such a volatile and mobile
 environments does not only involve the nodes currently hosting the
 resources running the network service/service function chain (i.e.,
 hosting a function), but also other nodes which are potential
 candidates to join either in addition or in substitution to current
 nodes for running the network service in accordance with the
 orchestration decisions.

 In the example of Figure 1, the fog node initially hosting function
 F1 (fog node A) might be running out of battery and this should be
 detected before the node A actually becomes unavailable, so the
 function F1 can be effectively migrated in a time to a different fog
 node C, capable of meeting the requirements of F1 (compute,
 networking, location, expected availability, etc.). In order to be
 able to predict the need for such a migration and have already
 identified a target fog node where to move the function, it is needed
 to have a monitoring solution in place that instructs each node
 involved in the service (A and B), and also neighboring node
 candidate (C) to host function (F1), to monitor and report on metrics
 that are relevant for the specific network service "F1-F2" that is
 currently running.

1.2. Fog monitoring framework

 Fog environments differ from data-center ones on three key aspects:
 heterogeneity, volatility and mobility. The fog monitoring framework
 is used to predict events triggering and orchestration event (e.g.,
 migrating a function to a different resource).

 The monitoring framework we propose for fog environments is composed
 of 2 logical components:

 o Fog agents running on each fog node. An agent is responsible for
 sending information to a fog monitoring controller and to other
 fog agents. What to monitor and what information to send
 (including frequency) is configured per agent considering the
 specifics of the network service/SFC. A fog agent might also take
 some autonomous actions (such as request migration of a function
 to a neighbor node) in certain situations where connectivity with
 the fog monitoring controller is temporarily unavailable.

 o A fog monitoring controller (e.g., running at the edge or at a fog
 node). This node obtains input from the orchestration logic (MANO
 stack) and autonomously decides what information to monitor, where
 and how, based on the requirements provided by the orchestration
 logic managing the network services instantiated in the fog. This
 configuration is network service/function specific.

 * It interacts with the orchestration logic to coordinate and
 trigger orchestration events, such as function migration,
 connectivity updates, etc. In some deployments, this entity
 might be co-located with the orchestration logic (e.g., the
 NFVO).

 * It interacts with the fog agents to instruct what information
 and parameters need to be monitored, as well as to obtain such
 information. This interaction is not limited to fog agents at
 nodes currently involved in a given network service/SFC, but
 also includes other nodes that are suitable for hosting a
 function that needs to be migrated. This allows to provide the
 orchestration logic with candidate nodes in a pro-active way.

 * It is capable of autonomously discover and set up fog agents.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
 and"OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are using in ths document:

fog: Fog goes to the Extreme Edge, that is the closest
 possible to the user including on the user device
 itself.

fog node: Any device that is capable of participating in the Fog.
 A Fog node might be volatile, mobile and constrained
 (in terms of computing resources). Fog nodes may be
 heterogeneous and may belong to different owners.

 orchestrator: In this document we use orchestrator and NFVO terms

 interchangeably.

3. Autonomic setup of fog monitoring framework

 Fog nodes autonomously start fog agents at the bootstrapping, then
 start looking for other agents and the fog monitoring controller.
 This autonomic setup can be performed using GRASP. The procedure is
 represented in Figure 2. The different steps are described next:

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
| fog | | fog | | fog |
| node C | | node A | | node B | +‑‑‑‑‑‑+
						fog						
											+‑‑‑‑‑‑+	mon.
+‑‑‑‑+		+‑‑‑‑+		+‑‑‑‑+		NFVO		ctrl				
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
 | | | |
 (fog nodes A & B bootstrap) | |
 | | | |
 | | periodic mcast advertisement|
 | | (ID, fog_scope) |
 | | <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Mcast discovery (fog_node_ID, scope) |
 +‑‑>|
 +‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | Mcast discovery (fog_node_ID, scope) |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 |<‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | |
 | Unicast advertisement (ID, fog_scope) |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |<‑‑+
 | | | |
 | Unicast registration (ID, fog_node_ID |
 | | fog_scope, capab.) |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 +‑‑>|
 | | | |
 (fog nodes A & B registered) | |
 | | | |
(fog node C bootstraps) | | |
 | | | | |
 | Mcast discovery (fog_node_ID, scope) | |
 +‑‑>|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 +‑‑‑‑‑‑‑‑‑‑‑‑>| Unicast advertisement (ID, fog_scope) |
 |<‑‑+
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑+ Unicast registration (ID, fog_node_ID |
 | | | fog_scope, capab.) |
 +‑‑>|
(fog node C registered) | | |
 | | | | |

 Figure 2: Autonomic setup of fog agents

 o The fog monitoring controller is regularly sending periodic
 multicast advertisement messages, which include its ID as well as
 the scope for the advertisement messages (i.e., the scope of where
 the messages have to be flooded).

 M_DISCOVERY messages are used, with new objectives and objective
 options. GRASP specifies that "an objective option is used to
 identify objectives for the purposes of discovery, negotiation or
 synchronization". New objective options are defined for the
 purposes of discovering potential fog agents with certain
 characteristics. Non-limiting examples of these options are
 listed below (note that the names are just examples, and the ones
 used have to be registered by the IANA):

 * FOGNODERADIO: used to specify a given type of radio technology,
 e.g.,: WiFi (version), D2D, LTE, 5G, Bluetooth (version), etc.

 * FOGNODECONNECTIVITY: used to specify a given type of
 connectivity, e.g., layer-2, IPv4, IPv6.

 * FOGNODEVIRTUALIZATION: used to specify a given type of
 virtualization supported by the node where the agent runs.
 Examples are: hypervisor (type), container, micro-kernel, bare-
 metal, etc.

 * FOGNODEDOMAIN: used to specify the domain/owner of the node.
 This is useful to support operation of multiple domains/
 operators simultaneously on the same fog network.

 An example of discovery message using GRASP would be the following
 (in this example, the fog monitoring controller is identified by
 its IPv6 address: 2001:DB8:1111:2222:3333:4444:5555:6666):

 [M_DISCOVERY, 13948745, h'20010db8111122223333444455556666',
 ["FOGDOMAIN", F_SYNCH_bits, 2, "operator1"]]

 GRASP is used to allow the fog agents and the controller discovery
 in an autonomic way. The extensions defined above, together with
 the use of properly scoped multicast addresses (as explained
 below), allow to precisely define which nodes participate in the
 monitoring and to gather their principal characteristics.

 o When a fog node bootstraps, such as nodes A and B in the figure,
 they start sending multicast discovery messages within a given
 scope, that is, the intended area that composes the fog. The
 definition of the scope depends on the scenario, and examples of
 possible scopes are:

 * All-resources of a given manufacturer.

 * All-resources of a given type.

 * All-resources of a given administrative domain.

 * All-resources of a given user.

 * All-resources within a topological network distance (e.g.,
 number of hops).

 * All-resources within a geographical location.

 * Etc.

 Combination of previous scopes are also possible.

 The discovery messages are multicast within the scope, reaching
 all the nodes that compose the specified fog resources. This can
 be done for example using well defined IPv6 multicast addresses,
 specified for each of the different scopes. This signaling is
 based on GRASP. Different IPv6 multicast addresses need to be
 defined to reach each different scope, using scopes equal or
 larger than Admin-Local according to [RFC7346].

 o In response to multicast fog discovery messages, the fog
 monitoring controller replies with unicast information messages.

 o Fog agents can then register with a controller. The registration
 message is unicast, and includes information on the capabilities
 of the fog node, such as:

 * Type of node.

 * Vendor.

 * Energy source: battery-powered or not.

 * Connectivity (number of network interfaces and information
 associated to them, such as radio technology type, layer-2 and
 layer-3 addresses, etc.).

 * Etc.

 Note that registration to multiple fog monitoring controller
 instances could also be possible if a fog node wants to belong to
 several fog domains at the same time (but note that how the
 orchestration of the same resource is done by multiple
 orchestrators is not covered by this invention). The defined
 mechanisms support this via the use of fog IDs and FOGNODEDOMAIN
 options.

 o A fog node C bootstraps after nodes A and B are already
 registered. The same discovery process is followed by fog node C,
 but in addition to the regular advertisement, registration
 procedures described before, existing neighboring fog agents (such
 as A and B in this example), might also respond to discovery
 messages sent by bootstrapping nodes to provide required
 information. This makes the procedure faster, more efficient and
 reliable. In addition to helping the fog monitoring controller in
 the fog agent discovery process, fog agents learn themselves about
 the existence and associated capabilities of other fog agents.
 This can be used to allow autonomous monitoring by the fog agents
 without the involvement of the central controller.

4. IANA Considerations

 TBD.

5. Security Considerations

 TBD.

6. Acknowledgments

 The work in this draft will be further developed and explored under
 the framework of the H2020 5G-CORAL project (Grant 761586).

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC7346]
 Droms, R., "IPv6 Multicast Address Scopes", RFC 7346,
 DOI 10.17487/RFC7346, August 2014,
 <https://www.rfc-editor.org/info/rfc7346>.

Authors' Addresses

Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
Leganes, Madrid 28911
Spain

Phone: +34 91624 6236
Email: cjbc@it.uc3m.es
URI: http://www.it.uc3m.es/cjbc/

Alain Mourad
InterDigital Europe

Email: Alain.Mourad@InterDigital.com
URI: http://www.InterDigital.com/

draft-bierman-netconf-module-tag-ops-00 - Module Tag Operations

draft-bierman-netconf-module-tag-ops-00 - Module Tag Operations

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 11, 2019

A. Bierman

YumaWorks

March 10, 2019

Module Tag Operations

draft-bierman-netconf-module-tag-ops-00

Abstract

 This document describes enhancements to existing NETCONF and RESTCONF
 (NMDA) operations for using module tags to represent YANG datastore
 content. This can simplify usage of these operations by a client.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology
	 1.1.1. NMDA

	 1.1.2. RESTCONF

	 1.1.3. YANG

	 1.2. Tree Diagrams

	2. Module Tag Operations
	 2.1. Module Tag Filters
	 2.1.1. NETCONF "module-tag" RPC Input Parameter

	 2.1.2. RESTCONF "module-tag" Query Parameter

	 2.2. NACM "module-tags" Rule Type

	3. Definitions
	 3.1. YANG Module

	 3.2. RESTCONF Query Parameter

	 3.3. RESTCONF Query Parameter Capability

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Examples
	 A.1. NETCONF <get-data> Example

	 A.2. RESTCONF GET Example

	 A.3. NACM Example

	Author's Address

1. Introduction

 There is a need for standard mechanisms to allow NETCONF [RFC6241]
 and RESTCONF [RFC8040] protocol operations, as well as NMDA
 operations for NETCONF [RFC8526] and RESTCONF [RFC8527], to utilize
 the module tag mapping definitions defined in
 [I-D.ietf-netmod-module-tags]. Netconf Access Control rules defined
 in [RFC8341] can also utilize module tags to simplify access control
 rule configuration.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.1.1. NMDA

 The following terms are defined in the Network Management Datastore
 Architecture (NMDA) [RFC8342]:

 o configuration

 o client

 o datastore

 o notification

 o operational state

 o operational state datastore

 o server

1.1.2. RESTCONF

 The following terms are defined in [RFC8040]:

 o data resource

 o target resource

1.1.3. YANG

 The following terms are defined in [RFC7950]:

 o choice

 o container

 o data model

 o data node

 o grouping

 o leaf

 o leaf-list

 o list

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Module Tag Operations

 A module tag is a string associated with a module name. Modules are
 associated with the same module tag for the purpose of simplifying
 protocol operations, and other tool-specific operations.

 The definition and management of module tags is defined in the ietf-
 module-tags module. This document defines augmentations to NETCONF
 protocol operations that use module tags defined in that module to
 represent YANG datastore content instead of a list of module names or
 data nodes.

 A server vendor and operator can install module to module tag
 mappings on a server, using the ietf-module-tags YANG module.
 Support for that module is required to utilize the mechanisms defined
 in this document.

 The following tree diagram shows the 4 separate augmentations defined
 in this module:

module: ietf‑module‑tag‑ops
 augment /ncds:get‑data/ncds:input:
 +‑‑‑w module‑tag* tags:tag
 augment /nacm:nacm/nacm:rule‑list/nacm:rule/nacm:rule‑type:
 +‑‑:(module‑tags)
 +‑‑rw module‑tag* tags:tag
 augment /nc:get‑config/nc:input:
 +‑‑‑w module‑tag* tags:tag
 augment /nc:get/nc:input:
 +‑‑‑w module‑tag* tags:tag

2.1. Module Tag Filters

 Data retrieval filters based on module tags allow an operator to
 easily include only data of specific interest, without having to know
 the exact path identifiers for these objects within the datastore.
 Module tags can be pre-defined in the YANG module or YANG Module Tags
 Registry ([I-D.ietf-netmod-module-tags], sec. 7.2). Module tag
 mappings can also be pre-installed by the server vendor, so no
 complex setup is required by an operator to use module tag filters.

 The NETCONF and RESTCONF protocols do not have any way to select
 content by module name at all. In every case, either all content is
 included or specific data node paths have to be provided by the
 client to include the associated data instances.

2.1.1. NETCONF "module-tag" RPC Input Parameter

 The NETCONF protocol has 2 non-NMDA [RFC6241] retrieval operations
 (<get-config> and <get>) and 1 NMDA [RFC8526] retrieval operation
 (<get-data>). This document defines a "module-tag" grouping that is
 used an additional rpc input parameter for each operation. It can be
 applied to all server content that is accessible with these protocol
 operations.

2.1.2. RESTCONF "module-tag" Query Parameter

 The RESTCONF protocol has a GET operation that allows query
 parameters to be provided to modify the retrieval operation. This
 document defines a new query parameter named "module-tag" that has
 the same semantics as the "module-tag" YANG data node definition. It
 also defines a RESTCONF Capability URN for a server to indicate that
 this query parameter is supported.

2.2. NACM "module-tags" Rule Type

 The Network Configuration Access Control Protocol (NACM) [RFC8341]
 allows access control entries to apply to one module or all modules.
 This document defines a new "rule-type" case within a "rule" list
 entry, which allows the access control rule to apply to all the
 modules associated with one or more module tag values.

 This new rule type is intended to replace the "module-name" parameter
 in the "rule" list entry. Module tag filters are intended to be used
 with the default "module-name" value "*" to represent all modules.
 This new "module-tags" rule imposes new restrictions on the rule
 selection, so it is backward compatible with the definitions in
 [RFC8341].

 NACM rules using the "module-tag" parameter within the new
 "module-tags" case can be applied to configuration data, operational
 state, protocol operations and notification events. This rule type
 works exactly the same way as the "module-name" leaf within the
 "rule" list entry, except it applies to all associated module names,
 instead of one.

3. Definitions

3.1. YANG Module

 This module imports definitions from [I-D.ietf-netmod-module-tags],
 [RFC6241], [RFC8341], and [RFC8526].

 <CODE BEGINS> file "ietf-module-tag-ops@2019-03-10.yang"

module ietf‑module‑tag‑ops {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑module‑tag‑ops";

 prefix mto;

import ietf‑module‑tags { prefix tags; }
import ietf‑netconf { prefix nc; }
import ietf‑netconf‑acm { prefix nacm; }
import ietf‑netconf‑nmda { prefix ncds; }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>";

description
 "This module defines enhancements to existing NETCONF
 operations for using module tags to represent
 YANG datastore content.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

Copyright (c) 2019 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license‑info).";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.

revision 2019‑03‑10 {
 description
 "Initial revision.";
 reference
 "draft‑bierman‑netconf‑module‑tag‑ops‑00";
}

grouping module‑tag {
 description
 "Contains a reusable module‑tag filter parameter";

 leaf‑list module‑tag {
 type tags:tag;
 description
 "Include only data nodes that match the module‑tag
 value. A data node is matched to a module tag in the
 following manner:

 1) The module name associated with the data node
 is determined according to the protocol and
 message encoding.

 2) The module name is associated with the specified
 module‑tag if a 'tag' entry exists within a
 /module‑tags/module list entry with the same
 value as this entry, and a 'masked‑tag' entry
 does not exist within the same /module‑tags/module
 list entry.

 3) Each child data node is tested in recursive fashion.
 If the module name changes from the parent node, then
 this procedure is repeated. Once a module name
 does not match, then no further descendant nodes
 are included.

 Multiple module‑tag parameters are combined as a
 logical OR expression. Matching any tag value will
 cause the data node to be included.

 It is not an error to include an unknown module‑tag
 value. Such tag values will simply be treated as a 'false'
 match result, when evaluating the filter.

 If any module‑tag parameters are provided at all,
 and there are no matches found, then no data will be

 returned in the response.

 The output of all module‑tag parameters are
 combined with other retrieval filters in a logical
 AND expression.
 ";
 }
}

augment /ncds:get‑data/ncds:input {
 description
 "Return data only if it matches according
 to the rules specified in the module‑tag parameter.";
 uses module‑tag {
 description
 "The module‑tag values are applied starting at the
 top‑level YANG data node within the target datastore.";
 reference
 "RFC 8526: NETCONF Extensions to Support the
 Network Management Datastore Architecture; Section 3.1.1";
 }
}

augment /nacm:nacm/nacm:rule‑list/nacm:rule/nacm:rule‑type {
 description
 "Match datastore content, protocol operations, or
 notification events only if the associated module name
 matches according to the rules specified in the module‑tag
 parameter.

 If this rule type is used then the associated module‑name
 parameter needs to be omitted or set to the default value.
 Otherwise it will interact with the module‑tag parameter
 and the specified module‑name will only apply if it is
 also included in the module‑tag parameters provided.";

 case module‑tags {
 uses module‑tag {
 description
 "The module‑tag values are applied to the conceptual
 document according to the NACM rules, starting at the
 top‑level YANG data node. This is different in each
 access control enforcement procedure phase:

 - Incoming RPC Message Validation

 The module name of the association protocol operation
 is used to match a module-tag parameter.

 - Data Node Access Validation

 The module name associated with each data node within
 the target datastore, or within non-NMDA operational
 state (in an implementation-specific manner).

 ‑ Outgoing <notification> Authorization:
 The module name of the association notification event
 is used to match a module‑tag parameter.
 ";
 reference
 "RFC 8341: Network Configuration Access Control Model;
 Sections 3.2.4, 3.4.4, 3.5.5, 3.4.6";
 }
 }
}

augment /nc:get‑config/nc:input {
 status deprecated;
 description
 "Return configuration data only if it matches according
 to the rules specified in the module‑tag parameter.";
 uses module‑tag {
 status deprecated;
 description
 "The module‑tag values are applied starting at the
 top‑level YANG data node within the target datastore.";
 reference
 "RFC 6241: Network Configuration Protocol; Section 7.1";
 }
}

augment /nc:get/nc:input {
 status deprecated;
 description
 "Return data only if it matches according
 to the rules specified in the module‑tag parameter.";
 uses module‑tag {
 status deprecated;
 description
 "The module‑tag values are applied starting at the
 top‑level YANG data node within the <running> datastore
 for configuration and the top‑level YANG data nodes
 for all operational state data nodes.";
 reference
 "RFC 6241: Network Configuration Protocol; Section 7.7";
 }
}

 }

 <CODE ENDS>

3.2. RESTCONF Query Parameter

 The "module-tag" parameter can be used as a query parameter in a
 RESTCONF protocol GET operation. This new query parameter can be
 applied to any data resource that is retrievable from the server.
 This is done using the "{+restconf}/data" resource defined in section
 3.3.1 of [RFC8040], or any datastore resource defined in section 3.1
 of [RFC8527].

 The retrieval filtering is processed exactly the same as the
 "module-tag" parameter for NETCONF, defined in Section 3.1.

 The module tag filtering starts with the top-level data nodes, the
 same as for NETCONF. All data nodes specified in the target resource
 are subject to the same module-tag filter test as data nodes within
 the target resource.

3.3. RESTCONF Query Parameter Capability

 The following RESTCONF Capability URI is defined to indicate that the
 module-tag query parameter is supported by a RESTCONF server. It
 MUST be advertised as a "capability" in the /restconf-
 state/capabilities/capability leaf-list.

 The server MUST support the "module-tag" query parameter for GET and
 HEAD methods if this capability is advertised.

4. IANA Considerations

 This document registers one URI as a namespace in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑module‑tag‑ops
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers one YANG module in the "YANG Module Names"
 registry [RFC6020]:

name: ietf‑module‑tag‑ops
namespace: urn:ietf:params:xml:ns:yang:ietf‑module‑tag‑ops
prefix: sx
// RFC Ed.: replace XXXX with RFC number and remove this note
reference: RFC XXXX

 This document registers one RESTCONF Capability URN in the registry
 defined in [RFC8040]:

name: :module‑tag
URN: urn:ietf:params:restconf:capability:module‑tag:1.0
// RFC Ed.: replace XXXX with RFC number and remove this note
reference: RFC XXXX

5. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There is one data node defined in this YANG module that is
 writable/creatable/deletable (i.e., "config true", which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)

 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /nacm/rule-list/rule/module-tag

 This object allows an access control rule to be configured based on a
 module tag mapping. This object is vurnerable to modifications to
 the /module-tags configuration within the server. Care must be taken
 not to allow users to modify the /module-tags contents in a way that
 will expose protocol access in an unauthorized manner.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /nacm/rule-list/rule/module-tag

 This object allows an access control rule to be configured based on a
 module tag mapping. Allowing read access to this object can expose
 the access control rule details.

6. References

6.1. Normative References

 [I-D.ietf-netmod-module-tags]

 Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", draft-ietf-netmod-module-tags-07 (work in
 progress), March 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8526]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

 [RFC8527]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "RESTCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8527,
 DOI 10.17487/RFC8527, March 2019,
 <https://www.rfc-editor.org/info/rfc8527>.

6.2. Informative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8348]
 Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
 YANG Data Model for Hardware Management", RFC 8348,
 DOI 10.17487/RFC8348, March 2018,
 <https://www.rfc-editor.org/info/rfc8348>.

Appendix A. Examples

A.1. NETCONF <get-data> Example

 This example uses the module tag value "ietf:hardware" which is
 defined in the YANG Module Tags registry. It is assumed in this case
 to be mapped on the server to the "ietf-hardware" module defined in
 [RFC8348].

 Note that some lines are incorrectly wrapped in the examples below
 for display purposes only.

 The server might send the following <get-data> request on the
 operational state datastore:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 <datastore>ds:operational</datastore>
 <mto:module‑tag
 xmlns:mto="urn:ietf:params:xml:ns:yang:ietf‑module‑tag‑ops">
 ietf:hardware
 </mto:module‑tag>
 </get‑data>
</rpc>

 The server might send the following reply:

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda">
 <hw:hardware xmlns:hw="urn:ietf:params:xml:ns:yang:ietf‑hardware">
 <!‑‑ rest of descendant nodes that match the module‑tag ‑‑>
 </hw:hardware>
 </data>
</rpc‑reply>

A.2. RESTCONF GET Example

 This example uses the same module-tag and server assumptions as
 Appendix A.1.

 The client might send the following request:

GET /restconf/ds/ietf‑datastores:operational?module‑tag=ietf:hardware\
 HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows. The contents of the "hardware"
 container are omitted for brevity.

HTTP/1.1 200 OK
Date: Thu, 26 Feb 2019 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

 {

 "ietf-hardware:hardware": {

 }
}

A.3. NACM Example

 In this example, a module tag rule is created to deny guests all
 access to hardware information.

 Note that some lines are incorrectly wrapped in the example below for
 display purposes only.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑acl</name>
 <group>guest</group>
 <rule>
 <name>deny‑hw</name>
 <mto:module‑tag
 xmlns:mto="urn:ietf:params:xml:ns:yang:ietf‑module‑tag‑ops">
 ietf:hardware</mto:module‑tag>
 <access‑operations>*</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow guests to access any hardware information
 </comment>
 </rule>
 </rule‑list>
</nacm>

Author's Address

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

draft-borchert-sidrops-bgpsec-state-unverified-00 - BGPsec Validation State Unverified

draft-borchert-sidrops-bgpsec-state-unverified-00 - BGPsec Validation State Unve

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Internet-Draft

Updates: 8205 (if approved)

Intended status: Standards Track

Expires: April 26, 2019

O. Borchert

D. Montgomery

USA NIST

October 23, 2018

BGPsec Validation State Unverified

draft-borchert-sidrops-bgpsec-state-unverified-00

Abstract

 In case operators decide to delay BGPsec path validation, none of the
 available states do properly represent this decision. This document
 introduces "Unverified" as a well-defined validation state which
 allows to properly identify a non-evaluated BGPsec routes as not
 verified.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Suggested Reading

	3. Initializing BGPsec route
	 3.1. Changes to RFC 8205

	3. Usage Considerations

	4. Security Considerations

	5. IANA Considerations

	6. References
	 6.1. Normative References

	 8.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 BGPsec path validation [RFC8205] provides well defined validation
 states. Though, there are instances in which BGPsec routes are not
 immediately validated upon receiving them. This could be due to
 configuration where the operator chose to perform "Lazy Evaluation"
 or due to instances where router configuration could enable the
 operator to delay route validation during situations of unexpectedly
 high loads such as DDOS attacks or others. Here, the absence of a
 well-defined initialization state requires to use a validation state,
 that is otherwise well-defined and therefore "waters" down the
 meaning of that state.

 Hence, this document updates the RFC 8205 by adding the proposed
 validation state "Unverified".

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Suggested Reading

 It is assumed that the reader understands BGP [RFC4271] and BGPsec
 Protocol Specification [RFC8205]

3. Initializing BGPsec route

 This document introduces the validation state "Unverified" to be used
 for BGPsec routes that are not evaluated otherwise.

 To allow proper initialization the following state is introduced:

 o Unverified: Specifies the state of a BGPsec route where no
 evaluation has been performed.

3.1. Changes to RFC 8205

 The BGPsec protocol specification as specified in [RFC8205] suffers
 the limitation described above in this document. [Section 5.1] of
 RFC 8205 specifies two states for BGPsec path validation:

 The validation procedure results in one of two states:

 'Valid' and 'Not Valid'.

 Also, [Section 5.1] makes it clear that:

 BGPsec validation need only be performed at the eBGP edge.

 This document updates RFC 8205 in such that:

 BGPsec routes MUST be initialized using the BGPsec validation state
 "Unverified" until proper evaluation of the BGPsec route has been
 performed.

3. Usage Considerations

 The validation state "Unverified" allows to distinguish between
 evaluated BGPsec routes and non-evaluated BGPsec routes. This allows
 the operator to create policies to treat such routes different from
 routes labeled with either validation state "Valid" or "Not Valid"

4. Security Considerations

 This document introduces no new security concerns beyond what is
 described in [RFC8205]

5. IANA Considerations

 This document has no IANA actions.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174, DOI
 10.17487/RFC8174, May 2017, <https://www.rfc-
 editor.org/info/rfc8174>.

 [RFC8205]
 Lepinski, M., Ed., and K. Sriram, Ed., "BGPsec Protocol
 Specification", RFC 8205, DOI 10.17487/RFC8205, September
 2017, <https://www.rfc-editor.org/info/rfc8205>.

8.2. Informative References

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI
 10.17487/RFC4271, January 2006, <https://www.rfc-
 editor.org/info/rfc4271>.

Acknowledgements

 The authors would like to acknowledge the valuable review and
 suggestions from K. Sriram on this document.

Authors' Addresses

Oliver Borchert
National Institute of Standards and Technology (NIST)
100 Bureau Drive
Gaithersburg, MD 20899
United States of America

 Email: oliver.borchert@nist.gov

Douglas Montgomery
National Institute of Standards and Technology (NIST)
100 Bureau Drive
Gaithersburg, MD 20899
United States of America

 Email: dougm@nist.gov

draft-borchert-sidrops-rpki-state-unverified-01 - RPKI Route Origin Validation State Unverified

draft-borchert-sidrops-rpki-state-unverified-01 - RPKI Route Origin Validation S

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Internet-Draft

Updates: 6811, 8097 (if approved)

Intended status: Standards Track

Expires: August 18, 2019

O. Borchert

D. Montgomery

USA NIST

February 14, 2019

RPKI Route Origin Validation State Unverified

draft-borchert-sidrops-rpki-state-unverified-01

Abstract

 In case operators decide not to evaluate BGP route prefixes according
 to RPKI route origin validation (ROV), none of the available states
 as specified in RFC 6811 do properly represent this decision. This
 document introduces "Unverified" as well-defined validation state
 which allows to properly identify route prefixes as not evaluated
 according to RPKI route origin validation.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Suggested Reading

	3. Initializing route prefixes
	 3.1. Update to RFC 6811

	 3.2. Update to RFC 8097

	3. Usage Considerations

	4. Security Considerations

	5. IANA Considerations

	6. References
	 6.1. Normative References

	 8.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 Prefix origin validation provides well-defined validation states.
 Though, there are instances in which no evaluation of a route prefix
 is performed, not through RPKI route origin validation [RFC6811],
 signaling via the extended community string as specified in
 [RFC8097], or operator configuration. In these circumstances RFC 6811
 specifies the implementation SHOULD initialize the validation state
 of such route to "NotFound". Here, the absence of a well-defined
 validation state for a route prefix not evaluated, requires the usage
 of a state otherwise reserved as outcome of the evaluation of such.
 This "waters" down the meaning of the used state. The specification
 of a proper validation state that allows identifying non-evaluated
 routes, becomes of essence once an operator decides to write policies
 on the validation state "NotFound". A route prefix labeled "NotFound"
 cannot be considered same as an unverified route prefix.

 Hence, this document updates RFC 6811 and RFC 8097 by adding the
 proposed validation state "Unverified".

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Suggested Reading

 It is assumed that the reader understands BGP [RFC4271], the RPKI
 [RFC6480], Route Origin Authorizations (ROAs) [RFC6482], RPKI-based
 Prefix Validation [RFC6811], BGP Prefix Origin Validation State
 Extended Community [RFC8097], Clarifications to BGP Origin Validation
 Based on Resource Public Key Infrastructure (RPKI) [RFC8481]

3. Initializing route prefixes

 This document introduces the validation state "Unverified" to be used
 for route prefixes that are not evaluated through either operator
 configuration, RPKI route origin validation, or other means such as
 receiving a signaled validation state via the extended community
 string. To allow proper initialization the following state is
 introduced:

 o Unverified: Specifies the state of a route prefix on which no
 evaluation has been performed.

3.1. Update to RFC 6811

 RFC 6811 specifies that:

 If validation is not performed on a Route, the implementation
 SHOULD initialize the validation state of such a route to
 "NotFound".

 This document specifies that:

 If no evaluation of a route prefix is performed in any form, the
 implementation MUST initialize the validation state of such a route
 to "Unverified".

 This removes the necessity to initialize the route with any of the
 states "Valid", "Invalid", or "NotFound" and therefore does not
 "water-down" the meaning of such.

3.2. Update to RFC 8097

 As specified in RFC 8097:

 If the router is configured to support the extensions defined in
 this document" - (RFC 8097) - ", it SHOULD attach the origin
 validation state extended community to BGP UPDATE messages sent to
 IBGP peers by mapping the computed validation state in the last
 octet of the extended community.

 The missing part here is what to do with route prefixes not evaluated
 and no validation state was assigned. At this point the only solution
 is to omit the extended community for such routes. If the usage of
 the extended community would have been negotiated during the BGP OPEN
 MESSAGE the receiver would be able to determine that the sender did
 not evaluate the route in any form. But this is not the case, so a
 receiver does not know if the sender is RPKI capable and chose not to
 attach the origin validation state to the BGP UPDATE or the route did
 not have any validation state assigned.

 Hence, this document specifies for all routes that are labeled as
 "Unverified" to attach the "unverified" state extended community to
 BGP UPDATE messages send to IBGP peers by mapping the computed
 validation state in the last octet of the extended community.

 AS specified in the table below, this document adds the value
 "unverified = 3" to the list of acceptable values.

 The value on the protocol

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Value | Meaning |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0	Lookup result = "valid"
1	Lookup result = "not found"
2	Lookup result = "invalid"
3	Lookup result = "unverified"
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

3. Usage Considerations

 The well-defined validation state "Unverified" allows to distinguish
 between evaluated routes and non-evaluated routes. This allows the
 operator to create policies to treat such route prefixes different
 from route prefixes labeled with one of the validation states
 "Valid", "NotFound", or "Invalid".

4. Security Considerations

 This document introduces no new security concerns beyond what is
 described in [RFC6811] and [RFC8097]

5. IANA Considerations

 This document has no IANA actions.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC6811]
 Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.
 Austein, "BGP Prefix Origin Validation", RFC 6811, DOI
 10.17487/RFC6811, January 2013, <https://www.rfc-
 editor.org/info/rfc6811>.

 [RFC8097]
 Mohapatra, P., Patel, K., Scudder, J., Ward, D., and R.
 Bush, "BGP Prefix Origin Validation State Extended
 Community", RFC 8097, DOI 10.17487/RFC8097, March 2017,
 <https://www.rfc-editor.org/info/rfc8097>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174, DOI
 10.17487/RFC8174, May 2017, <https://www.rfc-
 editor.org/info/rfc8174>.

8.2. Informative References

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI
 10.17487/RFC4271, January 2006, <https://www.rfc-
 editor.org/info/rfc4271>.

 [RFC6480]
 Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

 [RFC6482]
 Lepinski, M., Kent, S., and D. Kong, "A Profile for Route
 Origin Authorizations (ROAs)", RFC 6482, DOI
 10.17487/RFC6482, February 2012, <https://www.rfc-
 editor.org/info/rfc6482>.

 [RFC8481]
 Bush, R., "Clarifications to BGP Origin Validation Based
 on Resource Public Key Infrastructure (RPKI)", RFC 8481,
 DOI 10.17487/RFC8481, September 2018, <https://www.rfc-
 editor.org/info/rfc8481>.

Acknowledgements

 The authors would like to acknowledge the valuable review and
 suggestions from K. Sriram on this document.

Authors' Addresses

Oliver Borchert
National Institute of Standards and Technology (NIST)
100 Bureau Drive
Gaithersburg, MD 20899
United States of America

 Email: oliver.borchert@nist.gov

Douglas Montgomery
National Institute of Standards and Technology (NIST)
100 Bureau Drive
Gaithersburg, MD 20899
United States of America

 Email: dougm@nist.gov

draft-boucadair-netmod-softwire-iftunnel-00 - A Tunnel Extension to the Interface Management YANG Module

draft-boucadair-netmod-softwire-iftunnel-00 - A Tunnel Extension to the Interfac

Index
Back 5
Prev
Next
Forward 5

netmod

Internet-Draft

Intended status: Standards Track

Expires: April 22, 2019

M. Boucadair

Orange

October 19, 2018

A Tunnel Extension to the Interface Management YANG Module

draft-boucadair-netmod-softwire-iftunnel-00

Abstract

 This document specifies an extension the Interface Management YANG
 module.

Editorial Note (To be removed by RFC Editor)

 Please update these statements in the document with the RFC number to
 be assigned to this document:

 o "This version of this YANG module is part of RFC XXXX;"

 o "RFC XXXX: A Tunnel Extension to the Interface Management YANG
 Module";

 o "reference: RFC XXXX"

 Please update the "revision" date of the YANG module.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. IANA Tunnel Type YANG Module

	3. Tunnel Extension to the Interface YANG Module

	4. Security Considerations

	5. IANA Considerations

	6. Acknowledgements

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Example

	Author's Address

1. Introduction

 This document specifies the initial version of an IANA-maintained
 module to identify a collection of tunnel types assigned by IANA
 (Section 2). Furthermore, the document augments the Interface YANG
 module [RFC8343] with a new parameter which is meant to indicate the
 type of a given tunnel (Section 3). The tree structure of this
 extension is shown below:

module: ietf‑interface‑tunnel
 augment /if:interfaces/if:interface:
 +‑‑rw tunnel‑type? identityref

 Tunnel-specific extensions may be added to the Interface module as a
 function of the tunnel type. A sample example is provided in
 Appendix A. It is not the intent of this document to define tunnel-
 specific extension for every tunnel encapsulation technology; those
 are discussed in dedicated document such as [I-D.ietf-softwire-yang].
 This document uses the common YANG types defined in [RFC6991] and
 adopts the Network Management Datastore Architecture (NMDA).

 The terminology for describing YANG modules is defined in [RFC7950].
 The meaning of the symbols in tree diagrams is defined in [RFC8340].

2. IANA Tunnel Type YANG Module

 <CODE BEGINS> file "iana-tunnel-type@2018-10-19.yang"

module iana‑tunnel‑type {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana‑tunnel‑type";
 prefix iana‑tunnel‑type;

 import iana‑if‑type {
 prefix ift;
 reference
 "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IANA";
 contact
 "Internet Assigned Numbers Authority

 Postal: ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094‑2536
 United States of America
 Tel: +1 310 301 5800
 <mailto:iana@iana.org>";

 description
 "This module contains a collection of YANG data types defined
 by IANA and used for tunnel types.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 revision 2018‑10‑19 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A Tunnel Extension to the Interface
 Management YANG Module";
 }

 identity other {
 base ift:tunnel;
 description
 "None of the following values.";
 }
 identity direct {
 base ift:tunnel;
 description
 "No intermediate header.";
 }
 identity gre {
 base ift:tunnel;
 description
 "GRE encapsulation.";
 }
 identity minimal {
 base ift:tunnel;
 description
 "Minimal encapsulation.";
 }
 identity l2tp {
 base ift:tunnel;
 description
 "L2TP encapsulation.";
 }
 identity pptp {
 base ift:tunnel;
 description
 "PPTP encapsulation.";
 }
 identity l2f {
 base ift:tunnel;
 description
 "L2F encapsulation.";
 }
 identity udp {
 base ift:tunnel;
 description

 "UDP encapsulation.";
 }
 identity atmp {
 base ift:tunnel;
 description
 "ATMP encapsulation.";
 }
 identity msdp {
 base ift:tunnel;
 description
 "MSDP encapsulation.";
 }
 identity sixtofour {
 base ift:tunnel;
 description
 "6to4 encapsulation.";
 }
 identity sixoverfour {
 base ift:tunnel;
 description
 "6over4 encapsulation.";
 }
 identity isatap {
 base ift:tunnel;
 description
 "ISATAP encapsulation.";
 }
 identity teredo {
 base ift:tunnel;
 description
 "Teredo encapsulation.";
 }
 identity iphttps {
 base ift:tunnel;
 description
 "IP over HTTPS.";
 }
 identity softwiremesh {
 base ift:tunnel;
 description
 "softwire mesh tunnel.";
 }
 identity dslite {
 base ift:tunnel;
 description
 "DS‑Lite tunnel.";
 }
}

 <CODE ENDS>

3. Tunnel Extension to the Interface YANG Module

 The ietf-interface-tunnel module imports the modules defined in
 [RFC7224] and [RFC8343].

<CODE BEGINS> file "ietf-interface-tunnel@2018-10-19.yang"

module ietf‑interface‑tunnel {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑interface‑tunnel";
 prefix ietf‑interface‑tunnel;

 import ietf‑interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }

 import iana‑if‑type {
 prefix ift;
 reference
 "RFC 7224: IANA Interface Type YANG Module";
 }

 organization "IETF xxx Working Group";

 contact

"WG Web: <https://datatracker.ietf.org/wg/xxxx/>
 WG List: <mailto:xxxx@ietf.org>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>";

 description

 "This module is a YANG module for associating a tunnel type with
 tunnel interfaces.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision 2018‑10‑19 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A Tunnel Extension to the Interface
 Management YANG Module";
}

augment "/if:interfaces/if:interface" {
 when 'derived‑from(if:type, "ift:tunnel")';
 description
 "Augments Interface module with tunnel‑specific parameters.

 IANA interface types are maintained at this registry:
 https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib.

 tunnel (131), ‑‑ Encapsulation interface";

 leaf tunnel‑type {
 type identityref {
 base ift:tunnel;
 }
 description
 "Indicates the type of the tunnel. It corresponds
 to the IANAtunnelType.

 IANA tunnel types are maintained at this registry:
 https://www.iana.org/assignments/ianaiftype‑mib/ianaiftype‑mib.";
 }
 }
}
<CODE ENDS>

4. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via network management protocols such as NETCONF [RFC6241] or
 RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport
 layer, and the mandatory-to-implement secure transport is Secure
 Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the
 mandatory-to-implement secure transport is TLS [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 All data nodes defined in the YANG module which can be created,
 modified and deleted (i.e., config true, which is the default) are
 considered sensitive. Write operations (e.g., edit-config) applied
 to these data nodes without proper protection can negatively affect
 network operations.

5. IANA Considerations

 This document requests IANA to register the following URIs in the
 "IETF XML Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑interface‑tunnel
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:iana‑tunnel‑type
Registrant Contact: IANA.
XML: N/A; the requested URI is an XML namespace.

 This document requests IANA to register the following YANG modules in
 the "YANG Module Names" registry [RFC7950].

name: ietf‑interface‑tunnel
namespace: urn:ietf:params:xml:ns:yang:ietf‑interface‑tunnel
prefix: ietf‑interface‑tunnel
reference: RFC XXXX

name: iana‑tunnel‑type
namespace: urn:ietf:params:xml:ns:yang:iana‑tunnel‑type
prefix: iana‑tunnel‑type
reference: RFC XXXX

 This document defines the initial version of the IANA-maintained
 iana-tunnel-type YANG module. IANA is requested to add this note:

 Tunnel type values must not be directly added to the iana-tunnel-
 type YANG module. They must instead be respectively added to the
 "tunnelType" sub-registry (under "ifType definitions" registry).

 When an tunnel type is added to the "tunnelType" registry, a new
 "identity" statement must be added to the iana-tunnel-type YANG
 module. The name of the "identity" is the same as the corresponding
 enumeration in the IANAifType-MIB. The following substatements to
 the "identity" statement should be defined:

"base": Contains the value of the tunnel type in lowercase.

 "description": Replicate the description from the registry.

"reference": Replicate the reference from the registry and add the
 title of the document.

 Unassigned or reserved values are not present in the module.

 When the iana-tunnel-type YANG module is updated, a new "revision"
 statement must be added in front of the existing revision statements.

 IANA is requested to add this note to "tunnelType" registry:

 When this registry is modified, the YANG module iana-tunnel-type
 must be updated as defined in [RFCXXXX].

6. Acknowledgements

 Many thanks to Tom Petch.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7224]
 Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/info/rfc7224>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-softwire-yang]

 Cui, Y., Farrer, I., Boucadair, M., Sun, Q., Sun, L.,
 Zechlin, S., and R. Asati, "YANG Modules for IPv4-in-IPv6
 Address plus Port Softwires", draft-ietf-softwire-yang-06
 (work in progress), June 2018.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Example

 The following example illustrate how the interface YANG module can be
 augmented with tunnel-specific paramters. In this example, the
 module is augmented with 'remote-endpoint' of the tunnel. A tree
 structure is also provided below:

module: ietf‑extension‑example
 augment /if:interfaces/if:interface:
 +‑‑rw remote‑endpoint? inet:ipv6‑address

 The 'extension-example' module imports the modules defined in
 [RFC6991] and [RFC8343] in addition to the those defined in this
 document.

 <CODE BEGINS> file "ietf-extension-example@2018-10-19.yang"

 module ietf-extension-example {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-extension-example";
 prefix example;

import ietf‑inet‑types {
 prefix inet;
 reference
 "Section 4 of RFC 6991";
}

import ietf‑interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
}

import iana‑tunnel‑type {
 prefix iana‑tunnel‑type;
 reference
 "RFC XXXX: A Tunnel Extension to the Interface Management
 YANG Module";
}

import ietf‑interface‑tunnel {
 prefix ift;
 reference
 "RFC XXXX: A Tunnel Extension to the Interface Management
 YANG Module";
}

 organization "IETF xxxx Working Group";

 contact

"WG Web: <https://datatracker.ietf.org/wg/xxx/>
 WG List: <mailto:xxx@ietf.org>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>";

 description

 "This is an exampel YANG module.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision 2018‑10‑19 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A Tunnel Extension to the Interface Management
 YANG Module";
 }

 augment "/if:interfaces/if:interface" {
 when "derived‑from(ift:tunnel‑type, 'iana‑tunnel‑type:gre')";
 description
 "Augments Interface module with specific tunnel parameters.";

 leaf remote‑endpoint {
 type inet:ipv6‑address;
 description
 "IPv6 address of the local GRE endpoint.";
 }
 }
}
<CODE ENDS>

Author's Address

Mohamed Boucadair
Orange
Rennes 35000
France

 Email: mohamed.boucadair@orange.com

draft-boucadair-radext-tcpm-converter-01 - RADIUS Extensions for 0-RTT TCP Converters

draft-boucadair-radext-tcpm-converter-01 - RADIUS Extensions for 0-RTT TCP Conve

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 21, 2019

M. Boucadair

C. Jacquenet

Orange

October 18, 2018

RADIUS Extensions for 0-RTT TCP Converters

draft-boucadair-radext-tcpm-converter-01

Abstract

 Because of the lack of Multipath TCP (MPTCP) support at the server
 side, some service providers now consider a network-assisted model
 that relies upon the activation of a dedicated function called
 Converters. Network-assisted MPTCP deployment models are designed to
 facilitate the adoption of MPTCP for the establishment of multi-path
 communications without making any assumption about the support of
 MPTCP by the communicating peers. Converters located in the network
 are responsible for establishing multi-path communications on behalf
 of endpoints, thereby taking advantage of MPTCP capabilities to
 achieve different goals that include (but are not limited to)
 optimization of resource usage (e.g., bandwidth aggregation), of
 resiliency (e.g., primary/backup communication paths), and traffic
 offload management.

 This document specifies a new Remote Authentication Dial-In User
 Service (RADIUS) attributes that carry the IP addresses that will be
 returned to authorized users to reach one or multiple Converters.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. CONVERT RADIUS Attributes
	 2.1. CONVERT-IPv4

	 2.2. CONVERT-IPv6

	3. Sample Use Case

	4. Security Considerations

	5. Table of Attributes

	6. IANA Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 One of the promising deployment scenarios for Multipath TCP (MPTCP,
 [RFC6824]) is to enable a host or a Customer Premises Equipment (CPE)
 connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
 usage of such resources. A deployment scenario relies on MPTCP
 Conversion Points (Converters). A Converter terminates the MPTCP
 sessions established from a host/CPE, before redirecting traffic into
 a legacy TCP session [RFC0793]. Further Network-Assisted MPTCP
 deployment and operational considerations are discussed in
 [I-D.nam-mptcp-deployment-considerations].

 Figure 1 shows a deployment example of the Converters to assist
 establishing MPTCP connections.

+‑‑‑‑‑‑‑‑‑‑‑‑+ _‑‑‑‑‑‑‑‑_ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | (LTE) | |
| Host +=======+ +===+ Backbone |
| | (_ _) | Network |
| | (_______) |+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+|
| | IP Network #1 || Converter ||‑‑‑‑‑‑> Internet
		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
	IP Network #2			
	‑‑‑‑‑‑‑‑			
	(DSL)			
+=======+ +==+				
	(_ _)			
+‑‑‑‑‑‑‑‑‑‑‑‑+ (_______) +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: "Network-Assisted" MPTCP Design

 [I-D.ietf-tcpm-converters] specifies the Converter as a function that
 is installed by a network operator to aid the deployment of TCP
 extensions and to provide the benefits of such extensions to clients.
 A Transport Converter supports one or more TCP extensions.

 Within this document, a Converter refers to a function that
 terminates a transport flow and relays all data received over it over
 another transport flow. This element is located upstream in the
 network. One or multiple Converters can be deployed in the network
 side. The Converter achieves the following:

 o Listen for client sessions;

 o Receive from a client the address of the final target server;

 o Setup a session to the final server;

 o Relay control messages and data between the client and the server;

 o Perform access controls according to local policies.

 The Converter element is located in the network. One or multiple
 Converters can be deployed.

 This document specifies two new Remote Authentication Dial-In User
 Service (RADIUS, [RFC2865]) attributes that carry the Converter IP
 address list (Section 2). In order to accommodate both IPv4 and IPv6
 deployment contexts, and given the constraints in Section 3.4 of
 [RFC6158], two attributes are specified. Note that one or multiple
 IPv4 and/or IPv6 addresses may be returned to a requesting CPE. A
 sample use case is described in Section 3.

 This document assumes that the Converter(s) reachability information
 can be stored in Authentication, Authorization, and Accounting (AAA)
 servers while the CPE configuration is usually provided by means of
 DHCP ([RFC2131][RFC3315]). Further Network-Assisted MPTCP deployment
 and operational considerations are discussed in
 [I-D.nam-mptcp-deployment-considerations].

 This specification assumes a Converter is reachable through one or
 multiple IP addresses. As such, a list of IP addresses can be
 communicated via RADIUS. Also, it assumes the various network
 attachments provided to an MPTCP-enabled CPE are managed by the same
 administrative entity.

 This document adheres to [RFC8044] for defining the new attributes.

2. CONVERT RADIUS Attributes

2.1. CONVERT-IPv4

 Description

 The RADIUS CONVERT-IPv4 attribute contains the IPv4 address of a
 Converter that is assigned to a CPE.

 Because multiple Converters IP addresses may be provisioned to an
 authorised CPE (that is a CPE entitled to solicit the resources of
 a Converter), multiple instances of the CONVERT-IPv4 attribute MAY
 be included; each instance of the attribute carries a distinct IP
 address.

 Both CONVERT-IPv4 and CONVERT-IPv6 attributes MAY be present in a
 RADIUS message.

 The CONVERT-IPv4 Attribute MAY appear in a RADIUS Access-Accept
 packet. It MAY also appear in a RADIUS Access-Request packet as a
 hint to the RADIUS server to indicate a preference, although the
 server is not required to honor such a hint.

 The CONVERT-IPv4 Attribute MAY appear in a CoA-Request packet.

 The CONVERT-IPv4 Attribute MAY appear in a RADIUS Accounting-
 Request packet.

 The CONVERT-IPv4 Attribute MUST NOT appear in any other RADIUS
 packet.

 Type

 TBA (see Section 6).

 Length

 6

 Data Type

 The attribute CONVERT-IPv4 is of type ip4addr (Section 3.3 of
 [RFC8044]).

 Value

 This field includes an IPv4 address (32 bits) of the Converter.

 The CONVERT-IPv4 attribute MUST NOT include multicast and host
 loopback addresses [RFC6890]. Anycast addresses are allowed to be
 included in a CONVERT-IPv4 attribute.

2.2. CONVERT-IPv6

 Description

 The RADIUS CONVERT-IPv6 attribute contains the IPv6 address of a
 Converter that is assigned to a CPE.

 Because multiple Converter IP addresses may be provisioned to an
 authorised CPE (that is a CPE entitled to solicit the resources of
 a Converter), multiple instances of the CONVERT-IPv6 attribute MAY
 be included; each instance of the attribute carries a distinct IP
 address.

 Both CONVERT-IPv4 and CONVERT-IPv6 attributes MAY be present in a
 RADIUS message.

 The CONVERT-IPv6 Attribute MAY appear in a RADIUS Access-Accept
 packet. It MAY also appear in a RADIUS Access-Request packet as a
 hint to the RADIUS server to indicate a preference, although the
 server is not required to honor such a hint.

 The CONVERT-IPv6 Attribute MAY appear in a CoA-Request packet.

 The CONVERT-IPv6 Attribute MAY appear in a RADIUS Accounting-
 Request packet.

 The CONVERT-IPv6 Attribute MUST NOT appear in any other RADIUS
 packet.

 Type

 TBA (see Section 6).

 Length

 18

 Data Type

 The attribute CONVERT-IPv6 is of type ip6addr (Section 3.9 of
 [RFC8044]).

 Value

 This field includes an IPv6 address (128 bits) of the Converter.

 The CONVERT-IPv6 attribute MUST NOT include multicast and host
 loopback addresses [RFC6890]. Anycast addresses are allowed to be
 included in an CONVERT-IPv6 attribute.

3. Sample Use Case

 This section does not aim to provide an exhaustive list of deployment
 scenarios where the use of the RADIUS CONVERT-IPv6 and CONVERT-IPv4
 attributes can be helpful. Typical deployment scenarios are
 described, for instance, in [RFC6911].

 Figure 2 shows an example where a CPE is assigned a Converter. This
 example assumes that the Network Access Server (NAS) embeds both
 RADIUS client and DHCPv6 server capabilities.

 CPE NAS AAA
DHCPv6 client DHCPv6 server server
 | | |
 |‑‑‑‑‑‑‑‑‑DHCPv6 Solicit‑‑‑‑‑‑‑‑>| |
 | |‑‑‑‑Access‑Request ‑‑‑‑>|
 | | |
 | |<‑‑‑‑Access‑Accept‑‑‑‑‑‑|
 | | CONVERT‑IPv6 |
 |<‑‑‑‑‑‑‑DHCPv6 Advertisement‑‑‑‑| |
 | (OPTION_V6_CONVERT) | |
 | | |
 |‑‑‑‑‑‑‑‑‑DHCPv6 Request‑‑‑‑‑‑‑‑>| |
 | | |
 |<‑‑‑‑‑‑‑‑‑DHCPv6 Reply‑‑‑‑‑‑‑‑‑‑| |
 | (OPTION_V6_CONVERT) | |

 DHCPv6 RADIUS

 Figure 2: Sample Flow Example (1)

 Upon receipt of the DHCPv6 Solicit message from a CPE, the NAS sends
 a RADIUS Access-Request message to the AAA server. Once the AAA
 server receives the request, it replies with an Access-Accept message
 (possibly after having sent a RADIUS Access-Challenge message and
 assuming the CPE is entitled to connect to the network) that carries
 a list of parameters to be used for this session, and which include
 Converter reachability information (namely a list of IP addresses).

 The content of the CONVERT-IPv6 attribute is then used by the NAS to
 complete the DHCPv6 procedure that the CPE initiated to retrieve
 information about the Converter it has been assigned.

 Upon change of the Converter assigned to a CPE, the RADIUS server
 sends a RADIUS CoA message [RFC5176] that carries the RADIUS CONVERT-
 IPv6 attribute to the NAS. Once that message is accepted by the NAS,
 it replies with a RADIUS CoA ACK message. The NAS replaces the old
 Converter with the new one.

 Figure 3 shows another example where a CPE is assigned a Converter,
 but the CPE uses DHCPv6 to retrieve a list of IP addresses of a
 Converter.

 CPE NAS AAA
DHCPv4 client DHCPv4 server server
 | | |
 |‑‑‑‑‑‑‑‑‑‑‑DHCPDISCOVER‑‑‑‑‑‑‑‑‑‑>| |
 | |‑‑‑‑Access‑Request ‑‑‑‑>|
 | | |
 | |<‑‑‑‑Access‑Accept‑‑‑‑‑‑|
 | | CONVERT‑IPv4 |
 |<‑‑‑‑‑‑‑‑‑‑‑‑DHCPOFFER‑‑‑‑‑‑‑‑‑‑‑‑| |
 | (OPTION_V4_CONVERT) | |
 | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑DHCPREQUEST‑‑‑‑‑‑‑‑‑‑>| |
 | (OPTION_V4_CONVERT) | |
 | | |
 |<‑‑‑‑‑‑‑‑‑‑‑DHCPACK‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | (OPTION_V4_CONVERT) | |

 DHCPv4 RADIUS

 Figure 3: Sample Flow Example (2)

 Some deployments may rely on the mechanisms defined in [RFC4014] or
 [RFC7037], which allows a NAS to pass attributes obtained from a
 RADIUS server to a DHCP server.

4. Security Considerations

 RADIUS-related security considerations are discussed in [RFC2865].

 Generic Convert security considerations are discussed in
 [I-D.ietf-tcpm-converters].

 MPTCP-related security considerations are discussed in [RFC6824] and
 [RFC6181].

 Traffic theft is a risk if an illegitimate Converter is inserted in
 the path. Indeed, inserting an illegitimate Converter in the
 forwarding path allows to intercept traffic and can therefore provide
 access to sensitive data issued by or destined to a host. To
 mitigate this threat, secure means to discover a Converter should be
 enabled.

5. Table of Attributes

 The following table provides a guide as what type of RADIUS packets
 that may contain these attributes, and in what quantity.

Access‑ Access‑ Access‑ Challenge Acct. # Attribute
Request Accept Reject Request
 0+ 0+ 0 0 0+ TBA CONVERT‑IPv4
 0+ 0+ 0 0 0+ TBA CONVERT‑IPv6

CoA‑Request CoA‑ACK CoA‑NACK # Attribute
 0+ 0 0 TBA CONVERT‑IPv4
 0+ 0 0 TBA CONVERT‑IPv6

 The following table defines the meaning of the above table entries:

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in packet.

6. IANA Considerations

 IANA is requested to assign two new RADIUS attribute types from the
 IANA registry "Radius Attribute Types" located at
 http://www.iana.org/assignments/radius-types:

 CONVERT-IPv4 (TBA)

 CONVERT-IPv6 (TBA)

7. Acknowledgements

 Thanks to Alan DeKok for the comments.

8. References

8.1. Normative References

 [I-D.ietf-tcpm-converters]

 Bonaventure, O., Boucadair, M., Gundavelli, S., and S.
 Seo, "0-RTT TCP Convert Protocol", draft-ietf-tcpm-
 converters-02 (work in progress), July 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC6158]
 DeKok, A., Ed. and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, DOI 10.17487/RFC6158, March 2011,
 <https://www.rfc-editor.org/info/rfc6158>.

 [RFC6890]
 Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,
 RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <https://www.rfc-editor.org/info/rfc6890>.

 [RFC8044]
 DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <https://www.rfc-editor.org/info/rfc8044>.

8.2. Informative References

 [I-D.nam-mptcp-deployment-considerations]

 Boucadair, M., Jacquenet, C., Bonaventure, O., Henderickx,
 W., and R. Skog, "Network-Assisted MPTCP: Use Cases,
 Deployment Scenarios and Operational Considerations",
 draft-nam-mptcp-deployment-considerations-01 (work in
 progress), December 2016.

 [RFC0793]
 Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2131]
 Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC3315]
 Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC4014]
 Droms, R. and J. Schnizlein, "Remote Authentication Dial-
 In User Service (RADIUS) Attributes Suboption for the
 Dynamic Host Configuration Protocol (DHCP) Relay Agent
 Information Option", RFC 4014, DOI 10.17487/RFC4014,
 February 2005, <https://www.rfc-editor.org/info/rfc4014>.

 [RFC4908]
 Nagami, K., Uda, S., Ogashiwa, N., Esaki, H., Wakikawa,
 R., and H. Ohnishi, "Multi-homing for small scale fixed
 network Using Mobile IP and NEMO", RFC 4908,
 DOI 10.17487/RFC4908, June 2007,
 <https://www.rfc-editor.org/info/rfc4908>.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC6181]
 Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2011,
 <https://www.rfc-editor.org/info/rfc6181>.

 [RFC6824]
 Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6911]
 Dec, W., Ed., Sarikaya, B., Zorn, G., Ed., Miles, D., and
 B. Lourdelet, "RADIUS Attributes for IPv6 Access
 Networks", RFC 6911, DOI 10.17487/RFC6911, April 2013,
 <https://www.rfc-editor.org/info/rfc6911>.

 [RFC7037]
 Yeh, L. and M. Boucadair, "RADIUS Option for the DHCPv6
 Relay Agent", RFC 7037, DOI 10.17487/RFC7037, October
 2013, <https://www.rfc-editor.org/info/rfc7037>.

Authors' Addresses

Mohamed Boucadair
Orange
Rennes 35000
France

 Email: mohamed.boucadair@orange.com

Christian Jacquenet
Orange
Rennes
France

 Email: christian.jacquenet@orange.com

draft-bp-v6ops-ipv6-ready-dns-dnssec-00 - IPv6-Ready DNS/DNSSSEC Infrastructure

draft-bp-v6ops-ipv6-ready-dns-dnssec-00 - IPv6-Ready DNS/DNSSSEC Infrastructure

Index
Back 5
Prev
Next
Forward 5

v6ops

Internet-Draft

Intended status: Informational

Expires: April 13, 2019

C. Byrne

T-Mobile USA

J. Palet Martinez

The IPv6 Company

October 10, 2018

IPv6-Ready DNS/DNSSSEC Infrastructure

draft-bp-v6ops-ipv6-ready-dns-dnssec-00

Abstract

 This document defines the timing for implementing a worldwide
 IPv6-Ready DNS and DNSSEC infrastructure, in order to facilitate the
 global IPv6-only deployment.

 A key issue for this, is the need for a global support of DNSSEC and
 DNS64, which in some scenarios do not work well together. This
 document states that any DNSSEC signed resources records should
 include a native IPv6 resource record as the most complete and
 expedient path to solve any deployment conflict with DNS64 and DNSSEC

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 13, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements Language

	3. The Conflict Between DNS64 and DNSSEC

	4. Resolving the DNS64 and DNSSEC Conflict by Requiring AAAA

	5. Ensuring a smooth IPv4-IPv6 transition by Requiring AAAA

	6. Definition of IPv6-Ready DNS/DNSSEC Infrastructure

	7. Implementation timing

	8. Security Considerations

	9. IANA Considerations

	10. Acknowledgements

	11. Normative References

	Authors' Addresses

1. Introduction

 One of the main issues to ensure the best path for the IPv4 to IPv6
 transition and the support of an IPv6-only Internet, is to ensure
 that all the services remain accessible by means of DNS.

 One of the alternatives is the use of NAT64 ([RFC6146]) and DNS64
 ([RFC6147]), sometimes by means 464XLAT ([RFC6877]), which will help
 to ensure that, when a network or part of it, becomes IPv6-only,
 still can have access to IPv4-only resources.

 DNS64 ([RFC6147]) is a widely deployed technology allowing hundreds
 of millions of IPv6-only hosts/networks to reach IPv4-only resources.
 DNSSEC is a technology used to validate the authenticity of
 information in the DNS, however, as DNS64 ([RFC6147]) modifies DNS
 answers and DNSSEC is designed to detect such modifications, DNS64
 ([RFC6147]) can break DNSSEC in some circumstances.

 Furthermore, the deployment of those transition mechanisms means that
 the cost of the transition is on the back of the service provider,
 because the investment required in the devices that take care of that
 transition services and the support of the helpdesks to resolve
 issues. So in the end, all that cost is indirectly charged to the
 end-user, which is unfair.

 It seems obvious that should not be that way, and the end-goal is a
 situation where we get rid-off IPv4-only services, and meanwhile, the
 cost borne by the IPv4 laggards operating those services.

 This document provides the steps to be able to tackle that situation
 and advance with the global IPv6 deployment in a fair way.

 The document also states that the most complete and expedient path to
 avoid any negative interactions is, for the DNSSEC signed resources,
 to always include IPv6 AAAA resources records. As stated in
 [RFC6540], IPv6 [RFC8200] is not optional and failing to support IPv6
 may result in failure to communicate on the Internet, especially when
 DNSSEC signed IPv4-only resources are present.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The Conflict Between DNS64 and DNSSEC

 DNS64 ([RFC6147]) is a key part of widely deployed IPv6-only
 transition mechanism such as 464XLAT ([RFC6877]) and Happy Eyeballs
 version 2 ([RFC8305]). Currently, hundreds of millions of hosts rely
 on DNS64 ([RFC6147]) for access to the Internet. A core function of
 DNS64 ([RFC6147]) is generating an inauthentic AAAA DNS record when
 an authentic AAAA DNS record for a host is not available from the
 authoritative nameserver. DNSSEC's fundamental feature is detecting
 and denying inauthentic DNS resource records. While DNS64
 ([RFC6147]) outlines may work in harmony with DNSSEC, the
 preconditions may not always exist for harmony to be achieved.

4. Resolving the DNS64 and DNSSEC Conflict by Requiring AAAA

 DNS64 ([RFC6147]) and DNSSEC are both important components of the
 current and future Internet. The limitation for how these protocols
 interact is unlikely to changes. Deploying DNSSEC and IPv6 are both
 commonly achievable for a typical Internet system operator using
 their own systems or using a third-party service. The resolution to
 the DNS64 ([RFC6147]) and DNSSEC conflict is to simply deploy both,
 IPv6 and DNSSEC in tandem.

 Deploying DNSSEC signed IPv4 resources records without matching IPv6
 records is a risk and not recommend.

 Ultimately, this guidance is simply restating [RFC6540], that IPv6 is
 mandatory for all Internet systems.

5. Ensuring a smooth IPv4-IPv6 transition by Requiring AAAA

 Similarly, to what is stated in the precedent section for DNS64
 ([RFC6147]) and DNSSEC, a smoother and less painful transition from
 IPv4 to IPv6, and the succesful deployment of an IPv6-only Internet,
 can be facilitated by requiring AAAA resource records at every DNS
 instance.

6. Definition of IPv6-Ready DNS/DNSSEC Infrastructure

 In the context of this document, and others that may be generated as
 a consequence of it, "IPv6-Ready DNS/DNSSEC Infrastructure" means
 that a DNS/DNSSEC server (root, TLD, authoritative NS, others) is
 fully accessible and operational if queried either from a remote
 dual-stack network or an IPv6-only network.

 In general, that means having AAAA RRs in addition to A RRs, ensuring
 that PMTUD works correctly and fragmentation is correctly handled.

 In case DNSSEC is implemented with IPv4, it MUST support also
 IPv6-only operation according the above considerations.

7. Implementation timing

 Towards the implementation of the worldwide IPv6-Ready DNS/DNSSEC
 infrastructure, considering that there are no excuses for a DNS
 operator to support IPv6, the following deadlines are defined
 counting since the date this document becomes an RFC:

 1. All the root and TLDs MUST be IPv6-Ready in 6 months.

 2. All the DNSSEC signed zones MUST be IPv6-Ready in 6 months.

 3. All the authoritative NS MUST be IPv6-Ready in 12 months.

 4. The remaining RRs in other DNS servers, MUST be IPv6-Ready in 18
 months.

 Probing mechanisms to verify that the relevant AAAA are fully
 operational MUST be setup by IANA. If there is a failure at the
 deadline in complying with those requirements, the relevant NS, MUST
 be temporarily suspended until there is a subsequent successful
 verification.

8. Security Considerations

 DNSSEC is a good security practice. Providing AAAA DNSSEC signed
 records wherever a DNSSEC signed A record is used ensures the most
 effective use of DNSSEC.

9. IANA Considerations

 IANA and ICANN are instructed by means of this document, to take the
 relevant measures for ensuring the steps towards the above indicated
 implementation timing.

 It is suggested that frequent warnings are provided to the relevant
 stakeholders, in advance to each of the deadlines.

10. Acknowledgements

 The author would like to acknowledge the inputs of ... TBD.

11. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6146]
 Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC6147]
 Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 DOI 10.17487/RFC6147, April 2011,
 <https://www.rfc-editor.org/info/rfc6147>.

 [RFC6540]
 George, W., Donley, C., Liljenstolpe, C., and L. Howard,
 "IPv6 Support Required for All IP-Capable Nodes", BCP 177,
 RFC 6540, DOI 10.17487/RFC6540, April 2012,
 <https://www.rfc-editor.org/info/rfc6540>.

 [RFC6877]
 Mawatari, M., Kawashima, M., and C. Byrne, "464XLAT:
 Combination of Stateful and Stateless Translation",
 RFC 6877, DOI 10.17487/RFC6877, April 2013,
 <https://www.rfc-editor.org/info/rfc6877>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200]
 Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8305]
 Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

Authors' Addresses

Cameron Byrne
T‑Mobile USA
Bellevue, WA
United States of America

 Email: Cameron.Byrne@T-Mobile.com

Jordi Palet Martinez
The IPv6 Company
Molino de la Navata, 75
La Navata ‑ Galapagar, Madrid 28420
Spain

Email: jordi.palet@theipv6company.com
URI: http://www.theipv6company.com/

draft-carpenter-anima-asa-guidelines-06 - Guidelines for Autonomic Service Agents

draft-carpenter-anima-asa-guidelines-06 - Guidelines for Autonomic Service Agent

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: July 11, 2019

B. Carpenter

Univ. of Auckland

L. Ciavaglia

Nokia

S. Jiang

Huawei Technologies Co., Ltd

P. Peloso

Nokia

January 7, 2019

Guidelines for Autonomic Service Agents

draft-carpenter-anima-asa-guidelines-06

Abstract

 This document proposes guidelines for the design of Autonomic Service
 Agents for autonomic networks. It is based on the Autonomic Network
 Infrastructure outlined in the ANIMA reference model, making use of
 the Autonomic Control Plane and the Generic Autonomic Signaling
 Protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Logical Structure of an Autonomic Service Agent

	3. Interaction with the Autonomic Networking Infrastructure
	 3.1. Interaction with the security mechanisms

	 3.2. Interaction with the Autonomic Control Plane

	 3.3. Interaction with GRASP and its API

	 3.4. Interaction with policy mechanism

	4. Interaction with Non-Autonomic Components

	5. Design of GRASP Objectives

	6. Life Cycle
	 6.1. Installation phase
	 6.1.1. Installation phase inputs and outputs

	 6.2. Instantiation phase
	 6.2.1. Operator's goal

	 6.2.2. Instantiation phase inputs and outputs

	 6.2.3. Instantiation phase requirements

	 6.3. Operation phase

	7. Coordination between Autonomic Functions

	8. Coordination with Traditional Management Functions

	9. Robustness

	10. Security Considerations

	11. IANA Considerations

	12. Acknowledgements

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Appendix A. Change log [RFC Editor: Please remove]

	Appendix B. Example Logic Flows

	Authors' Addresses

1. Introduction

 This document proposes guidelines for the design of Autonomic Service
 Agents (ASAs) in the context of an Autonomic Network (AN) based on
 the Autonomic Network Infrastructure (ANI) outlined in the ANIMA
 reference model [I-D.ietf-anima-reference-model]. This
 infrastructure makes use of the Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane] and the Generic Autonomic
 Signaling Protocol (GRASP) [I-D.ietf-anima-grasp].

 There is a considerable literature about autonomic agents with a
 variety of proposals about how they should be characterized. Some
 examples are [DeMola06], [Huebscher08], [Movahedi12] and [GANA13].
 However, for the present document, the basic definitions and goals
 for autonomic networking given in [RFC7575] apply . According to RFC
 7575, an Autonomic Service Agent is "An agent implemented on an
 autonomic node that implements an autonomic function, either in part
 (in the case of a distributed function) or whole."

 ASAs must be distinguished from other forms of software component.
 They are components of network or service management; they do not in
 themselves provide services. For example, the services envisaged for
 network function virtualisation
 [I-D.irtf-nfvrg-gaps-network-virtualization] or for service function
 chaining [RFC7665] might be managed by an ASA rather than by
 traditional configuration tools.

 The reference model [I-D.ietf-anima-reference-model] expands this by
 adding that an ASA is "a process that makes use of the features
 provided by the ANI to achieve its own goals, usually including
 interaction with other ASAs via the GRASP protocol
 [I-D.ietf-anima-grasp] or otherwise. Of course it also interacts
 with the specific targets of its function, using any suitable
 mechanism. Unless its function is very simple, the ASA will need to
 handle overlapping asynchronous operations. It may therefore be a
 quite complex piece of software in its own right, forming part of the
 application layer above the ANI."

 There will certainly be very simple ASAs that manage a single
 objective in a straightforward way and do not asynchronous
 operations. In such a case, many aspects of the current document do
 not apply. However, in general a basic property of an ASA is that it
 is a relatively complex software component that will in many cases
 control and monitor simpler entities in the same host or elsewhere.
 For example, a device controller that manages tens or hundreds of
 simple devices might contain a single ASA.

 The remainder of this document offers guidance on the design of such
 ASAs.

2. Logical Structure of an Autonomic Service Agent

 As mentioned above, all but the simplest ASAs will be multi-threaded
 programs.

 A typical ASA will have a main thread that performs various initial
 housekeeping actions such as:

 o Obtain authorization credentials.

 o Register the ASA with GRASP.

 o Acquire relevant policy parameters.

 o Define data structures for relevant GRASP objectives.

 o Register with GRASP those objectives that it will actively manage.

 o Launch a self-monitoring thread.

 o Enter its main loop.

 The logic of the main loop will depend on the details of the
 autonomic function concerned. Whenever asynchronous operations are
 required, extra threads will be launched. Examples of such threads
 include:

 o A background thread to repeatedly flood an objective to the AN, so
 that any ASA can receive the objective's latest value.

 o A thread to accept incoming synchronization requests for an
 objective managed by this ASA.

 o A thread to accept incoming negotiation requests for an objective
 managed by this ASA, and then to conduct the resulting negotiation
 with the counterpart ASA.

 o A thread to manage subsidiary non-autonomic devices directly.

 These threads should all either exit after their job is done, or
 enter a wait state for new work, to avoid blocking other threads
 unnecessarily.

 Not all programming environments explicitly support multi-threading.
 In such cases, an 'event loop' style of implementation could be
 adopted, in which case each of the above threads would be implemented
 as an event handler called in turn by the main loop. In this case,
 the GRASP API (Section 3.3) must provide non-blocking calls. If
 necessary, the GRASP session identifier will be used to distinguish
 simultaneous operations.

 According to the degree of parallelism needed by the application,
 some of these threads might be launched in multiple instances. In
 particular, if negotiation sessions with other ASAs are expected to
 be long or to involve wait states, the ASA designer might allow for
 multiple simultaneous negotiating threads, with appropriate use of
 queues and locks to maintain consistency.

 The main loop itself could act as the initiator of synchronization
 requests or negotiation requests, when the ASA needs data or
 resources from other ASAs. In particular, the main loop should watch
 for changes in policy parameters that affect its operation. It
 should also do whatever is required to avoid unnecessary resource
 consumption, such as including an arbitrary wait time in each cycle
 of the main loop.

 The self-monitoring thread is of considerable importance. Autonomic
 service agents must never fail. To a large extent this depends on
 careful coding and testing, with no unhandled error returns or
 exceptions, but if there is nevertheless some sort of failure, the
 self-monitoring thread should detect it, fix it if possible, and in
 the worst case restart the entire ASA.

 Appendix B presents some example logic flows in informal pseudocode.

3. Interaction with the Autonomic Networking Infrastructure

3.1. Interaction with the security mechanisms

 An ASA by definition runs in an autonomic node. Before any normal
 ASAs are started, such nodes must be bootstrapped into the autonomic
 network's secure key infrastructure in accordance with
 [I-D.ietf-anima-bootstrapping-keyinfra]. This key infrastructure
 will be used to secure the ACP (next section) and may be used by ASAs
 to set up additional secure interactions with their peers, if needed.

 Note that the secure bootstrap process itself may include special-
 purpose ASAs that run in a constrained insecure mode.

3.2. Interaction with the Autonomic Control Plane

 In a normal autonomic network, ASAs will run as clients of the ACP.
 It will provide a fully secured network environment for all
 communication with other ASAs, in most cases mediated by GRASP (next
 section).

 Note that the ACP formation process itself may include special-
 purpose ASAs that run in a constrained insecure mode.

3.3. Interaction with GRASP and its API

 GRASP [I-D.ietf-anima-grasp] is expected to run as a separate process
 with its API [I-D.ietf-anima-grasp-api] available in user space.
 Thus ASAs may operate without special privilege, unless they need it
 for other reasons. The ASA's view of GRASP is built around GRASP
 objectives (Section 5), defined as data structures containing
 administrative information such as the objective's unique name, and
 its current value. The format and size of the value is not
 restricted by the protocol, except that it must be possible to
 serialise it for transmission in CBOR [RFC7049], which is no
 restriction at all in practice.

 The GRASP API should offer the following features:

 o Registration functions, so that an ASA can register itself and the
 objectives that it manages.

 o A discovery function, by which an ASA can discover other ASAs
 supporting a given objective.

 o A negotiation request function, by which an ASA can start
 negotiation of an objective with a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to negotiation requests, and a set of functions to
 support negotiating steps.

 o A synchronization function, by which an ASA can request the
 current value of an objective from a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to synchronization requests.

 o A flood function, by which an ASA can cause the current value of
 an objective to be flooded throughout the AN so that any ASA can
 receive it.

 For further details and some additional housekeeping functions, see
 [I-D.ietf-anima-grasp-api].

 This API is intended to support the various interactions expected
 between most ASAs, such as the interactions outlined in Section 2.
 However, if ASAs require additional communication between themselves,
 they can do so using any desired protocol. One option is to use
 GRASP discovery and synchronization as a rendez-vous mechanism
 between two ASAs, passing communication parameters such as a TCP port
 number via GRASP. As noted above, either the ACP or in special cases
 the autonomic key infrastructure will be used to secure such
 communications.

3.4. Interaction with policy mechanism

 At the time of writing, the policy (or "Intent") mechanism for the
 ANI is undefined. It is expected to operate by an information
 distribution mechanism that can reach all autonomic nodes, and
 therefore every ASA. However, each ASA must be capable of operating
 "out of the box" in the absence of locally defined policy, so every
 ASA implementation must include carefully chosen default values and
 settings for all policy parameters.

4. Interaction with Non-Autonomic Components

 An ASA, to have any external effects, must also interact with non-
 autonomic components of the node where it is installed. For example,
 an ASA whose purpose is to manage a resource must interact with that
 resource. An ASA whose purpose is to manage an entity that is
 already managed by local software must interact with that software.
 This is stating the obvious, and the details are specific to each
 case, but it has an important security implication. The ASA might
 act as a loophole by which the managed entity could penetrate the
 security boundary of the ANI. The ASA must be designed to avoid such
 loopholes, and should if possible operate in an unprivileged mode.

 In an environment where systems are virtualized and specialized using
 techniques such as network function virtualization or network
 slicing, there will be a design choice whether ASAs are deployed once
 per physical node or once per virtual context. A related issue is
 whether the ANI as a whole is deployed once on a physical network, or
 whether several virtual ANIs are deployed. This aspect needs to be
 considered by the ASA designer.

5. Design of GRASP Objectives

 The general rules for the format of GRASP Objective options, their
 names, and IANA registration are given in [I-D.ietf-anima-grasp].
 Additionally that document discusses various general considerations
 for the design of objectives, which are not repeated here. However,
 we emphasize that the GRASP protocol does not provide transactional
 integrity. In other words, if an ASA is capable of overlapping
 several negotiations for a given objective, then the ASA itself must
 use suitable locking techniques to avoid interference between these
 negotiations. For example, if an ASA is allocating part of a shared
 resource to other ASAs, it needs to ensure that the same part of the
 resource is not allocated twice. This might impact the design of the
 objective as well as the logic flow of the ASA.

 In particular, if 'dry run' mode is defined for the objective, its
 specification, and every implementation, must consider what state
 needs to be saved following a dry run negotiation, such that a
 subsequent live negotiation can be expected to succeed. It must be
 clear how long this state is kept, and what happens if the live
 negotiation occurs after this state is deleted. An ASA that requests
 a dry run negotiation must take account of the possibility that a
 successful dry run is followed by a failed live negotiation. Because
 of these complexities, the dry run mechanism should only be supported
 by objectives and ASAs where there is a significant benefit from it.

 The actual value field of an objective is limited by the GRASP
 protocol definition to any data structure that can be expressed in
 Concise Binary Object Representation (CBOR) [RFC7049]. For some
 objectives, a single data item will suffice; for example an integer,
 a floating point number or a UTF-8 string. For more complex cases, a
 simple tuple structure such as [item1, item2, item3] could be used.
 Nothing prevents using other formats such as JSON, but this requires
 the ASA to be capable of parsing and generating JSON. The formats
 acceptable by the GRASP API will limit the options in practice. A
 fallback solution is for the API to accept and deliver the value
 field in raw CBOR, with the ASA itself encoding and decoding it via a
 CBOR library.

 Note that a mapping from YANG to CBOR is defined by
 [I-D.ietf-core-yang-cbor]. Subject to the size limit defined for
 GRASP messages, nothing prevents objectives using YANG in this way.

6. Life Cycle

 Autonomic functions could be permanent, in the sense that ASAs are
 shipped as part of a product and persist throughout the product's
 life. However, a more likely situation is that ASAs need to be
 installed or updated dynamically, because of new requirements or
 bugs. Because continuity of service is fundamental to autonomic
 networking, the process of seamlessly replacing a running instance of
 an ASA with a new version needs to be part of the ASA's design.

 The implication of service continuity on the design of ASAs can be
 illustrated along the three main phases of the ASA life-cycle, namely
 Installation, Instantiation and Operation.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Undeployed ‑‑‑‑‑‑>| |‑‑‑‑‑‑> Undeployed
 | Installed |
 +‑‑>| |‑‑‑+
 Mandate | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | Receives a
 is revoked | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | Mandate
 +‑‑‑| |<‑‑+
 | Instantiated |
 +‑‑>| |‑‑‑+
 set | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | set
 down | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | up
 +‑‑‑| |<‑‑+
 | Operational |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Life cycle of an Autonomic Service Agent

6.1. Installation phase

 Before being able to instantiate and run ASAs, the operator must
 first provision the infrastructure with the sets of ASA software
 corresponding to its needs and objectives. The provisioning of the
 infrastructure is realized in the installation phase and consists in
 installing (or checking the availability of) the pieces of software
 of the different ASA classes in a set of Installation Hosts.

 There are 3 properties applicable to the installation of ASAs:

The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources' NE.

The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties are very important in the context of the
 installation phase as their variations condition how the ASA class
 could be installed on the infrastructure.

6.1.1. Installation phase inputs and outputs

 Inputs are:

[ASA class of type_x] that specifies which classes ASAs to install,

[Installation_target_Infrastructure] that specifies the candidate
 Installation Hosts,

[ASA class placement function, e.g. under which criteria/constraints
as defined by the operator]
 that specifies how the installation phase shall meet the
 operator's needs and objectives for the provision of the
 infrastructure. In the coupled mode, the placement function is
 not necessary, whereas in the decoupled mode, the placement
 function is mandatory, even though it can be as simple as an
 explicit list of Installation hosts.

 The main output of the installation phase is an up-to-date directory
 of installed ASAs which corresponds to [list of ASA classes]
 installed on [list of installation Hosts]. This output is also
 useful for the coordination function and corresponds to the static
 interaction map (see next section).

 The condition to validate in order to pass to next phase is to ensure
 that [list of ASA classes] are well installed on [list of
 installation Hosts]. The state of the ASA at the end of the
 installation phase is: installed. (not instantiated). The following
 commands or messages are foreseen: install(list of ASA classes,
 Installation_target_Infrastructure, ASA class placement function),
 and un-install (list of ASA classes).

6.2. Instantiation phase

 Once the ASAs are installed on the appropriate hosts in the network,
 these ASA may start to operate. From the operator viewpoint, an
 operating ASA means the ASA manages the network resources as per the
 objectives given. At the ASA local level, operating means executing
 their control loop/algorithm.

 But right before that, there are two things to take into
 consideration. First, there is a difference between 1. having a
 piece of code available to run on a host and 2. having an agent based
 on this piece of code running inside the host. Second, in a coupled
 case, determining which resources are controlled by an ASA is
 straightforward (the determination is embedded), in a decoupled mode
 determining this is a bit more complex (hence a starting agent will
 have to either discover or be taught it).

 The instantiation phase of an ASA covers both these aspects: starting
 the agent piece of code (when this does not start automatically) and
 determining which resources have to be controlled (when this is not
 obvious).

6.2.1. Operator's goal

 Through this phase, the operator wants to control its autonomic
 network in two things:

1 determine the scope of autonomic functions by instructing which of
 the network resources have to be managed by which autonomic
 function (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

2 determine how the autonomic functions are organized by instructing
 which ASAs have to interact with which other ASAs (or more
 precisely which set of network resources have to be handled as an
 autonomous group by their managing ASAs).

 Additionally in this phase, the operator may want to set objectives
 to autonomic functions, by configuring the ASAs technical objectives.

 The operator's goal can be summarized in an instruction to the ANIMA
 ecosystem matching the following pattern:

 [ASA of type_x instances] ready to control
 [Instantiation_target_Infrastructure] with
 [Instantiation_target_parameters]

6.2.2. Instantiation phase inputs and outputs

 Inputs are:

[ASA of type_x instances] that specifies which are the ASAs to be
 targeted (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

[Instantiation_target_Infrastructure] that specifies which are the
 resources to be managed by the autonomic function, this can be the
 whole network or a subset of it like a domain a technology segment
 or even a specific list of resources,

[Instantiation_target_parameters] that specifies which are the
 technical objectives to be set to ASAs (e.g. an optimization
 target)

 Outputs are:

[Set of ASAs ‑ Resources relations] describing which resources are
 managed by which ASA instances, this is not a formal message, but
 a resulting configuration of a set of ASAs,

6.2.3. Instantiation phase requirements

 The instructions described in section 4.2 could be either:

sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

broadcast to all ASAs In which case, the ASAs would collectively
 determine from the list which Agent(s) would handle which
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 This set of instructions can be materialized through a message that
 is named an Instance Mandate (description TBD).

 The conclusion of this instantiation phase is a ready to operate ASA
 (or interacting set of ASAs), then this (or those) ASA(s) can
 describe themselves by depicting which are the resources they manage
 and what this means in terms of metrics being monitored and in terms
 of actions that can be executed (like modifying the parameters
 values). A message conveying such a self description is named an
 Instance Manifest (description TBD).

 Though the operator may well use such a self-description "per se",
 the final goal of such a description is to be shared with other ANIMA
 entities like:

 o the coordination entities (see [I-D.ciavaglia-anima-coordination]
 - Autonomic Functions Coordination)

 o collaborative entities in the purpose of establishing knowledge
 exchanges (some ASAs may produce knowledge or even monitor metrics
 that other ASAs cannot make by themselves why those would be
 useful for their execution)

6.3. Operation phase

 Note: This section is to be further developed in future revisions of
 the document, especially the implications on the design of ASAs.

 During the Operation phase, the operator can:

 Activate/Deactivate ASA: meaning enabling those to execute their
 autonomic loop or not.

 Modify ASAs targets: meaning setting them different objectives.

 Modify ASAs managed resources: by updating the instance mandate
 which would specify different set of resources to manage (only
 applicable to decouples ASAs).

 During the Operation phase, running ASAs can interact the one with
 the other:

 in order to exchange knowledge (e.g. an ASA providing traffic
 predictions to load balancing ASA)

 in order to collaboratively reach an objective (e.g. ASAs
 pertaining to the same autonomic function targeted to manage a
 network domain, these ASA will collaborate - in the case of a load
 balancing one, by modifying the links metrics according to the
 neighboring resources loads)

 During the Operation phase, running ASAs are expected to apply
 coordination schemes

 then execute their control loop under coordination supervision/
 instructions

 The ASA life-cycle is discussed in more detail in "A Day in the Life
 of an Autonomic Function" [I-D.peloso-anima-autonomic-function].

7. Coordination between Autonomic Functions

 Some autonomic functions will be completely independent of each
 other. However, others are at risk of interfering with each other -
 for example, two different optimization functions might both attempt
 to modify the same underlying parameter in different ways. In a
 complete system, a method is needed of identifying ASAs that might
 interfere with each other and coordinating their actions when
 necessary. This issue is considered in "Autonomic Functions
 Coordination" [I-D.ciavaglia-anima-coordination].

8. Coordination with Traditional Management Functions

 Some ASAs will have functions that overlap with existing
 configuration tools and network management mechanisms such as command
 line interfaces, DHCP, DHCPv6, SNMP, NETCONF, RESTCONF and YANG-based
 solutions. Each ASA designer will need to consider this issue and
 how to avoid clashes and inconsistencies. Some specific
 considerations for interaction with OAM tools are given in
 [I-D.ietf-anima-stable-connectivity]. As another example,
 [I-D.ietf-anima-prefix-management] describes how autonomic management
 of IPv6 prefixes can interact with prefix delegation via DHCPv6. The
 description of a GRASP objective and of an ASA using it should
 include a discussion of any such interactions.

 A related aspect is that management functions often include a data
 model, quite likely to be expressed in a formal notation such as
 YANG. This aspect should not be an afterthought in the design of an
 ASA. To the contrary, the design of the ASA and of its GRASP
 objectives should match the data model; as noted above, YANG
 serialized as CBOR may be used directly as the value of a GRASP
 objective.

9. Robustness

 It is of great importance that all components of an autonomic system
 are highly robust. In principle they must never fail. This section
 lists various aspects of robustness that ASA designers should
 consider.

 1. If despite all precautions, an ASA does encounter a fatal error,
 it should in any case restart automatically and try again. To
 mitigate a hard loop in case of persistent failure, a suitable
 pause should be inserted before such a restart. The length of
 the pause depends on the use case.

 2. If a newly received or calculated value for a parameter falls out
 of bounds, the corresponding parameter should be either left
 unchanged or restored to a safe value.

 3. If a GRASP synchronization or negotiation session fails for any
 reason, it may be repeated after a suitable pause. The length of
 the pause depends on the use case.

 4. If a session fails repeatedly, the ASA should consider that its
 peer has failed, and cause GRASP to flush its discovery cache and
 repeat peer discovery.

 5. Any received GRASP message should be checked. If it is wrongly
 formatted, it should be ignored. Within a unicast session, an
 Invalid message (M_INVALID) may be sent. This function may be
 provided by the GRASP implementation itself.

 6. Any received GRASP objective should be checked. If it is wrongly
 formatted, it should be ignored. Within a negotiation session, a
 Negotiation End message (M_END) with a Decline option (O_DECLINE)
 should be sent. An ASA may log such events for diagnostic
 purposes.

 7. If an ASA receives either an Invalid message (M_INVALID) or a
 Negotiation End message (M_END) with a Decline option
 (O_DECLINE), one possible reason is that the peer ASA does not
 support a new feature of either GRASP or of the objective in
 question. In such a case the ASA may choose to repeat the
 operation concerned without using that new feature.

 8. All other possible exceptions should be handled in an orderly
 way. There should be no such thing as an unhandled exception
 (but see point 1 above).

10. Security Considerations

 ASAs are intended to run in an environment that is protected by the
 Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
 admission to which depends on an initial secure bootstrap process
 [I-D.ietf-anima-bootstrapping-keyinfra]. However, this does not
 relieve ASAs of responsibility for security. In particular, when
 ASAs configure or manage network elements outside the ACP, they must
 use secure techniques and carefully validate any incoming
 information. As appropriate to their specific functions, ASAs should
 take account of relevant privacy considerations [RFC6973].

 Authorization of ASAs is a subject for future study. At present,
 ASAs are trusted by virtue of being installed on a node that has
 successfully joined the ACP.

11. IANA Considerations

 This document makes no request of the IANA.

12. Acknowledgements

 Useful comments were received from Toerless Eckert, Alex Galis, Bing
 Liu, and other members of the ANIMA WG.

13. References

13.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-17 (work in progress), November 2018.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

13.2. Informative References

 [DeMola06]

 De Mola, F. and R. Quitadamo, "An Agent Model for Future
 Autonomic Communications", Proceedings of the 7th WOA 2006
 Workshop From Objects to Agents 51-59, September 2006.

 [GANA13]
 ETSI GS AFI 002, "Autonomic network engineering for the
 self-managing Future Internet (AFI): GANA Architectural
 Reference Model for Autonomic Networking, Cognitive
 Networking and Self-Management.", April 2013,
 <http://www.etsi.org/deliver/etsi_gs/
 AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf>.

 [Huebscher08]

 Huebscher, M. and J. McCann, "A survey of autonomic
 computing--degrees, models, and applications", ACM
 Computing Surveys (CSUR) Volume 40 Issue 3 DOI:
 10.1145/1380584.1380585, August 2008.

 [I-D.ciavaglia-anima-coordination]

 Ciavaglia, L. and P. Peloso, "Autonomic Functions
 Coordination", draft-ciavaglia-anima-coordination-01 (work
 in progress), March 2016.

 [I-D.ietf-anima-grasp-api]

 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-02 (work in
 progress), June 2018.

 [I-D.ietf-anima-prefix-management]

 Jiang, S., Du, Z., Carpenter, B., and Q. Sun, "Autonomic
 IPv6 Edge Prefix Management in Large-scale Networks",
 draft-ietf-anima-prefix-management-07 (work in progress),
 December 2017.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-anima-stable-connectivity]

 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-core-yang-cbor]

 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-07 (work in progress), September
 2018.

 [I-D.irtf-nfvrg-gaps-network-virtualization]

 Bernardos, C., Rahman, A., Zuniga, J., Contreras, L.,
 Aranda, P., and P. Lynch, "Network Virtualization Research
 Challenges", draft-irtf-nfvrg-gaps-network-
 virtualization-10 (work in progress), September 2018.

 [I-D.peloso-anima-autonomic-function]

 Pierre, P. and L. Ciavaglia, "A Day in the Life of an
 Autonomic Function", draft-peloso-anima-autonomic-
 function-01 (work in progress), March 2016.

 [Movahedi12]

 Movahedi, Z., Ayari, M., Langar, R., and G. Pujolle, "A
 Survey of Autonomic Network Architectures and Evaluation
 Criteria", IEEE Communications Surveys & Tutorials Volume:
 14 , Issue: 2 DOI: 10.1109/SURV.2011.042711.00078,
 Page(s): 464 - 490, 2012.

 [RFC6973]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7665]
 Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

Appendix A. Change log [RFC Editor: Please remove]

 draft-carpenter-anima-asa-guidelines-06, 2018-01-07:

 Expanded and improved example logic flow.

 Editorial corrections.

 draft-carpenter-anima-asa-guidelines-05, 2018-06-30:

 Added section on relationshp with non-autonomic components.

 Editorial corrections.

 draft-carpenter-anima-asa-guidelines-04, 2018-03-03:

 Added note about simple ASAs.

 Added note about NFV/SFC services.

 Improved text about threading v event loop model

 Added section about coordination with traditional tools.

 Added appendix with example logic flow.

 draft-carpenter-anima-asa-guidelines-03, 2017-10-25:

 Added details on life cycle.

 Added details on robustness.

 Added co-authors.

 draft-carpenter-anima-asa-guidelines-02, 2017-07-01:

 Expanded description of event-loop case.

 Added note about 'dry run' mode.

 draft-carpenter-anima-asa-guidelines-01, 2017-01-06:

 More sections filled in

 draft-carpenter-anima-asa-guidelines-00, 2016-09-30:

 Initial version

Appendix B. Example Logic Flows

 This appendix describes generic logic flows for an Autonomic Service
 Agent (ASA) for resource management. Note that these are
 illustrative examples, and in no sense requirements. As long as the
 rules of GRASP are followed, a real implementation could be
 different. The reader is assumed to be familiar with GRASP
 [I-D.ietf-anima-grasp] and its conceptual API
 [I-D.ietf-anima-grasp-api].

 A complete autonomic function for a resource would consist of a
 number of instances of the ASA placed at relevant points in a
 network. Specific details will of course depend on the resource
 concerned. One example is IP address prefix management, as specified
 in [I-D.ietf-anima-prefix-management]. In this case, an instance of
 the ASA would exist in each delegating router.

 An underlying assumption is that there is an initial source of the
 resource in question, referred to here as a master ASA. The other
 ASAs, known as delegators, obtain supplies of the resource from the
 master, and then delegate quantities of the resource to consumers
 that request it, and recover it when no longer needed.

 Another assumption is there is a set of network wide policy
 parameters, which the master will provide to the delegators. These
 parameters will control how the delegators decide how much resource
 to provide to consumers. Thus the ASA logic has two operating modes:
 master and delegator. When running as a master, it starts by
 obtaining a quantity of the resource from the NOC, and it acts as a
 source of policy parameters, via both GRASP flooding and GRASP
 synchronization. (In some scenarios, flooding or synchronization
 alone might be sufficient, but this example includes both.)

 When running as a delegator, it starts with an empty resource pool,
 it acquires the policy parameters by GRASP synchronization, and it
 delegates quantities of the resource to consumers that request it.
 Both as a master and as a delegator, when its pool is low it seeks
 quantities of the resource by requesting GRASP negotiation with peer
 ASAs. When its pool is sufficient, it hands out resource to peer
 ASAs in response to negotiation requests. Thus, over time, the
 initial resource pool held by the master will be shared among all the
 delegators according to demand.

 In theory a network could include any number of masters and any
 number of delegators, with the only condition being that each
 master's initial resource pool is unique. A realistic scenario is to
 have exactly one master and as many delegators as you like. A
 scenario with no master is useless.

 An implementation requirement is that resource pools are kept in
 stable storage. Otherwise, if a delegator exits for any reason, all
 the resources it has obtained or delegated are lost. If a master
 exits, its entire spare pool is lost. The logic for using stable
 storage and for crash receovery is not included below.

 The description below doesn't implement GRASP's 'dry run' function.
 That would mean temporarily marking any resource handed out in a dry
 run negotiation as reserved, until either the peer obtains it in a
 live run, or a suitable timeout expires.

 The main data structures used in each instance of the ASA are:

 o The resource_pool, for example an ordered list of available
 resources. Depending on the nature of the resource, units of
 resource are split when appropriate, and a background garbage
 collector recombines split resources if they are returned to the
 pool.

 o The delegated_list, where a delegator stores the resources it has
 given to consumers routers.

 Possible main logic flows are below, using a threaded implementation
 model. The transformation to an event loop model should be apparent
 - each thread would correspond to one event in the event loop.

 The GRASP objectives are as follows:

 ["EX1.Resource", flags, loop_count, value] where the value depends
 on the resource concerned, but will typically include its size and
 identification.

 ["EX1.Params", flags, loop_count, value] where the value will be,
 for example, a JSON object defining the applicable parameters.

 In the outline logic flows below, these objectives are represented
 simply by their names.

 MAIN PROGRAM:

Create empty resource_pool (and an associated lock)
Create empty delegated_list
Determine whether to act as master
if master:
 Obtain initial resource_pool contents from NOC
 Obtain value of EX1.Params from NOC
Register ASA with GRASP
Register GRASP objectives EX1.Resource and EX1.Params
if master:
 Start FLOODER thread to flood EX1.Params
 Start SYNCHRONIZER listener for EX1.Params
Start MAIN_NEGOTIATOR thread for EX1.Resource
if not master:
 Obtain value of EX1.Params from GRASP flood or synchronization
 Start DELEGATOR thread
Start GARBAGE_COLLECTOR thread
do forever:
 good_peer = none
 if resource_pool is low:
 Calculate amount A of resource needed
 Discover peers using GRASP M_DISCOVER / M_RESPONSE
 if good_peer in peers:
 peer = good_peer
 else:
 peer = #any choice among peers
 grasp.request_negotiate("EX1.Resource", peer)
 i.e., send M_REQ_NEG
 Wait for response (M_NEGOTIATE, M_END or M_WAIT)
 if OK:
 if offered amount of resource sufficient:
 Send M_END + O_ACCEPT #negotiation succeeded
 Add resource to pool
 good_peer = peer
 else:
 Send M_END + O_DECLINE #negotiation failed
 sleep() #sleep time depends on application scenario

 MAIN_NEGOTIATOR thread:

do forever:
 grasp.listen_negotiate("EX1.Resource")
 i.e., wait for M_REQ_NEG
 Start a separate new NEGOTIATOR thread for requested amount A

 NEGOTIATOR thread:

Request resource amount A from resource_pool
if not OK:
 while not OK and A > Amin:
 A = A‑1
 Request resource amount A from resource_pool
if OK:
 Offer resource amount A to peer by GRASP M_NEGOTIATE
 if received M_END + O_ACCEPT:
 #negotiation succeeded
 elif received M_END + O_DECLINE or other error:
 #negotiation failed
else:
 Send M_END + O_DECLINE #negotiation failed

 DELEGATOR thread:

do forever:
 Wait for request or release for resource amount A
 if request:
 Get resource amount A from resource_pool
 if OK:
 Delegate resource to consumer
 Record in delegated_list
 else:
 Signal failure to consumer
 Signal main thread that resource_pool is low
 else:
 Delete resource from delegated_list
 Return resource amount A to resource_pool

 SYNCHRONIZER thread:

do forever:
 Wait for M_REQ_SYN message for EX1.Params
 Reply with M_SYNCH message for EX1.Params

 FLOODER thread:

do forever:
 Send M_FLOOD message for EX1.Params
 sleep() #sleep time depends on application scenario

 GARBAGE_COLLECTOR thread:

do forever:
 Search resource_pool for adjacent resources
 Merge adjacent resources
 sleep() #sleep time depends on application scenario

Authors' Addresses

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Laurent Ciavaglia
Nokia
Villarceaux
Nozay 91460
FR

 Email: laurent.ciavaglia@nokia.com

Sheng Jiang
Huawei Technologies Co., Ltd
Q14, Huawei Campus, No.156 Beiqing Road
Hai‑Dian District, Beijing, 100095
P.R. China

 Email: jiangsheng@huawei.com

Pierre Peloso
Nokia
Villarceaux
Nozay 91460
FR

 Email: pierre.peloso@nokia.com

draft-carpenter-anima-grasp-bulk-03 - Transferring Bulk Data over the GeneRic Autonomic Signaling Protocol (GRASP)

draft-carpenter-anima-grasp-bulk-03 - Transferring Bulk Data over the GeneRic Au

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: July 11, 2019

B. Carpenter

Univ. of Auckland

S. Jiang

B. Liu

Huawei Technologies Co., Ltd

January 7, 2019

Transferring Bulk Data over the GeneRic Autonomic Signaling Protocol (GRASP)

draft-carpenter-anima-grasp-bulk-03

Abstract

 This document describes how bulk data may be transferred between
 Autonomic Service Agents via the GeneRic Autonomic Signaling Protocol
 (GRASP).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. General Method for Bulk Transfer

	3. Example for File Transfer

	4. Loss Detection

	5. Maximum Transmission Unit

	6. Pipelining

	7. Other Considerations

	8. Possible Future Work

	9. Implementation Status [RFC Editor: please remove]

	10. Security Considerations

	11. IANA Considerations

	12. Acknowledgements

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Appendix A. Change log [RFC Editor: Please remove]

	Authors' Addresses

1. Introduction

 The document [I-D.liu-anima-grasp-distribution] discusses how
 information may be distributed within the secure Autonomic Networking
 Infrastructure (ANI) [I-D.ietf-anima-reference-model]. Specifically,
 it describes using the Synchronization and Flood Synchronization
 mechanisms of the GeneRic Autonomic Signaling Protocol (GRASP)
 [I-D.ietf-anima-grasp] for this purpose. However, those mechanisms
 are limited to distributing GRASP Objective Options contained in
 messages that cannot exceed the GRASP maximum message size of 2048
 bytes.

 There are scenarios in autonomic networks where this restriction is a
 problem. One example is the distribution of network policy in
 lengthy formats such as YANG or JSON. Another case might be an
 Autonomic Service Agent (ASA) uploading a log file to the Network
 Operations Center (NOC). A third case might be a supervisory system
 downloading a software upgrade to an autonomic node. A related case
 might be installing the code of a new or updated ASA to a target node
 (see the discussion of ASA life cycles in
 [I-D.carpenter-anima-asa-guidelines]).

 Naturally, an existing solution such as a secure file transfer
 protocol or secure HTTP might be used for this. Other management
 protocols such as syslog [RFC5424] or NETCONF [RFC6241] might also be
 used for related purposes, or might be mapped directly over GRASP.
 The present document, however, applies to any scenario where it is
 preferable to re-use the autonomic networking infrastructure itself
 to transfer a significant amount of data, rather than install and
 configure an additional mechanism. The basic model is to use the
 GRASP Negotiation process to transfer and acknowledge multiple blocks
 of data in successive negotiation steps.

 The emphasis is placed on simplicity rather than efficiency, high
 throughput, or advanced functionality. For example, if a transfer
 gets out of step or data packets are lost, the strategy is to abort
 the transfer and try again. In an enterprise network with low bit
 error rates, and with GRASP running over TCP, this is not considered
 a serious issue. Clearly, a more sophisticated approach could be
 designed but if the application requires that, existing protocols
 could be used, as indicated in the preceding paragraph.

 NOTE: This is an early draft of a solution. As the specification
 becomes more mature, the authors expect it to become precise enough
 to be placed on the standards track.

2. General Method for Bulk Transfer

 As for any GRASP operation, the two participants are considered to be
 Autonomic Service Agents (ASAs) and they communicate using a specific
 GRASP Objective Option, containing its own name, some flag bits, a
 loop count, and a value. In bulk transfer, we can model the ASA
 acting as the source of the transfer as a download server, and the
 destination as a download client. No changes or extensions are
 required to GRASP itself, but compared to a normal GRASP negotiation,
 the communication pattern is slightly asymmetric:

 1. The client first discovers the server by the GRASP discovery
 mechanism (M_DISCOVERY and M_RESPONSE messages).

 2. The client then sends a GRASP negotiation request (M_REQ_NEG
 message). The value of the objective expresses the requested
 item (e.g., a file name - see the next section for a detailed
 example).

 3. The server replies with a negotiation step (M_NEGOTIATE message).
 The value of the objective is the first section of the requested
 item (e.g., the first block of the requested file as a raw byte
 string).

 4. The client replies with a negotiation step (M_NEGOTIATE message).
 The value of the objective is a simple acknowledgement (e.g., the
 text string 'ACK').

 The last two steps repeat until the transfer is complete. The server
 signals the end by transferring an empty byte string as the final
 value. In this case the client responds with a normal end to the
 negotiation (M_END message with an O_ACCEPT option).

 Errors of any kind are handled with the normal GRASP mechanisms, in
 particular by an M_END message with an O_DECLINE option in either
 direction.

 The block size must be chosen such that each step does not exceed the
 GRASP message size limit of 2048 bits.

 This approach is safe since each block must be positively
 acknowledged, and data transfer errors will be detected by TCP. If a
 future variant of GRASP runs over UDP, the mandatory UDP checksum for
 IPv6 will detect such errors. The method does not specify
 retransmission for failed blocks, so a failed transfer will need to
 be restarted.

 An observant reader will notice that the GRASP loop count mechanism,
 intended to terminate endless negotiations, will cause a problem for
 large transfers. For this reason, both the client and server must
 artificially increment the loop count by 1 before each negotiation
 step, cancelling out the normal decrement at each step.

 If network load is a concern, the data rate can be limited by
 inserting a delay before each negotiation step, with the GRASP
 timeout set accordingly. Either the server or the client, or both,
 could insert such a delay. Also, either side could use the GRASP
 Confirm Waiting (M_WAIT) message to slow the other side down.

 The description above concerns bulk download from a server
 (responding ASA) to a client (requesting ASA). The data transfer
 could also be in the opposite (upload) direction with minor
 modifications to the procedure: the client would send the file name
 and the data blocks, and the server would send acknowledgements.

3. Example for File Transfer

 This example describes a client ASA requesting a file download from a
 server ASA.

 Firstly we define a GRASP objective informally:

 ["411:mvFile", 3, 6, value]

 The formal CDDL definition [I-D.ietf-cbor-cddl] is:

 mvfile-objective = ["411:mvFile", objective-flags, loop-count, value]

objective‑flags = ; as in the GRASP specification
loop‑count = ; as in the GRASP specification
value = any

 The objective-flags field is set to indicate negotiation.

 Dry run mode must not be used.

 The loop-count is set to a suitable value to limit the scope of
 discovery. A suggested default value is 6.

 The value takes the following forms:

 o In the initial request from the client, a UTF-8 string containing
 the requested file name (with file path if appropriate).

 o In negotiation steps from the server, a byte string containing at
 most 1024 bytes. However:

 * If the file does not exist, the first negotiation step will
 return an M_END, O_DECLINE response.

 * After sending the last block, the next and final negotiation
 step will send an empty byte string as the value.

 o In negotiation steps from the client, the value is the UTF-8
 string 'ACK'.

 Note that the block size of 1024 is chosen to guarantee not only that
 each GRASP message is below the size limit, but also that only one
 TCP data packet will be needed, even on an IPv6 network with a
 minimum link MTU.

 We now present outline pseudocode for the client and the server ASA.
 The API documented in [I-D.ietf-anima-grasp-api] is used in a
 simplified way, and error handling is not shown in detail.

 Pseudo code for client ASA (request and receive a file):

requested_obj = objective('411:mvFile')
locator = discover(requested_obj)
requested_obj.value = 'etc/test.pdf'
received_obj = request_negotiate(requested_obj, locator)
if error_code == declined:
 #no such file
 exit

file = open(requested_obj.value)
file.write(received_obj.value) #write to file
eof = False
while not eof:
 received_obj.value = 'ACK'
 received_obj.loop_count = received_obj.loop_count + 1
 received_obj = negotiate_step(received_obj)
 if received_obj.value == null:
 end_negotiate(True)
 file.close()
 eof = True
 else:
 file.write(received_obj.value) #write to file

#file received
exit

 Pseudo code for server ASA (await request and send a file):

supported_obj = objective('411:mvFile')
requested_obj = listen_negotiate(supported_obj)
file = open(requested_obj.value) #open the source file
if no such file:
 end_negotiate(False) #decline negotiation
 exit

eof = False
while not eof:
 chunk = file.read(1024) #next block of file
 requested_obj.value = chunk
 requested_obj.loop_count = requested_obj.loop_count + 1
 requested_obj = negotiate_step(requested_obj)
 if chunk == null:
 file.close()
 eof = True
 end_negotiate(True)
 exit
 if requested_obj.value != 'ACK':
 #unexpected reply...

4. Loss Detection

 The above description and example assume that GRASP is implemented
 over a reliable transport layer such as TCP, such that lost or
 corrupted messages are not likely. Rarely, an error might be
 detected via a missing ACK, in which case the transfer would be
 aborted and restarted. In the event that GRASP is implemented over
 an unreliable transport layer such as UDP, it would be possible to
 add a block number to both the data block and acknowledgement
 objectives, so that missing blocks can be retransmitted, or duplicate
 blocks can be ignored. For example, the objective in Section 3 would
 become:

 mvfile-objective = ["411:mvFile", objective-flags, loop-count, value]

objective‑flags = ; as in the GRASP specification
loop‑count = ; as in the GRASP specification
value = [block‑number, any]
block‑number = uint

 It would also be necessary for the transport layer to detect data
 errors, for example by enabling UDP checksums.

5. Maximum Transmission Unit

 In an IPv6 environment, a minimal MTU of 1280 bytes can be assumed,
 and assuming that high throughput is not a requirement, bulk
 transfers can be designed to match that MTU. However, there are
 environments where the underlying physical MTU is much smaller. For
 example, on an IEEE 802.15.4 network it may be less than 100 bytes
 [RFC4944]. In such a case, a bulk transfer solution has several
 choices:

 1. Accept the overhead of an adaptation layer, and therefore assume
 a network-layer MTU of 1280 bytes. Indeed, the presence of such
 an adaptation layer may be impossible to detect.

 2. Attempt to determine the actual MTU available without lower-layer
 fragmentation. This however will be impossible without using
 low-level functions of the socket interface.

 3. Attempt to determine a message size that provides optimum
 performance, by some sort of trial-and-error solution.

 These complexities suggest that using a GRASP-based mechanism is
 unlikely to be optimal in environments with a very small physical
 MTU.

6. Pipelining

 The above description and example descibe a simple handshake model
 where each block is acknowledged before the next block is sent. For
 the scenarios discussed in Section 1, this should be acceptable.
 Therefore we do not suggest adding a pipelining or windowing
 mechanism. If high throughput is required, a conventional file
 transfer protocol should be used.

7. Other Considerations

 If multiple transfers are requested simultaneously, each one will
 proceed as a separate GRASP negotiation session. The ASA acting as
 the server must be coded accordingly, like any ASA that needs to
 handle simultaneous sessions [I-D.carpenter-anima-asa-guidelines].

 Bulk transfer might become a utility function for use by various
 ASAs, such as those supporting YANG or JSON distribution, log file
 uploads, or code downloads. In this case some form of user space API
 for bulk transfer will be required. This could be in the form of an
 inter-process communication call between the ASA in question and the
 ASA implementing the bulk transfer mechanism. The details are out of
 scope for this document.

8. Possible Future Work

 The simple file transfer mechanism described above is only an
 example. Other application scenarios should be developed.

 The mechanism described in this document is suitable for simple
 unicast scenarios where GRASP runs over TCP and can be treated as a
 reliable protocol. A more sophisticated approach would be needed in
 at least two cases:

 1. A scenario where GRASP runs over UDP, where error detection and
 retransmission would be essential.

 2. A scenario where multicast data distribution is required, so that
 a mechanism such as Trickle [RFC6206] would be appropriate.

 These solutions might also require extensions to the GRASP protocol
 itself.

9. Implementation Status [RFC Editor: please remove]

 A prototype open source Python implementation of simple file transfer
 has been used to verify the mechanism described above. It may be
 found at https://github.com/becarpenter/graspy/blob/master/getter.py
 and https://github.com/becarpenter/graspy/blob/master/pusher.py .

10. Security Considerations

 All GRASP transactions are secured by the mandatory security
 substrate required by [I-D.ietf-anima-grasp]. No additional security
 issues are created by the application of GRASP described in this
 document.

11. IANA Considerations

 This document makes no request of the IANA.

12. Acknowledgements

 Thanks to Joel Halpern and other members of the ANIMA WG.

13. References

13.1. Normative References

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-06 (work in progress), November 2018.

13.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]

 Carpenter, B., Ciavaglia, L., Jiang, S., and P. Pierre,
 "Guidelines for Autonomic Service Agents", draft-
 carpenter-anima-asa-guidelines-05 (work in progress), June
 2018.

 [I-D.ietf-anima-grasp-api]

 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-02 (work in
 progress), June 2018.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.liu-anima-grasp-distribution]

 Liu, B., Jiang, S., Xiao, X., Hecker, A., and Z.
 Despotovic, "Information Distribution in Autonomic
 Networking", draft-liu-anima-grasp-distribution-09 (work
 in progress), October 2018.

 [RFC4944]
 Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5424]
 Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <https://www.rfc-editor.org/info/rfc5424>.

 [RFC6206]
 Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
 March 2011, <https://www.rfc-editor.org/info/rfc6206>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

Appendix A. Change log [RFC Editor: Please remove]

 draft-carpenter-anima-grasp-bulk-03, 2019-01-07:

 Added future work section, implementation status.

 draft-carpenter-anima-grasp-bulk-02, 2018-06-30:

 Update reference, fix TBDs.

 draft-carpenter-anima-grasp-bulk-01, 2018-03-03:

 Updates after IETF100 discussion.

 draft-carpenter-anima-grasp-bulk-00, 2017-09-12:

 Initial version.

Authors' Addresses

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Sheng Jiang
Huawei Technologies Co., Ltd
Q14, Huawei Campus, No.156 Beiqing Road
Hai‑Dian District, Beijing, 100095
P.R. China

 Email: jiangsheng@huawei.com

Bing Liu
Huawei Technologies Co., Ltd
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

draft-carpenter-anima-l2acp-scenarios-00 - Scenarios and Requirements for Layer 2 Autonomic Control Planes

draft-carpenter-anima-l2acp-scenarios-00 - Scenarios and Requirements for Layer

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: September 1, 2019

B. Carpenter

Univ. of Auckland

B. Liu, Ed.

Huawei Technologies

February 28, 2019

Scenarios and Requirements for Layer 2 Autonomic Control Planes

draft-carpenter-anima-l2acp-scenarios-00

Abstract

 This document discusses scenarios and requirements for Autonomic
 Control Planes (ACPs) constructed and secured at Layer 2. These
 would be alternatives to an ACP constructed and secured at the
 network layer. A secure ACP is required as the substrate for the
 Generic Autonomic Signaling Protocol (GRASP) used by Autonomic
 Service Agents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 1, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Network Scenarios Suitable for a Layer 2 ACP

	3. Requirements for a Layer 2 Technology

	4. Multiple Segments

	5. Implementation Status [RFC Editor: please remove]

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Change log [RFC Editor: Please remove]

	Authors' Addresses

1. Introduction

 As defined in [I-D.ietf-anima-reference-model], the Autonomic Service
 Agent (ASA) is the atomic entity of an autonomic function, and it is
 instantiated on autonomic nodes. When ASAs communicate with each
 other, they should use the Generic Autonomic Signaling Protocol
 (GRASP) [I-D.ietf-anima-grasp]. It is essential that such
 communication is strongly secured to avoid malicious interference
 with the Autonomic Infrastructure (ANI).

 For this reason, GRASP must run over a secure substrate that is
 isolated from regular data plane traffic. This substrate is known as
 the Autonomic Control Plane (ACP). A method for constructing an ACP
 at the network layer is described in
 [I-D.ietf-anima-autonomic-control-plane]. The present document
 discusses scenarios and requirements for constructing an ACP at layer
 2.

2. Network Scenarios Suitable for a Layer 2 ACP

 The ANI design is aimed at managed networks, as explained in the
 reference model [I-D.ietf-anima-reference-model]. For a wide area
 network (such as a large campus, a multi-site enterprise network, or
 a carrier network considered as a whole) it is appropriate to
 construct the ACP using network layer techniques and network layer
 security. and that is the model described in
 [I-D.ietf-anima-autonomic-control-plane], However, in at least two
 cases an ACP covering a smaller geographical area may be appropriate:
 1. A small enterprise that is completely within one building or
 several adjacent buildings, but is large enough to require
 autonomic network management.

 2. An enterprise that prefers in any case to segment its network
 into smaller units for management purposes.

 In either case, we assume that the L2 ACP may extend into the Network
 Operations Centre (NOC) so that it can be interfaced to traditional
 tools for Operations, Administration and Maintenance, as described in
 [RFC8368]. In the terminology of that document, an L2 ACP is an
 instance of a Generalized ACP.

3. Requirements for a Layer 2 Technology

 1. The technology must support transmission of IPv6 packets
 according to [RFC8200]. Since GRASP can run on a single network
 segment using link-local addresses, there is not required to be
 an IPv6 router or DHCPv6 server.

 2. The technology must support multicast. If the switches are not
 completely transparent to layer 2 multicast, they must support
 Multicast Listener Discovery Version 2 (MLDv2) for IPv6
 [RFC3810].

 3. The technology should have a minimum MTU of 1500 bytes.

 4. The technology must support isolation of a given set of nodes
 (the "ACP VLAN").

 5. The technology must support secure authorization for access to
 the ACP VLAN. If the VLAN technology in use does not support
 password protection, a VLAN access control list could be used.

 6. The technology should support both the normal dataplane VLAN and
 the ACP VLAN on the same physical sockets. (Possibly the
 dataplane may be the native VLAN, i.e. frames with no VLAN tag.)

 7. The technology should support line speed encryption of the ACP
 VLAN.

 8. The technology should support wired/wireless bridging if
 relevant.

 9. The technology should require minimal manual configuration of ACP
 nodes. However, it is expected that the nodes will need to be
 preconfigured before deployment with the VLAN ID, and a password
 or encryption key if necessary. A solution which is both secure
 and self-configuring at Layer 2 is out of scope for this
 document.

 A small ACP software module will be needed in each autonomic node,
 whose job is to provide the GRASP core with the following information
 about the L2 ACP:

 1. A signal that the L2 ACP is available and secure.

 2. The current global scope IPv6 address that GRASP should use as
 its primary locator, preferably a ULA, if available. As
 mentioned, if no such address is available, GRASP will simply
 operate with link-local addresses.

 3. A list of [interface_index, link_local_address] pairs for all
 valid IPv6 interfaces attached to the L2 ACP. The interface
 index is an integer for maximum portability between operating
 systems.

4. Multiple Segments

 This section is for further study.

 The L2 ACP could in principle be extended across multiple segments or
 even multiple sites by use of secure L2VPN technology.

5. Implementation Status [RFC Editor: please remove]

 A simple ACP software module emulating that needed for a secure L2
 ACP has been implemented, but it does not in fact verify security.
 It may be found at
 <https://github.com/becarpenter/graspy/blob/master/acp.py> and is
 briefly documented in
 <https://github.com/becarpenter/graspy/blob/master/graspy.pdf>.

6. Security Considerations

 The assumption of this document is that any Layer 2 solution chosen
 must have adequate security against interlopers and eavesdroppers.
 It should be noted that (at least in a wired network) this also
 requires adequate physical security to prevent access by unauthorized
 persons, including physical intrusion detection.

 The fact that an IPv6 router is not required in an L2 ACP excludes
 many Layer 3 vulnerabilities by construction. No outside entity can
 generate link-local IPv6 packets, and no outside entity can send
 global scope packets to any autonomic node.

7. IANA Considerations

 This document makes no request of the IANA.

8. Acknowledgements

 Excellent suggestions were made by TBD and other participants in the
 ANIMA WG.

9. References

9.1. Normative References

 [RFC3810]
 Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC8200]
 Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

9.2. Informative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [RFC8368]
 Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

Appendix A. Change log [RFC Editor: Please remove]

 draft-carpenter-anima-l2acp-scenarios-00, 2019-02-28:

 Initial version

Authors' Addresses

Brian Carpenter
The University of Auckland
School of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Bing Liu (editor)
Huawei Technologies
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

draft-carpenter-limited-domains-06 - Limited Domains and Internet Protocols

draft-carpenter-limited-domains-06 - Limited Domains and Internet Protocols

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: September 3, 2019

B. Carpenter

Univ. of Auckland

B. Liu

Huawei Technologies

March 2, 2019

Limited Domains and Internet Protocols

draft-carpenter-limited-domains-06

Abstract

 There is a noticeable trend towards network requirements, behaviours
 and semantics that are specific to a limited region of the Internet
 and a particular set of requirements. Policies, default parameters,
 the options supported, the style of network management and security
 requirements may vary. This document reviews examples of such
 limited domains, also known as controlled environments, and emerging
 solutions, and develops a related taxonomy. It then briefly
 discusses the standardization of protocols for limited domains.
 Finally, it shows the needs for a precise definition of limited
 domain membership and for mechanisms to allow nodes to join a domain
 securely and to find other members, including boundary nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Failure Modes in Today's Internet

	3. Examples of Limited Domain Requirements

	4. Examples of Limited Domain Solutions

	5. Taxonomy of Limited Domains
	 5.1. The Domain as a Whole

	 5.2. Individual Nodes

	 5.3. The Domain Boundary

	 5.4. Topology

	 5.5. Technology

	 5.6. Connection to the Internet

	 5.7. Security, Trust and Privacy Model

	 5.8. Operations

	 5.9. Making use of this taxonomy

	6. The Scope of Protocols in Limited Domains

	7. Functional Requirements of Limited Domains

	8. Security Considerations

	9. IANA Considerations

	10. Contributors

	11. Acknowledgements

	12. Informative References

	Appendix A. Change log [RFC Editor: Please remove]

	Authors' Addresses

1. Introduction

 As the Internet continues to grow and diversify, with a realistic
 prospect of tens of billions of nodes being connected directly and
 indirectly, there is a noticeable trend towards local requirements,
 behaviours and semantics. The word "local" should be understood in a
 special sense, however. In some cases it may refer to geographical
 and physical locality - all the nodes in a single building, on a
 single campus, or in a given vehicle. In other cases it may refer to
 a defined set of users or nodes distributed over a much wider area,
 but drawn together by a single virtual network over the Internet, or
 a single physical network running partially in parallel with the
 Internet. We expand on these possibilities below. To capture the
 topic, this document refers to such networks as "limited domains".
 Some people have concerns about splintering of the Internet along
 political or linguistic boundaries by mechanisms that block the free
 flow of information across the network. That is not the topic of
 this document, which does not discuss filtering mechanisms and does
 not apply to protocols that are designed for use across the whole
 Internet. It is only concerned with domains that have specific
 technical requirements.

 The word "domain" in this document does not refer to naming domains
 in the DNS, although in some cases a limited domain might
 incidentally be congruent with a DNS domain. In particular, with a
 "split horizon" DNS configuration [RFC6950], the split might be at
 the edge of a limited domain.

 Another term that has been used in some contexts is "controlled
 environment". For example, [RFC8085] uses this to delimit the scope
 within which a particular tunnel encapsulation might be used. A
 specific example is GRE-in-UDP encapsulation [RFC8086] which
 explicitly states that "The controlled environment has less
 restrictive requirements than the general Internet." For example,
 non-congestion-controlled traffic might be acceptable within the
 controlled environment. The same phrase has been used to delimit the
 scope of quality of service or security protocols, e.g. [RFC6398],
 [RFC6455]. In this document, we assume that "limited domain" and
 "controlled environment" mean the same thing in practice.

 The requirements of limited domains will be different in different
 scenarios. Policies, default parameters, and the options supported
 may vary. Also, the style of network management may vary, between a
 completely unmanaged network, one with fully autonomic management,
 one with traditional central management, and mixtures of the above.
 Finally, the requirements and solutions for security and privacy may
 vary.

 This documents analyses and discusses some of the consequences of
 this trend, and how it impacts the idea of universal interoperability
 in the Internet. Firstly we list examples of limited domain
 scenarios and of technical solutions for limited domains, with the
 main focus being the Internet layer of the protocol stack. Then we
 develop a taxonomy of the features to be found in limited domains.
 With this background, we discuss the resulting challenge to the idea
 that all Internet standards must be universal in scope and
 applicability. To the contrary, we assert that some protocols need
 to be specifically limited in their applicability. This implies that
 the concepts of a limited domain, and of its membership, need to be
 formalised and supported by secure mechanisms. While this document
 does not propose a design for such mechanisms, it does outline some
 resulting functional requirements.

2. Failure Modes in Today's Internet

 Today, the Internet does not have a well-defined concept of limited
 domains. One result of this is that certain protocols and features
 fail on certain paths. Earlier analyses of this topic have focused
 either on the loss of transparency of the Internet [RFC2775],
 [RFC4924] or on the middleboxes responsible for that loss [RFC3234],
 [RFC7663], [RFC8517]. Unfortunately the problems persist, both in
 application protocols, and even in very fundamental mechanisms. For
 example, the Internet is not transparent to IPv6 extension headers
 [RFC7872], and Path MTU Discovery has been unreliable for many years
 [RFC2923], [RFC4821]. IP fragmentation is also unreliable
 [I-D.ietf-intarea-frag-fragile], and problems in TCP MSS negotiation
 have been reported [I-D.andrews-tcp-and-ipv6-use-minmtu].

 On the security side, the widespread insertion of firewalls at domain
 boundaries that are perceived by humans but unknown to protocols
 results in arbitrary failure modes as far as the application layer is
 concerned. There are operational recommendations and practices that
 effectively guarantee arbitrary failures in realistic scenarios
 [I-D.ietf-opsec-ipv6-eh-filtering].

 The recent discussions about the unreliability of IP fragmentation
 and the filtering of IPv6 extension headers have clearly shown that
 at least for some protocol elements, transparency is a lost cause and
 middleboxes are here to stay. In summary, some application
 environments require protocol features that cannot cross the whole
 Internet. Ignoring this during protocol design is not an option.

3. Examples of Limited Domain Requirements

 This section describes various examples where limited domain
 requirements can easily be identified, either based on an application
 scenario or on a technical imperative. It is of course not a
 complete list, and it is presented in an arbitrary order, loosely
 from smaller to bigger.

 1. A home network. It will be unmanaged, constructed by a non-
 specialist, and will possibly include wiring errors such as
 physical loops. It must work with devices "out of the box" as
 shipped by their manufacturers and must create adequate security
 by default. Remote access may be required. The requirements
 and applicable principles are summarised in [RFC7368].

 2. A small office network. This is sometimes very similar to a
 home network, if whoever is in charge has little or no
 specialist knowledge, but may have differing security and
 privacy requirements. In other cases it may be professionally
 constructed using recommended products and configurations, but
 operate unmanaged. Remote access may be required.

 3. A vehicle network. This will be designed by the vehicle
 manufacturer but may include devices added by the vehicle's
 owner or operator. Parts of the network will have demanding
 performance and reliability requirements with implications for
 human safety. Remote access may be required to certain
 functions, but absolutely forbidden for others. Communication
 with other vehicles, roadside infrastructure, and external data
 sources will be required. See
 [I-D.ietf-ipwave-vehicular-networking] for a survey of use
 cases.

 4. Supervisory Control And Data Acquisition (SCADA) networks, and
 other hard real time networks. These will exhibit specific
 technical requirements, including tough real-time performance
 targets. See for example [I-D.ietf-detnet-use-cases] for
 numerous use cases. An example is a building services network.
 This will be designed specifically for a particular building,
 but using standard components. Additional devices may need to
 be added at any time. Parts of the network may have demanding
 reliability requirements with implications for human safety.
 Remote access may be required to certain functions, but
 absolutely forbidden for others.

 5. Sensor networks. The two preceding cases will all include
 sensors, but some networks may be specifically limited to
 sensors and the collection and processing of sensor data. They
 may be in remote or technically challenging locations and
 installed by non-specialists.

 6. Internet of Things (IoT) networks. While this term is very
 flexible and covers many innovative types of network, including
 ad hoc networks that are formed spontaneously, it seems
 reasonable to expect that IoT edge networks will have special
 requirements and protocols that are useful only within a
 specific domain, and that these protocols cannot, and for
 security reasons should not, run over the Internet as a whole.

 7. An important subclass of IoT networks consists of constrained
 networks [RFC7228] in which the nodes are limited in power
 consumption and communications bandwidth, and are therefore
 limited to using very frugal protocols.

 8. Delay tolerant networks may consist of domains that are
 relatively isolated and constrained in power (e.g. deep space
 networks) and are connected only intermittently to the outside,
 with a very long latency on such connections [RFC4838]. Clearly
 the protocol requirements and possibilities are very specialised
 in such networks.

 9. "Traditional" enterprise and campus networks, which may be
 spread over many kilometres and over multiple separate sites,
 with multiple connections to the Internet. Interestingly, the
 IETF appears never to have analysed this long-established class
 of networks in a general way, except in connection with IPv6
 deployment (e.g. [RFC7381]).

 10. Data centres and hosting centres, or distributed services acting
 as such centres. These will have high performance, security and
 privacy requirements and will typically include large numbers of
 independent "tenant" networks overlaid on shared infrastructure.

 11. Content Delivery Networks (CDNs), comprising distributed data
 centres and the paths between them, spanning thousands of
 kilometres, with numerous connections to the Internet.

 12. Massive Web Service Provider Networks. This is a small class of
 networks with well known trademarked names, combining aspects of
 distributed enterprise networks, data centres and CDNs. They
 have their own international networks bypassing the generic
 carriers. Like CDNs, they have numerous connections to the
 Internet, typically offering a tailored service in each economy.

 Three other aspects, while not tied to specific network types, also
 strongly depend on the concept of limited domains:

 1. Intent Based Networking. In this concept, a network domain is
 configured and managed in accordance with an abstract policy
 known as "Intent", to ensure that the network performs as
 required [I-D.moulchan-nmrg-network-intent-concepts]. Whatever
 technologies are used to support this, they will be applied
 within the domain boundary.

 2. Many of the above types of network may be extended throughout the
 Internet by a variety of virtual private network (VPN)
 techniques. Therefore we argue that limited domains may overlap
 each other in an arbitrary fashion by use of virtualization
 techniques. As noted above in the discussion of controlled
 environments, specific tunneling and encapsulation techniques may
 only be usable within a given domain.

 3. Network Slicing. A network slice is a virtual network that
 consists of a managed set of resources carved off from a larger
 network [I-D.geng-netslices-architecture]. Whatever technologies
 are used to support slicing, they will require a clear definition
 of the boundary of a given slice.

 While it is clearly desirable to use common solutions, and therefore
 common standards, wherever possible, it is increasingly difficult to
 do so while satisfying the widely varying requirements outlined
 above. However, there is a tendency when new protocols and protocol
 extensions are proposed to always ask the question "How will this
 work across the open Internet?" This document suggests that this is
 not always the right question. There are protocols and extensions
 that are not intended to work across the open Internet. On the
 contrary, their requirements and semantics are specifically limited
 (in the sense defined above).

 A common argument is that if a protocol is intended for limited use,
 the chances are very high that it will in fact be used (or misused)
 in other scenarios including the so-called open Internet. This is
 undoubtedly true and means that limited use is not an excuse for bad
 design or poor security. In fact, a limited use requirement
 potentially adds complexity to both the protocol and its security
 design, as discussed later.

 Nevertheless, because of the diversity of limited domains with
 specific requirements that is now emerging, specific standards (and
 ad hoc standards) will probably emerge for different types of domain.
 There will be attempts to capture each market sector, but the market
 will demand standardised solutions within each sector. In addition,
 operational choices will be made that can in fact only work within a
 limited domain. The history of RSVP illustrates that a standard
 defined as if it could work over the open Internet may not in fact do
 so. In general we can no longer assume that a protocol designed
 according to classical Internet guidelines will in fact work reliably
 across the network as a whole. However, the "open Internet" must
 remain as the universal method of interconnection. Reconciling these
 two aspects is a major challenge.

4. Examples of Limited Domain Solutions

 This section lists various examples of specific limited domain
 solutions that have been proposed or defined. It intentionally does
 not include Layer 2 technology solutions, which by definition apply
 to limited domains.

 1. Differentiated Services. This mechanism [RFC2474] allows a
 network to assign locally significant values to the 6-bit
 Differentiated Services Code Point field in any IP packet.
 Although there are some recommended codepoint values for
 specific per-hop queue management behaviours, these are
 specifically intended to be domain-specific codepoints with
 traffic being classified, conditioned and re-marked at domain
 boundaries (unless there is an inter-domain agreement that makes
 re-marking unnecessary).

 2. Integrated Services. Although it is not intrinsic in the design
 of RSVP [RFC2205], it is clear from many years' experience that
 Integrated Services can only be deployed successfully within a
 limited domain that is configured with adequate equipment and
 resources.

 3. Network function virtualisation. As described in
 [I-D.irtf-nfvrg-gaps-network-virtualization], this general
 concept is an open research topic, in which virtual network
 functions are orchestrated as part of a distributed system.
 Inevitably such orchestration applies to an administrative
 domain of some kind, even though cross-domain orchestration is
 also a research area.

 4. Service Function Chaining (SFC). This technique [RFC7665]
 assumes that services within a network are constructed as
 sequences of individual functions within a specific SFC-enabled
 domain. As that RFC states: "Specific features may need to be
 enforced at the boundaries of an SFC-enabled domain, for example
 to avoid leaking SFC information". A Network Service Header
 (NSH) [RFC8300] is used to encapsulate packets flowing through
 the service function chain: "The intended scope of the NSH is
 for use within a single provider's operational domain."

 5. Firewall and Service Tickets (FAST). Such tickets would
 accompany a packet to claim the right to traverse a network or
 request a specific network service [I-D.herbert-fast]. They
 would only be valid within a particular domain.

 6. Data Centre Network Virtualization Overlays. A common
 requirement in data centres that host many tenants (clients) is
 to provide each one with a secure private network, all running
 over the same physical infrastructure. [RFC8151] describes
 various use cases for this, and specifications are under
 development. These include use cases in which the tenant
 network is physically split over several data centres, but which
 must appear to the user as a single secure domain.

 7. Segment Routing. This is a technique which "steers a packet
 through an ordered list of instructions, called segments"
 [RFC8402]. The semantics of these instructions are explicitly
 local to a segment routing domain or even to a single node.
 Technically, these segments or instructions are represented as
 an MPLS label or an IPv6 address, which clearly adds a semantic
 interpretation to them within the domain.

 8. Autonomic Networking. As explained in
 [I-D.ietf-anima-reference-model], an autonomic network is also a
 security domain within which an autonomic control plane
 [I-D.ietf-anima-autonomic-control-plane] is used by autonomic
 service agents. These agents manage technical objectives, which
 may be locally defined, subject to domain-wide policy. Thus the
 domain boundary is important for both security and protocol
 purposes.

 9. Homenet. As shown in [RFC7368], a home networking domain has
 specific protocol needs that differ from those in an enterprise
 network or the Internet as a whole. These include the Home
 Network Control Protocol (HNCP) [RFC7788] and a naming and
 discovery solution [I-D.ietf-homenet-simple-naming].

 10. Creative uses of IPv6 features. As IPv6 enters more general
 use, engineers notice that it has much more flexibility than
 IPv4. Innovative suggestions have been made for:

 * The flow label, e.g. [RFC6294],
 [I-D.fioccola-v6ops-ipv6-alt-mark].

 * Extension headers, e.g. for segment routing
 [I-D.ietf-6man-segment-routing-header].

 * Meaningful address bits, e.g. [I-D.jiang-semantic-prefix].
 Also, segment routing uses IPv6 addresses as segment
 identifiers with specific local meanings [RFC8402].

 All of these suggestions are only viable within a specified
 domain. The case of the extension header is particularly
 interesting, since its existence has been a major "selling
 point" for IPv6, but it is notorious that new extension headers
 are virtually impossible to deploy across the whole Internet
 [RFC7045], [RFC7872]. It is worth noting that extension header
 filtering is considered as an important security issue
 [I-D.ietf-opsec-ipv6-eh-filtering]. There is considerable
 appetite among vendors or operators to have flexibility in
 defining extension headers for use in limited or specialised
 domains, e.g. [I-D.voyer-6man-extension-header-insertion] and
 [BIGIP]. Locally significant hop-by-hop options could also be
 envisaged, that would be understood by routers inside a domain
 but not elsewhere.

 11. Deterministic Networking (DetNet). The Deterministic Networking
 Architecture [I-D.ietf-detnet-architecture] and encapsulation
 [I-D.ietf-detnet-dp-sol] aim to support flows with extremely low
 data loss rates and bounded latency, but only within a part of
 the network that is "DetNet aware". Thus, as for differentiated
 services above, the concept of a domain is fundamental.

 12. Provisioning Domains (PvDs). An architecture for Multiple
 Provisioning Domains has been defined [RFC7556] to allow hosts
 attached to multiple networks to learn explicit details about
 the services provided by each of those networks.

5. Taxonomy of Limited Domains

 This section develops a taxonomy for describing limited domains.
 Several major aspects are considered in this taxonomy:

 o The domain as a whole.

 o The individual nodes.

 o The domain boundary.

 o The domain's topology.

 o The domain's technology.

 o How the domain connects to the Internet.

 o The security, trust and privacy model.

 o Operations.

 The following sub-sections analyse each of these aspects.

5.1. The Domain as a Whole

 o Why does the domain exist? (e.g., human choice, administrative
 policy, orchestration requirements, technical requirements)

 o If there are special requirements, are they at Layer 2, Layer 3 or
 an upper layer?

 o Is the domain managed by humans or fully autonomic?

 o If managed, what style of management applies? (Manual
 configuration, automated configuration, orchestration?)

 o Is there a policy model? (Intent, configuration policies?)

 o Does the domain provide controlled or paid service or open access?

5.2. Individual Nodes

 o Is a domain member a complete node, or only one interface of a
 node?

 o Are nodes permanent members of a given domain, or are join and
 leave operations possible?

 o Are nodes physical or virtual devices?

 o Are virtual nodes general-purpose, or limited to specific
 functions, applications or users?

 o Are nodes constrained (by battery etc)?

 o Are devices installed "out of the box" or pre-configured?

5.3. The Domain Boundary

 o How is the domain boundary identified or defined?

 o Is the domain boundary fixed or dynamic?

 o Are boundary nodes special? Or can any node be at the boundary?

5.4. Topology

 o Is the domain a subset of a layer 2 or 3 connectivity domain?

 o In IP addressing terms, is the domain Link-local, Site-local, or
 Global?

 o Does the domain overlap other domains? (In other words, a node
 may or may not be allowed to be a member of multiple domains.)

 o Does the domain match physical topology, or does it have a virtual
 (overlay) topology?

 o Is the domain in a single building, vehicle or campus? Or is it
 distributed?

 o If distributed, are the interconnections private or over the
 Internet?

 o In IP addressing terms, is the domain Link-local, Site-local, or
 Global?

5.5. Technology

 o What routing protocol(s) are used, or even different forwarding
 mechanisms (MPLS or other non-IP mechanism)?

 o In an overlay domain, what overlay technique is used (L2VPN,
 L3VPN,...)?

 o Are there specific QoS requirements?

 o Link latency - normal or long latency links?

 o Mobility - are nodes mobile? Is the whole network mobile?

 o Which specific technologies, such as those in Section 4, are
 applicable?

5.6. Connection to the Internet

 o Is the Internet connection permanent or intermittent? (Never
 connected is out of scope.)

 o What traffic is blocked, in and out?

 o What traffic is allowed, in and out?

 o What traffic is transformed, in and out?

 o Is secure and privileged remote access needed?

 o Does the domain allow unprivileged remote sessions?

5.7. Security, Trust and Privacy Model

 o Must domain members be authorized?

 o Are all nodes in the domain at the same trust level?

 o Is traffic authenticated?

 o Is traffic encrypted?

 o What is hidden from the outside?

5.8. Operations

 o Safety level - does the domain have a critical (human) safety
 role?

 o Reliability requirement - normal or 99.999% ?

 o Environment - hazardous conditions?

 o Installation - are specialists needed?

 o Service visits - easy, difficult, impossible?

 o Software/firmware updates - possible or impossible?

5.9. Making use of this taxonomy

 This taxonomy could be used to design or analyse a specific type of
 limited domain. For the present document, it is intended only to
 form a background to the following two sections, concerning the scope
 of protocols used in limited domains, and mechanisms reuqired to
 securely define domain membership and properties.

6. The Scope of Protocols in Limited Domains

 One consequence of the deployment of limited domains in the Internet
 is that some protocols will be designed, extended or configured so
 that they only work correctly between end systems in such domains.
 This is to some extent encouraged by some existing standards and by
 the assignment of code points for local or experimental use. In any
 case it cannot be prevented. Also, by endorsing efforts such as
 Service Function Chaining, Segment Routing and Deterministic
 Networking, the IETF is in effect encouraging such deployments.
 Furthermore, it seems inevitable, if the "Internet of Things" becomes
 reality, that millions of edge networks containing completely novel
 types of node will be connected to the Internet; each one of these
 edge networks will be a limited domain.

 It is therefore appropriate to discuss whether protocols or protocol
 extensions should sometimes be standardised to interoperate only
 within a Limited Domain Boundary. Such protocols would not be
 required to interoperate across the Internet as a whole. Several
 possibly overlapping scenarios could then arise:

 A. If a limited domain is split into two parts connected over the
 Internet directly at the IP layer (i.e. with no tunnel
 encapsulating the packets), a limited-domain protocol could be
 operated between those two parts regardless of its special nature,
 as long as it respects standard IP formats and is not arbitrarily
 blocked by firewalls. A simple example is any protocol using a
 port number assigned to a specific non-IETF protocol.

 Such a protocol could reasonably be described as an "inter-domain"
 protocol because the Internet is transparent to it, even if it is
 meaningless except in the two parts of the limited domain. This
 is of course nothing new in the Internet architecture.

 B. If a limited-domain protocol does not respect standard IP
 formats (for example, if it includes a non-standard IPv6 extension
 header), it could not be operated between two parts of a domain
 split at the IP layer.

 Such a protocol could reasonably be described as an "intra-domain"
 protocol, and the Internet is opaque to it.

 C. If a limited-domain protocol is clearly specified to be
 invalid outside its domain of origin, neither scenario A nor B
 applies. The two domains need to be unified as a single virtual
 domain. For example, an encapsulating tunnel between the parts of
 the split domain could be used. Also, nodes at the domain
 boundary must drop all packets using the limited-domain protocol.

 D. If a limited-domain protocol has domain-specific variants,
 such that implementations in different domains could not
 interoperate if those domains were unified by some mechanism, the
 protocol is not interoperable in the normal sense. If two domains
 using it were merged, the protocol might fail unpredictably. A
 simple example is any protocol using a port number assigned for
 experimental use. Such a protocol usually also falls into
 scenario C.

 To provide an existing example, consider Differentiated Services
 [RFC2474]. A packet containing any value whatever in the 6 bits of
 the Differentiated Service Code Point (DSCP) is well-formed and falls
 into scenario A. However, because the semantics of DSCP values are
 locally significant, the packet also falls into scenario D. In fact,
 differentiated services are only interoperable across domain
 boundaries if there is a corresponding agreement between the
 operators; otherwise a specific gateway function is required for
 meaningful interoperability. Much more detailed discussion is to be
 found in [RFC2474] and [RFC8100].

 To provide a provocative example, consider the proposal in
 [I-D.voyer-6man-extension-header-insertion] that the restrictions in
 [RFC8200] should be relaxed to allow IPv6 extension headers to be
 inserted on the fly in IPv6 packets. If this is done in such a way
 that the affected packets can never leave the specific limited domain
 in which they were modified, scenario C applies. If the semantic
 content of the inserted headers is locally defined, scenario D also
 applies. In neither case is the Internet disturbed.

 We conclude that it is reasonable to explicitly define limited-domain
 protocols, either as standards or as proprietary mechanisms, as long
 as they describe which of the above scenarios apply and they clarify
 how the domain is defined. As long as all relevant standards are
 respected outside the domain boundary, a well-specified limited-
 domain protocol is not harmful to the Internet. However, as
 described in the next section, mechanisms are needed to support
 domain membership operations.

7. Functional Requirements of Limited Domains

 As the preceding taxonomy shows, there are very numerous aspects to a
 domain, so the common features are not immediately obvious. It would
 be possible, but tedious, to apply the taxonomy to each of the domain
 types described in Section 3. However, we can deduce some generally
 required features and functions without doing so.

 A basic assumption is that domains should be created and managed as
 automatically as possible, with minimal human configuration required.
 We therefore investigate protocol requirements for automating domain
 creation and management.

 Firstly, if we drew a topology map, any domain -- virtual or physical
 -- will have a well defined boundary between "inside" and "outside".
 However, that boundary in itself has no technical meaning. What
 matters in reality is whether a node is a member of the domain, and
 whether it is at the boundary between the domain and the rest of the
 Internet. Thus the boundary in itself does not need to be
 identified. However, a sending node needs to know whether it is
 sending to an inside or outside destination; a receiving node needs
 to know whether a packet originated inside or outside; and a boundary
 node needs to know which of its interfaces are inward-facing or
 outward-facing. It is irrelevant whether the interfaces involved are
 physical or virtual.

 With this perspective, we can list some general functional
 requirements. An underlying assumption here is that domain
 membership operations should be cryptographically secured; a domain
 without such security cannot be reliably protected from attack.

 1. Domain Identity. A domain must have a unique and verifiable
 identifier; effectively this should be a public key for the
 domain. Without this, there is no way to secure domain
 operations and domain membership. The holder of the
 corresponding private key becomes the trust anchor for the
 domain.

 2. Node Eligibility. It must be possible for a node to determine
 which domain(s) it can potentially join, and on which
 interface(s).

 3. Secure Enrolment. A node must be able to enrol in a given domain
 via secure node identfication and to acquire relevant security
 credentials (authorization) for operations within the domain. If
 a node has multiple physical or virtual interfaces, they may
 require to be individually enrolled.

 4. Withdrawal. A node must be able to cancel enrolment in a given
 domain.

 5. Dynamic Membership. Optionally, a node should be able
 temporarily leave or rejoin a domain (i.e. enrolment is
 persistent but membership is intermittent).

 6. Role, implying authorization to perform a certain set of actions.
 A node must have a verifiable role. In the simplest case, the
 choices of role are "interior node" and "boundary node". In a
 boundary node, individual interfaces may have different roles,
 e.g. "inward facing" and "outward facing".

 7. Verify Peer. A node must be able to verify whether another node
 is a member of the domain.

 8. Verify Role. A node must be able to learn the verified role of
 another node. In particular, it must be possible for a node to
 find boundary nodes (interfacing to the Internet).

 9. Domain Data. In a domain with management requirements, it must
 be possible for a node to acquire domain policy and/or domain
 configuration data. This would include, for example, filtering
 policy to ensure that inappropriate packets do not leave the
 domain.

 These requirements could form the basis for further analysis and
 solution design.

 Another aspect is whether individual packets within a limited domain
 need to carry any sort of indicator that they belong to that domain,
 or whether this information will be implicit in the IP addresses of
 the packet. A related question is whether individual packets need
 cryptographic authentication. This topic is for further study.

8. Security Considerations

 Clearly, the boundary of a limited domain will almost always also act
 as a security boundary. In particular, it will serve as a trust
 boundary, and as a boundary of authority for defining capabilities.
 Within the boundary, limited-domain protocols or protocol features
 will be useful, but they will be meaningless if they enter or leave
 the domain.

 The security model for a limited-scope protocol must allow for the
 boundary, and in particular for a trust model that changes at the
 boundary. Typically, credentials will need to be signed by a domain-
 specific authority.

9. IANA Considerations

 This document makes no request of the IANA.

10. Contributors

 Sheng Jiang made important contributions to this document.

11. Acknowledgements

 Useful comments were received from Amelia Andersdotter, Edward
 Birrane, David Black, Ron Bonica, Tim Chown, Darren Dukes, Tom
 Herbert, John Klensin, Michael Richardson, Rick Taylor, Niels ten
 Oever, and other members of the ANIMA and INTAREA WGs.

12. Informative References

 [BIGIP]
 Li, R., "HUAWEI - Big IP Initiative.", 2018,
 <https://www.iaria.org/announcements/HuaweiBigIP.pdf>.

 [I-D.andrews-tcp-and-ipv6-use-minmtu]

 Andrews, M., "TCP Fails To Respect IPV6_USE_MIN_MTU",
 draft-andrews-tcp-and-ipv6-use-minmtu-04 (work in
 progress), October 2015.

 [I-D.fioccola-v6ops-ipv6-alt-mark]

 Fioccola, G., Velde, G., Cociglio, M., and P. Muley, "IPv6
 Performance Measurement with Alternate Marking Method",
 draft-fioccola-v6ops-ipv6-alt-mark-01 (work in progress),
 June 2018.

 [I-D.geng-netslices-architecture]

 67, 4., Dong, J., Bryant, S., kiran.makhijani@huawei.com,
 k., Galis, A., Foy, X., and S. Kuklinski, "Network Slicing
 Architecture", draft-geng-netslices-architecture-02 (work
 in progress), July 2017.

 [I-D.herbert-fast]

 Herbert, T., "Firewall and Service Tickets", draft-
 herbert-fast-03 (work in progress), September 2018.

 [I-D.ietf-6man-segment-routing-header]

 Filsfils, C., Previdi, S., Leddy, J., Matsushima, S., and
 d. daniel.voyer@bell.ca, "IPv6 Segment Routing Header
 (SRH)", draft-ietf-6man-segment-routing-header-16 (work in
 progress), February 2019.

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-detnet-architecture]

 Finn, N., Thubert, P., Varga, B., and J. Farkas,
 "Deterministic Networking Architecture", draft-ietf-
 detnet-architecture-11 (work in progress), February 2019.

 [I-D.ietf-detnet-dp-sol]

 Korhonen, J., Andersson, L., Jiang, Y., Finn, N., Varga,
 B., Farkas, J., Bernardos, C., Mizrahi, T., and L. Berger,
 "DetNet Data Plane Encapsulation", draft-ietf-detnet-dp-
 sol-04 (work in progress), March 2018.

 [I-D.ietf-detnet-use-cases]

 Grossman, E., "Deterministic Networking Use Cases", draft-
 ietf-detnet-use-cases-20 (work in progress), December
 2018.

 [I-D.ietf-homenet-simple-naming]

 Lemon, T., Migault, D., and S. Cheshire, "Homenet Naming
 and Service Discovery Architecture", draft-ietf-homenet-
 simple-naming-03 (work in progress), October 2018.

 [I-D.ietf-intarea-frag-fragile]

 Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,
 and F. Gont, "IP Fragmentation Considered Fragile", draft-
 ietf-intarea-frag-fragile-09 (work in progress), February
 2019.

 [I-D.ietf-ipwave-vehicular-networking]

 Jeong, J., "IP Wireless Access in Vehicular Environments
 (IPWAVE): Problem Statement and Use Cases", draft-ietf-
 ipwave-vehicular-networking-07 (work in progress),
 November 2018.

 [I-D.ietf-opsec-ipv6-eh-filtering]

 Gont, F. and W. LIU, "Recommendations on the Filtering of
 IPv6 Packets Containing IPv6 Extension Headers", draft-
 ietf-opsec-ipv6-eh-filtering-06 (work in progress), July
 2018.

 [I-D.irtf-nfvrg-gaps-network-virtualization]

 Bernardos, C., Rahman, A., Zuniga, J., Contreras, L.,
 Aranda, P., and P. Lynch, "Network Virtualization Research
 Challenges", draft-irtf-nfvrg-gaps-network-
 virtualization-10 (work in progress), September 2018.

 [I-D.jiang-semantic-prefix]

 Jiang, S., Qiong, Q., Farrer, I., Bo, Y., and T. Yang,
 "Analysis of Semantic Embedded IPv6 Address Schemas",
 draft-jiang-semantic-prefix-06 (work in progress), July
 2013.

 [I-D.moulchan-nmrg-network-intent-concepts]

 Sivakumar, K. and M. Chandramouli, "Concepts of Network
 Intent", draft-moulchan-nmrg-network-intent-concepts-00
 (work in progress), October 2017.

 [I-D.voyer-6man-extension-header-insertion]

 daniel.voyer@bell.ca, d., Leddy, J., Filsfils, C., Dukes,
 D., Previdi, S., and S. Matsushima, "Insertion of IPv6
 Segment Routing Headers in a Controlled Domain", draft-
 voyer-6man-extension-header-insertion-05 (work in
 progress), January 2019.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC2474]
 Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC2775]
 Carpenter, B., "Internet Transparency", RFC 2775,
 DOI 10.17487/RFC2775, February 2000,
 <https://www.rfc-editor.org/info/rfc2775>.

 [RFC2923]
 Lahey, K., "TCP Problems with Path MTU Discovery",
 RFC 2923, DOI 10.17487/RFC2923, September 2000,
 <https://www.rfc-editor.org/info/rfc2923>.

 [RFC3234]
 Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, DOI 10.17487/RFC3234, February 2002,
 <https://www.rfc-editor.org/info/rfc3234>.

 [RFC4821]
 Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC4838]
 Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,
 April 2007, <https://www.rfc-editor.org/info/rfc4838>.

 [RFC4924]
 Aboba, B., Ed. and E. Davies, "Reflections on Internet
 Transparency", RFC 4924, DOI 10.17487/RFC4924, July 2007,
 <https://www.rfc-editor.org/info/rfc4924>.

 [RFC6294]
 Hu, Q. and B. Carpenter, "Survey of Proposed Use Cases for
 the IPv6 Flow Label", RFC 6294, DOI 10.17487/RFC6294, June
 2011, <https://www.rfc-editor.org/info/rfc6294>.

 [RFC6398]
 Le Faucheur, F., Ed., "IP Router Alert Considerations and
 Usage", BCP 168, RFC 6398, DOI 10.17487/RFC6398, October
 2011, <https://www.rfc-editor.org/info/rfc6398>.

 [RFC6455]
 Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC6950]
 Peterson, J., Kolkman, O., Tschofenig, H., and B. Aboba,
 "Architectural Considerations on Application Features in
 the DNS", RFC 6950, DOI 10.17487/RFC6950, October 2013,
 <https://www.rfc-editor.org/info/rfc6950>.

 [RFC7045]
 Carpenter, B. and S. Jiang, "Transmission and Processing
 of IPv6 Extension Headers", RFC 7045,
 DOI 10.17487/RFC7045, December 2013,
 <https://www.rfc-editor.org/info/rfc7045>.

 [RFC7228]
 Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7368]
 Chown, T., Ed., Arkko, J., Brandt, A., Troan, O., and J.
 Weil, "IPv6 Home Networking Architecture Principles",
 RFC 7368, DOI 10.17487/RFC7368, October 2014,
 <https://www.rfc-editor.org/info/rfc7368>.

 [RFC7381]
 Chittimaneni, K., Chown, T., Howard, L., Kuarsingh, V.,
 Pouffary, Y., and E. Vyncke, "Enterprise IPv6 Deployment
 Guidelines", RFC 7381, DOI 10.17487/RFC7381, October 2014,
 <https://www.rfc-editor.org/info/rfc7381>.

 [RFC7556]
 Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

 [RFC7663]
 Trammell, B., Ed. and M. Kuehlewind, Ed., "Report from the
 IAB Workshop on Stack Evolution in a Middlebox Internet
 (SEMI)", RFC 7663, DOI 10.17487/RFC7663, October 2015,
 <https://www.rfc-editor.org/info/rfc7663>.

 [RFC7665]
 Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC7788]
 Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <https://www.rfc-editor.org/info/rfc7788>.

 [RFC7872]
 Gont, F., Linkova, J., Chown, T., and W. Liu,
 "Observations on the Dropping of Packets with IPv6
 Extension Headers in the Real World", RFC 7872,
 DOI 10.17487/RFC7872, June 2016,
 <https://www.rfc-editor.org/info/rfc7872>.

 [RFC8085]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8086]
 Yong, L., Ed., Crabbe, E., Xu, X., and T. Herbert, "GRE-
 in-UDP Encapsulation", RFC 8086, DOI 10.17487/RFC8086,
 March 2017, <https://www.rfc-editor.org/info/rfc8086>.

 [RFC8100]
 Geib, R., Ed. and D. Black, "Diffserv-Interconnection
 Classes and Practice", RFC 8100, DOI 10.17487/RFC8100,
 March 2017, <https://www.rfc-editor.org/info/rfc8100>.

 [RFC8151]
 Yong, L., Dunbar, L., Toy, M., Isaac, A., and V. Manral,
 "Use Cases for Data Center Network Virtualization Overlay
 Networks", RFC 8151, DOI 10.17487/RFC8151, May 2017,
 <https://www.rfc-editor.org/info/rfc8151>.

 [RFC8200]
 Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8300]
 Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

 [RFC8402]
 Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [RFC8517]
 Dolson, D., Ed., Snellman, J., Boucadair, M., Ed., and C.
 Jacquenet, "An Inventory of Transport-Centric Functions
 Provided by Middleboxes: An Operator Perspective",
 RFC 8517, DOI 10.17487/RFC8517, February 2019,
 <https://www.rfc-editor.org/info/rfc8517>.

Appendix A. Change log [RFC Editor: Please remove]

 draft-carpenter-limited-domains-00, 2018-06-11:

 Initial version

 draft-carpenter-limited-domains-01, 2018-07-01:

 Minor terminology clarifications

 draft-carpenter-limited-domains-02, 2018-08-03:

 Additions following IETF102 discussions

 Updated authorship/contributors

 draft-carpenter-limited-domains-03, 2018-09-12:

 First draft of taxonomy

 Editorial improvements

 draft-carpenter-limited-domains-04, 2018-10-14:

 Reorganized section 3

 Newly written sections 6 and 7

 Editorial improvements

 draft-carpenter-limited-domains-05, 2018-12-12:

 Added discussion of transparency/filtering debates

 Added discussion of "controlled environment"

 Modified assertion about localized standards

 Editorial improvements

 draft-carpenter-limited-domains-06, 2019-03-02:

 Minor updates, fixed reference nits

Authors' Addresses

Brian Carpenter
The University of Auckland
School of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Bing Liu
Huawei Technologies
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

draft-chen-grow-enhanced-as-loop-detection-00 - Enhanced AS-Loop Detection for BGP

draft-chen-grow-enhanced-as-loop-detection-00 - Enhanced AS-Loop Detection for B

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Best Current Practice

Expires: September 13, 2019

H. Chen

China Telecom

Y. Gu

S. Zhuang

H. Wang

Huawei

March 12, 2019

Enhanced AS-Loop Detection for BGP

draft-chen-grow-enhanced-as-loop-detection-00

Abstract

 This document proposes to enhance AS-Loop Detection for BGP Inbound/
 Outbound Route Processing.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Enhanced AS-Loop Detection for BGP Inbound Route Processing

	4. Enhanced AS-Loop Detection for BGP Outbound Route Processing

	5. Benefits

	6. Acknowledgements

	7. IANA Considerations

	8. Security Considerations

	9. Normative References

	Authors' Addresses

1. Introduction

 The Border Gateway Protocol (BGP) [RFC4271], as an inter-Autonomous
 (AS) routing protocol, is used to exchange network reachability
 information between BGP systems. BGP is widely used by Internet
 Service Providers (ISPs) and large organizations.

 BGP is used to exchange reachable inter-AS routes, establish inter-AS
 paths, avoid routing loops, and apply routing policies between ASs.
 BGP loop detection mechanism is defined in section 9.1.2. of RFC4271:

 ...

 If the AS_PATH attribute of a BGP route contains an AS loop, the
 BGP route should be excluded from the Phase 2 decision function.
 AS loop detection is done by scanning the full AS path (as
 specified in the AS_PATH attribute), and checking that the
 autonomous system number of the local system does not appear in
 the AS path. Operations of a BGP speaker that is configured to
 accept routes with its own autonomous system number in the AS path
 are outside the scope of this document.

 ...

 In ordinary BGP, every AS announces its route information with
 different prefixes. However, its neighboring ASes cannot validate
 this route information, but rather directly propagate it across the
 Internet or simply discard AS-Loop routes directly. Obviously, this
 weak trust model allows forged route announcement propagations and
 rarely been found, which is a fundamental security weakness of BGP.
 Forged routes, which can be generated by configuration errors or
 malicious attacks, can cause large-scale network connectivity
 problems.

 Some cases can be worse, hackers exploit this property of BGP to
 achieve their ulterior motives. They can add some providers' AS
 number into the forged AS-Path and attempt to make it look like the
 route had passed through these ASNs, or perhaps they are there to
 prevent those providers from carrying the route.

 For example, the cases shown in Figure 1.

 o Forged Case 1: One upstream ISP of AS200 forged a route with the
 ASN 200 as the origin ASN.

 o Forged Case 2: One upstream ISP of AS200 forged a route with the
 ASN 200 as the transit ASN.

 After receiving the above routes, AS200 treats them as normal loop
 routes during the loop detecting phase and discards them directly.
 If the AS200 is slightly enhanced, it can find that someone has faked
 himself, which may cause unnecessary trouble for himself.

 AS‑Loop‑Detecting at this point
 Discard AS‑Loop Routes directly that contains AS200
 |
 |
 v x.y.z.0/24 Origin AS 600
AS100‑‑‑AS200‑‑‑AS300‑‑‑‑‑AS400‑‑‑‑‑AS500‑‑‑‑‑‑AS600
 Normal Case:
 <‑‑ x.y.z.0/24, AS‑Path: 300 400 500 600

 Forged Case 1:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200
 (Or: 300 400 200 etc.)

 Forged Case 2:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200 600
 (Or: 300 200 500 600 etc.)

 Figure 1: BGP Inbound Route Processing

 Split-Horizon for EBGP is an optional function that a BGP sender will
 not advertise any routes that were previously received from that same
 AS. In some current implementation, the BGP outbound route
 processing step will simply discard the route if AS-Loop being
 detected.

 For example, the cases shown in Figure 1.

 o Forged Case 1: One upstream ISP of AS300 forged a route with the
 ASN 200 as the origin ASN.

 o Forged Case 2: One upstream ISP of AS300 forged a route with the
 ASN 200 as the transit ASN.

 When sending the above routes, AS300 treats them as normal loop
 routes and discards them directly. If AS300 is slightly enhanced, it
 can find that someone has faked AS200, which may cause large-scale
 network connectivity problems.

 Split‑Horizon Enable & AS‑Loop‑Detecting at this point
 Discard AS‑Loop Routes directly if sending AS‑Path contains AS200
 |
 |
 v x.y.z.0/24?Origin AS 600
AS100‑‑‑AS200‑‑‑AS300‑‑‑‑‑AS400‑‑‑‑‑AS500‑‑‑‑‑‑AS600
 Normal Case:
 <‑‑ x.y.z.0/24, AS‑Path: 300 400 500 600

 Forged Case 1:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200
 (Or: 300 400 200 etc.)

 Forged Case 2:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200 600
 (Or: 300 200 500 600 etc.)

 Figure 2: BGP Outbound Route Processing

2. Terminology

 The following terminology is used in this document.

 AS: Autonomous System

 BGP: Border Gateway Protocol

 BGP hijacking : is the illegitimate takeover of groups of IP
 addresses by corrupting Internet routing tables maintained using the
 Border Gateway Protocol (BGP). (Sometimes referred to as prefix
 hijacking, route hijacking or IP hijacking)

 EBGP: External BGP

 ISP: Internet Service Provider

3. Enhanced AS-Loop Detection for BGP Inbound Route Processing

 This section proposes to enhance AS Loop Detection for BGP Inbound
 Route Processing.

 As shown in Figure 3, when receiving the routes from AS300, AS200
 should check whether its AS number is already in the AS-Path, If yes,
 it further analyzes the location of the AS200 in the received
 AS_Path:

 Case 1: AS 200 is listed as Origin AS

 Lookup the local resource database (Such as ROA Cache) and determine
 whether the route is originated from the AS 200.

 o Result 1: AS 200 has no corresponding prefix; it is identified as
 a purely forged AS_Path prefix hijacking event, which is recorded
 as incident type 1.

 o Result 2: The corresponding prefix is a sub-prefix of a certain
 prefix of the AS 200 and the AS 200 has not advertise it. For
 example, the prefix being hold by the AS 200 is 10.10.128.0/17,
 and the receiving route prefix is 10.10.192.0/24, the latter is a
 sub-prefix of the former, which indicates that this is a forged
 AS_Path sub-prefix hijacking event, which is recorded as incident
 type 2.

 o Result 3: The corresponding prefix is a sub-prefix of a certain
 prefix of the AS 200 and the AS 200 has only advertised to some
 special ASNs, and only wants it to be used internally by those
 ASNs. The AS 200 recognizes that At least one special AS violates
 the route policy. Which is recorded as incident type 3.

 o Result 4: The corresponding prefix is originated by the AS 200,
 this is the normal case.

 Case 2: AS 200 is listed as transit AS

 For example, AS-Path looks like the following form:

 (possible other AS), left AS, local AS(200), right AS, (possible
 other AS)

 At this point, AS 200 can lookup the local resource database and
 check whether there is a real AS relationship between the local AS
 and the left AS and the right AS

 o Result 1: At least one of the AS (the left AS or the right AS)
 has no actual AS relationship with the local AS. It is a purely
 forged AS_Path prefix hijacking event. Which is recorded as
 incident type 4.

 o Result 2: The AS relationships between the local AS and the left
 AS and the right AS is correct, but the local AS has not
 previously process this prefix , so it can be recognized that this
 is a forged route. We classify this incident type as type 5.

 o Detection result 3: The AS relationship between the AS and the
 left AS and the right AS is correct, and the local AS 200 has
 previously processed the prefix, this is the normal case.

 Enhanced AS‑Loop‑Detecting at this point
 To identify the attack/forged information
 |
 |
 v x.y.z.0/24 Origin AS 600
AS100‑‑‑AS200‑‑‑AS300‑‑‑‑‑AS400‑‑‑‑‑AS500‑‑‑‑‑‑AS600
 Normal Case:
 <‑‑ x.y.z.0/24, AS‑Path: 300 400 500 600

 Forged Case 1:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200
 (Or: 300 400 200 etc.)

 Forged Case 2:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200 600
 (Or: 300 200 500 600 etc.)

 Figure 3: Enhance for BGP Inbound Route Processing

 The local AS 200 inputs the detected result to the route hijacking
 management module, or/and records the log or/and the alarm
 information, and the maintenance team of the local AS 200 can notify
 the maintenance team of the relevant AS to correct the error in their
 networks .

 After the above steps are added, the stability and security of the
 network can be improved.

4. Enhanced AS-Loop Detection for BGP Outbound Route Processing

 This section proposes to enhance AS Loop Detection for BGP Outbound
 Route Processing.

 If Split‑Horizon Enable, Enhanced AS‑Loop‑Detecting at this point
 To identify the attack/forged information
 |
 |
 v x.y.z.0/24 Origin AS 600
AS100‑‑‑AS200‑‑‑AS300‑‑‑‑‑AS400‑‑‑‑‑AS500‑‑‑‑‑‑AS600
 Normal Case:
 <‑‑ x.y.z.0/24, AS‑Path: 300 400 500 600

 Forged Case 1:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200
 (Or: 300 400 200 etc.)

 Forged Case 2:
 <‑‑ x.y.z.0/24, AS‑Path: 300 200 600
 (Or: 300 200 500 600 etc.)

 Figure 4: Enhance for BGP Outbound Route Processing

 As shown in Figure 4, when sending the routes from AS300 to AS200,
 AS300 will check whether the AS number 200 is already in the AS-Path,
 If yes, it can further analyzes the location of the AS200 in the
 received AS_Path:

 The remaining processing steps are the same as the previous section.

5. Benefits

 After the enhancements of the AS Loop Detection for BGP Inbound/
 Outbound Route Processing are added, the stability and security of
 the network can be improved.

6. Acknowledgements

 The authors would like to acknowledge the review and inputs from Gang
 Yan and Zhenbin Li.

 .

7. IANA Considerations

 TBD.

8. Security Considerations

 TBD.

9. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4760]
 Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
 "Multiprotocol Extensions for BGP-4", RFC 4760,
 DOI 10.17487/RFC4760, January 2007,
 <https://www.rfc-editor.org/info/rfc4760>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

Authors' Addresses

Huanan Chen
China Telecom
109, West Zhongshan Road, Tianhe District
Guangzhou 510000
China

 Email: chenhn8.gd@chinatelecom.cn

Yunan Gu
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: guyunan@huawei.com

Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: zhuangshunwan@huawei.com

Haibo Wang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: rainsword.wang@huawei.com

draft-choi-anima-trust-networking-01 - Trust networking and procedures for Autonomic Networking

draft-choi-anima-trust-networking-01 - Trust networking and procedures for Auton

Index
Back 5
Prev
Next
Forward 5

ANIMA T.S.Choi

Internet Draft T.S.Jeong

Intended status: Standards Track ETRI

Expires: January 13, 2019 J.K.Choi

J.S.Han

KAIST

October 14, 2018

Trust networking and procedures for Autonomic Networking

 draft-choi-anima-trust-networking-01

Abstract

 This document describes trust networking as an application of
 autonomic networking. The objective of trustworthy autonomic
 networking is providing trust networking environment where all
 autonomic nodes can communicate without any security concern. It
 defines a trust networking domain and describes how to configure and
 maintain the trust networking domain. While communication within the
 trust networking domain is done with trust, the communication with
 external nodes should be done via a specific autonomic service agent
 (ASA) called "trust gateway". The trust gateway ASA performs trust
 evaluation of the external nodes and enforces domain specific
 policies to keep the domain trustworthy.

Status of This Memo

This Internet‑Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet‑Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet‑Drafts. The list of current Internet‑
Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2019

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license‑info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Background
	 2.1. Security Model and its Limitations

	 2.2. Trust Model and Trust Relations

	 2.3. Comparisons of Security and Trust Model

	3. Trust Networking Framework
	 3.1. Defining Trust Networking Domain

	 3.2. Protecting Trust Networking Domain

	 3.3. Expanding Trust Networking Domain

	 3.4. Communicating with External Entities

	4. Differences between trust networking and ANIMA security framework
	 4.1. Domain as a Whole

	 4.2. Individual Nodes (Domain members)

	 4.3. Domain Boundary

	 4.4. Topology

	 4.5. Technology

	 4.6. Connection to the Internet

	 4.7. Security, Trust and Privacy Model

	 4.8. Operations

	5. Trust networking domain as an application of autonomic networking
	 5.1. Definition of a Trust networking domain

	 5.2. Configuration of Trust networking domain

	 5.3. Communication between Trusted Autonomic Nodes within a trust networking domain

	 5.4. Communication between trusted autonomic nodes and external nodes

	6. Trust Networking in the Autonomic Networking Infrastructure
	 6.1. Identification of Trust networking domain and Trusted Autonomic Node

	 6.2. Discovery of Trust networking domain

	 6.3. Signaling Between Trusted Autonomic Nodes

	 6.4. Trust Evaluation

	7. Procedures for trust networking
	 7.1. Building a trust networking domain
	 7.1.1. Domain initialization

	 7.1.2. Node registration

	 7.2. Evicting existing node from trust networking domain 7.3. Terminating trust networking domain

	 7.4. Communication among trust networking domains
	 7.4.1. Trustworthy networking within a single trust networking domain

	 7.4.2. Trustworthy networking between trust networking domains

	8. Security Considerations

	9. IANA Considerations

	10. Acknowledgements

	11. Contributors

	12. References
	 12.1. Normative References

	 12.2. Informative References

 1. Introduction

 The document describes the concept of trust networking as an
 application of Autonomic Networking Architecture. It defines a trust
 networking domain in compliance with reference model of autonomic
 networking. By definition of autonomic domain [rfc7575 Autonomic
 Networking Definitions and Design Goals] the trust networking domain
 is defined as a collection of autonomic nodes which trust other
 nodes in the same trust networking domain. That means,
 communications within the trust networking domain with sufficient
 trust level can be done without any further security concerns. For
 example, assume that a subnet properly protected from external
 threats and all nodes in the subnet are verified through trust
 evaluation procedures, then the communications within the subnet can
 be done with confidence that nodes do no harm to each other.

 This document first defines a trust networking domain and then
 describes how to configure the trust networking domain and keep the
 domain trustworthy. This document also describes a trust networking
 framework that consists of interconnected trust networking domains.
 The framework guides how to define the trust networking domain, how
 to manage members of the domain, how to protect the domain from
 hostile external world, how to expand the domain, and how to handle
 communications with external entities. Finally this documents shows
 how to apply the trust networking framework to the existing IP based
 network with minor modifications

 2. Background

 One of the biggest problems in the current Internet is protecting
 information assets against divergent attacks. In the beginning of

 the Internet, security was not considered to be an essential
 component of the network architecture but optional solutions such as
 IPSec were used instead. This section compares the security model of
 the traditional Internet and our proposed trust model.

 2.1. Security Model and its Limitations

 The security model of the current Internet is based on the
 assumption that all traffic coming from the Internet is suspicious.
 The lack of inherent security in IP protocol has led various attacks,
 such as attack on confidentiality by intercepting packets, integrity
 attack by modifying of the contents of packets, authentication
 attack by identity fabrication, and availability attack by
 interfering normal communications. In the context of untrusty
 Internet, each host should protect itself from potential risks of
 the hostile Internet. This protection usually take place at the
 final destination as seen in Figure 1. This model operates basically
 in reactive manner. That means, after receiving all arriving packets,
 threatening packets can be detected and removed. Detection of
 threatening packets are based on pre-defined rules extracted from
 previous attacks.

 +‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | :Interception: :Modification: |
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | : : |
 | : +‑‑‑‑‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑‑‑‑+ |
 | : :Interruption: : :Fabrication: |
 | : +‑‑‑‑‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑‑‑‑+ |
 | : : : : |
 | : : : : |
+‑‑‑‑‑‑+ | <*| <*| <*| +‑‑‑‑‑‑+ |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
+‑ X	
: +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
+‑‑‑:‑‑+ | +‑‑‑‑‑‑+ |
 : | |
 : +‑‑‑+
 :
+‑‑‑‑‑‑‑‑‑‑+
:Protection:
+‑‑‑‑‑‑‑‑‑‑+
 Figure 1. Security Model

 The reactive operations of security model result in endless
 malicious cycle of attacks and defenses. Rules has to be upgraded
 for every newly discovered attacks and more complicate rules are
 required as more sophisticate attacks emerge. This model is fatal in
 the case of devices with limited or no processing power. Also
 stronger security makes the system weaker in defending DoS (Denial
 of Service) attacks.

 2.2. Trust Model and Trust Relations

 In contrast to the security model based on doubt, the trust model
is based on the confidence that any entity in the domain is not
harmful to other entities and the communication environment within
the domain is safe enough. Instead of unlimited connectivity, the
trust model restrict connectivity to the limited group of trusted
entities. Of course, the limited connectivity can be extended by the
domain expansion principle described in Section 3.3. Figure 2
illustrates the trust model, which needs 3 requirements:
Identification, Trust Relation, and Safe Environment.
 For identification purpose, the trust model uses self‑certifying ID
(SCID), which provides secure binding between ID and key of an
entity. Many future Internet researches already use SCID for
accountability or trusted path selection. The trust model assume
that every entity has a public key and hash of the public key is
defined as the ID of the entity. This ID can be used in validity
check of claimed key against actual public key of the entity. The
valid public key is basis of further identity verification. After
identification the entity check trust relation with the peer entity
so that only trusted entity is allowed to communicate.

 +‑‑+
 | <Safe Environment> |
 | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | : Identification : : Identification : |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | : : |
 | : : |
+‑‑‑‑‑‑+	*>	*> <*	+‑‑‑‑‑‑+	
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			
	Node +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Node			

 | | <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> | |
 | +‑‑‑‑‑‑+ Trust Relation +‑‑‑‑‑‑+ |
 | |
 | |
 | |
 +‑‑+

 Figure 2. Trust Model

 The trust relation used in the trust model is assumed to be
reflexive, symmetric, and transitive. Reflexive means that entity A
trust itself, denoting as AA. Symmetric relation assumes that two
entities A and B satisfy AB and BA at the same time, denoting as
AB. Transitive means that for three entities A, B, and C, if AB
and BC then A C. If all entities in a given group satisfy all
three characteristics, the group is declared as a trust equivalent
class. We can easily guess the role of the trust model as formation
of a trust equivalent class for the set of entities trusting each
other.
 The trust model should provide safe and reliable communication
environment to entities without requiring additional security
features on the entities. Thanks to the transitive trust relation,
if an external entity is trusted by one member of the domain as a
trust equivalence class, other members in that domain also can trust
the external entity. By restricting the domain to trusted entities,
the environment can be kept safe and reliable.

 2.3. Comparisons of Security and Trust Model

 The trust model is opposite in almost every aspect as shown in
 Table 1. First of all, the trust model is based on confidence that
 entities in a trust networking domain never do harm, while the
 security model is based on suspicion that adversaries attacks
 anytime. The relationship in trust model is binary in the sense that
 an entity trust another specific entity, but relationship in the
 security model is unary because the entity itself must protect
 regardless of other entities. With respect of rules, trust model
 keeps trusted IDs as a white list but security model keeps
 threatening entities as a black list. Thus, behavior of entities in
 the trust model is proactive while the security model acts in
 reactive manner. That leads the policy of the trust model is to
 prevent risk by communicating only with trusted entities, but policy
 of the security model monitors all communications to detect and
 remove threatening actions. The trust model provides mechanisms for

 accepting entities or domains after verifying their trust, while the
 security model provides mechanisms for watching the traffic and
 blocking the threatening traffics. As the result, the network space
 of the trust model starts with a restricted space and incrementally
 glows as new entities or domains are accepted, while the network
 space of security model starts as an unrestricted and open space,
 but the space may be diminished by excluding misbehaving entities.

 Table 1 Comparison of Trust and Security Model

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Trust Model | Security Model|
+‑‑‑+
| based on | confidence | suspicion |
+‑‑‑+
|relationship| binary | unary |
+‑‑‑+
| rules | white list | black list |
+‑‑‑+
| behavior | proactive | reactive |
+‑‑‑+
| policy | prevention | detect and |
| | | remove |
+‑‑‑+
| mechanism | verify and | watch and |
| | accept | block |
+‑‑‑+
network	unrestricted	rectricted
space	and	and
	diminishing	expanding
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 3. Trust Networking Framework

 The purpose of the trustworthy communication framework is to provide
 safe and reliable environment to entities without requiring
 additional security features. For keeping the environment
 trustworthy, the domain accepts only eligible entities. However,
 this restriction seems contradict to global scalability that
 requires the domain being open to everyone. Our solution is the
 incremental strategy, where a domain starts from a small and
 restricted network space and gradually expands to a global scale

 network space by accepting external entities or collaborating with
 other domains. This section discusses technical issues on the
 trustworthy communication framework.

 3.1. Defining Trust Networking Domain

 A primitive domain can be defined as the network space that is
autonomous, isolated, and well protected from external attacks. For
example, isolated home or enterprise network can be defined as a
domain. If all hosts in the domain are disinfected and communication
links are not exposed, the domain can be declared as a trust
networking domain. The trust networking domain is not always a
physical network space but sometime it can be formed by a logical
group of users with mutual trust. In any case, the entities in the
domain forms a trust equivalence class and communication with other
entities in the domain is allowed without any protection.
 To keep to domain trustworthy only qualified entities can be
accepted as a member of the domain, and misbehaving entities have to
be removed from the domain. For maintenance of a domain, the
behavior of entities in the domain may be monitored, and if
suspicious activities are discovered, the corresponding entity must
be removed.

 3.2. Protecting Trust Networking Domain

 The domain representing an autonomous network space can take role
of security unit as well as packet processing unit. The isolated
domain from external world does not allow communication with
external entities. For opening the domain to untrusty external world,
well‑defined interfaces are required to protect the domain. Let's
call this protected domain an "insulated trust networking domain".
As an example of insulated trust networking domain, we can imagine
the local area network with firewalls on all links to the external
Internet. The local area network is not isolated but is insulated
from attacks injected through the external links.
 The proposed framework assumes that each domain has at least one
gateway that performs security functions for the domain. The gateway
identifies external entities, evaluate trust level, accepts or
rejects the packets according to the trust levels of external
entities. And also the gateway will forward only authorized and
sterilized packets to peer domain for keeping its reputation or
trust level. In the sense that gateways performs security functions
on the behalf of the entities inside of the domain, the security of

 entities is said to be delegated to gateways. This delegated
 security has great benefit in applying complex security functions to
 devices with a limited or no processing power.

 3.3. Expanding Trust Networking Domain

 If all communications are limited within a trust networking domain,
 the serious scalability arises with respect to global communication.
 Now, we have to consider expansion of trust networking domain,
 starting from a small trust networking domain to a global scale
 network. First, consider the situation that an entity outside of
 domain tries to communicate with an entity inside of the domain. For
 trustworthy communication across border of domain, the entity must
 be a member of the domain. The domain gateway performs well-defined
 procedure for checking identity and evaluating the trust level of
 the external entity, and then only qualified entities are allowed to
 communicate with entities in the domain. Also the link connecting
 the domain with external entities should be secure enough for the
 trust level. This is one way to expand a domain.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+		+‑‑‑‑‑‑+ +‑‑‑‑‑‑+								
	Node <‑‑‑‑‑> Node	<‑‑‑‑‑‑‑>	Node <‑‑‑‑‑>	Node						
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+		+‑‑‑‑‑‑+ +‑‑‑‑‑‑+								
+‑‑‑‑‑‑‑+										
+‑‑+ +‑‑+										
Trust Domain				Trust Domain						
A				B						
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^ | | +‑‑‑‑‑‑+
 | | | | |
 +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑+ Node |
 | | +‑‑‑‑‑‑‑‑‑+ |
+‑‑+‑‑‑+ +‑‑+‑‑‑+ +‑‑‑‑‑‑+
| | | |
| Node | | Node | <‑‑‑‑‑‑+ : Trust Verification
| | | |
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ <‑‑‑‑‑‑> : Trust relation

 +‑‑‑‑‑‑+ : Reliable

 +‑‑‑‑‑‑+ channel

 Figure 3. Expansion of Trust Model

 Expanding a domain by accepting new entities has limitation when
reaching the maximum number of entities being managed by a single
domain. The other solution is collaboration of domains. Suppose two
domains trust each other and those are connected by reliable links,
then entities within one domain can trust entities within another
domain.
 Figure 3 shows a trust networking domain with trusted entities and
3 ways how to expand the domain. First, new entities can join to the
domain after passing trust verification. Second, a remote entity can
join to the domain via reliable channel. And third, when two domains
may have trust agreement and connected by reliable channel, all
entities in one domain can exchange packets in the pre‑agreed trust
level.

 3.4. Communicating with External Entities

 As already seen, the communication inside of a domain requires no
further security. However, communication with entities outside of
the domain needs special care. Assume that all communication with
external entities must take place at the special entity called a
gateway, which enforce well‑defined procedure communication for
external entities. As explained in Section 3.3.2, an insulated trust
networking domain has one or more gateways to perform trust
verification for every packet injected to the domain.
When a packet arrives at the gateway of a domain, the gateway first
check whether the source ID of the packet is in the trusted ID list.
If exists, the packet is accepted. Otherwise, the gateway lookups
the trusted domain list to find sending domain of the packet. If the
sending domain is in the list, the packet can also be accepted and
ID of the packet is saved in the trust ID list. This mean that the
gateway believes the trusted sending domain not to send harmful
packets. If ID of the packet is not in the trusted ID list nor the
sending domain is in the trust networking domain list, then
verification procedure for individual ID has to be performed. The
procedure is somewhat similar to accepting new entities in the
domain. The overall procedure of a gateway is shown in Figure 4.

 4. Differences between trust networking and ANIMA security framework

 This section describes major differences between the proposed trust
 autonomic domain (TAD) and ANIMA security framework. The
 differences are explained based on a following set of criteria
 defined in the draft-carpenter-limited-domains-03: domain as a whole,
 domain members, domain boundary, topology, technology, connection to
 the Internet, security/trust/privacy model, and operation since our
 proposed domain and that of ANIMA are kinds of limited domains.

 4.1. Domain as a Whole

 Networking is a very complex task and traditional way of handling
 the complexity is layering, where each layer takes a specific role
 and provides its services to the next higher later. This layering
 architecture decomposes the whole networking task functions
 vertically. However, the network in general spans physical or
 logical regions. Each region may have distinct features, such as
 different physical media, separate administration, and diverse
 networking requirement. The concept of domain in this document is
 defined as the networking region that shares common characteristics
 and also is distinguished from the rest of the network. Traditional
 layers cover its own regions implicitly; the physical layer spans
 the range covering electric signals. The data link covers the range
 connected by layer 2 bridges, and the network layer covers the whole
 devices connected by routers, and so on. Instead of implicit regions
 of the layers, a domain can be defined as any region of the network
 which is distinguishable from the rest of the network. It can be
 defined as a region covered by electric signal, a home network owned
 by a single user, a virtual private network overlaid on the Internet,
 a social network composed of members. Thus, it can be defined by any
 layer.

 In the context of TAD, the domain can be defined by trust. That
 means all members within a TAD trust each other so that the members
 can communicate with others without any concern of security. For
 this, TAD needs to add an additional ASA which performs a role of
 domain administrator. Its main functionality is to manage trust
 policies including allocating trust level to domains and their
 members. Domain administrator can extend the functionality of ANIMA
 MASA or define a new ASA for the purpose of the domain
 administration. The details of domain administrator is specified in
 Section 5 below.

 4.2. Individual Nodes (Domain members)

 As defined in the previous section, the domain covers a specific
 region of the network, to where a set of nodes belongs. Since a
 domain shares common characteristics, any node within the domain
 must be able to communicate with other nodes in the domain. The node
 as a member of a domain can be host, networking devices,
 applications depending on the characteristics of the domain. For
 keeping the same characteristics, a node trying to be a new member
 of the domain must prove its functionalities to all or a designated
 member of the domain. Joining to a domain may be accomplished by
 simply plugging interfaces to the networking device or well-defined
 interactions enforced by domain administrator. The joining procedure
 may be implicit when a domain has fixed and permanent members, or
 explicit in case that a node can join or leave the domain.

 In the sense of TAD, a node is assumed as a host that has
 communication functions required by the domain. Since a TAD is
 defined under the intent of trust, a node should have identifiable
 and authenticatable ID. TAD utilizes a concept of self-certifying ID.
 The self-certifying ID can be newly defined. However, in the
 context of TDA as an application use case of ANIMA, we can utilize
 IdevID as a self-certifiable ID and preferably extend IdevID with
 public key information as an option to ensure the global uniqueness.

 4.3. Domain Boundary

 Since a domain is a set of nodes that shares common characteristics,
 only nodes within a domain can communicate. In other words, a node
 within a domain cannot communicate with nodes outside of the domain.
 However, we can assume special nodes that belongs multiple domains
 simultaneously. Let's call a node joining more than two domains a
 "gateway". A gateway node must be equipped with multiple
 functionalities, each for the joined domain. The role of gateway is
 conveying interactions of one domain to other domains. Of course,
 conveying interaction may include necessary functions such as
 interpretation, filtering, transformation etc. From outside of a
 domain, the internals of the domain is hidden and the boundary of
 the domain composed of gateways are only exposed. All interactions
 passing the boundary of a domain must performed by at least one of
 the gateways whose role is to enforce necessary gatewaying
 procedures.

 In the context of TAD, all members of a TAD trust each other, but
 cannot trust nodes outside of the domain. The only way for an
 internal node to communicate with external nodes is passing through
 a gateway of the domain. Once the gateway receives communication
 request from a node outside of the domain, it authenticates the node
 and evaluates the trustworthiness of the node. If the external node
 is trustworthy and communication channel between gateway and the
 node is safe and reliable enough for the domain trust level, the
 gateway accepts communication and injects the communication possibly
 with transformation. Unlike ANIMA which assumes IP based
 communications by every domains, TAD may allow any networking
 technology besides IP. Therefore, a gateway is a mandatory
 component where the need for it is implicit in ANIMA due to the
 homogenous nature networking technology used in a domain. The
 details of domain gateway functionality is specified in Section 5
 below.

 4.4. Topology

 As defined in Section 4.1, a domain is a range of network where all
 members can communicate. The communication can be done in either
 specific layer protocols or any common functionalities. For example,
 if domain is defined by local area network, the domain may use local
 IP addresses, link-local or site-local. For domains defined by
 virtual network overlaid on global Internet may use global IP
 addresses with filtering functions.

 As already explained in section 4.3, some special nodes may belong
 to multiple domains. In this case the range of the domains that
 involve the same nodes can be viewed as overlapped domains. The node
 belonging multiple domains should have multiple functionalities, one
 of each domain. Those functionalities should be separated. We can
 find similar situation in multi-homed IP host in the Internet, where
 the host has separate IP addresses, one for each IP address domain.

 In the context of TAD, domains also have self-certifying ID as an
 ordinary node to become a member of another domain. The domain
 administrator must take a role of the required procedures of the
 parent domain such as trust evaluation, join and leave. Also the

 gateways must take necessary translation of the interactions when
 passing the domain boundary.

 4.5. Technology

 In the context of TAD, any technology is allowed for the domain
 since a domain has its own mechanisms hidden from outside. Apart
 from the existing Internet using global IP addresses, each domain
 may use its own routing or forwarding mechanisms, such as Ethernet,
 MPLS, or Upper-Layer IDs. Only requirement for inter-domain
 communication is that the gateway must aware of mechanisms for both
 domain and takes a role of translation. Note that each domain has a
 domain specific addressing scheme and identification of
 nodes/domains must be done by globally unique identifier. With
 global ID a node can join a domain or move from one domain to
 another. In this case a node acquires a domain specific address when
 joining the domain.

 4.6. Connection to the Internet

 In the context of TAD, the existing Internet can be viewed as a huge
 domain with global coverage. Nodes or domains with IP capability can
 join the global Internet domain as members. Since the existing
 Internet has no notion of ID, let us assume the global Internet
 domain top-level domain where every domain can join. Each domain
 with its specific mechanism can join the global Internet domain
 permanently or intermittently. The communication from one domain to
 another domain through the global Internet domain is done by the
 normal IP communication. However, the gateway of each domain must
 translate its internal communication mechanism to that of the
 corresponding IP address communications. More specifically, Inter-
 domain communication is done by global ID and the ID is translated
 into domain-specific address when passing the domain boundary. This
 ID based communication may be encapsulated in IP packet when
 traversing the global Internet domain. To allow this translation,
 the ID to IP address mapping system must be provided, where IP
 address is the gateway address of the domain that involves the node
 with the ID.

 4.7. Security, Trust and Privacy Model

 One of implication of a domain is secure protection of the domain
 internals from the rest of the network. That is members of a domain
 should be identified, authenticated, and authorized. According to
 domain's policies, well-defined procedures must be enforced to a
 node to become a member of the domain.

 In TAD all members of the domain must have the same or higher trust
 level than the domain requires. That means, whenever a new node
 tries to be a member of the domain or an external node tries to
 communicate with an internal node, the domain administrator must
 authenticate and evaluate the node. Only the node passing the
 evaluation procedure is allowed to communicate. In this case
 communication must be done via channels safe and reliable enough for
 the trust level. In some cases where the channel is not safe nor
 reliable, the communicating nodes must authenticate or encrypt the
 traffic. Note that whether the traffic is protected or not depends
 on the risk level of the channel and trust level of the domain.
 Unlike the VPN that protects all channels in the same security
 protocols, channels for a domain are additionally protected only
 when the risk level of a specific channel is higher than required.

 4.8. Operations

 In addition to trust relation between nodes within a domain, the
 environment of the domain must be considered. Environment of a
 domain includes factors affecting domain operation such as
 communication channels among nodes, operation skills of domain
 administrator, reliability of devices, etc. To be protected from the
 rest of networks, a domain should be securely protected from
 external attacks.

 Since communications within a TAD are carried out on the mutual-
 trust basis, the domain administrator should keep the domain
 trustworthy by accepting only trusted members, monitoring traffic to
 detect suspicious behavior, and periodic auditing the logs of domain
 members, and so on.

 5. Trust networking domain as an application of autonomic networking

 This section defines what a trust networking domain is and describes
 how to configure the trust networking domain as an application of
 autonomic networking solutions. The autonomic nodes with trust
 networking domain will run with autonomic functions at Reference
 Model for Autonomic Networking. Autonomic networking infrastructure
 with trust management functions is capable to configure the trust
 networking domain. A set of autonomic nodes consists of a trust
 networking domain, which is configured, and managed by management
 plane. Within a trust networking domain, the full connectivity among
 autonomic nodes is securely and stably guaranteed. An autonomic node
 can easily communicate with other nodes at same trust networking
 domain. The trust level of autonomic nodes is calculated or assigned
 by trust evaluation function of management plane.
 On the other hand, it is possible for autonomic nodes to communicate
 with different trust networking domains or non‑autonomic networks
 via the trust gateway system, in which the traditional security or
 certificate mechanisms can be running.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Incoming |
 | Packets (ID) |
 | |
 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑v‑‑‑‑‑‑‑‑+ |
 | | Trusted +‑‑‑‑‑+ Check ID | Hit |
 | +‑+‑‑> ID +‑‑‑‑‑+ +‑‑‑‑‑‑+ |
 | : : +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑+‑‑‑‑‑‑‑‑+ | | | |
 | : : | | |
 | : : | | |
 | : : | | |
 | : : +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑v‑‑‑‑‑‑‑‑+ Hit | |
 | : : | Trusted +‑‑‑‑+ Check +‑‑‑‑‑‑+ |
 | : : | Domains +‑‑‑‑+ Domain | | |
 | : : +‑‑‑‑‑‑‑‑‑+ +‑+‑‑‑+‑‑‑‑‑‑‑‑+ | |
 | : : | | | |
 | : +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | |
 | : | | |
 | : +‑‑‑‑‑v‑‑‑‑‑‑‑‑+ | |

 | : | Trust | Pass | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Verification +‑‑‑‑‑‑+ |
 | +‑‑+‑‑‑‑‑‑‑‑‑‑‑+ | | |
 | Fail | | |
 | X <‑‑‑‑‑‑‑‑‑+ | |
 +‑‑|‑‑‑‑‑+
 |
 +‑‑‑‑‑‑v‑‑‑‑‑‑‑‑+
 | Accepted |
 | Packets (ID) |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4. Packet Processing at the Gateway
5.1. Definition of a Trust networking domain

 A trust networking domain is defined as a collection of autonomic
 nodes trusting each other. Since all nodes within a trust networking
 domain maintains certain trust level set by the domain,
 communications within the domain can be done without any further
 security concern. However, communications with external node require
 additional verification phase before the communications actually
 begin. The verification is performed at the border of the domain,
 where external nodes are checked if their trust level are
 sufficiently high for the domain. In the sense that the domain as a
 collection of node are protected from external world, it seems "zone
 defense" rather than "individual defense" of the traditional
 security scheme.

Figure 5 shows the high‑level architectural view of trust networking
domain. Autonomic nodes has the interface with management function.
Trust management functions define the trusted autonomic nodes
according to their trust level. They also define the trust
networking domain by grouping or classifying autonomic nodes. At the
same trust networking domain, an autonomic node directly
communicates with each other. The control and management functions
at the trust networking domain are defined at the interfaces between
autonomic nodes and management plane.
There are trust gateway for an autonomic node to communicate with
different trust networking domains or non‑autonomic nodes since
there is no direct communication path. Trust gateway is used to
communicate autonomic nodes with different trust networking domains

 or the non-autonomic nodes. An autonomic node can communicate remote
 autonomic nodes or non-autonomic nodes through trust gateway. In
 these cases, the traditional trust evaluation and/or certificate
 procedures can be applied at trust gateway. Trust evaluation
 procedure is running by management plane of autonomic networking.

+‑‑‑+
: :
: Trust networking domain :
: : +‑‑‑‑‑‑‑‑‑‑‑‑
: : :
: : :
: +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+: :
: : Autonomic Function : :Trust Gateway:: :
: : : : : Function :: :
: : ASA 1 : ASA 1 : : ASA 2 :: :
: : : : : :: :
: +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑: :
: : : : : :: :
: +‑‑+: :
: : :: :
: : Autonomic Networking Infrastructure :: :
: +‑‑+: :
: : : : : :: :
: : +‑‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑‑+: : +‑‑‑‑‑‑‑‑‑+ :: : +‑‑‑‑‑‑‑‑‑+
: : : Trusted : : : Trusted :: : : Trusted : :: : : External:
: : :Autonomic:‑‑‑:Autonomic:‑...‑:Autonomic:‑‑‑‑‑‑‑‑‑: Node :
: : : Node 1 : : : Node 2 :: : : Node N : :: : : :
: : +‑‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑‑+: : +‑‑‑‑‑‑‑‑‑+ :: : +‑‑‑‑‑‑‑‑‑+
: : : : : :: :
+‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 5. Trust networking domain at the Autonomic Networking

 5.2. Configuration of Trust networking domain

 A trust networking domain is consisted of a group of autonomic nodes.
 The network management plane communicates with a list of autonomic
 nodes to build the trust networking domain. The trust management
 information database which contains a list of autonomic nodes
 according to the trust level of each domain is built at the
 bootstrapping time or at the instance of request.

At the bootstrapping time, the management plane securely distributes
the trust information of each domain to the corresponding autonomic
nodes. The membership management is done by management plane when
the autonomic nodes can be joined to or leaved from each trust
networking domain.
At the instance that an autonomic node request to build a trust
networking domain to the management plane, trust management function
confirm to build a trust networking domain after completing the
proper trust evaluation procedures.
If an autonomic node could not continue to be a member of the
certain trust networking domain, it notify to management plane for
leave. Similarly, if the trust management functions decide that an
autonomic node is not relevant to stay in a certain trust networking
domain, they notify the corresponding autonomic node for leave and
update the trust management information database.

 Within a trust networking domain, an autonomic node can communicate
 each other without any additional security and certificate procedure.
 In a case, an autonomic node may register multiple trust networking
 domains simultaneously.

 5.3. Communication between Trusted Autonomic Nodes within a trust

 networking domain

 At the same trust networking domain, autonomic nodes directly
 communicate with each other. Autonomic nodes can discover other
 nodes at the same trust networking domain. It requires control or
 management information between autonomic nodes and
 control/management plane. It can be pre-configured during
 bootstrapping. The control information between autonomic nodes can
 be used to identify the trust networking domain. The autonomic nodes
 can easily communicate with each other at the same trust networking
 domain by enabling self-managing capability of autonomic networking.
 The autonomic service agents can be implemented for trusted
 communication.

 5.4. Communication between trusted autonomic nodes and external nodes

Autonomic nodes must communicate with autonomic nodes of the
different trust networking domain. They also communicate with the
non‑autonomic nodes.
Trust gateway can help that an autonomic node communicate with the
autonomic nodes with different trust networking domain or the non‑
autonomic nodes. Some autonomic service agents (ASA) may include the
trust gateway functions for communicating autonomic nodes with
different trust networking domain, which is in the reference model
for Autonomic Networking [I‑D.ietf‑anima‑reference‑model].

 6. Trust Networking in the Autonomic Networking Infrastructure

This section describes trust networking of autonomic network. Within
a trust networking domain, an autonomic node is credited by their
trust level from management plane.
The trust management plane maintains the trust information tables up
to date. The trust management plane is tracking of trust status of
each autonomic node as an application of autonomic networking. The
trust information table contains the trust information of autonomic
nodes based on the trust networking domain. All the interactions
between autonomic nodes should be verified according to trust
evaluation procedures of management plane.

 The autonomic nodes within the same trust networking domain create
 and maintain network connectivity without additional complexity.
 Trust provisioning among autonomic nodes is to exempt any additional
 processing (like identification, addressing, routing, forwarding,
 and security, etc.) to maintain autonomic networking within the same
 trust networking domain.

 The interactions between autonomic nodes are based on the trust
 evaluation of the trust networking domain. The trust information is
 used to leverage the direct interactions between autonomic nodes.
 Trust gateway can help to the interaction of autonomic nodes with
 different trust networking domains or with non-autonomic nodes.

 The trust management plane is used to handle the trust level of each
 autonomic node with proper trust evaluation procedure.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Trust management plane |
| |
| ‑ Provisioning of the |
| identities of nodes |
| |
| ‑ Trust evaluation |
| |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
: : :								
: : :								
+‑‑‑‑+‑‑‑+ : +‑‑‑‑+‑‑‑+		+‑‑‑‑‑‑‑‑+						
		:						
	Node 1	:	Node 2				Node 3	
	+‑‑‑‑+							
		:						
+‑‑‑‑‑‑‑‑+ : +‑‑‑‑+‑‑‑+		+‑‑‑+‑‑‑‑+						
:								
:								
+‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑+		+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+						
	Trust Gateway				Trust Gateway			
	of domain A <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> of domain B							
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Figure 6. Trust provisioning at the Autonomic Networking

 6.1. Identification of Trust networking domain and Trusted Autonomic

 Node

 This section describes trust level. An autonomic node can initiate
 to create their own trust networking domain. The management plane
 provides that an autonomic node can build the relevant trust
 networking domain by identifying the corresponding autonomic nodes.
 Specific policies can be applied to build trust networking domain.

 In a trust networking domain, each autonomic node should be
 identified by the relevant naming and addressing schemes, which are
 also compliant with the Reference Model for Autonomic Networking [I-
 D.ietf-anima-reference-model]. Before data exchange, the autonomic
 nodes obtains the identities (e.g., IP address and port number,

etc.) of destination nodes and the corresponding trust networking
domain. In a case, the MAC address can be also used for
identification.
The trust management information database is used for the discovery
of autonomic nodes at the same trust networking domain. The
autonomic nodes with the same trust networking domain may use the
relevant identification schemes. In the trust management information
database, a list of autonomic nodes are classified into the relevant
identification code which indicates the same trust networking domain.
The identification code for a trust networking domain may contain
name/nickname and number as well as IP address and port number, etc.

 6.2. Discovery of Trust networking domain

 The trust management information database is used for the discovery
 of autonomic nodes at the same trust networking domain. Before data
 exchange, an autonomic node looks up the trust management
 information database to find the destination autonomic nodes. If the
 destination node belongs to the same trust networking domain with
 original autonomic node, it is possible to initiate data exchange.

 6.3. Signaling Between Trusted Autonomic Nodes

At the same trust networking domain, an autonomic nodes communicate
with each other. For data exchange, the autonomic node should
discover each other by accessing the trust management information
database of management plane.
After discovery of destination autonomic node, the signaling
protocol like "A Generic Autonomic Signaling Protocol (GRASP)" [I‑
D.ietf‑anima‑grasp] are needed to initiate data exchange. Within the
same trust networking domain, an autonomic node directly
communicates with each other after completing signaling procedure,
in which the connectivity among autonomic nodes are securely and
automatically maintained. The pre‑configuration between autonomic
nodes can be done during bootstrapping. The autonomic control plane
at the Reference Model for Autonomic Networking [I‑D.ietf‑anima‑
reference‑model] can be either implemented to carry signaling
protocol.
For data exchange with different trust networking domains or non‑
autonomic nodes, the trust gateway provides proper interworking

 functions for data exchange and signaling since there is no direct
 communication paths between them. The trust gateway provides the
 relevant control and management information to extend data exchange
 with different trust networking domains or non-autonomic nodes. The
 authentication and certificate procedures equivalent with the trust
 networking domain can be applicable to provide external connectivity.

 6.4. Trust Evaluation

 Trust evaluation of network is the way of calculating trust for
 networking services. It requires data collection from various
 sources. Physical data sources are collected from the capability of
 data processing, storage, and communication through network. In
 cyber world, logical data sources are software that work on
 computing algorithm, storage, and networking. In the social world,
 human produces various data through user interfaces.

In the physical network, trust can be measured by counting on their
trustworthiness of network elements. In the cyber world, software
can be accidentally or maliciously altered or destroyed during
control, computing, and communicating instances. The unexpected
behaviors of software is detected or monitored to evaluate and
update their trust level. In the social world, human behaviors can
be measured by considering its trustworthiness in terms of ability,
honesty and benevolence. Social trust reflects individual human
activity. Human interacts with others honestly and kindly so that
their trust level is affected by some risks.
For trust evaluation, the collected data are categorized into two
types of attributes and indicators namely, qualitative and
quantitative. Trust index is used to calculate the certain trust
level of each network entity. As the results of trust evaluation,
trustor finally make a decision. The network management plane
provides to calculate the trust level of the network elements from
various data sources and store their values to trust management
information database.

 The trust management information contains the trust level of
 autonomic nodes. The interactions inside a trust networking domain
 are analyzed and accumulated to evaluate the trust level of each
 node. The trust level of autonomic node is contained at the trust

 management information database. All the interactions between
 autonomic nodes in a same trust networking domain is validated by
 the trust evaluation procedure.

 The trust evaluation procedure is fed by the following inputs.

 o Pre-provisioned or manually configured by policy or management
 information

 o Analysis from interactions between autonomic nodes

 o The accumulated history information of trust verifications such
as authentication of non‑autonomic nodes and validity of application
specific transactions.
 o other unaccepted or unexpected behaviors

While autonomic nodes communicate with each other, they choose the
relevant trust management protocol whether they meet trust
requirements in the same trust networking domain or not. Trust
management protocol between autonomic nodes and trust management
database is needed to check trust evaluation. Trust evaluation
procedure between autonomic nodes at same trust networking domain
are taken for trust identification.
If the prerequisite and pre‑configuration procedures are already
taken for trust management, simple and light‑weight solution can be
applicable for communication between autonomic nodes.

 7. Procedures for trust networking

 7.1. Building a trust networking domain

 7.1.1. Domain initialization

 To build a new trust networking domain, the domain administrator
 needs to initiate the functionalities of trust networking domain as
 follows:

‑ Domain administration
To initialize a domain with respect to the trust, the domain
administrator needs to configure policies of trust and membership.
To manage the trust level, the domain administrator sets the

 required trust level of membership with domain policy management
 (DPM) ASA. The domain administrator can explicitly dedicate a node
 for trust management functions and trust provisioning.

 - Access & delivery control

 The nodes that connected outside of the domain should equip trust
 gateway functions. For IP network case, every node of the domain
 should assign their gateway to the nodes with trust gateway ASA.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ Private IP +‑‑‑‑+‑‑‑‑+					
	Domain	Networking	Domain		
	Administrator+‑‑‑‑‑‑‑‑‑‑‑‑+ Gateway +‑‑‑‑‑‑‑‑‑‑‑‑+ The Internet				
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑+‑‑‑‑+ Public IP					
	Networking				
Trust networking domain	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Figure 7. Initialization of a new trust networking domain

 7.1.2. Node registration

After the trust networking domain has been initialized, domain can
adopt network nodes.
 +‑‑‑+
 | |
 | Trust networking Domain |
 | |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
Node A +‑‑+‑‑‑‑> Domain +‑‑‑‑‑‑> Domain						
			Gateway		Administrator	
+‑‑‑‑‑‑‑‑‑‑+ | | | | | |
 | +‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 Registration | |
 Message | |
 +‑‑‑+

 Figure 8. Registration of a new node

 The procedures of node registration are as follows:

+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | (1) | | | |
| +‑‑‑‑‑‑‑‑‑‑> Domain | | |
| | (2) | Gateway | | Trust Info. <‑‑‑+
<‑‑‑‑‑‑‑‑‑‑+		Management	
	(3) +‑‑‑‑‑‑‑‑‑‑‑‑‑+	ASA	
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+(5)		
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
	(4)		
Node A +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Domain Member <‑‑‑+			
		Management <‑‑‑+	
		ASA	
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+(7)		
	(6)	ID‑Location	
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Management <‑‑‑+			
		ASA	
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Figure 9. Procedures of node registration

 (1) Node A connects to the network of trust networking domain;
 (2) The domain assigns a private IP address to Node A. The domain
 gateway is assigned as the default gateway for IP network;
 (3) Trust information management ASA analyses the trust information
 of node A;
 (4) Node A request to join the domain;
 (5) Domain membership management ASA of the domain administrator
 receives the requests and decides to approve Node A, based on
 the domain policy and trust level of Node A;
 (6) ID‑Location management ASA of the domain administrator issues a
 new identifier of Node A;
 (7) ID‑Location management ASA archives Node A's identifier and
 private IP address.

 7.2. Evicting existing node from trust networking domain

 (Editors' note) This section describes how to evict existing node in
 trust networking domain including trust management procedures.
 Further details are for further study.

 7.3. Terminating trust networking domain

 (Editors' note) This section describes how to terminate trust
 networking domain including signalling procedures with child nodes
 (or domains) and parent domains. Further details are for further
 study.

 7.4. Communication among trust networking domains

 This section describes trustworthy communication between nodes
 within a single trust networking domain and between nodes separated
 into multiple trust networking domains.

 7.4.1. Trustworthy networking within a single trust networking domain

 In order for the two hosts to send and receive messages to each
 other, a networking path must first be established. If two hosts are
 located in the same domain, they already have trust relationship
 with each other which means no additional security procedures are
 needed.

 7.4.2. Trustworthy networking between trust networking domains

 Two hosts are in different domains. It means that they do not know
 each other's IP address directly. The domain administrator provides
 IP address of each hosts for trustworthy networking between two
 hosts in different domains. If a Host 2 wants to perform trustworthy
 networking with a Host 1 in other domain, it is possible to
 establish a networking path between two nodes through interactions
 between domain administration functions and access and delivery
 control functions. Figure 10 shows an overview of trustworthy
 networking between trust networking domains.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Trust networking		Trust networking
domain 1		domain 2
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ Communication +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+		
	Host 1 +‑‑‑‑‑+ Gate‑ <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> Gate‑ +‑‑‑‑‑‑+ Host 2	
+‑‑‑‑‑‑‑‑+ +‑‑‑+‑‑‑+ +‑‑‑+‑‑‑+ +‑‑‑‑‑‑‑‑+		
+‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+‑‑‑‑‑‑+		+‑‑‑‑‑+‑‑‑‑‑‑‑+
	Domain	
	Administrator<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>Administrator	
	1	
+‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 10. Trustworthy networking between trust networking domains

Figure 11 shows detailed procedures for trustworthy networking
between trust networking domains are follows:
+‑‑‑‑‑‑+ (1) +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+
+‑‑‑‑‑‑> Domain	(2)	Domain				
	(3)	Admin. +‑‑‑‑‑‑‑‑+ Admin.				
<‑‑‑‑‑‑+ ASA 2		ASA 1				
	+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+					
	(4) +‑‑‑‑‑‑‑‑+ (5) +‑‑‑‑‑‑‑‑+					
+‑‑‑‑‑‑+ Trust +‑‑‑‑‑‑‑‑> Trust						
	(6)	Info.		Info.		
Host <‑‑‑‑‑‑+ ASA 2 +‑‑‑‑‑‑‑‑+ ASA 1		Host				
2	+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+	1				
	+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+					
			(7)			
	(9)	Domain <‑‑‑‑‑‑‑‑> Domain	(9)			
+‑‑‑‑‑‑> gate‑	(8)	gate‑ +‑‑‑‑‑‑>				
		way 2 <‑‑‑‑‑‑‑‑> way 1				
		+‑‑‑‑‑‑‑‑>				
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ (9) +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+

 Figure 11. Procedures of trustworthy networking between trust

 networking domains

(1) Host 2 requests IP address of Host 1 to the domain administration
ASA 2 through the ID of the host 1;
(2) The domain administration ASA 2 requests IP address of the Host 1
to the domain administration ASA 1;
(3) The domain administration ASA 1 obtains IP address of the Host 1
and reply ID and IP address of the Host 1 to domain administration
ASA 2, and it replies to Host 2;
(4) Host 2 requests a trust level of Host 1 through the domain
administration ASA 2;
(5) The domain administration ASA 2 checks a trust level of Host 2
through the trust information management ASA and requests a trust
level of Host 1 to domain administration ASA 1;
(6) The domain administration function 1 obtains the trust level of
Host 1 through the trust information management ASA and replies it to
the domain administration ASA 2, and the result replies to Host 2;
(7) The access and delivery control ASA 2 forms a routing path with
the access and delivery control function 1 through the ID‑based
routing ASA;
(8) The Host 2 and the Host 1 establish a reliable link through the
domain gateway ASA of each trust networking domain;
(9) Networking path established between Host 1 and Host 2.

 8. Security Considerations

Data exchange between autonomic nodes at the trust networking domain
must be secured. The signaling or management protocols for trust
identification and discovery of trust networking domain are secure.
The control/management plane for trust management is self‑protecting.
The autonomic node in a trust networking domain should be certified by
its identity. The pre‑configuration information of autonomic nodes
from trust management information database should be certified during
bootstrapping time.
For data exchange with different trust networking domain or non‑
autonomic network, the trust gateway should be securely implemented.
Trust gateway maintains the same trust level for cross‑domain
applications or interaction with non‑autonomic network.

 9. IANA Considerations

 This document requests no action by IANA.

 10. Acknowledgements

 11. Contributors

 12. References

 12.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert,T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-13 (work in prgress), December 2017.
 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft‑ietf‑anima‑
 grasp‑15 (work in progress), April 2018.
[ITU‑T Y.3052] Overview of trust provisioning in information and
 communication technology infrastructures and service,
 March 2017

[ITU‑T Y.3053] Framework of trustworthy networking with trust‑
 centric network domains, January 2018

 12.2. Informative References

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-08 (work in progress), February
 2018.

Authors' Addresses

Tae Sang Choi
Electronics and Telecommunication Research Institute (ETRI)
218 Gajeong‑ro, Gajeong‑dong, Yuseong‑gu, Daejeon
Korea

Email: choits@etri.re.kr

Jun Kyun Choi (editor)
Korea Advanced Institute of Science and Technology (KAIST)
193 Munji Ro, Yuseong‑gu, Daejeon
Korea

Email: jkchoi59@kaist.ac.kr

Tae Su Jeong
Electronics and Telecommunication Research Institute (ETRI)
218 Gajeong‑ro, Gajeong‑dong, Yuseong‑gu, Daejeon
Korea

Email: tsjeong@etri.re.kr

Nam Seok Ko
Electronics and Telecommunication Research Institute (ETRI)
218 Gajeong‑ro, Gajeong‑dong, Yuseong‑gu, Daejeon
Korea

Email: nsko@etri.re.kr

Jae Seob Han
Korea Advanced Institute of Science and Technology (KAIST)
193 Munji Ro, Yuseong‑gu, Daejeon
Korea

Email: j89449@kaist.ac.kr

draft-chopps-netmod-geo-location-01 - YANG Geo Location

draft-chopps-netmod-geo-location-01 - YANG Geo Location

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 3, 2019

C. Hopps

LabN Consulting, L.L.C.

March 2, 2019

YANG Geo Location

draft-chopps-netmod-geo-location-01

Abstract

 This document defines a generic geographical location object YANG
 grouping. The geographical location grouping is intended to be used
 in YANG models for specifying a location on or in reference to the
 Earth or any other astronomical object.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. The Geo Location Object
	 2.1. Frame of Reference

	 2.2. Location

	 2.3. Motion

	 2.4. Nested Locations

	 2.5. Non-location Attributes

	 2.6. Tree

	3. YANG Module

	4. ISO 6709:2008 Conformance

	5. Usability
	 5.1. Portability
	 5.1.1. IETF URI Value

	 5.1.2. W3C

	 5.1.3. Geography Markup Language (GML)

	 5.1.4. KML

	6. IANA Considerations
	 6.1. Geodetic System Value Registry

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Examples

	Appendix B. Acknowledgements

	Author's Address

1. Introduction

 In many applications we would like to specify the location of
 something geographically. Some examples of locations in networking
 might be the location of data center, a rack in an internet exchange
 point, a router, a firewall, a port on some device, or it could be
 the endpoints of a fiber, or perhaps the failure point along a fiber.

 Additionally, while this location is typically relative to The Earth,
 it does not need to be. Indeed it is easy to imagine a network or
 device located on The Moon, on Mars, on Enceladus (the moon of
 Saturn) or even a comet (e.g., 67p/churyumov-gerasimenko).

 Finally, one can imagine defining locations using different frames of
 reference or even alternate systems (e.g., simulations or virtual
 realities).

 This document defines a "geo-location" YANG grouping that allows for
 all of the above data to be captured.

 This specification conforms to [ISO.6709.2008].

 The YANG data model described in this document conforms to the
 Network Management Datastore Architecture defined in [RFC8342].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] [RFC8174] when, and only when, they appear in all capitals,
 as shown here.

2. The Geo Location Object

2.1. Frame of Reference

 The frame of reference ("reference-frame") defines what the location
 values refer to and their meaning. The referred to object can be any
 astronomical body. It could be a planet such as The Earth or Mars, a
 moon such as Enceladus, an asteroid such as Ceres, or even a comet
 such as 1P/Halley. This value is specified in "astronomical-body"
 and is defined by the International Astronomical Union
 (<http://www.iau.org>), The default "astronomical-body" value is
 "earth".

 In addition to identifying the astronomical body we also need to
 define the meaning of the coordinates (e.g., latitude and longitude)
 and the definition of 0-height. This is done with a "geodetic-datum"
 value. The default value for "geodetic-datum" is "wgs-84" (i.e., the
 World Geodetic System, [WGS84]), which is used by the Global
 Positioning System (GPS) among many others. We define an IANA
 registry for specifying standard values for the "geodetic-datum".

 In addition to the "geodetic-datum" value we allow refining the
 coordinate and height accuracy using "coord-accuracy" and "height-
 accuracy" respectively. When specified these values override the
 defaults implied by the "geodetic-datum" value.

 Finally, we define an optional feature which allows for changing the
 system for which the above values are defined. This optional feature
 adds an "alternate-system" value to the reference frame. This value
 is normally not present which implies the natural universe is the
 system. The use of this value is intended to allow for creating
 virtual realities or perhaps alternate coordinate systems. The
 definition of alternate systems is outside the scope of this
 document.

2.2. Location

 This is the location on or relative to the astronomical object. It
 is specified using 2 or 3 coordinates values. These values are given
 either as "latitude", "longitude", and an optional "height", or as
 Cartesian coordinates of "x", "y" and an optional "z". For the
 standard location choice "latitude" and "longitude" are specified as
 fractions of decimal degrees, and the "height" value is in fractions
 of meters. For the Cartesian choice "x", "y" and "z" are in
 fractions of meters. In both choices the exact meanings of all of
 the values are defined by the "geodetic-datum" value in the
 Section 2.1.

2.3. Motion

 Support is added for objects in relatively stable motion. For
 objects in relatively stable motion the grouping provides a
 3-dimensional vector value. The components of the vector are
 "v-north", "v-east" and "v-up" which are all given in fractional
 meters per second. The values "v-north" and "v-east" are relative to
 true-north as defined by the reference frame for the astronomical
 body, "v-up" is perpendicular to the plane defined by "v-north" and
 "v-east", and is pointed away from the center of mass.

 To derive the 2-dimensional heading and speed one would use the
 following formulas:

 ,‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
speed = V v_{north}^{2} + v_{east}^{2}

 heading = arctan(v_{east} / v_{north})

 For some applications that demand high accuracy, and where the data
 is infrequently updated this velocity vector can track very slow
 movement such as continental drift.

 Tracking more complex forms of motion is outside the scope of this
 work. The intent of the grouping being defined here is to identify
 where something is located, and generally this is expected to be
 somewhere on or relative to the Earth (or another astronomical body).
 At least two options are available to YANG models that wish to use
 this grouping with objects that are changing location frequently in
 non-simple ways, they can add additional motion data to their model
 directly, or if the application allows it can require more frequent
 queries to keep the location data current.

2.4. Nested Locations

 When locations are nested (e.g., a building may have a location which
 houses routers that also have locations) the module using this
 grouping is free to indicate in its definition that the "reference-
 frame" is inherited from the containing object so that the
 "reference-frame" need not be repeated in every instance of location
 data.

2.5. Non-location Attributes

 During the development of this module, the question of whether it
 would support data such as orientation arose. These types of
 attributes are outside the scope of this grouping because they do not
 deal with a location but rather describe something more about the
 object that is at the location. Module authors are free to add these
 non-location attributes along with their use of this location
 grouping.

2.6. Tree

 The following is the YANG tree diagram [RFC8340] for the geo-location
 grouping.

module: geo‑location
 +‑‑ geo‑location
 +‑‑ reference‑frame
 | +‑‑ alternate‑system? string {alternate‑systems}?
 | +‑‑ astronomical‑body? string
 | +‑‑ geodetic‑system
 | +‑‑ geodetic‑datum? string
 | +‑‑ coord‑accuracy? decimal64
 | +‑‑ height‑accuracy? decimal64
 +‑‑ (location)
 | +‑‑:(ellipsoid)
 | | +‑‑ latitude degrees
 | | +‑‑ longitude degrees
 | | +‑‑ height? decimal64
 | +‑‑:(cartesian)
 | +‑‑ x decimal64
 | +‑‑ y decimal64
 | +‑‑ z? decimal64
 +‑‑ velocity
 | +‑‑ v‑north? decimal64
 | +‑‑ v‑east? decimal64
 | +‑‑ v‑up? decimal64
 +‑‑ timestamp? types:date‑and‑time

3. YANG Module

<CODE BEGINS> file "ietf‑geo‑location@2019‑02‑17.yang"
module ietf‑geo‑location {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑geo‑location";
 prefix geo;
 import ietf‑yang‑types { prefix types; }

 organization
 "IETF NETMOD Working Group (NETMOD)";
 contact
 "Christian Hopps <chopps@chopps.org>";

 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.

 description

 "This module defines a grouping of a container object for
 specifying a location on or around an astronomical object (e.g.,
 The Earth).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 [RFC2119] [RFC8174] when, and only when,
 they appear in all capitals, as shown here.

 This version of this YANG module is part of RFC XXXX
 (https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
 full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.

 revision 2019‑02‑17 {
 description "Initial Revision";
 reference "RFC XXXX: YANG Geo Location";
 }

 typedef degrees {
 type decimal64 {
 fraction‑digits 16;
 }
 units "decimal degrees";
 description "Coordinate value.";
 }

 feature alternate‑systems {
 description
 "This feature means the device supports specifying locations
 using alternate systems for reference frames.";
 }

 grouping geo‑location {
 description
 "Grouping to identify a location on an astronomical object.";

 container geo‑location {
 description
 "A location on an astronomical body (e.g., The Earth)
 somewhere in a universe.";

 container reference‑frame {
 description
 "The Frame of Reference for the location values.";

 leaf alternate‑system {
 if‑feature alternate‑systems;
 type string;
 description
 "The system in which the astronomical body and
 geodetic‑datum is defined. Normally, this value is not
 present and the system is the natural universe; however,
 when present this value allows for specifying alternate
 systems (e.g., virtual realities). An alternate‑system
 modifies the definition (but not the type) of the other
 values in the reference frame.";
 }
 leaf astronomical‑body {
 type string {
 pattern
 '[‑0‑9a‑z #x22#x23#x5B#x5D' +
 '!$%&()*+,\./:;<=>?@\\^_`{|}~]+';
 }
 default "earth";
 description
 "An astronomical body as named by the International

 Astronomical Union (IAU) or according to the alternate
 system if specified. Examples include 'sun' (our star),
 'earth' (our planet), 'moon' (our moon), 'enceladus' (a
 moon of Saturn), 'ceres' (an asteroid),
 '67p/churyumov‑gerasimenko (a comet). The value should
 be comprised of all lower case ASCII characters not
 including control characters (i.e., values 32..64, and
 91..126)";
 }
 container geodetic‑system {
 description
 "The geodetic system of the location data.";
 leaf geodetic‑datum {
 type string {
 pattern
 '[‑0‑9a‑z#x22#x23#x5B#x5D' +
 '!$%&()*+,\./:;<=>?@\\^_`{|}~]+';
 }
 default "wgs‑84";
 description
 "A geodetic‑datum defining the meaning of latitude,
 longitude and height. The default is 'wgs‑84' which is
 used by the Global Positioning System (GPS)";
 }
 leaf coord‑accuracy {
 type decimal64 {
 fraction‑digits 6;
 }
 description
 "The accuracy of the latitude longitude pair. When
 coord‑accuracy is specified it overrides the
 geodetic‑datum implied accuracy. If Cartesian
 coordinates are in use this accuracy corresponds to
 the X and Y components";
 }
 leaf height‑accuracy {
 type decimal64 {
 fraction‑digits 6;
 }
 units "meters";
 description
 "The accuracy of height value. When specified it
 overrides the geodetic‑datum implied default. If
 Cartesian coordinates ar in use this accuracy
 corresponds to the Z component.";
 }
 // May wish to allow for height to be relative.
 // If so need to decide if we have a boolean (to ground)

 // or an enumeration (e.g., local ground, sea‑floor,
 // ground floor, containing object, ...) or even allow
 // for a string for most generic but least portable
 // comparable
 // leaf height‑relative {
 // }
 }
 }
 choice location {
 mandatory true;
 description
 "The location data either in lat/long or Cartesian values";
 case ellipsoid {
 leaf latitude {
 type degrees;
 mandatory true;
 description
 "The latitude value on the astronomical body. The
 definition and precision of this measurement is
 indicated by the reference‑frame value.";
 }
 leaf longitude {
 type degrees;
 mandatory true;
 description
 "The longitude value on the astronomical body. The
 definition and precision of this measurement is
 indicated by the reference‑frame.";
 }
 leaf height {
 type decimal64 {
 fraction‑digits 6;
 }
 units "meters";
 description
 "Height from a reference 0 value. The precision and '0'
 value is defined by the reference‑frame.";
 }
 }
 case cartesian {
 leaf x {
 type decimal64 {
 fraction‑digits 6;
 }
 mandatory true;
 description
 "The X value as defined by the reference‑frame.";
 }

 leaf y {
 type decimal64 {
 fraction‑digits 6;
 }
 mandatory true;
 description
 "The Y value as defined by the reference‑frame.";
 }
 leaf z {
 type decimal64 {
 fraction‑digits 6;
 }
 units "meters";
 description
 "The Z value as defined by the reference‑frame.";
 }
 }
 }
 container velocity {
 description
 "If the object is in motion the velocity vector describes
 this motion at the the time given by the timestamp.";

 leaf v‑north {
 type decimal64 {
 fraction‑digits 12;
 }
 units "meters per second";
 description
 "v‑north is the rate of change (i.e., speed) towards
 truth north as defined by the ~geodetic‑system~.";
 }

 leaf v‑east {
 type decimal64 {
 fraction‑digits 12;
 }
 units "meters per second";
 description
 "v‑east is the rate of change (i.e., speed) perpendicular
 to truth‑north as defined by the ~geodetic‑system~.";
 }

 leaf v‑up {
 type decimal64 {
 fraction‑digits 12;
 }
 units "meters per second";

 description
 "v‑up is the rate of change (i.e., speed) away from the
 center of mass.";
 }
 }
 leaf timestamp {
 type types:date‑and‑time;
 description "Reference time when location was recorded.";
 }
 }
 }
}
<CODE ENDS>

4. ISO 6709:2008 Conformance

 [ISO.6709.2008] provides an appendix with a set of tests for
 conformance to the standard. The tests and results are given in the
 following table along with an explanation of non-applicable tests.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Test | Description | Pass Explanation |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
A.1.2.1	elements reqd. for a geo. point	CRS is always
	location	indicated
A.1.2.2	Description of a CRS from a	CRS register is
	register	defined
A.1.2.3	definition of CRS	N/A ‑ Don't define
		CRS
A.1.2.4	representation of horizontal	lat/long values
	position	conform
A.1.2.5	representation of vertical	height value
	position	conforms
A.1.2.6	text string representation	N/A ‑ No string
		format
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Conformance Test Results

 For test "A.1.2.1" the YANG geo location object either includes a CRS
 ("reference-frame") or has a default defined ([WGS84]).

 For "A.1.2.3" we do not define our own CRS, and doing so is not
 required for conformance.

 For "A.1.2.6" we do not define a text string representation, which is
 also not required for conformance.

5. Usability

 The geo-location object defined in this document and YANG module have
 been designed to be usable in a very broad set of applications. This
 includes the ability to locate things on astronomical bodies other
 than The Earth, and to utilize entirely different coordinate systems
 and realities.

 Many systems make use of geo-location data, and so it's important to
 be able describe this data using this geo-location object defined in
 this document.

5.1. Portability

 In order to verify portability while developing this module the
 following standards and standard APIs and were considered.

5.1.1. IETF URI Value

 [RFC5870]
 defines a standard URI value for geographic location data.
 It includes the ability to specify the "geodetic-value" (it calls
 this "crs") with the default being "wgs-84" [WGS84]. For the
 location data it allows 2 to 3 coordinates defined by the "crs"
 value. For accuracy it has a single "u" parameter for specifying
 uncertainty. The "u" value is in fractions of meters and applies to
 all the location values. As the URI is a string, all values are
 specifies as strings and so are capable of as much precision as
 required.

 URI values can be mapped to and from the YANG grouping, with the
 caveat that some loss of precision (in the extremes) may occur due to
 the YANG grouping using decimal64 values rather than strings.

5.1.2. W3C

 See <https://w3c.github.io/geolocation-api/#dom-geolocationposition>.

 W3C Defines a geo-location API in [W3CGEO]. We show a snippet of
 code below which defines the geo-location data for this API. This is
 used by many application (e.g., Google Maps API).

interface GeolocationPosition {
 readonly attribute GeolocationCoordinates coords;
 readonly attribute DOMTimeStamp timestamp;
};

interface GeolocationCoordinates {
 readonly attribute double latitude;
 readonly attribute double longitude;
 readonly attribute double? altitude;
 readonly attribute double accuracy;
 readonly attribute double? altitudeAccuracy;

 readonly attribute double? speed;
};

5.1.2.1. Compare with YANG Model

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Field | Type | YANG | Type |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
accuracy	double	coord‑accuracy	dec64 fr 6
altitude	double	height	dec64 fr 6
altitudeAccuracy	double	height‑accuracy	dec64 fr 6
heading	double	heading	dec64 fr 16
latitude	double	latitude	dec64 fr 16
longitude	double	longitude	dec64 fr 16
speed	double	speed	dec64 fr 12
timestamp	DOMTimeStamp	timestamp	string
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

accuracy (double): Accuracy of "latitude" and "longitude" values in
 meters.

altitude (double): Optional height in meters above the [WGS84]
 ellipsoid.

altitudeAccuracy (double): Optional accuracy of "altitude" value in
 meters.

heading (double): Optional Direction in decimal deg from true north
 increasing clock‑wise.

latitude, longitude (double): Standard lat/long values in decimal
 degrees.

speed (double): Speed along heading in meters per second.

timestamp (DOMTimeStamp): Specifies milliseconds since the Unix
 EPOCH in 64 bit unsigned integer. The YANG model defines the
 timestamp with arbitrarily large precision by using a string which
 encompasses all representable values of this timestamp value.

 W3C API values can be mapped to the YANG grouping, with the caveat
 that some loss of precision (in the extremes) may occur due to the
 YANG grouping using decimal64 values rather than doubles.

 Conversely, only YANG values for The Earth using the default "wgs-84"
 [WGS84] as the "geodetic-datum", can be directly mapped to the W3C
 values, as W3C does not provide the extra features necessary to map
 the broader set of values supported by the YANG grouping.

5.1.3. Geography Markup Language (GML)

 ISO adopted the Geography Markup Language (GML) defined by OGC 07-036
 as [ISO.19136.2007]. GML defines, among many other things, a
 position type "gml:pos" which is a sequence of "double" values. This
 sequence of values represent coordinates in a given CRS. The CRS is
 either inherited from containing elements or directly specified as
 attributes "srsName" and optionally "srsDimension" on the "gml:pos".

 GML defines an Abstract CRS type which Concrete CRS types derive
 from. This allows for many types of CRS definitions. We are
 concerned with the Geodetic CRS type which can have either
 ellipsoidal or Cartesian coordinates. We believe that other non-
 Earth based CRS as well as virtual CRS should also be representable
 by the GML CRS types as well.

 Thus GML "gml:pos" values can be mapped directly to the YANG
 grouping, with the caveat that some loss of precision (in the
 extremes) may occur due to the YANG grouping using decimal64 values
 rather than doubles.

 Conversely, YANG grouping values can be mapped to GML as directly as
 the GML CRS available definitions allow with a minimum of Earth-based
 geodetic systems fully supported.

 GML also defines an observation value in "gml:Observation" which
 includes a timestamp value "gml:validTime" in addition to other
 components such as "gml:using" "gml:target" and "gml:resultOf". Only
 the timestamp is mappable to and from the YANG grouping. Furthermore
 "gml:validTime" can either be an Instantaneous measure
 ("gml:TimeInstant") or a time period ("gml:TimePeriod"). Only the
 instantaneous "gml:TimeInstant" is mappable to and from the YANG
 grouping.

5.1.4. KML

 KML 2.2 [KML22] (formerly Keyhole Markup Language) was submitted by
 Google to Open Geospatial Consortium (OGC)
 <https://www.opengeospatial.org/> and was adopted. The latest
 version as of this writing is KML 2.3 [KML23]. This schema includes
 geographic location data in some of it's objects (e.g., <kml:Point or
 <kml:Camera> objects). This data is provided in string format and
 corresponds to the [W3CGEO] values. The timestamp value is also
 specified as a string as in our YANG grouping.

 KML has some special handling for the height value useful for
 visualization software, "kml:altitudeMode". These values for
 "kml:altitudeMode" include indicating the height is ignored
 ("clampToGround"), in relation to the locations ground level
 ("relativeToGround"), or in relation to the geodetic datum
 ("absolute"). The YANG grouping can directly map the ignored and
 absolute cases, but not the relative to ground case.

 In addition to the "kml:altitudeMode" KML also defines two seafloor
 height values using "kml:seaFloorAltitudeMode". One value is to
 ignore the height value ("clampToSeaFloor") and the other is relative
 ("relativeToSeaFloor"). As with the "kml:altitudeMode" value, the
 YANG grouping supports the ignore case but not the relative case.

 The KML location values use a geodetic datum defined in Annex A by
 the GML Coordinate Reference System (CRS) [ISO.19136.2007] with
 identifier "LonLat84_5773". The altitude value for KML absolute
 height mode is measured from the vertical datum specified by [WGS84].

 Thus the YANG grouping and KML values can be directly mapped in both
 directions (when using a supported altitude mode) with the caveat
 that some loss of precision (in the extremes) may occur due to the
 YANG grouping using decimal64 values rather than strings. For the
 relative height cases the application doing the transformation is
 expected to have the data available to transform the relative height
 into an absolute height which can then be expressed using the YANG
 grouping.

6. IANA Considerations

6.1. Geodetic System Value Registry

 This registry allocates names for standard geodetic systems. Often
 these values are referred to using multiple names (e.g., full names
 or multiple acronyms values). The intent of this registry is to
 provide a single standard value for any given geodetic system.

 The values SHOULD use an acronym when available, they MUST be
 converted to lower case, and spaces MUST be changed to dashes "-".

 Each entry should be sufficient to define the 3 coordinate values (2
 if height is not required). So for example the "wgs-84" is defined
 as WGS-84 with the geoid updated by at least [EGM96] for height
 values. Specific entries for [EGM96] and [EGM08] are present if a
 more precise definition of the data is required.

 It should be noted that [RFC5870] also creates a registry for
 Geodetic Systems (it calls CRS); however, this registry has a very
 strict modification policy. The authors of [RFC5870] have the stated
 goal of making CRS registration hard to avoid proliferation of CRS
 values. As our module defines alternate systems and has a broader
 (beyond earth) scope, the registry defined below is meant to be more
 easily modified.

 TODO: Open question, should we create a new registry here or attempt
 to modify the one created by [RFC5870]. It's worth noting that we
 include the ability to specify any geodetic system including ones
 designed for astronomical bodies other than the earth, as well as
 ones based on alternate systems. These requirements may be too broad
 for adapting the existing [RFC5870] registry.

 TODO: Open question, is FCFS too easy, perhaps expert review would
 strike a good balance. If expert review is acceptable, would it also
 be acceptable to update the policy on [RFC5870] and use it instead?

 The allocation policy for this registry is First Come First Served,
 [RFC8126] as the intent is simply to avoid duplicate values.

 The initial values for this registry are as follows.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Name | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
me	Mean Earth/Polar Axis (Moon)
mola‑vik‑1	MOLA Height, IAU Viking‑1 PM (Mars)
wgs‑84‑96	World Geodetic System 1984 [WGS84] w/ EGM96
wgs‑84‑08	World Geodetic System 1984 [WGS84] w/ [EGM08]
wgs‑84	World Geodetic System 1984 [WGS84] (EGM96 or better)
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

7. Security Considerations

 This document defines a common geo location grouping using the YANG
 data modeling language. The grouping itself has no security or
 privacy impact on the Internet, but the usage of the grouping in
 concrete YANG modules might have. The security considerations
 spelled out in the YANG 1.1 specification [RFC7950] apply for this
 document as well.

8. References

8.1. Normative References

 [EGM08]
 Pavlis, N., Holmes, S., Kenyon, S., and J. Factor, "An
 Earth Gravitational Model to Degree 2160: EGM08.", 2008,
 <http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
 egm08_wgs84.html>.

 [EGM96]
 Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis,
 N., Chinn, D., Cox, C., Klosko, S., Luthcke, S., Torrence,
 M., Wang, Y., Williamson, R., Pavlis, E., Rapp, R., and T.
 Olson, "The Development of the Joint NASA GSFC and the
 National Imagery and Mapping Agency (NIMA) Geopotential
 Model EGM96.", 1998,
 <https://cddis.nasa.gov/926/egm96/egm96.html>.

 [ISO.6709.2008]

 International Organization for Standardization, "ISO
 6709:2008 Standard representation of geographic point
 location by coordinates.", 2008.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [WGS84]
 National Imagery and Mapping Agency., "National Imagery
 and Mapping Agency Technical Report 8350.2, Third
 Edition.", 1 2000, <http://earth-
 info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>.

8.2. Informative References

 [ISO.19136.2007]

 International Organization for Standardization, "ISO
 19136:2007 Geographic information -- Geography Markup
 Language (GML)".

 [KML22]
 Wilson, T., Ed., "OGC KML (Version 2.2)", 4 2008,
 <http://portal.opengeospatial.org/
 files/?artifact_id=27810>.

 [KML23]
 Burggraf, D., Ed., "OGC KML 2.3", 8 2015,
 <http://docs.opengeospatial.org/
 is/12-007r2/12-007r2.html>.

 [RFC5870]
 Mayrhofer, A. and C. Spanring, "A Uniform Resource
 Identifier for Geographic Locations ('geo' URI)",
 RFC 5870, DOI 10.17487/RFC5870, June 2010,
 <https://www.rfc-editor.org/info/rfc5870>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [W3CGEO]
 Popescu, A., "Geolocation API Specification", 11 2016,
 <https://www.w3.org/TR/2016/
 REC-geolocation-API-20161108/>.

Appendix A. Examples

 Below is a fictitious module that uses the geo-location grouping.

<CODE BEGINS> file "ietf‑uses‑geo‑location@2019‑02‑02.yang"
module ietf‑uses‑geo‑location {
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑uses‑geo‑location";
 prefix ugeo;
 import geo‑location { prefix geo; }
 organization "Empty Org";
 contact "Example Author <eauthor@example.com>";
 description "Example use of geo‑location";
 revision 2019‑02‑02 { reference "None"; }
 container locatable‑items {
 description "container of locatable items";
 list locatable‑item {
 key name;
 description "A of locatable item";
 leaf name {
 type string;
 description "name of locatable item";
 }
 uses geo:geo‑location;
 }
 }
}
<CODE ENDS>

 Below is a the YANG tree for the fictitious module that uses the geo-
 location grouping.

module: ietf‑uses‑geo‑location
 +‑‑rw locatable‑items
 +‑‑rw locatable‑item* [name]
 +‑‑rw name string
 +‑‑rw geo‑location
 +‑‑rw reference‑frame
 | +‑‑rw alternate‑system? string {alternate‑systems}?
 | +‑‑rw astronomical‑body? string
 | +‑‑rw geodetic‑system
 | +‑‑rw geodetic‑datum? string
 | +‑‑rw coord‑accuracy? decimal64
 | +‑‑rw height‑accuracy? decimal64
 +‑‑rw (location)
 | +‑‑:(ellipsoid)
 | | +‑‑rw latitude degrees
 | | +‑‑rw longitude degrees
 | | +‑‑rw height? decimal64
 | +‑‑:(cartesian)
 | +‑‑rw x decimal64
 | +‑‑rw y decimal64
 | +‑‑rw z? decimal64
 +‑‑rw velocity
 | +‑‑rw v‑north? decimal64
 | +‑‑rw v‑east? decimal64
 | +‑‑rw v‑up? decimal64
 +‑‑rw timestamp? types:date‑and‑time

 Below is some example YANG XML data for the fictitious module that
 uses the geo-location grouping.

<ns0:config xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0">
 <locatable‑items
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑uses‑geo‑location">
 <locatable‑item>
 <name>Gaetana's</name>
 <geo‑location>
 <latitude>40.73297</latitude>
 <longitude>‑74.007696</longitude>
 </geo‑location>
 </locatable‑item>
 <locatable‑item>
 <name>Pont des Arts</name>
 <geo‑location>
 <timestamp>2012‑03‑31T16:00:00Z</timestamp>
 <latitude>48.8583424</latitude>
 <longitude>2.3375084</longitude>
 <height>35</height>
 </geo‑location>
 </locatable‑item>
 <locatable‑item>
 <name>Saint Louis Cathedral</name>
 <geo‑location>
 <timestamp>2013‑10‑12T15:00:00‑06:00</timestamp>
 <latitude>29.9579735</latitude>
 <longitude>‑90.0637281</longitude>
 </geo‑location>
 </locatable‑item>
 <locatable‑item>
 <name>Apollo 11 Landing Site</name>
 <geo‑location>
 <timestamp>1969‑07‑21T02:56:15Z</timestamp>
 <reference‑frame>
 <astronomical‑body>moon</astronomical‑body>
 <geodetic‑system>
 <geodetic‑datum>me</geodetic‑datum>
 </geodetic‑system>
 </reference‑frame>
 <latitude>0.67409</latitude>
 <longitude>23.47298</longitude>
 </geo‑location>
 </locatable‑item>
 </locatable‑items>
</ns0:config>

Appendix B. Acknowledgements

 We would like to thank Peter Lothberg for the motivation as well as
 help in defining a more broadly useful geographic location object.

 We would also like to thank Acee Lindem and Qin Wu for their work on
 a geographic location object that led to this documents creation.

Author's Address

Christian Hopps
LabN Consulting, L.L.C.

 Email: chopps@chopps.org

draft-clemm-netmod-push-smart-filters-01 - Smart Filters for Push Updates

draft-clemm-netmod-push-smart-filters-01 - Smart Filters for Push Updates

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

A. Clemm

Huawei - Futurewei Technologies, Inc.

E. Voit

Cisco Systems

X. Liu

Volta Networks

I. Bryskin

T. Zhou

G. Zheng

Huawei

H. Birkholz

Fraunhofer SIT

October 22, 2018

Smart Filters for Push Updates

draft-clemm-netmod-push-smart-filters-01

Abstract

 This document defines a YANG model for Smart Filters for push
 updates. Smart Filters allow to filter push updates based on values
 of pushed datastore nodes and/or state, such as previous updates.
 Smart Filters provide an important building block for service
 assurance and network automation.

 This revision of the document is intended as a placeholder,
 containing the problem statement of draft-clemm-netconf-push-smart-
 filters-ps-00 that has recently expired. The YANG model itself still
 needs to be defined.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Key Words

	3. Definitions and Acronyms

	4. Problem Statement

	5. Smart Filter Data Model

	6. IANA Considerations

	7. Security Considerations

	8. Normative References

	Authors' Addresses

1. Introduction

 YANG-Push [yang-push] allows client applications to subscribe to
 continuous datastore updates without needing to poll. YANG-Push
 subscriptions allow client applications to select which datastore
 nodes are of interest. For this purpose, filters that act as node
 selectors are offered. However, what is currently not supported are
 filters that filter updates based on values, such as sending updates
 only when the value falls within a certain range. Also not supported
 are filters that would require additional state, such as sending
 updates only when the value exceeds a certain threshold for the first
 time but not again until the threshold is cleared. We refer to such
 filters as "Smart Filters", with further subcategories of "smart
 stateless filters" and "smart stateful filters", respectively.

 Smart Filters involve more complex subscription and implementation
 semantics than the simple selection filters that are currently
 offered as part of YANG-Push. They involve post processing of
 updates that goes beyond basic update generation for polling
 avoidance and place additional intelligence at the server. Because
 of this, Smart Filter functionality was not included in the YANG-Push
 specification, although it was recognized that YANG-Push could be
 extended to include such functionality if needed. This is the
 purpose of this specification.

 Smart Filters facilitate service assurance, because they allow client
 applications to focus on "outliers" and updates that signify
 exceptions and conditions of interest have the biggest operational
 significance. They save network resources by avoiding the need to
 stream updates that would be discarded anyway, and allow applications
 to scale better since larger networks imply a larger amount of Smart
 Filtering operations delegated away from the application to the
 network. Smart Filters also facilitate network automation as they
 constitute an important ingredient to specify triggers for automated
 actions.

2. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Definitions and Acronyms

 Datastore node: An instance of management information in a
 datastore. Also known as "object".

 Smart Filter: A filter that involves some processing, such as
 comparing values or differentiating behavior depending on state.

 TCA: Threshold Crossing Alert.

 YANG-Push: A server capability that allows client applications to
 subscribe to network management datastore updates.

4. Problem Statement

 YANG-Push provides client applications with the ability to subscribe
 to continuous updates from network management datastores, obviating
 the need to perform polling and resulting in more robust and
 efficient applications. However, many applications do not require
 every update, only updates that are of certain interest.

 For example, an update concerning interface utilization may be only
 needed when a certain utilization level is breached. Sending
 continuous updates when utilization is low might divert processing
 resources away from updates regarding interfaces whose utilization
 level may reach a critical point that requires attention. Doing so
 will require a filter based on an object value. Even sending
 continuous updates when utilization is high may be too much and
 counterproductive. It may be sufficient to send an update when a
 threshold is breached to raise a flag of attention, but then not to
 continue sending updates while the condition still persists but
 simply let the client application know when the threshold is cleared.
 This behavior cannot be accomplished simply by a value-based filter,
 but requires additional state to be maintained (so that the server
 has a memory whether or not the condition of a breached threshold has
 already been reported in prior update cycles).

 What is needed are "Smart Filters" that provide the ability to apply
 filters based on object values, possibly also state state. Smart
 Filters are useful for Service Assurance applications that need to
 monitor operational data for values that fall outside normal
 operational ranges. They are also useful for network automation, in
 which automated actions are automatically triggered based on when
 certain events in the network occur while certain conditions hold. A
 YANG-Push subscription with a Smart Filter can in effect act as a
 source for such events. Combined with an optional check for a
 condition when an event is observed, this can serve as the basis of
 action triggers.

 Smart Filters for Push Updates will provide support for the following
 features:

 o Support for Smart Filter extensions to YANG-Push subscriptions.
 The targeted model takes a "base" YANG-Push subscription and
 subjects updates to an additional filtering stage that is based on
 value.

 o Support for selected stateful filters:

 * This includes specifically support for generalized "threshold
 crossing alert" filters, or filters that provide an update only
 when a datastore node's value passes a filter for the first
 time, and not again until the datastore node's value passes a
 counter filter. In effect, the support involves attaching
 filter and counter filter to a datastore node, including a
 switch at the datastore node indicating which filter is in
 effect, and providing a distinction in the update which filter
 (e.g. onset of clear) was applied.

 * It may include additional filters, such a "recent high water
 mark" filters that allow to specify a time horizon until the
 current high water mark clears. A recent high water mark

 filter sends an update to an object only if its new value is
 greater than the last value that had been previously reported.

 o In addition to new filters, support for features to make them
 easier to use:

 * Support for refined on-change update semantics that allow
 client to distinguish whether datastore node values were
 omitted or included because the datastore node was created or
 deleted, or because the datastore node's value fell outside
 filter range.

 * Support for a heartbeat that indicates that a filter is still
 in effect after a longer period of inactivity.

 It is easy to conceive of filters that are very smart and powerful
 yet also very complex. While filters as defined in YANG-Push may be
 a tad too simple for the applications envisioned here, it is
 important to keep filters still simple enough to ensure broad
 implementation and support by networking devices. The purpose of
 Smart Filters defined in this effort is to address the 90% of cases
 that can be addressed using 10% of the complexity. Items like the
 following will therefore be outside the scope:

 o Filters that involve freely programmable logic.

 o Filters that aggregate or otherwise process information over time.
 An example would be filters that compute an aggregate over a time
 series of data (e.g. a datastore node's average or top percentile
 value)

 o Filters that aggregate or compare values of several datastore
 nodes (e.g. the maximum or average from datastore nodes in a
 list).

5. Smart Filter Data Model

 The following section contains an initial YANG data model for smart
 filters. The model is at this point still incomplete and included as
 a starting point only. At this point, the model defines a simple
 threshold filter. When used with a subscription, objects that meet
 the filter criterion (i.e. the threshold comparison) are included in
 the update whereas any other object is filtered.

 The model will be extended to define a full "smart threshold" model
 in a later revision. This will add the feature of a hysteresis
 threshold, i.e. a counter threshold that allows to define when a
 crossed threshold should be cleared. The value of the hysteresis
 threshold can be set to a lower value than the threshold itself to
 avoid unnecessary updates in case of oscillations). It will also add
 a notion of state to remember whether a threshold crossing has
 already been reported, to avoid repeated inclusion of objects in
 updates that remain above their threshold. By including metadata,
 clients will be able to distinguish between the violation and the
 clearing of thresholds.

 The model will furthermore be extended for smart filters that are not
 threshold-related, such as the previously mentioned recent high water
 marks.

<CODE BEGINS> file "ietf‑smart‑filter@2018‑10‑22.yang"
module ietf‑smart‑filter {
 yang‑version "1.1";
 namespace "urn:ietf:params:xml:ns:yang:ietf‑smart‑filter";
 prefix "sf";

 import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-subscribed-notifications {

 prefix sn;
 reference
 "draft‑ietf‑netconf‑subscribed‑notifications:
 Customized Subscriptions to a Publisher's Event Streams

 NOTE TO RFC Editor: Please replace above reference to
 draft‑ietf‑netconf‑subscribed‑notifications with RFC number
 when published (i.e. RFC xxxx).";
}

organization "IETF";
contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Xufeng Liu

 <mailto:xufeng.liu.ietf@gmail.com>

Editor: Igor Bryskin
 <mailto:igor.bryskin@huawei.com>

Editor: Tianran Zhou
 <mailto:zhoutianran@huawei.com>

Editor: Guangying Zheng
 <mailto:zhengguangying@huawei.com>

Editor: Henk Birkholz
 <mailto:henk.birkholz@sit.fraunhofer.de>";

 description

 "This module contains YANG specifications for smart filter.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of
 draft-clemm-netmod-push-smart-filters-01; see the RFC itself
 for full legal notices.

 NOTE TO RFC EDITOR: Please replace above reference to
 with RFC number when
 published (i.e. RFC xxxx).";

revision 2018‑10‑22 {
 description
 "Initial revision.
 NOTE TO RFC EDITOR:
 (1)Please replace the above revision date to
 the date of RFC publication when published.
 (2) Please replace the date in the file name
 (ietf‑smart‑filter@2018‑10‑22.yang) to the date of RFC
 publication.
 (3) Please replace the following reference to
 draft‑clemm‑netmod‑push‑smart‑filters‑01 with RFC number when
 published (i.e. RFC xxxx).";
 reference
 "draft‑clemm‑netmod‑push‑smart‑filters‑01";

 }

 /*
 * IDENTITIES
 */

 /* Smart‑filter type identities */

 identity smart‑filter {
 description
 "A base identity that represents the smart filter types. ";
 }

 identity smart‑filter‑threshold {
 base smart‑filter;
 description
 "An identity instance based on smart‑filter, which support
 filter the push data by fix threshold value.";
 }

 /*
 * TYPE DEFINITIONS
 */
 typedef sf‑op‑type {
 type enumeration {
 enum eq {
 description "equal to";
 }
 enum gt {
 description "greater than";
 }
 enum ge {
 description "greater than or equal to";
 }
 enum lt {
 description "less than";
 }
 enum le {
 description "less than or equal to";
 }
 }
 description "A boolean comparator for an object and a data value.
 Include: eq, gt, ge, lt, le.";
 }

 /*
 * GROUP DEFINITIONS
 */

 grouping sf‑threshold{
 description
 "the group for threshold filter";
 leaf filter‑node {
 if‑feature "sn:xpath";
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression identifying
 the node of the target filter.";
 }

 leaf threshold‑value {
 type string;
 description "threshold value";
 }

 leaf op‑type {
 type sf‑op‑type;
 description "comparison operator";
 }
 }

 //augment statements
 augment "/sn:subscriptions/sn:subscription" {
 description "add the smart filter container";
 container smart‑filter {
 description "It concludes filter configurations";

 choice filter‑type {
 description
 "Select different smart filter";
 case threshold‑filter {
 description
 "threshold‑filter";
 uses sf‑threshold;
 }
 }
 }
 }
}
<CODE ENDS>

6. IANA Considerations

 RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
 actual RFC number (and remove this note).

 IANA is requested to assign a new URI from the IETF XML Registry
 [RFC3688]. The following URI is suggested:

URI: urn:ietf:params:xml:ns:yang:ietf‑smart‑filter
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document also requests a new YANG module name in the YANG Module
 Names registry [RFC7950] with the following suggestion:

name: ietf‑ioam
namespace: urn:ietf:params:xml:ns:yang:ietf‑smart‑filter
prefix: sf
reference: RFC XXXX

7. Security Considerations

 The application of Smart Filters requires a certain amount of
 processing resources at the server. An attacker could attempt to
 attack a server by creating YANG-push subscriptions with a large
 number of complex Smart Filters in an attempt to diminish server
 resources. Server implementations can guard against such scenarios
 in several ways. For one, they can implement NACM in order to
 require proper authorization for requests to be made. Second, server
 implementations can reject requests made for a a larger number of
 Smart Filters than the implementation can reasonably sustain.

8. Normative References

 [notif-sub]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Custom Subscriptions to a
 Publisher's Event Streams", June 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-subscribed-notifications/>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8072]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", RFC 8072, DOI 10.17487/RFC8072, February
 2017, <https://www.rfc-editor.org/info/rfc8072>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [yang-push]

 Clemm, A., Voit, E., Gonzalez Prieto, A., Tripathy, A.,
 Nilsen-Nygaard, E., Bierman, A., and B. Lengyel,
 "Subscribing to YANG datastore push updates", July 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

Authors' Addresses

Alexander Clemm
Huawei ‑ Futurewei Technologies, Inc.
2330 Central Expressway
Santa Clara, CA 95050
USA

 Email: ludwig@clemm.org

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Xufeng Liu
Volta Networks

 Email: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei

 Email: igor.bryskin@huawei.com

Tianran Zhou
Huawei

 Email: zhoutianran@huawei.com

Guangying Zheng
Huawei

 Email: zhengguangying@huawei.com

Henk Birkholz
Fraunhofer SIT

 Email: henk.birkholz@sit.fraunhofer.de

draft-dcn-bmwg-containerized-infra-00 - Considerations for Benchmarking Network Performance in Containerized Infrastructures

draft-dcn-bmwg-containerized-infra-00 - Considerations for Benchmarking Network

Index
Back 5
Prev
Next
Forward 5

Benchmarking Methodology Working Group

Internet-Draft

Intended status: Informational

Expires: September 8, 2019

K. Sun

H. Yang

Y. Park

Y. Kim

Soongsil University

W. Lee

ETRI

March 7, 2019

Considerations for Benchmarking Network Performance in Containerized Infrastructures

draft-dcn-bmwg-containerized-infra-00

Abstract

 This draft describes benchmarking considerations for a containerized
 infrastructure. In a containerized infrastructure, Virtualized
 Network Functions(VNFs) are deployed on operating-system-level
 virtualization platform by abstracting the user namespace as opposed
 to virtualization using a hypervisor. Leveraging this, the system
 configurations and networking scenarios for VNF benchmarking will be
 partially changed by way of resource allocation and network port
 binding between a physical host and VNFs. In this draft we compare
 the state of the art in container networking architecture with
 networking on VM-based virtualized systems, and provide several test
 scenarios for network performance in containerized infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Benchmarking Consideration
	 3.1. Comparison with VM based Infrastructure

	 3.2. Additional Considerations for Container Networking

	4. Test Scenarios

	5. Security Considerations

	6. Informative References

	Authors' Addresses

1. Introduction

 The Benchmarking Methodology Working Group(BMWG) has recently
 expanded its benchmarking scope from Physical Network Function(PNF)
 running on dedicated hardware system to Network Function
 Virtualization(NFV) infrastructure and Virtualized Network
 Function(VNF). [RFC8172] described considerations for configuring
 NFV infrastructure and benchmarking metrics, and [RFC8204] gives
 guidelines for benchmarking virtual switch which connects VNFs in
 Open Platform for NFV(OPNFV).

 Recently NFV infrastructure has evolved to include a lightweight
 virtualized platform called the containerized infrastructure, where
 VNFs share the same host Operating System(OS) and they are logically
 isolated by using a different namespace. While previous NFV
 infrastructure uses a hypervisor to allocate resources for Virtual
 Machine(VMs) and instantiate VNFs on it, the containerized
 infrastructure virtualizes resources without a hypervisor, therefore
 making containers very lightweight and more efficient in
 infrastructure resource utilization compared to a VM based NFV
 infrastructure. When we consider benchmarking for VNFs in the
 containerized infrastructure, it may have a different Device Under
 Test(DUT) configuration compared with both black-box benchmarking and
 VM-based NFV infrastructure as described in [RFC8172]. Accordingly,
 additional configuration parameters and testing strategies may be
 required.

 In the containerized infrastructure, a VNF network is implemented by
 running both switch and router functions in the host system. For
 example, the internal communication between VNFs in the same host
 uses the L2 bridge function, while communication with external
 node(s) uses the L3 router function. For container networking, the
 host system may use a virtual switch(vSwitch), but other options
 exist. In the [ETSI-TST-009], they describe differences in
 networking structure between VM-based and container-based
 infrastructure. Occasioned by these differences, deployment
 scenarios for testing network performance described in [RFC8204] may
 be partially applied to the containerized infrastructure, but other
 scenarios may be required.

 In this draft, we describe differences and additional considerations
 for benchmarking containerized infrastructure based on [RFC8172] and
 [RFC8204]. In particular, we focus on differences in system
 configuration parameters and networking configurations of the
 containerized infrastructure compared with VM-based NFV
 infrastructure. Note that, although the detailed configurations of
 both infrastructures differ, the new benchmarks and metrics defined
 in [RFC8172] can be equally applied in containerized infrastructure
 from a generic-NFV point of view, and therefore defining additional
 metrics or methodologies is out of scope.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document is to be interpreted as described in [RFC2119]. This
 document uses the terminology described in [RFC8172], [RFC8204],
 [ETSI-TST-009].

3. Benchmarking Consideration

3.1. Comparison with VM based Infrastructure

 For benchmarking of containerized infrastructure, as mentioned in
 [RFC8172], the basic approach is to reuse existing benchmarks
 developed within the BMWG. Various network function specifications
 already defined in BMWG should still be applied to containerized VNFs
 for performance comparison with physical network functions and VM
 based VNFs.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+																
	Guest VM		Guest VM				Container		Container									
	+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑+									
		APP				APP						APP				APP		
	+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑+									
	+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑+									
		Guest Kernel				Guest Kernel						Bin/Libs				Bin/Libs		
	+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑+									
+‑‑‑‑‑‑^‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑^‑‑‑‑‑‑+		+‑‑‑‑‑^‑‑‑‑‑‑+ +‑‑‑‑‑‑^‑‑‑‑‑+																
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑+		+‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑+												
		Hypervisor						+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+										
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑+					Container Engine											
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+												
		Host OS Kernel						Host OS Kernel										
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑+			+‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑+											
+‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑+		+‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑‑+																
+‑‑‑‑| physical network |‑‑‑‑+ +‑‑| physical network |‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 (a) VM‑Based Infrastructure (b) Containerized Infrastructure

 Figure 1: Comparison of NFV Infrastructures

 In Figure 1, we describe two different NFV architectures: VM-based
 and Containerized. A major distinction between containerized
 infrastructure and VM based infrastructure is that with the former,
 all VNFs share the same host resources including but not limited to
 computing, storage and networking resources, as well as the host
 Operating System(OS), kernel and libraries. The absence of the guest
 OS and the hypervisor, necessitates the following considerations that
 occur in the test environment:

 o Concerning hardware for containerized infrastructure, all
 components described in [RFC8172] can be part of the test setup.
 While the capabilities of servers and storage should meet the minimum
 requirements for testing, it is possible to deploy a test environment
 with less capabilities than in a VM based infrastructure.

 o About configuration parameters, containerized infrastructure needs
 specified management system instead of hypervisor(e.g. Linux
 Container, Docker Engine).

 o In the VM based infrastructure, each VM has packet processing in
 the kernel of the guest OS through its own CPU threads, virtualized
 and assigned by hypervisor. On the other hand, containerized VNFs
 use the host CPU without virtualization. Different CPU resource
 assignment methods may have different CPU utilization perspectives
 for VNF performance benchmarking.

 o From a Memory Management Unit(MMU) point of view, there is a
 difference in how the paging process is conducted between two
 environments. The main difference lies in the isolated nature of the
 OS for VM-based VNFs. In the containerized infrastructure, memory
 paging which processes conversion between physical address and
 virtual address is affected by the host resource directly. Thus,
 memory usage of each VNFs is more dependent on the host resource
 capabilities than in VM-based VNFs.

 o Some network drivers may have varying dependencies for each
 environment. For example, a vhost-net driver used in a guest OS
 cannot be used for a container; on the other hand, a veth driver can
 be only applicable within a containerized infrastructure.

3.2. Additional Considerations for Container Networking

 In the containerized infrastructure, there are various network
 architectures depending on the deployment environment and models.
 Since container networking typically involves using virtual switch
 functions, base network configuration parameters for container
 networking benchmarks are mostly similar with VM based VNF networking
 described in [RFC8204]. Additional considerations for container
 networking are described as follows:

 o Networking depends on deployment models: Containerized VNFs have
 several deployment models. Containerized VNFs can be deployed as a
 cluster called POD by Kubernetes, otherwise each VNF can be deployed
 separately using Docker. In former case, there is only one external
 network interface for a POD which contains more than one VNF. An
 alternative deployment model considers a scenario in which
 containerized VNFs or PODs are running on VM-based infrastructure.
 Figure 2 shows briefly differences of network architectures based on
 deployment models. [ETSI-TST-009] describes in more detail the
 differences between them. Other deployment models are classified
 bases on whether containerized VNFs are deployed on baremetal or
 inside of the VM.

+‑‑‑+
| Baremetal Node |
| |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑ + +‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
			POD		VM		VM							
			+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑+							
	Container			Container				Container VNF				PODs		
	VNF			VNFs			+‑‑‑‑‑^‑‑‑‑‑‑‑+		+‑‑‑^‑‑+					
			+‑‑‑‑‑‑‑‑‑‑‑‑+											
	+‑‑‑‑‑‑+		+‑‑‑‑‑‑+		+‑‑v‑‑‑+		+‑‑‑v‑‑+							
+‑‑‑	veth	‑‑‑+ +‑‑‑	veth	‑‑‑+ +‑‑‑	virtio	‑‑‑‑+ +‑‑	virtio	‑‑‑+						
+‑‑^‑‑‑+ +‑‑‑^‑‑+ +‑‑^‑‑‑+ +‑‑‑^‑‑+														
		+‑‑v‑‑‑+ +‑‑‑v‑‑+												
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑	vhost	‑‑‑‑‑‑‑‑‑	vhost	‑‑‑+								
			+‑‑^‑‑‑+ +‑‑‑^‑‑+											
	+‑‑v‑‑‑+ +‑‑‑v‑‑+ +‑‑v‑‑‑+ +‑‑‑v‑‑+													
	+‑	veth	‑‑‑‑‑‑‑‑‑	veth	‑‑‑‑‑‑‑‑‑	Tap	‑‑‑‑‑‑‑‑‑	Tap	‑+					
		+‑‑^‑‑‑+ +‑‑‑^‑‑+ +‑‑^‑‑‑+ +‑‑‑^‑‑+												
				vSwitch										
		+‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑+								
	+‑			Bridge			‑+							
	+‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑+									
		+‑‑‑‑‑‑‑‑‑+	+‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑+									
			Container				Hypervisor							
			Engine											
		+‑‑‑‑‑‑‑‑‑+	+‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑+									
			Host Kernel											
+‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑+										
+‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑+														
+‑‑‑‑‑| physical network |‑‑‑‑‑+
 +‑‑‑+

 Figure 2: Examples of Networking Architecture based on Deployment

 Models

 o Network Plug-ins: In the containerized infrastructure, specific
 networking functions can be supported by attaching various plug-ins.
 Container Network Model(CNM) and Container Network Interface(CNI) are
 currently the most popular network plug-ins. According each network
 plug-in, they have different runtime structure or accessibilities to
 namespace. Actual testing results may vary depending on plug-in
 types and its supporting drivers.

 o Network Types: To enhance forwarding capabilities, similar to the
 VM based infrastructure, the containerized infrastructure can also
 employ use of specific networking technologies such as SR-IOV.

4. Test Scenarios

 TBD

5. Security Considerations

 TBD

6. Informative References

 [ETSI-TST-009]

 "Network Functions Virtualisation (NFV) Release 3;
 Testing; Specification of Networking Benchmarks and
 Measurement Methods for NFVI", October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC8172]
 Morton, A., "Considerations for Benchmarking Virtual
 Network Functions and Their Infrastructure", RFC 8172,
 July 2017.

 [RFC8204]
 Tahhan, M., O'Mahony, B., and A. Morton, "Benchmarking
 Virtual Switches in the Open Platform for NFV (OPNFV)",
 RFC 8204, September 2017.

Authors' Addresses

Kyoungjae Sun
School of Electronic Engineering
Soongsil University
369, Sangdo‑ro, Dongjak‑gu
Seoul, Seoul 06978
Republic of Korea

Phone: +82 10 3643 5627
EMail: gomjae@dcn.ssu.ac.kr

Hyunsik Yang
School of Electronic Engineering
Soongsil University
369, Sangdo‑ro, Dongjak‑gu
Seoul, Seoul 06978
Republic of Korea

Phone: +82 10 9005 7439
EMail: yangun@dcn.ssu.ac.kr

Youngki Park
School of Electronic Engineering
Soongsil University
369, Sangdo‑ro, Dongjak‑gu
Seoul, Seoul 06978
Republic of Korea

Phone: +82 10 4281 0720
EMail: ykpark@dcn.ssu.ac.kr

Younghan Kim
School of Electronic Engineering
Soongsil University
369, Sangdo‑ro, Dongjak‑gu
Seoul, Seoul 06978
Republic of Korea

Phone: +82 10 2691 0904
EMail: younghak@ssu.ac.kr

Wangbong Lee
ETRI
ETRI
161, Gajeong‑ro, Yoosung‑gu
Dajeon, Dajeon 34129
Republic of Korea

Phone: +82 10 5336 2323
EMail: leewb@etri.re.kr

draft-dulaunoy-dnsop-passive-dns-cof-05 - Passive DNS - Common Output Format

draft-dulaunoy-dnsop-passive-dns-cof-05 - Passive DNS - Common Output Format

Index
Back 5
Prev
Next
Forward 5

Domain Name System Operations

Internet-Draft

Intended status: Informational

Expires: August 14, 2019

A. Dulaunoy

CIRCL

A. Kaplan

CERT.at

P. Vixie

H. Stern

Farsight Security, Inc.

February 10, 2019

Passive DNS - Common Output Format

draft-dulaunoy-dnsop-passive-dns-cof-05

Abstract

 This document describes a common output format of Passive DNS Servers
 which clients can query. The output format description includes also
 in addition a common semantic for each Passive DNS system. By having
 multiple Passive DNS Systems adhere to the same output format for
 queries, users of multiple Passive DNS servers will be able to
 combine result sets easily.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 14, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Limitation

	3. Common Output Format
	 3.1. Overview

	 3.2. ABNF grammar

	 3.3. Mandatory Fields
	 3.3.1. rrname

	 3.3.2. rrtype

	 3.3.3. rdata

	 3.3.4. time_first

	 3.3.5. time_last

	 3.4. Optional Fields
	 3.4.1. count

	 3.4.2. bailiwick

	 3.5. Additional Fields
	 3.5.1. sensor_id

	 3.5.2. zone_time_first

	 3.5.3. zone_time_last

	 3.5.4. origin

	 3.6. Additional Fields Registry

	4. Acknowledgements

	5. IANA Considerations

	6. Privacy Considerations

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. References

	 8.3. Informative References

	Appendix A. Examples

	Authors' Addresses

1. Introduction

 Passive DNS is a technique described by Florian Weimer in 2005 in
 Passive DNS replication, F Weimer - 17th Annual FIRST Conference on
 Computer Security [WEIMERPDNS]. Since then multiple Passive DNS
 implementations were created and evolved over time. Users of these
 Passive DNS servers may query a server (often via WHOIS [RFC3912] or
 HTTP REST [REST]), parse the results and process them in other
 applications.

 There are multiple implementations of Passive DNS software. Users of
 passive DNS query each implementation and aggregate the results for
 their search. This document describes the output format of four
 Passive DNS Systems ([DNSDB], [DNSDBQ], [PDNSCERTAT], [PDNSCIRCL] and
 [PDNSCOF]) which are in use today and which already share a nearly
 identical output format. As the format and the meaning of output
 fields from each Passive DNS need to be consistent, we propose in
 this document a solution to commonly name each field along with their
 corresponding interpretation. The format follows a simple key-value
 structure in JSON [RFC4627] format. The benefit of having a
 consistent Passive DNS output format is that multiple client
 implementations can query different servers without having to have a
 separate parser for each individual server. passivedns-client
 [PDNSCLIENT] currently implements multiple parsers due to a lack of
 standardization. The document does not describe the protocol (e.g.
 WHOIS [RFC3912], HTTP REST [REST]) nor the query format used to query
 the Passive DNS. Neither does this document describe "pre-recursor"
 Passive DNS Systems. Both of these are separate topics and deserve
 their own RFC document. The document describes the current best
 practices implemented in various Passive DNS server implementations.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Limitation

 As a Passive DNS servers can include protection mechanisms for their
 operation, results might be different due to those protection
 measures. These mechanisms filter out DNS answers if they fail some
 criteria. The bailiwick algorithm [BAILIWICK] protects the Passive
 DNS Database from cache poisoning attacks [CACHEPOISONING]. Another
 limitation that clients querying the database need to be aware of is
 that each query simply gets a snapshot-answer of the time of
 querying. Clients MUST NOT rely on consistent answers. Nor must
 they assume that answers must be identical across multiple Passive
 DNS Servers.

3. Common Output Format

3.1. Overview

 The formatting of the answer follows the JSON [RFC4627] format. In
 fact, it is a subset of the full JSON language. Notable differences
 are the modified definition of whitespace ("ws"). The order of the
 fields is not significant for the same resource type.

 The intent of this output format is to be easily parsable by scripts.
 Each JSON object is expressed on a single line to be processed by the
 client line-by-line. Every implementation MUST support the JSON
 output format.

 Examples of JSON (Appendix A) output are in the appendix.

3.2. ABNF grammar

 Formal grammar as defined in ABNF [RFC2234]

answer = entries
entries = * (entry CR)
entry = "{" keyvallist "}"
keyvallist = [member *(value‑separator member)]
member = qm field qm name‑separator value
name‑separator = ws %x3A ws ; a ":" colon
value = value ; as defined in the JSON RFC
value‑separator = ws %x2C ws ; , comma. As defined in JSON
field = "rrname" | "rrtype" | "rdata" | "time_first" |
 "time_last" | "count" | "bailiwick" | "sensor_id" |
 "zone_time_first" | "zone_time_last" | "origin" | futureField
futureField = string
CR = %x0D
qm = %x22 ; " a quotation mark
ws = *(
 %x20 | ; Space
 %x09 ; Horizontal tab
)

 Note that value is defined in JSON [RFC4627] and has the exact same
 specification as there. The same goes for the definition of string.

3.3. Mandatory Fields

 Implementation MUST support all the mandatory fields.

 Uniqueness property: the tuple (rrname,rrtype,rdata) will always be
 unique within one answer per server. While rrname and rrtype are
 always individual JSON primitive types (strings, numbers, booleans or
 null), rdata MAY return multiple resource records or a single record.
 When multiple resource records are returned, rdata MUST be a JSON
 array. In the case of a single resource record is returned, rdata
 MUST be a JSON string.

3.3.1. rrname

 This field returns the name of the queried resource.

3.3.2. rrtype

 This field returns the resource record type as seen by the passive
 DNS. The key is rrtype and the value is in the interpreted record
 type represented as a JSON [RFC4627] string. If the value cannot be
 interpreted the decimal value is returned following the principle of
 transparency as described in RFC 3597 [RFC3597]. Then the decimal
 value is represented as a JSON [RFC4627] number. The resource record
 type can be any values as described by IANA in the DNS parameters
 document in the section 'Resource Record (RR) TYPEs'
 (http://www.iana.org/assignments/dns-parameters). Currently known
 and supported textual descriptions of rrtypes are: A, AAAA, CNAME,
 PTR, SOA, TXT, DNAME, NS, SRV, RP, NAPTR, HINFO, A6. A client MUST
 be able to understand these textual rrtype values represented as a
 JSON [RFC4627] string. In addition, a client MUST be able to handle
 a decimal value (as mentioned above) as answer represented as a JSON
 [RFC4627] number.

3.3.3. rdata

 This field returns the resource records of the queried resource.
 When multiple resource records are returned, rdata MUST be a JSON
 array. In the case of a single resource record is returned, rdata
 MUST be a JSON string. Each resource record is represented as a JSON
 [RFC4627] string. Each resource record MUST be escaped as defined in
 section 2.6 of RFC4627 [RFC4627]. Depending on the rrtype, this can
 be an IPv4 or IPv6 address, a domain name (as in the case of CNAMEs),
 an SPF record, etc. A client MUST be able to interpret any value
 which is legal as the right hand side in a DNS master file RFC 1035
 [RFC1035] and RFC 1034 [RFC1034]. If the rdata came from an unknown
 DNS resource records, the server must follow the transparency
 principle as described in RFC 3597 [RFC3597].

3.3.4. time_first

 This field returns the first time that the record / unique tuple
 (rrname, rrtype, rdata) has been seen by the passive DNS. The date
 is expressed in seconds (decimal) since 1st of January 1970 (Unix
 timestamp). The time zone MUST be UTC. This field is represented as
 a JSON [RFC4627] number.

3.3.5. time_last

 This field returns the last time that the unique tuple (rrname,
 rrtype, rdata) record has been seen by the passive DNS. The date is
 expressed in seconds (decimal) since 1st of January 1970 (Unix
 timestamp). The time zone MUST be UTC. This field is represented as
 a JSON [RFC4627] number.

3.4. Optional Fields

 Implementations SHOULD support one or more fields.

3.4.1. count

 Specifies how many authoritative DNS answers were received at the
 Passive DNS Server's collectors with exactly the given set of values
 as answers (i.e. same data in the answer set - compare with the
 uniqueness property in "Mandatory Fields"). The number of requests
 is expressed as a decimal value. This field is represented as a JSON
 [RFC4627] number.

3.4.2. bailiwick

 The bailiwick is the best estimate of the apex of the zone where this
 data is authoritative.

3.5. Additional Fields

 Implementations MAY support the following fields:

3.5.1. sensor_id

 This field returns the sensor information where the record was seen.
 It is represented as a JSON [RFC4627] string.

 If the data originate from sensors or probes which are part of a
 publicly-known gathering or measurement system (e.g. RIPE Atlas), a
 JSON [RFC4627] string SHOULD be prefixed.

3.5.2. zone_time_first

 This field returns the first time that the unique tuple (rrname,
 rrtype, rdata) record has been seen via master file import. The date
 is expressed in seconds (decimal) since 1st of January 1970 (Unix
 timestamp). The time zone MUST be UTC. This field is represented as
 a JSON [RFC4627] number.

3.5.3. zone_time_last

 This field returns the last time that the unique tuple (rrname,
 rrtype, rdata) record has been seen via master file import. The date
 is expressed in seconds (decimal) since 1st of January 1970 (Unix
 timestamp). The time zone MUST be UTC. This field is represented as
 a JSON [RFC4627] number.

3.5.4. origin

 Specifies the resource origin of the Passive DNS response. This
 field is represented as a Uniform Resource Identifier [RFC3986]
 (URI).

3.6. Additional Fields Registry

 In accordance with [RFC6648], designers of new passive DNS
 applications that would need additional fields can request and
 register new field name at https://github.com/adulau/pdns-qof/wiki/
 Additional-Fields.

4. Acknowledgements

 Thanks to the Passive DNS developers who contributed to the document.

5. IANA Considerations

 This memo includes no request to IANA.

6. Privacy Considerations

 Passive DNS Servers capture DNS answers from multiple collecting
 points ("sensors") which are located on the Internet-facing side of
 DNS recursors ("post-recursor passive DNS"). In this process, they
 intentionally omit the source IP, source port, destination IP and
 destination port from the captured packets. Since the data is
 captured "post-recursor", the timing information (who queries what)
 is lost, since the recursor will cache the results. Furthermore,
 since multiple sensors feed into a passive DNS server, the resulting
 data gets mixed together, reducing the likelihood that Passive DNS
 Servers are able to find out much about the actual person querying
 the DNS records nor who actually sent the query. In this sense,
 passive DNS Servers are similar to keeping an archive of all previous
 phone books - if public DNS records can be compared to phone numbers
 - as they often are. Nevertheless, the authors strongly encourage
 Passive DNS implementors to take special care of privacy issues.
 bortzmeyer-dnsop-dns-privacy is an excellent starting point for this.
 Finally, the overall recommendations in RFC6973 [RFC6973] should be
 taken into consideration when designing any application which uses
 Passive DNS data.

 In the scope of the General Data Protection Regulation (GDPR -
 Directive 95/46/EC), operators of Passive DNS Server needs to ensure
 the legal ground and lawfulness of its operation.

7. Security Considerations

 In some cases, Passive DNS output might contain confidential
 information and its access might be restricted. When a user is
 querying multiple Passive DNS and aggregating the data, the
 sensitivity of the data must be considered.

8. References

8.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, DOI 10.17487/RFC2234,
 November 1997, <https://www.rfc-editor.org/info/rfc2234>.

 [RFC3597]
 Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC3912]
 Daigle, L., "WHOIS Protocol Specification", RFC 3912,
 DOI 10.17487/RFC3912, September 2004,
 <https://www.rfc-editor.org/info/rfc3912>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4627]
 Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627,
 DOI 10.17487/RFC4627, July 2006,
 <https://www.rfc-editor.org/info/rfc4627>.

 [RFC5001]
 Austein, R., "DNS Name Server Identifier (NSID) Option",
 RFC 5001, DOI 10.17487/RFC5001, August 2007,
 <https://www.rfc-editor.org/info/rfc5001>.

 [RFC6648]
 Saint-Andre, P., Crocker, D., and M. Nottingham,
 "Deprecating the "X-" Prefix and Similar Constructs in
 Application Protocols", BCP 178, RFC 6648,
 DOI 10.17487/RFC6648, June 2012,
 <https://www.rfc-editor.org/info/rfc6648>.

 [RFC6973]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

8.2. References

 [BAILIWICK]

 "Passive DNS Hardening", 2010,
 <https://archive.farsightsecurity.com/Passive_DNS/
 passive_dns_hardening_handout.pdf>.

 [CACHEPOISONING]

 "Black ops 2008: It's the end of the cache as we know
 it.", 2008, <http://kurser.lobner.dk/dDist/DMK_BO2K8.pdf>.

 [DNSDB]
 "DNSDB API", 2013, <https://api.dnsdb.info/>.

 [DNSDBQ]
 "DNSDB API Client, C Version", 2018,
 <https://github.com/dnsdb/dnsdbq>.

 [PDNSCERTAT]

 "pDNS presentation at 4th Centr R&D workshop Frankfurt Jun
 5th 2012", 2012,
 <http://www.centr.org/system/files/agenda/attachment/
 rd4-papst-passive_dns.pdf>.

 [PDNSCIRCL]

 "CIRCL Passive DNS", 2012,
 <https://www.circl.lu/services/passive-dns/>.

 [PDNSCLIENT]

 "Queries 5 major Passive DNS databases: BFK, CERTEE,
 DNSParse, ISC, and VirusTotal.", 2013,
 <https://github.com/chrislee35/passivedns-client>.

 [PDNSCOF]
 "Passive DNS server interface using the common output
 format", 2013,
 <https://github.com/D4-project/analyzer-d4-passivedns/>.

 [REST]
 "Representational State Transfer (REST)", 2000,
 <http://www.ics.uci.edu/~fielding/pubs/dissertation/
 rest_arch_style.htm>.

 [WEIMERPDNS]

 "Passive DNS Replication", 2005,
 <http://www.enyo.de/fw/software/dnslogger/
 first2005-paper.pdf>.

8.3. Informative References

 [I-D.narten-iana-considerations-rfc2434bis]

 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", draft-narten-iana-
 considerations-rfc2434bis-09 (work in progress), March
 2008.

 [RFC3552]
 Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

Appendix A. Examples

 The JSON output are represented on multiple lines for readability but
 each JSON object should on a single line.

 If you query a passive DNS for the rrname www.ietf.org, the passive
 dns common output format can be:

{"count": 102, "time_first": 1298412391, "rrtype": "AAAA",
"rrname": "www.ietf.org", "rdata": "2001:1890:1112:1::20",
"time_last": 1302506851}
{"count": 59, "time_first": 1384865833, "rrtype": "A",
"rrname": "www.ietf.org", "rdata": "4.31.198.44",
"time_last": 1389022219}

 If you query a passive DNS for the rrname ietf.org, the passive dns
 common output format can be:

{"count": 109877, "time_first": 1298398002, "rrtype": "NS",
"rrname": "ietf.org", "rdata": "ns1.yyz1.afilias‑nst.info",
"time_last": 1389095375}
{"count": 4, "time_first": 1298495035, "rrtype": "A",
"rrname": "ietf.org", "rdata": "64.170.98.32",
"time_last": 1298495035}
{"count": 9, "time_first": 1317037550, "rrtype": "AAAA",
"rrname": "ietf.org", "rdata": "2001:1890:123a::1:1e",
"time_last": 1330209752}

 Please note that in the examples above, any backslashes "\" can be
 ignored and are an artefact of the tools which produced this
 document.

Authors' Addresses

Alexandre Dulaunoy
CIRCL
16, bd d'Avranches
Luxembourg L‑1160
Luxembourg

Phone: (+352) 247 88444
Email: alexandre.dulaunoy@circl.lu
URI: http://www.circl.lu/

L. Aaron Kaplan
CERT.at
Karlsplatz 1/2/9
Vienna A‑1010
Austria

Phone: +43 1 5056416 78
Email: kaplan@cert.at
URI: http://www.cert.at/

Paul Vixie
Farsight Security, Inc.
11400 La Honda Road
Woodside, California 94062
U.S.A.

Email: paul@redbarn.org
URI: https://www.farsightsecurity.com/

Henry Stern
Farsight Security, Inc.
11400 La Honda Road
Woodside, California 94062
U.S.A.

Phone: +1 650 542‑7836
Email: henry@stern.ca
URI: https://www.farsightsecurity.com/

draft-evenwu-opsawg-yang-composed-vpn-03 - YANG Data Model for Composed VPN Service Delivery

draft-evenwu-opsawg-yang-composed-vpn-03 - YANG Data Model for Composed VPN Serv

Index
Back 5
Prev
Next
Forward 5

OPSAWG Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 9, 2019

R. Even

B. Wu

Q. Wu

Huawei

Y. Cheng

China Unicom

March 8, 2019

YANG Data Model for Composed VPN Service Delivery

draft-evenwu-opsawg-yang-composed-vpn-03

Abstract

 This document defines a YANG data model that can be used by a network
 operator to configure a VPN service that spans multiple
 administrative domains and that is constructed from component VPNs in
 each of those administrative domains. The component VPNs may be
 L2VPN or L3VPN or a mixture of the two. This model is intended to be
 instantiated at the management system to deliver the end to end
 service (i.e., performing service provision and activation functions
 at different levels through a unified interface).

 The model is not a configuration model to be used directly on network
 elements. This model provides an abstracted common view of VPN
 service configuration components segmented at different layer and
 administrative domain. It is up to a management system to take this
 as an input and generate specific configurations models to configure
 the different network elements within each administrative domain to
 deliver the service. How configuration of network elements is done
 is out of scope of the document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology
	 1.1.1. Requirements Language

	 1.2. Tree diagram

	2. Definitions

	3. Service Model Usage

	4. The Composed VPN Service Model
	 4.1. VPN Service Types

	 4.2. Composed VPN Physical Network Topology

	5. Design of the Data Model
	 5.1. VPN Hierarchy

	 5.2. Access Point(AP)
	 5.2.1. AP peering with CE

	 5.2.2. AP peering for inter-domains connection

	6. Composed VPN YANG Module

	7. Segment VPN YANG Module

	8. Service Model Usage Example

	9. Interaction with other YANG models

	10. Security Considerations

	11. IANA Considerations

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. Acknowledges

	Authors' Addresses

1. Introduction

 In some cases, a VPN service needs to span different administrative
 domains. This will usually arise when there are internal
 administrative boundaries within a single Service Provider's (SP's)
 network. The boundaries may reflect geographic dispersal or
 functional decomposition, e.g., access, metro, backhaul, core, and
 data center.

 In particular, the different domains could deploy Layer 2 or Layer 3
 technologies or both, and could establish layer-dependent
 connectivity services. For example, some SPs offer a L2VPN service
 in the metro access network and extend it across the core network as
 an IP VPN to provide end-to-end BGP IP VPN services to their
 enterprise customers.

 Some SPs integrate Mobile Backhaul Network and Core networks to
 provide mobile broadband services. These require stitching multiple
 layer-dependent connectivity services at different administrative
 domain boundaries.

 This document defines a YANG data model that can be used by a network
 operator to construct an end-to-end service across multiple
 administrative domains. This service is delivered by provisioning
 VPN services utilising Layer 2 or Layer 3 technologies in each
 domain.

 This model is intended to be instantiated at the management system to
 deliver the overall service per [RFC8309]. It is not a configuration
 model to be used directly on network elements. This model provides
 an abstracted common view of VPN service configuration components
 segmented at different layers and administrative domains. It is up
 to a management system to take this as an input and generate specific
 configurations models to configure the different network elements
 within each administrative domain to deliver the service. How
 configuration of network elements is done is out of scope of the
 document. END

1.1. Terminology

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o client

 o server

 o configuration data

 o state data

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o augment

 o data model

 o data node

 The terminology for describing YANG data models is found in
 [RFC7950].

1.1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] and [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Tree diagram

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Definitions

 This document uses the following terms:

Service Provider (SP): The organization (usually a commercial
 undertaking) responsible for operating the network that offers VPN
 services to clients and customers.

Customer Edge (CE) Device: Equipment that is dedicated to a
 particular customer and is directly connected to one or more PE
 devices via attachment circuits. A CE is usually located at the
 customer premises, and is usually dedicated to a single VPN,
 although it may support multiple VPNs if each one has separate
 attachment circuits. The CE devices can be routers, bridges,
 switches, or hosts.

Provider Edge (PE) Device: Equipment managed by the SP that can
 support multiple VPNs for different customers, and is directly
 connected to one or more CE devices via attachment circuits. A PE
 is usually located at an SP point of presence (PoP) and is managed
 by the SP.

Administrative Domain: A collection of End Systems, Intermediate
 Systems, and subnetworks operated by a single organization or
 administrative authority. The components which make up the domain
 are assumed to interoperate with a significant degree of mutual

 trust among themselves, but interoperate with other Administrative
 Domains in a mutually suspicious manner [RFC1136].

 A group of hosts, routers, and networks operated and managed by a
 single organization. Routing within an Administrative Domain is
 based on a consistent technical plan. An Administrative Domain is
 viewed from the outside, for purposes of routing, as a cohesive
 entity, of which the internal structure is unimportant.
 Information passed by other Administrative Domains is trusted less
 than information from one's own Administrative Domain.

 Administrative Domains can be organized into a loose hierarchy
 that reflects the availability and authoritativeness of routing
 information. This hierarchy does not imply administrative
 containment, nor does it imply a strict tree topology.

Routing Domain: A set of End Systems and Intermediate Systems which
 operate according to the same routing procedures and which is
 wholly contained within a single Administrative Domain [RFC1136].

 A Routing Domain is a set of Intermediate Systems and End Systems
 bound by a common routing procedure; namely: they are using the
 same set of routing metrics, they use compatible metric
 measurement techniques, they use the same information distribution
 protocol, and they use the same path computation algorithm" An
 Administrative Domain may contain multiple Routing Domains. A
 Routing Domain may never span multiple Administrative Domains.

 An Administrative Domain may consist of only a single Routing
 Domain, in which case they are said to be Congruent. A congruent
 Administrative Domain and Routing Domain is analogous to an
 Internet Autonomous System.

Access point(AP): Describe an VPN's end point characteristics and
 its reference to a Termination Point (TP) of the Provider Edge
 (PE) Node; used as service access point for connectivity service
 segment in the end‑to‑end manner and per administrative domain.

Site: Represent a connection of a customer office to one or more VPN
 services and contain a list of network accesses associated with
 the site. Each network access can connect to different VPN
 service.

Segment VPN Describe generic information about a VPN in a single
 administrative domain, and specific information about APs that
 connect the Segment VPN to sites or to other Segment VPNs.

Composed VPN Describe generic end‑to‑end information about a VPN
 that spans multiple administrative domains, and specific customer‑
 facing information about APsconnecting to each site.

3. Service Model Usage

 +
 Customer Facing Interface | L2SM or L3SM
 +‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Service orchestration |
 +‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Composed VPN
 +‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Network Orchestrator |
 +‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
 |Config manager1| | Config manager2|
 +‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
 | AS1 L2VPN | | AS2 L3VPN |
+‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ | | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑+
| Site1 +‑‑‑‑+ PE11 +‑‑‑+ PE12 +‑‑‑‑‑‑+ PE21 +‑‑‑+ PE22 +‑‑‑‑+ Site2 |
+‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ | | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Service Model Usage

 In the above use case, the network orchestrator controls and manages
 the two distinct network domains, each controlled or managed by their
 own management system or domain controller. There are two typical
 ways to deploy the composed VPN model:

 One typical scenario would be to use the model as an independent
 model. The orchestration layer could use composed VPN model as an
 input, and translate it to segmented VPN model for each
 administrative domain. And the domain management system could
 further configure network elements based on configuration obtained
 from the segment VPN.

 The other scenario is to use customer facing model such as L3SM
 service model as an input for the service orchestration layer that
 will be responsible for translating the parameters of VPN and site in
 L3SM model to the corresponding parameters of the composed VPN model,
 then with extra provisioning parameters added ,the composed VPN model
 can be further broken down into per domain segmented VPN model and
 additional Access point configuration.

 The usage of this composed VPN model is not limited to this example;
 it can be used by any component of the management system but not
 directly by network elements.

4. The Composed VPN Service Model

 A composed VPN represents an end-to-end IP or Ethernet connectivity
 between the access points of PE where the AP can interconnect with
 the enterprise customer's network or other types of overlay network.
 The Composed VPN model provides a common understanding of how the
 corresponding composed VPN service is to be deployed in an end to end
 manner over the multi-domain infrastructure.

 This document presents the Composed VPN Service Delivery Model using
 the YANG data modeling language [RFC7950] as a formal language that
 is both human-readable and parsable by software for use with
 protocols such as NETCONF [RFC6241] and RESTCONF [RFC8040].

4.1. VPN Service Types

 From a technology perspective, a Composed VPN can be classified into
 three categories based on the domain specific VPN types including
 L2VPN and L3VPN, see Figure 2. And in each category, the
 interworking option may vary depending on the inter-domain
 technology, such as IP or MPLS forwarding. In some cases, the number
 of transit domain can be zero or multiple.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Composed | Domain 1 | Domain 2|..|Domain N| Interworking |
| VPN | (source)|(transit)| | (dest) | Option |
|‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|L3VPN | L2VPN | L2VPN |..|L3VPN | Option A |
|‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|L3VPN | L3VPN | L3VPN |..|L3VPN | OptionA/B/C |
|‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|L2VPN | L2VPN | L2VPN |..|L2VPN | OptionA/B/C |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: Composed VPN classification

4.2. Composed VPN Physical Network Topology

 Figure 3 describes a scenario where connectivity in the form of an
 L3VPN is provided across a Mobile Backhaul Network. The network has
 two ASes: connectivity across AS A is achieved with an L2VPN, and
 across AS B an L3VPN. The ASes are interconnected, and the composed
 VPN is achieved by interconnecting the L2VPN with the L3VPN.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑Composed VPN: L3VPN 1‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | (AP 1,2,7,8) |
 | |
 | |
 | |
 |+‑‑‑SegVPN:VLL1.1(AP 1,3)‑‑‑+ +‑‑‑‑‑‑ SegVPN:L3VPN1.3 ‑‑‑‑+
VLL1.2(AP 2,4)		(AP 5,6,7,8)			
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑		‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑			
/ AS A		Inter‑AS link		AS B	
					+‑‑‑‑‑‑+
+‑‑‑‑‑‑+					PE2 /‑\
/‑\| PE1	++++++++		++++++++		AP8
AP1		+ ASBRA /‑\ /‑\ ASBRB+	\‑/		
 \‑/| | + |AP3 _______|AP5 + +‑‑‑‑‑‑+
 +‑‑‑‑‑‑+ + \‑/ \‑/ + |
 | + /‑\ _______ /‑\ + |
 | + |AP4 |AP6 + |
 +‑‑‑‑‑‑+ +++++++ \‑/ \‑/+++++++ +‑‑‑‑‑‑+
 /‑\| | | | | /‑\
|AP2|PE4 | | | |PE3 |AP7|
 \‑/| | | | | \‑/
 +‑‑‑‑‑‑+ | | +‑‑‑‑‑‑+
 \ / \ /
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 3: Mobile Backhaul Network Scenario

 The Composed VPN is a service that provides connectivity between AP1,
 AP2, AP7 and AP8. As the APs of the VPN are spanning the two
 domains, the ASBR A and B and their associated links are required to
 be identified. Based on the decomposition, two Segment VPN could be
 constructed to provide per domain connections. Segment VPN 1.1 and
 Segment VPN 1.2 are connections between AP 1,2,3,4 in the domain A of
 access metro network, which are L2VPN. Segment VPN 1.3 is the
 connection between AP 5,6,7,8 in the core network, which is L3VPN.
 The ASBR A and B at the edge of the access metro network is
 performing the VPN stitching between Layer 2 VPN and Layer 3 VPN
 using the technology such as bridging or other interconnection
 technology.

 The operator can predefine several VPN provisioning policies based on
 the offered business. The policy description may include the naming,
 path selection, VPN concatenation rules,and resource pools, such as
 route target, route distinguisher. How VPN provision policies
 configuration of network elements is done is out of scope of the
 document.

5. Design of the Data Model

 The idea of the composed VPN model is to decompose an end-to-end
 L2VPN or L3VPN service across multiple administrative domains into
 point-to-point VPN segments or multi-point VPN segments in each
 administrative domain, and to stich these segments together by using
 different interworking options. Therefore, a complete composed VPN
 instance consists of:

 o One composed VPN with corresponding composed VPN set of parameter

 o Two or more APs, each with a corresponding set of AP parameters

 o One or more segment VPN with corresponding segment VPN set of
 parameter

 Similar to the L3SM [RFC8299] and L2SM [RFC8466] modelling structure,
 the composed VPN model consists of two main components, the VPN
 component and the AP component.

 The figure below describes the overall structure of the YANG module:

module: ietf‑composed‑vpn‑svc
 +‑‑rw composed‑vpns
 +‑‑rw composed‑vpn* [vpn‑id]
 +‑‑rw vpn‑id yang:uuid
 +‑‑rw vpn‑name? string
 +‑‑rw customer‑name? yang:uuid
 +‑‑rw topo? svpn:vpn‑topology
 +‑‑rw service‑type? svpn:service‑type
 +‑‑rw tunnel‑type? svpn:tunnel‑type
 +‑‑rw admin‑state? svpn:admin‑state
 +‑‑ro oper‑State? svpn:oper‑state
 +‑‑ro sync‑state? svpn:sync‑state
 +‑‑rw start‑time? yang:date‑and‑time
 +‑‑rw segment‑vpn* [vpn‑id]
 | +‑‑rw vpn‑id yang:uuid
 | +‑‑rw vpn‑name? string
 | +‑‑rw service‑type? service‑type
 | +‑‑rw topo? vpn‑topology
 | +‑‑rw tunnel‑type? tunnel‑type
 | +‑‑rw admin‑state? admin‑state
 | +‑‑ro oper‑state? oper‑state
 | +‑‑ro sync‑state? sync‑state

 | +‑‑rw access‑point* [tp‑id]
 | +‑‑rw tp‑id yang:uuid
 | +‑‑rw tp‑common‑attribute
 | | +‑‑rw tp‑id? yang:uuid
 | | +‑‑rw tp‑name? string
 | | +‑‑rw node‑id? yang:uuid
 | | +‑‑rw access‑point‑type? access‑point‑type
 | | +‑‑rw inter‑as‑option? enumeration
 | | +‑‑rw topology‑role? topology‑role
 | +‑‑rw peer‑remote‑node
 | | +‑‑rw remote‑id? yang:uuid
 | | +‑‑rw location? string
 | | +‑‑rw remote‑tp‑address? inet:ip‑address
 | | +‑‑rw remote‑node‑id? yang:uuid
 | | +‑‑rw remote‑tp‑id? yang:uuid
 | +‑‑rw tp‑connection‑specific‑attribute
 | | +‑‑rw connection* [connection‑class]
 | | | +‑‑rw connection‑class layer‑rate
 | | | +‑‑rw (connection‑type)?
 | | | +‑‑:(lr‑eth)
 | | | | +‑‑rw eth
 | | | | +‑‑rw access‑type? eth‑encap‑type
 | | | | +‑‑rw (accessVlanValue)?
 | | | | | +‑‑:(qinq)
 | | | | | | +‑‑rw qinq
 | | | | | | +‑‑rw cvlan* uint64
 | | | | | | +‑‑rw svlan? uint64
 | | | | | +‑‑:(dot1q)
 | | | | | +‑‑rw dot1q
 | | | | | +‑‑rw dot1q* uint64
 | | | | +‑‑rw vlan‑action? ethernet‑action
 | | | | +‑‑rw action? string
 | | | +‑‑:(lr‑ip)
 | | | | +‑‑rw ip
 | | | | +‑‑rw ip‑address? inet:ip‑address
 | | | | +‑‑rw mtu? uint64
 | | | +‑‑:(lr‑pw)
 | | | +‑‑rw pw
 | | | +‑‑rw control‑word? boolean
 | | | +‑‑rw vlan‑action? pwtagmode
 | | +‑‑rw security‑attribute
 | | | +‑‑rw security
 | | | +‑‑rw authentication
 | | | +‑‑rw encryption {encryption}?
 | | | +‑‑rw enabled? boolean
 | | | +‑‑rw layer? enumeration
 | | | +‑‑rw algorithm? string
 | | | +‑‑rw (key‑type)?

 | | | +‑‑:(psk)
 | | | +‑‑rw preshared‑key? string
 | | +‑‑rw qos‑attribute
 | | | +‑‑rw svc‑input‑bandwidth uint64
 | | | +‑‑rw svc‑output‑bandwidth uint64
 | | | +‑‑rw svc‑mtu uint16
 | | | +‑‑rw qos {qos}?
 | | | +‑‑rw qos‑classification‑policy
 | | | | +‑‑rw rule* [id]
 | | | | +‑‑rw id string
 | | | | +‑‑rw (match‑type)?
 | | | | | +‑‑:(match‑flow)
 | | | | | | +‑‑rw match‑flow
 | | | | | | +‑‑rw dscp? inet:dscp
 | | | | | | +‑‑rw exp? inet:dscp
 | | | | | | +‑‑rw dot1p? uint8
 | | | | | | +‑‑rw ipv4‑src‑prefix? inet:ipv4‑prefix
 | | | | | | +‑‑rw ipv6‑src‑prefix? inet:ipv6‑prefix
 | | | | | | +‑‑rw ipv4‑dst‑prefix? inet:ipv4‑prefix
 | | | | | | +‑‑rw ipv6‑dst‑prefix? inet:ipv6‑prefix
 | | | | | | +‑‑rw l4‑src‑port? inet:port‑number
 | | | | | | +‑‑rw peer‑remote‑node* string
 | | | | | | +‑‑rw l4‑src‑port‑range
 | | | | | | | +‑‑rw lower‑port? inet:port‑number
 | | | | | | | +‑‑rw upper‑port? inet:port‑number
 | | | | | | +‑‑rw l4‑dst‑port? inet:port‑number
 | | | | | | +‑‑rw l4‑dst‑port‑range
 | | | | | | | +‑‑rw lower‑port? inet:port‑number
 | | | | | | | +‑‑rw upper‑port? inet:port‑number
 | | | | | | +‑‑rw src‑mac? yang:mac‑address
 | | | | | | +‑‑rw dst‑mac? yang:mac‑address
 | | | | | | +‑‑rw protocol‑field? union
 | | | | | +‑‑:(match‑application)
 | | | | | +‑‑rw match‑application? identityref
 | | | | +‑‑rw target‑class‑id? string
 | | | +‑‑rw qos‑profile
 | | | +‑‑rw (qos‑profile)?
 | | | +‑‑:(standard)
 | | | | +‑‑rw profile? string
 | | | +‑‑:(custom)
 | | | +‑‑rw classes {qos‑custom}?
 | | | +‑‑rw class* [class‑id]
 | | | +‑‑rw class‑id string
 | | | +‑‑rw direction? identityref
 | | | +‑‑rw rate‑limit? decimal64
 | | | +‑‑rw latency
 | | | | +‑‑rw (flavor)?
 | | | | +‑‑:(lowest)

 | | | | | +‑‑rw use‑lowest‑latency? empty
 | | | | +‑‑:(boundary)
 | | | | +‑‑rw latency‑boundary? uint16
 | | | +‑‑rw jitter
 | | | | +‑‑rw (flavor)?
 | | | | +‑‑:(lowest)
 | | | | | +‑‑rw use‑lowest‑jitter? empty
 | | | | +‑‑:(boundary)
 | | | | +‑‑rw latency‑boundary? uint32
 | | | +‑‑rw bandwidth
 | | | +‑‑rw guaranteed‑bw‑percent decimal64
 | | | +‑‑rw end‑to‑end? empty
 | | +‑‑rw protection‑attribute
 | | +‑‑rw access‑priority? uint32
 | +‑‑rw routing‑protocol* [type]
 | +‑‑rw type protocol‑type
 | +‑‑rw (para)?
 | +‑‑:(static)
 | | +‑‑rw static* [index]
 | | +‑‑rw index uint32
 | | +‑‑rw dest‑cidr? string
 | | +‑‑rw egress‑tp? yang:uuid
 | | +‑‑rw route‑preference? string
 | | +‑‑rw next‑hop? inet:ip‑address
 | +‑‑:(bgp)
 | +‑‑rw bgp* [index]
 | +‑‑rw index uint32
 | +‑‑rw autonomous‑system uint32
 | +‑‑rw address‑family* address‑family
 | +‑‑rw max‑prefix? int32
 | +‑‑rw peer‑address? inet:ip‑address
 | +‑‑rw crypto‑algorithm identityref
 | +‑‑rw key‑string
 | +‑‑rw (key‑string‑style)?
 | +‑‑:(keystring)
 | | +‑‑rw keystring? string
 | +‑‑:(hexadecimal) {hex‑key‑string}?
 | +‑‑rw hexadecimal‑string? yang:hex‑string
 +‑‑rw access‑point* [tp‑id]
 +‑‑rw tp‑id yang:uuid
 +‑‑rw tp‑name? string
 +‑‑rw node‑id? yang:uuid
 +‑‑rw access‑point‑type? access‑point‑type
 +‑‑rw inter‑as‑option? enumeration
 +‑‑rw topology‑role? topology‑role
 +‑‑rw peer‑remote‑node
 | +‑‑rw remote‑id? yang:uuid
 | +‑‑rw location? string

 | +‑‑rw remote‑tp‑address? inet:ip‑address
 | +‑‑rw remote‑node‑id? yang:uuid
 | +‑‑rw remote‑tp‑id? yang:uuid
 +‑‑rw tp‑connection‑specific‑attribute
 | +‑‑rw connection* [connection‑class]
 | | +‑‑rw connection‑class layer‑rate
 | | +‑‑rw (connection‑type)?
 | | +‑‑:(lr‑eth)
 | | | +‑‑rw eth
 | | | +‑‑rw access‑type? eth‑encap‑type
 | | | +‑‑rw (accessVlanValue)?
 | | | | +‑‑:(qinq)
 | | | | | +‑‑rw qinq
 | | | | | +‑‑rw cvlan* uint64
 | | | | | +‑‑rw svlan? uint64
 | | | | +‑‑:(dot1q)
 | | | | +‑‑rw dot1q
 | | | | +‑‑rw dot1q* uint64
 | | | +‑‑rw vlan‑action? ethernet‑action
 | | | +‑‑rw action? string
 | | +‑‑:(lr‑ip)
 | | | +‑‑rw ip
 | | | +‑‑rw ip‑address? inet:ip‑address
 | | | +‑‑rw mtu? uint64
 | | +‑‑:(lr‑pw)
 | | +‑‑rw pw
 | | +‑‑rw control‑word? boolean
 | | +‑‑rw vlan‑action? pwtagmode
 | +‑‑rw security‑attribute
 | | +‑‑rw security
 | | +‑‑rw authentication
 | | +‑‑rw encryption {encryption}?
 | | +‑‑rw enabled? boolean
 | | +‑‑rw layer? enumeration
 | | +‑‑rw algorithm? string
 | | +‑‑rw (key‑type)?
 | | +‑‑:(psk)
 | | +‑‑rw preshared‑key? string
 | +‑‑rw qos‑attribute
 | | +‑‑rw svc‑input‑bandwidth uint64
 | | +‑‑rw svc‑output‑bandwidth uint64
 | | +‑‑rw svc‑mtu uint16
 | | +‑‑rw qos {qos}?
 | | +‑‑rw qos‑classification‑policy
 | | | +‑‑rw rule* [id]
 | | | +‑‑rw id string
 | | | +‑‑rw (match‑type)?
 | | | | +‑‑:(match‑flow)

 | | | | | +‑‑rw match‑flow
 | | | | | +‑‑rw dscp? inet:dscp
 | | | | | +‑‑rw exp? inet:dscp
 | | | | | +‑‑rw dot1p? uint8
 | | | | | +‑‑rw ipv4‑src‑prefix? inet:ipv4‑prefix
 | | | | | +‑‑rw ipv6‑src‑prefix? inet:ipv6‑prefix
 | | | | | +‑‑rw ipv4‑dst‑prefix? inet:ipv4‑prefix
 | | | | | +‑‑rw ipv6‑dst‑prefix? inet:ipv6‑prefix
 | | | | | +‑‑rw l4‑src‑port? inet:port‑number
 | | | | | +‑‑rw peer‑remote‑node* string
 | | | | | +‑‑rw l4‑src‑port‑range
 | | | | | | +‑‑rw lower‑port? inet:port‑number
 | | | | | | +‑‑rw upper‑port? inet:port‑number
 | | | | | +‑‑rw l4‑dst‑port? inet:port‑number
 | | | | | +‑‑rw l4‑dst‑port‑range
 | | | | | | +‑‑rw lower‑port? inet:port‑number
 | | | | | | +‑‑rw upper‑port? inet:port‑number
 | | | | | +‑‑rw src‑mac? yang:mac‑address
 | | | | | +‑‑rw dst‑mac? yang:mac‑address
 | | | | | +‑‑rw protocol‑field? union
 | | | | +‑‑:(match‑application)
 | | | | +‑‑rw match‑application? identityref
 | | | +‑‑rw target‑class‑id? string
 | | +‑‑rw qos‑profile
 | | +‑‑rw (qos‑profile)?
 | | +‑‑:(standard)
 | | | +‑‑rw profile? string
 | | +‑‑:(custom)
 | | +‑‑rw classes {qos‑custom}?
 | | +‑‑rw class* [class‑id]
 | | +‑‑rw class‑id string
 | | +‑‑rw direction? identityref
 | | +‑‑rw rate‑limit? decimal64
 | | +‑‑rw latency
 | | | +‑‑rw (flavor)?
 | | | +‑‑:(lowest)
 | | | | +‑‑rw use‑lowest‑latency? empty
 | | | +‑‑:(boundary)
 | | | +‑‑rw latency‑boundary? uint16
 | | +‑‑rw jitter
 | | | +‑‑rw (flavor)?
 | | | +‑‑:(lowest)
 | | | | +‑‑rw use‑lowest‑jitter? empty
 | | | +‑‑:(boundary)
 | | | +‑‑rw latency‑boundary? uint32
 | | +‑‑rw bandwidth
 | | +‑‑rw guaranteed‑bw‑percent decimal64
 | | +‑‑rw end‑to‑end? empty

 | +‑‑rw protection‑attribute
 | +‑‑rw access‑priority? uint32
 +‑‑rw routing‑protocol* [type]
 +‑‑rw type protocol‑type
 +‑‑rw (para)?
 +‑‑:(static)
 | +‑‑rw static* [index]
 | +‑‑rw index uint32
 | +‑‑rw dest‑cidr? string
 | +‑‑rw egress‑tp? yang:uuid
 | +‑‑rw route‑preference? string
 | +‑‑rw next‑hop? inet:ip‑address
 +‑‑:(bgp)
 +‑‑rw bgp* [index]
 +‑‑rw index uint32
 +‑‑rw autonomous‑system uint32
 +‑‑rw address‑family* address‑family
 +‑‑rw max‑prefix? int32
 +‑‑rw peer‑address? inet:ip‑address
 +‑‑rw crypto‑algorithm identityref
 +‑‑rw key‑string
 +‑‑rw (key‑string‑style)?
 +‑‑:(keystring)
 | +‑‑rw keystring? string
 +‑‑:(hexadecimal) {hex‑key‑string}?
 +‑‑rw hexadecimal‑string? yang:hex‑string

5.1. VPN Hierarchy

 The composed VPN and segment VPN contain the following common
 parameters:

 o vpn-id: Refers to an internal reference for this VPN service

 o vpn-service-type: Combination of L3VPN service type and L2VPN
 service type per [RFC8466] and [RFC8299], including VPWS,VPLS,EVPN
 and L3VPN.

 o vpn-topology: Combination of L3VPN topology and L2VPN topology,
 including hub-spoke, any-to-any and point-to-point.

 o Tunnel-type:MPLS,MPLS-TP,SR,SRv6

 Suppose a composed VPN is a L3VPN which could initially has sites
 connected to a single SP domain and may later add more sites to other
 domains in the SP network. Thus, a composed VPN could has one
 segment VPN at the beginning, and later has more segment VPNs.

5.2. Access Point(AP)

 As the site containers of the L3SM and L2SM represent the connection
 characteristics that the CE connects to the provider network from the
 perspective of the customer, AP represents the connection
 characteristics that the PE connects to VPN from the perspective of
 the provider. Therefore, there are two main aspects relates to the
 AP modelling:

 o The AP component under composed VPN container describes the intent
 parameters mapping from the L3SM and L2SM, and the AP component
 under the segment VPN container describes the configuration
 parameters of the specific domain derived from the decomposition
 of composed VPN model.

 o In a specific segment VPN, the AP component not only describes the
 CE-PE connection, but also defines inter-domain connection
 parameters between ASBR peer. The connection between PE and ASBR
 is related to configuration of network elements and not part of
 segment VPN model.

5.2.1. AP peering with CE

 The AP parameters contains the following group of parameters:

Basic AP parameters: topology role could be hub role, leaf role

Connection: has a knob to accommodate either Layer2 or Layer 3 data
 plane connection

Control plane peering: has a knob to accommodate either Layer 2
 protocol or Layer 3 routing protocol

QoS profile and QoS‑classification‑policy: has a knob to
 accommodate either Layer 2 QoS profile and qos‑classification‑
 policy or Layer 3 QoS profile and Qos‑classification‑policy, to
 describe both per AP bandwidth and per flow QoS.

Security Policy: has a knob to accommodate either Layer 2 QoS
 profile and qos‑classification‑policy or Layer 3 QoS profile and
 qos‑classification‑policy, to describe both per AP bandwidth and
 per flow QoS.

 Although both the composed VPN and segment VPN use the AP to describe
 the connection parameters of the CE and the PE, the AP parameter of
 the composed VPN may not be directly mapped to the AP parameters of
 the segment VPN. For example, a composed VPN is a L3VPN with one of
 its AP which specifies the IP connection parameters and per flow QOS
 requirement. During decomposition, depending on the capability of
 the accessed domain which the segment VPN resides, the AP of the
 segment VPN could only support Ethernet connection and per port
 bandwidth guarantee. Therefore, the AP could only configure with L2
 connection and per AP bandwidth setting.

5.2.2. AP peering for inter-domains connection

 The AP which describes the inter-domains connection could only exist
 in segment VPN. There are three options in connecting segment VPN
 across inter-domain link. With L3VPN, L2VPN or mixture, the option
 could be:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
|Interworking| AP type |AP CP |AP DP |
| Option | |remote peer | |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Option A | ASBR LTP | ASBR | Interface|
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Option B | ASBR | ASBR | LSP label|
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| Option C | PE,ASBR | remote PE | LSP label|
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 The AP parameters contains the following group of parameters:

Basic AP parameters: Inter‑AS interworking option could be Option
 A, Option B or Option C.

Connection: only specifies in Options A, Option B and C use
 dynamically allocated MPLS labels.

Control plane peering: BGP peering or static routing.

QoS profile and QoS‑classification‑policy: only applicable in
 Options A, Option B and C can only use MPLS EXP to differentiate
 the traffic.

Security policy: Options A use the similar mechanism like CE‑PE
 peering, Option B could use BGP authentication to secure control
 plane communication and enable mpls label security, and Option C
 depends on the trust between the inter‑domains.

5.2.2.1. Secure inter-domain connection

 This model is applied to a single SP. Although there are different
 domain separation, implicit trust exists between the ASs because they
 have the same operational control, for example from orchestrator's
 perspective.

 The model specifies different security parameters depending on the
 various Inter-AS options:

 o Option A uses interfaces or subinterfaces between autonomous
 system border routers (ASBRs) to keep the VPNs separate, so there
 is strict separation between VPNs.

 o Option B can be secured with configuration on the control plane
 and the data plane. On the control plane, the session can be
 secured by use of peer authentication of BGP with message digest 5
 (MD5) and TCP Authentication Option(TCP-AO), maximum route limits
 per peer and per VPN, dampening, and so on. In addition, prefix
 filters can be deployed to control which routes can be received
 from the other AS. On the data plane, labeled packets are
 exchanged. The label is derived from the MP-eBGP session;
 therefore, the ASBR announcing a VPN-IPv4 prefix controls and
 assigns the label for each prefix it announces. On the data
 plane, the incoming label is then checked to verify that this
 label on the data plane has really been assigned on the control
 plane. Therefore, it is impossible to introduce fake labels from
 one AS to another. The Authentication parameter could be set
 under the BGP peering configuration. An MPLS label security could
 be enabled under the connection node.

 o Option C can also be secured well on the control plane, but the
 data plane does not provide any mechanism to check and block the
 packets to be sent into the other AS. On the control plane, model
 C has two interfaces between autonomous systems: The ASBRs
 exchange IPv4 routes with labels via eBGP. The purpose is to
 propagate the PE loopback addresses to the other AS so that LSPs
 can be established end to end. The other interface is the RRs
 exchange VPN-IPv4 routes with labels via multihop MP-eBGP. The
 prefixes exchanged can be controlled through route maps, equally
 the route targets. On the data plane, the traffic exchanged
 between the ASBRs contains two labels. One is VPN label set by
 the ingress PE to identify the VPN. The other is PE label
 Specifies the LSP to the egress PE. The Authentication and
 routing policy parameter could be set under the BGP peering
 configuration.

 The security options supported in the model are limited but may be
 extended via augmentation.

5.2.2.2. Inter-domain QoS decomposition

 The APs connected between the domains are aggregation points, and
 traffic from different CEs of the combined VPN cross-domain will
 interact through these aggregation points. To provide consistent QoS
 configuration, when several domains are involved in the provisioning
 of a VPN, topology, domain functionality and other factors need to be
 considered.

 Option A can achieve most granular QoS implementation since IP
 traffic passes the inter-domain connection. Thus, Option A can set
 configuration with per sub-interface and IP DSCP. Option B and
 Option C only provide MPLS EXP differentiation. QoS mechanisms that
 are applied only to IP traffic cannot be carried.

 In some cases, there is need to re-mark packets at Layer 3 to
 indicate whether traffic is in agreement. Because MPLS labels
 include 3 bits that commonly are used for QoS marking, it is possible
 for "tunnel DiffServ" to preserve Layer 3 DiffServ markings through a
 service provider's MPLS VPN cloud while still performing re-marking
 (via MPLS EXP bits) within the cloud to indicate in- or out-of-
 agreement traffic.

6. Composed VPN YANG Module

<CODE BEGINS> file "ietf‑composed‑vpn‑svc.yang"
module ietf‑composed‑vpn‑svc {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑composed‑vpn‑svc" ;
 prefix composed‑vpn ;
 import ietf‑yang‑types {
 prefix yang;
 }
 import ietf‑segment‑vpn {
 prefix segment‑vpn;
 }
 organization "IETF OPSAWG Working Group";
 contact "
 WG Web: <https://datatracker.ietf.org/wg/opsawg>
 WG List: <mailto:netmod@ietf.org>

 Editor: Roni Even
 <mailto:roni.even@huawei.com>
 Bo Wu
 <mailto:lana.wubo@huawei.com>
 Qin Wu
 <mailto:bill.wu@huawei.com>
 Ying Cheng
 <mailto:chengying10@chinaunicom.cn>";

 description "ietf‑compsed‑vpn";
 revision 2018‑08‑21 {
 reference "draft‑evenwu‑opsawg‑yang‑composed‑vpn‑00";
 }

 grouping vpn‑basic {
 description "VPNBasicInfo Grouping.";
 leaf topo {
 type segment‑vpn:vpn‑topology;
 description "current support for full‑mesh and
 point_to_multipoint(hub‑spoke), others is reserved for
 future extensions." ;
 }
 leaf service‑type {
 type segment‑vpn:service‑type;
 description "current support for mpls l3vpn/vxlan/L2VPN/hybrid
 VPN overlay, others is reserved for future extensions." ;
 }
 leaf tunnel‑type {
 type segment‑vpn:tunnel‑type;
 description "mpls|vxlan overlay l3vpn|eth over sdh|nop";
 }
 leaf admin‑state {
 type segment‑vpn:admin‑state;
 description "administrative status." ;
 }
 leaf oper‑State {
 type segment‑vpn:oper‑state;
 config false;
 description "Operational status." ;
 }
 leaf sync‑state {
 type segment‑vpn:sync‑state;
 config false;
 description "Sync status." ;
 }
 leaf start‑time {
 type yang:date‑and‑time;
 description "Service lifecycle: request for service start
 time." ;
 }
 }

 container composed‑vpns{
 description "";
 list composed‑vpn {
 key "vpn‑id";
 description "List for composed VPNs.";

 uses composedvpn;
 }
 }

 grouping composedvpn {
 description "ComposedVPN Grouping.";
 leaf vpn‑id {
 type yang:uuid;
 description "Composed VPN identifier." ;
 }
 leaf vpn‑name {
 type string {length "0..200";}
 description "Composed VPN Name. Local administration meaning" ;
 }
 leaf customer‑name {
 type yang:uuid;
 description
 "Name of the customer that actually uses the VPN service.
 In the case that any intermediary (e.g., Tier‑2 provider
 or partner) sells the VPN service to their end user
 on behalf of the original service provider (e.g., Tier‑1
 provider), the original service provider may require the
 customer name to provide smooth activation/commissioning
 and operation for the service." ;
 }
 uses vpn‑basic;
 list segment‑vpn {
 key "vpn‑id";
 description "SegVpn list ";
 uses segment‑vpn:VPN;
 }
 list access‑point {
 key "tp‑id";
 description "TP list of the access links which associated
 with CE and PE";
 uses segment‑vpn:pe‑termination‑point;
 }
 }
}
<CODE ENDS>

7. Segment VPN YANG Module

<CODE BEGINS> file "ietf‑segment‑vpn.yang"
module ietf‑segment‑vpn {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑segment‑vpn";
 prefix segment‑vpn;

 import ietf‑yang‑types {
 prefix yang;
 }
 import ietf‑inet‑types {
 prefix inet;
 }
 import ietf‑key‑chain {
 prefix keychain;
 }
 import ietf‑netconf‑acm {
 prefix nacm;
 }

 organization
 "IETF OPSAWG Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg>
 WG List: <mailto:netmod@ietf.org>

 Editor:
 Roni Even
 <mailto:roni.even@huawei.com>
 Bo Wu
 <mailto:lana.wubo@huawei.com>
 Qin Wu
 <mailto:bill.wu@huawei.com>
 Cheng Ying
 <mailto:chengying10@chinaunicom.cn>";
 description
 "This YANG module defines a generic service configuration
 model for segment VPNs.";

 revision 2019‑01‑30 {
 reference
 "draft‑opsawg‑evenwu‑yang‑composed‑vpn‑02";
 }

 feature encryption {
 description
 "Enables support of encryption.";
 }

 feature qos {
 description
 "Enables support of classes of services.";
 }

 feature qos-custom {

 description
 "Enables support of the custom QoS profile.";
}

feature hex‑key‑string {
 description
 "Support hexadecimal key string.";
}

identity protocol‑type {
 description
 "Base identity for protocol field type.";
}

identity tcp {
 base protocol‑type;
 description
 "TCP protocol type.";
}

identity udp {
 base protocol‑type;
 description
 "UDP protocol type.";
}

identity icmp {
 base protocol‑type;
 description
 "ICMP protocol type.";
}

identity icmp6 {
 base protocol‑type;
 description
 "ICMPv6 protocol type.";
}

identity gre {
 base protocol‑type;
 description
 "GRE protocol type.";
}

identity ipip {
 base protocol‑type;
 description
 "IP‑in‑IP protocol type.";

 }

identity hop‑by‑hop {
 base protocol‑type;
 description
 "Hop‑by‑Hop IPv6 header type.";
}

identity routing {
 base protocol‑type;
 description
 "Routing IPv6 header type.";
}

identity esp {
 base protocol‑type;
 description
 "ESP header type.";
}

identity ah {
 base protocol‑type;
 description
 "AH header type.";
}

identity customer‑application {
 description
 "Base identity for customer application.";
}

identity web {
 base customer‑application;
 description
 "Identity for Web application (e.g., HTTP, HTTPS).";
}

identity mail {
 base customer‑application;
 description
 "Identity for mail application.";
}

identity file‑transfer {
 base customer‑application;
 description
 "Identity for file transfer application (e.g., FTP, SFTP).";
}

identity database {
 base customer‑application;
 description
 "Identity for database application.";
}

identity social {
 base customer‑application;
 description
 "Identity for social‑network application.";
}

identity games {
 base customer‑application;
 description
 "Identity for gaming application.";
}

identity p2p {
 base customer‑application;
 description
 "Identity for peer‑to‑peer application.";
}

identity network‑management {
 base customer‑application;
 description
 "Identity for management application
 (e.g., Telnet, syslog, SNMP).";
}

identity voice {
 base customer‑application;
 description
 "Identity for voice application.";
}

identity video {
 base customer‑application;
 description
 "Identity for video conference application.";
}

identity qos‑profile‑direction {
 description
 "Base identity for QoS profile direction.";
}

identity outbound {
 base qos‑profile‑direction;
 description
 "Identity for outbound direction.";
}

identity inbound {
 base qos‑profile‑direction;
 description
 "Identity for inbound direction.";
}

identity both {
 base qos‑profile‑direction;
 description
 "Identity for both inbound direction
 and outbound direction.";
}

typedef access‑point‑type {
 type enumeration {
 enum ce‑peering {
 description
 "indicates access type with connection to CE";
 }
 enum remote‑as‑peering {
 description
 "indicates access type with connection to ASBR with opion A,B,C ";
 }
 }
 description
 "The access‑point‑type could be peering with CE or ASBR
 depending on which network that a PE interconnects with.";
}

typedef bgp‑password‑type {
 type string;
 description
 "Authentication Type (None, Simple Password, Keyed MD5,
 Meticulous Keyed MD5, Keyed SHA1, Meticulous Keyed SHA1";
}

typedef topology‑role {
 type enumeration {
 enum hub {
 description
 "hub";
 }

 enum spoke {
 description
 "spoke";
 }
 enum other {
 description
 "other";
 }
 }
 description
 "Topo Node Role.";
}

typedef qos‑config‑type {
 type enumeration {
 enum template {
 description
 "standard.";
 }
 enum customer {
 description
 "custom.";
 }
 }
 description
 "Qos Config Type.";
}

typedef address‑family {
 type enumeration {
 enum ipv4 {
 description
 "IPv4 address family.";
 }
 enum ipv6 {
 description
 "IPv6 address family.";
 }
 }
 description
 "Defines a type for the address family.";
}

typedef tp‑type {
 type enumeration {
 enum phys‑tp {
 description
 "Physical termination point";

 }
 enum ctp {
 description
 "CTP";
 }
 enum trunk {
 description
 "TRUNK";
 }
 enum loopback {
 description
 "LoopBack";
 }
 enum tppool {
 description
 "TPPool";
 }
 }
 description
 "Tp Type.";
}

typedef layer‑rate {
 type enumeration {
 enum lr‑unknow {
 description
 "Layer Rate UNKNOW.";
 }
 enum lr‑ip {
 description
 "Layer Rate IP.";
 }
 enum lr‑eth {
 description
 "Layer Rate Ethernet.";
 }
 enum lr_vxlan {
 description
 "Layer Rate VXLAN.";
 }
 }
 description
 "Layer Rate.";
}

typedef admin‑state {
 type enumeration {
 enum active {

 description
 "Active status";
 }
 enum inactive {
 description
 "Inactive status";
 }
 enum partial {
 description
 "Partial status";
 }
 }
 description
 "Admin State.";
}

typedef oper‑state {
 type enumeration {
 enum up {
 description
 "Up status";
 }
 enum down {
 description
 "Down status";
 }
 enum degrade {
 description
 "Degrade status";
 }
 }
 description
 "Operational Status.";
}

typedef sync‑state {
 type enumeration {
 enum sync {
 description
 "Sync status";
 }
 enum out‑sync {
 description
 "Out sync status";
 }
 }
 description
 "Sync Status";

 }

typedef eth‑encap‑type {
 type enumeration {
 enum default {
 description
 "DEFAULT";
 }
 enum dot1q {
 description
 "DOT1Q";
 }
 enum qinq {
 description
 "QINQ";
 }
 enum untag {
 description
 "UNTAG";
 }
 }
 description
 "Ethernet Encap Type.";
}

typedef protocol‑type {
 type enumeration {
 enum static {
 description
 "Static Routing";
 }
 enum bgp {
 description
 "bgp";
 }
 enum rip {
 description
 "rip";
 }
 enum ospf {
 description
 "ospf";
 }
 enum isis {
 description
 "isis";
 }
 }

 description
 "Routing Protocol Type";
}

typedef tunnel‑type {
 type enumeration {
 enum MPLS {
 description
 "MPLS";
 }
 enum MPLS‑TP {
 description
 "MPLS‑TP";
 }
 enum MPLS‑SR {
 description
 "MPLS Segment Routing";
 }
 enum SRv6 {
 description
 "SRv6";
 }
 }
 description
 "VPN Tunnel Type.";
}

typedef service‑type {
 type enumeration {
 enum l3vpn {
 description
 "l3vpn";
 }
 enum l2vpn {
 description
 "l2vpn";
 }
 }
 description
 "VPN Service Type.";
}

typedef vpn‑topology {
 type enumeration {
 enum point‑to‑point {
 description
 "point to point";
 }

 enum any‑to‑any {
 description
 "any to any";
 }
 enum hub‑spoke {
 description
 "hub and spoke VPN topology.";
 }
 enum hub‑spoke‑disjoint {
 description
 "Hub and spoke VPN topology where
 Hubs cannot communicate with each other ";
 }
 }
 description
 "Topology.";
}

typedef ethernet‑action {
 type enumeration {
 enum nop {
 description
 "nop";
 }
 enum untag {
 description
 "UNTAG";
 }
 enum stacking {
 description
 "STACKING";
 }
 }
 description
 "Ethernet Action.";
}

typedef color‑type {
 type enumeration {
 enum green {
 description
 "green";
 }
 enum yellow {
 description
 "yellow";
 }
 enum red {

 description
 "red";
 }
 enum all {
 description
 "all";
 }
 }
 description
 "Color Type.";
}

typedef action‑type {
 type enumeration {
 enum nop {
 description
 "nop";
 }
 enum bandwidth {
 description
 "bandwidth";
 }
 enum pass {
 description
 "pass";
 }
 enum discard {
 description
 "discard";
 }
 enum remark {
 description
 "remark";
 }
 enum redirect {
 description
 "redirect";
 }
 enum recolor {
 description
 "recolor";
 }
 enum addRt {
 description
 "addRt";
 }
 }
 description

 "Action Type";
}

typedef pwtagmode {
 type enumeration {
 enum raw {
 description
 "RAW";
 }
 enum tagged {
 description
 "TAGGED";
 }
 }
 description
 "PWTagMode";
}

grouping QinQVlan {
 description
 "QinQVlan Grouping.";
 leaf‑list cvlan {
 type uint64;
 description
 "cvlan List.";
 }
 leaf svlan {
 type uint64;
 description
 "svlan.";
 }
}

grouping Dot1QVlan {
 description
 "Dot1QVlan Grouping.";
 leaf‑list dot1q {
 type uint64;
 description
 "dot1q Vlan List";
 }
}

grouping tp‑connection‑type {
 description
 "Tp Type Spec Grouping.";
 choice connection‑type {
 description

 "Spec Value";
 case lr‑eth {
 container eth {
 description
 "ethernetSpec";
 uses ethernet‑spec;
 }
 }
 case lr‑ip {
 container ip {
 description
 "ipSpec";
 uses ipspec;
 }
 }
 case lr‑pw {
 container pw {
 description
 "PwSpec";
 uses pwspec;
 }
 }
 }
}

grouping security‑authentication {
 container authentication {
 description
 "Authentication parameters.";
 }
 description
 "This grouping defines authentication parameters for a site.";
}

grouping security‑encryption {
 container encryption {
 if‑feature "encryption";
 leaf enabled {
 type boolean;
 default "false";
 description
 "If true, traffic encryption on the connection is required.";
 }
 leaf layer {
 when "../enabled = 'true'" {
 description
 " Require a value for layer when enabled is true.";
 }

 type enumeration {
 enum layer2 {
 description
 "Encryption will occur at Layer 2.";
 }
 enum layer3 {
 description
 "Encryption will occur at Layer 3.
 For example, IPsec may be used when
 a customer requests Layer 3 encryption.";
 }
 }
 description
 "Layer on which encryption is applied.";
 }
 leaf algorithm {
 type string;
 description
 "Encryption algorithm to be used.";
 }
 choice key‑type {
 default "psk";
 case psk {
 leaf preshared‑key {
 type string;
 description
 " Pre‑Shared Key(PSK) coming from customer.";
 }
 }
 description
 "Type of keys to be used.";
 }
 description
 "Encryption parameters.";
 }
 description
 "This grouping defines encryption parameters for a site.";
}

grouping security‑attribute {
 container security {
 uses security‑authentication;
 uses security‑encryption;
 description
 "Site‑specific security parameters.";
 }
 description
 "Grouping for security parameters.";

 }

 grouping flow‑definition {
 container match‑flow {
 leaf dscp {
 type inet:dscp;
 description
 "DSCP value.";
 }
 leaf exp {
 type inet:dscp;
 description
 "EXP value.";
 }
 leaf dot1p {
 type uint8 {
 range "0..7";
 }
 description
 "802.1p matching.";
 }
 leaf ipv4‑src‑prefix {
 type inet:ipv4‑prefix;
 description
 "Match on IPv4 src address.";
 }
 leaf ipv6‑src‑prefix {
 type inet:ipv6‑prefix;
 description
 "Match on IPv6 src address.";
 }
 leaf ipv4‑dst‑prefix {
 type inet:ipv4‑prefix;
 description
 "Match on IPv4 dst address.";
 }
 leaf ipv6‑dst‑prefix {
 type inet:ipv6‑prefix;
 description
 "Match on IPv6 dst address.";
 }
 leaf l4‑src‑port {
 type inet:port‑number;
 must 'current() < ../l4‑src‑port‑range/lower‑port or current() > ../l4‑src‑port‑range/upper‑port' {
 description
 "If l4‑src‑port and l4‑src‑port‑range/lower‑port and
 upper‑port are set at the same time, l4‑src‑port
 should not overlap with l4‑src‑port‑range.";

 }
 description
 "Match on Layer 4 src port.";
 }
 leaf‑list peer‑remote‑node {
 type string;
 description
 "Identify a peer remote node as traffic destination.";
 }
 container l4‑src‑port‑range {
 leaf lower‑port {
 type inet:port‑number;
 description
 "Lower boundary for port.";
 }
 leaf upper‑port {
 type inet:port‑number;
 must '. >= ../lower‑port' {
 description
 "Upper boundary for port. If it
 exists, the upper boundary must be
 higher than the lower boundary.";
 }
 description
 "Upper boundary for port.";
 }
 description
 "Match on Layer 4 src port range. When
 only the lower‑port is present, it represents
 a single port. When both the lower‑port and
 upper‑port are specified, it implies
 a range inclusive of both values.";
 }
 leaf l4‑dst‑port {
 type inet:port‑number;
 must 'current() < ../l4‑dst‑port‑range/lower‑port or current() > ../l4‑dst‑port‑range/upper‑port' {
 description
 "If l4‑dst‑port and l4‑dst‑port‑range/lower‑port
 and upper‑port are set at the same time,
 l4‑dst‑port should not overlap with
 l4‑src‑port‑range.";
 }
 description
 "Match on Layer 4 dst port.";
 }
 container l4‑dst‑port‑range {
 leaf lower‑port {
 type inet:port‑number;

 description
 "Lower boundary for port.";
 }
 leaf upper‑port {
 type inet:port‑number;
 must '. >= ../lower‑port' {
 description
 "Upper boundary must be
 higher than lower boundary.";
 }
 description
 "Upper boundary for port. If it exists,
 upper boundary must be higher than lower
 boundary.";
 }
 description
 "Match on Layer 4 dst port range. When only
 lower‑port is present, it represents a single
 port. When both lower‑port and upper‑port are
 specified, it implies a range inclusive of both
 values.";
 }
 leaf src‑mac {
 type yang:mac‑address;
 description
 "Source MAC.";
 }
 leaf dst‑mac {
 type yang:mac‑address;
 description
 "Destination MAC.";
 }
 leaf protocol‑field {
 type union {
 type uint8;
 type identityref {
 base protocol‑type;
 }
 }
 description
 "Match on IPv4 protocol or IPv6 Next Header field.";
 }
 description
 "Describes flow‑matching criteria.";
 }
 description
 "Flow definition based on criteria.";
 }

 grouping service‑qos‑profile {
 container qos {
 if‑feature "qos";
 container qos‑classification‑policy {
 list rule {
 key "id";
 ordered‑by user;
 leaf id {
 type string;
 description
 "A description identifying the
 qos‑classification‑policy rule.";
 }
 choice match‑type {
 default "match‑flow";
 case match‑flow {
 uses flow‑definition;
 }
 case match‑application {
 leaf match‑application {
 type identityref {
 base customer‑application;
 }
 description
 "Defines the application to match.";
 }
 }
 description
 "Choice for classification.";
 }
 leaf target‑class‑id {
 type string;
 description
 "Identification of the class of service.
 This identifier is internal to the administration.";
 }
 description
 "List of marking rules.";
 }
 description
 "Configuration of the traffic classification policy.";
 }
 container qos‑profile {
 choice qos‑profile {
 description
 "Choice for QoS profile.
 Can be standard profile or customized profile.";
 case standard {

 description
 "Standard QoS profile.";
 leaf profile {
 type string;
 description
 "QoS profile to be used.";
 }
 }
 case custom {
 description
 "Customized QoS profile.";
 container classes {
 if‑feature "qos‑custom";
 list class {
 key "class‑id";
 leaf class‑id {
 type string;
 description
 "Identification of the class of service.
 This identifier is internal to the
 administration.";
 }
 leaf direction {
 type identityref {
 base qos‑profile‑direction;
 }
 default "both";
 description
 "The direction to which the QoS profile
 is applied.";
 }
 leaf rate‑limit {
 type decimal64 {
 fraction‑digits 5;
 range "0..100";
 }
 units "percent";
 description
 "To be used if the class must be rate‑limited.
 Expressed as percentage of the service
 bandwidth.";
 }
 container latency {
 choice flavor {
 case lowest {
 leaf use‑lowest‑latency {
 type empty;
 description

 "The traffic class should use the path with the
 lowest latency.";
 }
 }
 case boundary {
 leaf latency‑boundary {
 type uint16;
 units "msec";
 default "400";
 description
 "The traffic class should use a path with a
 defined maximum latency.";
 }
 }
 description
 "Latency constraint on the traffic class.";
 }
 description
 "Latency constraint on the traffic class.";
 }
 container jitter {
 choice flavor {
 case lowest {
 leaf use‑lowest‑jitter {
 type empty;
 description
 "The traffic class should use the path with the
 lowest jitter.";
 }
 }
 case boundary {
 leaf latency‑boundary {
 type uint32;
 units "usec";
 default "40000";
 description
 "The traffic class should use a path with a
 defined maximum jitter.";
 }
 }
 description
 "Jitter constraint on the traffic class.";
 }
 description
 "Jitter constraint on the traffic class.";
 }
 container bandwidth {
 leaf guaranteed‑bw‑percent {

 type decimal64 {
 fraction‑digits 5;
 range "0..100";
 }
 units "percent";
 mandatory true;
 description
 "To be used to define the guaranteed bandwidth
 as a percentage of the available service bandwidth.";
 }
 leaf end‑to‑end {
 type empty;
 description
 "Used if the bandwidth reservation
 must be done on the MPLS network too.";
 }
 description
 "Bandwidth constraint on the traffic class.";
 }
 description
 "List of classes of services.";
 }
 description
 "Container for list of classes of services.";
 }
 }
 }
 description
 "QoS profile configuration.";
 }
 description
 "QoS configuration.";
 }
 description
 "This grouping defines QoS parameters for a segment network.";
 }

 grouping remote‑peer‑tp {
 description
 "remote‑peer‑tp Grouping.";
 leaf remote‑id {
 type yang:uuid;
 description
 "Router ID of the remote peer";
 }
 leaf location {
 type string {
 length "0..400";

 }
 description
 "CE device location ";
 }
 leaf remote‑tp‑address {
 type inet:ip‑address;
 description
 "TP IP address";
 }
 leaf remote‑node‑id {
 type yang:uuid;
 description
 "directly connected NE node ID, only valid in
 asbr ";
 }
 leaf remote‑tp‑id {
 type yang:uuid;
 description
 "Directly connected TP id, only valid in asbr";
 }
 }

 grouping tp‑connection‑specific‑attribute {
 description
 "tp connectin specific attributes";
 list connection {
 key "connection‑class";
 leaf connection‑class {
 type layer‑rate;
 description
 "connection class and has one to one
 relation with the corresponding layer.";
 }
 uses tp‑connection‑type;
 description
 "typeSpecList";
 }
 container security‑attribute {
 description
 "tp security Parameters.";
 uses security‑attribute;
 }
 container qos‑attribute {
 description
 "tp Qos Parameters.";
 uses segment‑service‑basic;
 uses service‑qos‑profile;
 }

 container protection‑attribute {
 description
 "tp protection parameters.";
 leaf access‑priority {
 type uint32;
 default "100";
 description
 "Defines the priority for the access.
 The higher the access‑priority value,
 the higher the preference of the
 access will be.";
 }
 }
 }

 grouping tp‑common‑attribute {
 description
 "tp‑common‑attribute Grouping.";
 leaf tp‑id {
 type yang:uuid;
 description
 "An identifier for termination point on a node.";
 }
 leaf tp‑name {
 type string {
 length "0..200";
 }
 description
 "The termination point Name on a node. It conforms to
 name rule defined in system. Example FE0/0/1, GE1/2/1.1,
 Eth‑Trunk1.1, etc";
 }
 leaf node‑id {
 type yang:uuid;
 description
 "Identifier for a node.";
 }
 leaf access‑point‑type {
 type access‑point‑type;
 description
 "access‑point‑type, for example:peering with CE ";
 }
 leaf inter‑as‑option {
 type enumeration {
 enum optiona {
 description
 "Inter‑AS Option A";
 }

 enum optionb {
 description
 "Inter‑AS Option B";
 }
 enum optionc {
 description
 "Inter‑AS Option C";
 }
 }
 description
 "Foo";
 }
 leaf topology‑role {
 type topology‑role;
 description
 "hub/spoke role, etc";
 }
 }

 grouping routing‑protcol {
 description
 "Routing Protocol Grouping.";
 leaf type {
 type protocol‑type;
 description
 "Protocol type";
 }
 choice para {
 description
 "para";
 case static {
 list static {
 key "index";
 uses static‑config;
 description
 "staticRouteItems";
 }
 }
 case bgp {
 list bgp {
 key "index";
 uses bgp‑config;
 description
 "bgpProtocols";
 }
 }
 }
 }

 grouping bgp‑config {
 description
 "BGP Protocol Grouping.";
 leaf index {
 type uint32;
 description
 "index of BGP protocol item";
 }
 leaf autonomous‑system {
 type uint32;
 mandatory true;
 description
 "Peer AS number in case the peer
 requests BGP routing.";
 }
 leaf‑list address‑family {
 type address‑family;
 min‑elements 1;
 description
 "If BGP is used on this site, this node
 contains configured value. This node
 contains at least one address family
 to be activated.";
 }
 leaf max‑prefix {
 type int32;
 description
 "maximum number limit of prefixes.";
 }
 leaf peer‑address {
 type inet:ip‑address;
 description
 "peerIp";
 }
 leaf crypto‑algorithm {
 type identityref {
 base keychain:crypto‑algorithm;
 }
 mandatory true;
 description
 "Cryptographic algorithm associated with key.";
 }
 container key‑string {
 description
 "The key string.";
 nacm:default‑deny‑all;
 choice key‑string‑style {
 description

 "Key string styles";
 case keystring {
 leaf keystring {
 type string;
 description
 "Key string in ASCII format.";
 }
 }
 case hexadecimal {
 if‑feature "hex‑key‑string";
 leaf hexadecimal‑string {
 type yang:hex‑string;
 description
 "Key in hexadecimal string format. When compared
 to ASCII, specification in hexadecimal affords
 greater key entropy with the same number of
 internal key‑string octets. Additionally, it
 discourages usage of well‑known words or
 numbers.";
 }
 }
 }
 }
 }

 grouping static‑config {
 description
 "StaticRouteItem Grouping.";
 leaf index {
 type uint32;
 description
 "static item index";
 }
 leaf dest‑cidr {
 type string;
 description
 "address prefix specifying the set of
 destination addresses for which the route may be
 used. ";
 }
 leaf egress‑tp {
 type yang:uuid;
 description
 "egress tp";
 }
 leaf route‑preference {
 type string;
 description

 "route priority. Ordinary, work route have
 higher priority.";
 }
 leaf next‑hop {
 type inet:ip‑address;
 description
 "Determines the outgoing interface and/or
 next‑hop address(es), or a special operation to be
 performed on a packet..";
 }
 }

 grouping ethernet‑spec {
 description
 "Ethernet Spec Grouping.";
 leaf access‑type {
 type eth‑encap‑type;
 description
 "access frame type";
 }
 choice accessVlanValue {
 description
 "accessVlanValue";
 case qinq {
 container qinq {
 description
 "qinqVlan";
 uses QinQVlan;
 }
 }
 case dot1q {
 container dot1q {
 description
 "dot1q";
 uses Dot1QVlan;
 }
 }
 }
 leaf vlan‑action {
 type ethernet‑action;
 description
 "specify the action when the vlan is matched";
 }
 leaf action {
 type string {
 length "0..100";
 }
 description

 "specify the action value.";
 }
 }

 grouping pwspec {
 description
 "PwSpec Grouping.";
 leaf control‑word {
 type boolean;
 default "false";
 description
 "control Word.";
 }
 leaf vlan‑action {
 type pwtagmode;
 description
 "pw Vlan Action.";
 }
 }

 grouping ipspec {
 description
 "IpSpec Grouping.";
 leaf ip‑address {
 type inet:ip‑address;
 description
 "master IP address";
 }
 leaf mtu {
 type uint64;
 description
 "mtu for ip layer,scope:46~9600";
 }
 }

 grouping VPN {
 description
 "VPN Grouping.";
 leaf vpn‑id {
 type yang:uuid;
 description
 "VPN Identifier.";
 }
 leaf vpn‑name {
 type string {
 length "0..200";
 }
 description

 "Human‑readable name for the VPN service.";
 }
 leaf service‑type {
 type service‑type;
 description
 "The service type combines service types from
 RFC8299 (L3SM) and RFC8466 (L2SM),for example L3VPN,VPWS etc.
 It could be augmentated for future extensions.";
 }
 leaf topo {
 type vpn‑topology;
 description
 "The VPN topology could be full‑mesh,point‑to‑point
 and hub‑spoke, others is reserved for future extensions.";
 }
 leaf tunnel‑type {
 type tunnel‑type;
 description
 "Tunnel Type:LDP：LDP Tunnel,RSVP‑TE：RSVP‑TE Tunnel
 SR‑TE：SR‑TE Tunnel,MPLS‑TP：MPLS‑TP Tunnel,VXLAN：VXLAN Tunnel
 ";
 }
 leaf admin‑state {
 type admin‑state;
 description
 "administrative status.";
 }
 leaf oper‑state {
 type oper‑state;
 config false;
 description
 "Operational status.";
 }
 leaf sync‑state {
 type sync‑state;
 config false;
 description
 "Sync status.";
 }
 list access‑point {
 key "tp‑id";
 description
 "TP list of the access links which associated
 with PE and CE or ASBR";
 uses pe‑termination‑point;
 }
 }

 grouping pe‑termination‑point {
 description
 "grouping for termination points.";
 uses tp‑common‑attribute;
 container peer‑remote‑node {
 description
 "TP Peering Information, including CE
 peering and ASBR peering.";
 uses remote‑peer‑tp;
 }
 container tp‑connection‑specific‑attribute {
 description
 "Termination point basic info.";
 uses tp‑connection‑specific‑attribute;
 }
 list routing‑protocol {
 key "type";
 description
 "route protocol spec.";
 uses routing‑protcol;
 }
 }

 grouping segment‑service‑basic {
 leaf svc‑input‑bandwidth {
 type uint64;
 units "bps";
 mandatory true;
 description
 "From the customer site's perspective, the service
 input bandwidth of the connection or download
 bandwidth from the SP to the site.";
 }
 leaf svc‑output‑bandwidth {
 type uint64;
 units "bps";
 mandatory true;
 description
 "From the customer site's perspective, the service
 output bandwidth of the connection or upload
 bandwidth from the site to the SP.";
 }
 leaf svc‑mtu {
 type uint16;
 units "bytes";
 mandatory true;
 description
 "MTU at service level. If the service is IP,

 it refers to the IP MTU. If CsC is enabled,
 the requested 'svc‑mtu' leaf will refer to the
 MPLS MTU and not to the IP MTU.";
 }
 description
 "Defines basic service parameters for a site.";
 }

 container segment‑vpns {
 list segment‑vpn {
 key "index";
 description
 "Segment Vpn list.";
 leaf index {
 type uint32;
 description
 "index of segment VPN in a composed VPN.";
 }
 uses VPN;
 }
 description
 "Container for Segment VPN.";
 }
}
<CODE ENDS>

8. Service Model Usage Example

 This section provides an example of how a management system can use
 this model to configure an IP VPN service on network elements.

+‑‑‑+
| ‑‑‑‑‑‑‑ PE2‑‑‑‑‑ Spoke_Site1 |
| | |
| Hub_Site1‑‑‑‑‑PE1‑‑‑‑‑‑ASBR1‑‑‑‑‑‑‑‑ ASBR2 |
| | |
| ‑‑‑‑‑‑‑‑PE3 ‑‑‑‑ Spoke_Site2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 |<SegVPN1>
 | Inter‑AS link|<SegVPN2>
 | | | |
 | | | |
 | Intra‑AS | Inter‑AS |Intra‑AS|
 | |
 |<‑‑‑‑‑‑‑‑Composed VPN ‑‑‑‑‑‑‑‑‑‑‑>|

 Composed VPN Service Model Usage Example

 In this example, we want to achieve the provisioning of an end to end
 VPN service for three sites using a Hub-and-Spoke VPN service
 topology. The end to end VPN service is stitched by two segmented
 VPN.

 The following XML snippet describes the overall simplified service
 configuration of this composed VPN.

<?xml version="1.0"?>
<composed‑vpns xmlns="urn:ietf:params:xml:ns:yang:ietf‑composed‑vpn‑svc">
 <composed‑vpn>
 <vpn‑id>12456487</vpn‑id>
 <topo>hub‑spoke</topo>
 <service‑type>hybrid</service‑type>
 <segment‑vpn>
 <index>1</index>
 <vpn‑id>111<vpn‑id>
 <topo>hub‑spoke</topo>
 <service‑type>l2vpn</service‑type>
 <access‑point>
 <tp‑id>ap1‑tp1</tp‑id>
 <node‑id>PE1</node‑id>
 <topology‑role>hub</topology‑role>
 <peer‑remote‑node>
 <remote‑node‑id>Hub_Site1</remote‑node‑id>
 </peer‑remote‑node>
 <tp‑connection‑specific‑attribute>
 <qos‑attribute>
 <svc‑mtu>1514</svc‑mtu>
 <svc‑input‑bandwidth>10000000</svc‑input‑bandwidth>
 <svc‑output‑bandwidth>10000000</svc‑output‑bandwidth>
 </qos‑attribute>
 </tp‑connection‑specific‑attribute>
 <routing‑protocol>
 <type>bgp</type>
 <bgp>
 <as‑no>AS1</as‑no>
 </bgp>
 </routing‑protocol>
 </access‑point>
 <access‑point>
 <tp‑id>ap1‑tp2</tp‑id>
 <node‑id>ASBR1</node‑id>
 <topo‑role>hub</topo‑role>
 <peer‑remote‑node>
 <remote‑node‑id>ASBR2</remote‑node‑id>
 </peer‑remote‑node>
 <inter‑AS‑option>Option A</inter‑AS‑option>

 <tp‑connection‑specific‑attribute>
 <qos‑attribute>
 <svc‑mtu>1514</svc‑mtu>
 <svc‑input‑bandwidth>10000000</svc‑input‑bandwidth>
 <svc‑output‑bandwidth>10000000</svc‑output‑bandwidth>
 </qos‑attribute>
 </tp‑connection‑specific‑attribute>
 <routing‑protocol>
 <type>bgp</type>
 <bgp>
 <as‑no>AS1</as‑no>
 </bgp>
 </routing‑protocol>
 </access‑point>
 </segment‑vpn>
 <segment‑vpn>
 <index>2</index>
 <vpn‑id>222<vpn‑id>
 <topo>hub‑spoke</topo>
 <service‑type>l3vpn</service‑type>
 <access‑point>
 <tp‑id>ap2‑tp2</tp‑id>
 <node‑id>PE2</node‑id>
 <topo‑role>spoke</topo‑role>
 <peer‑remote‑node>
 <remote‑node‑id>Spoke_Site1</remote‑node‑id>
 </peer‑remote‑node>
 <qos‑attribute>
 <svc‑mtu>1514</svc‑mtu>
 <svc‑input‑bandwidth>10000000</svc‑input‑bandwidth>
 <svc‑output‑bandwidth>10000000</svc‑output‑bandwidth>
 </qos‑attribute>
 <routing‑protocol>
 <type>bgp</type>
 <bgp>
 <as‑no>ASXXX</as‑no>
 </bgp>
 </routing‑protocol>
 </access‑point>
 <access‑point>
 <tp‑id>ap2‑tp1</tp‑id>
 <node‑id>PE3</node‑id>
 <topo‑role>spoke</topo‑role>
 <peer‑remote‑node>
 <remote‑node‑id>Spoke_Site2</remote‑node‑id>
 </peer‑remote‑node>
 <qos‑attribute>
 <svc‑mtu>1514</svc‑mtu>

 <svc‑input‑bandwidth>10000000</svc‑input‑bandwidth>
 <svc‑output‑bandwidth>10000000</svc‑output‑bandwidth>
 </qos‑attribute>
 <routing‑protocol>
 <type>bgp</type>
 <bgp>
 <as‑no>ASXXX</as‑no>
 </bgp>
 <routing‑protocol>
 </access‑point>
 <access‑point>
 <tp‑id>ap2‑tp3</tp‑id>
 <node‑id>ASBR2</node‑id>
 <topo‑role>hub</topo‑role>
 <peer‑remote‑node>
 <remote‑node‑id>ASBR1</remote‑node‑id>
 </peer‑remote‑node>
 <qos‑attribute>
 <svc‑mtu>1514</svc‑mtu>
 <svc‑input‑bandwidth>10000000</svc‑input‑bandwidth>
 <svc‑output‑bandwidth>10000000</svc‑output‑bandwidth>
 </qos‑attribute>
 <routing‑protocol>
 <type>bgp</type>
 <bgp>
 <as‑no>interAS‑1</as‑no>
 </bgp>
 <routing‑protocol>
 </access‑point>
 </segment‑vpn>
 </composed‑vpn>
</composed‑vpns>

9. Interaction with other YANG models

 As expressed in Section 4, this composed VPN service model is
 intended to be instantiated in a management system and not directly
 on network elements.

 The management system's role will be to configure the network
 elements. The management system may be modular and distinguish the
 component instantiating the service model (let's call it "service
 component") from the component responsible for network element
 configuration (let's call it "configuration component"). The service
 is built from a combination of network elements and protocols
 configuration which also include various aspects of the underlying
 network infrastructure, including functions/devices and their
 subsystems, and relevant protocols operating at the link and network
 layers across multiple device. Therefore there will be a strong
 relationship between the abstracted view provided by this service
 model and the detailed configuration view that will be provided by
 specific configuration models for network elements.

 The service component will take input from customer service model
 such as L3SM service model [RFC8299] or composed VPN service model
 and translate it into segment VPN in each domain and then further
 break down the segment VPN into detailed configuration view that will
 be provided by specific configuration models for network elements.

10. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 o /composed-vpns/composed-vpn

 The entries in the list above include the whole composed vpn
 service configurations which the customer subscribes, and
 indirectly create or modify the PE,CE and ASBR device
 configurations. Unexpected changes to these entries could lead to
 service disruption and/or network misbehavior.

 o /composed-vpns/composed-vpn/segment-vpn

 The entries in the list above include the access points
 configurations. As above, unexpected changes to these entries
 could lead to service disruption and/or network misbehavior.

 o /composed-vpns/composed-vpn/access-point

 The entries in the list above include the access points
 configurations. As above, unexpected changes to these entries
 could lead to service disruption and/or network misbehavior.

11. IANA Considerations

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registrations are
 requested to be made:

‑‑‑
 URI: urn:ietf:params:xml:ns:yang:ietf‑composed‑vpn‑svc
 Registrant Contact: The IESG
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf‑segment‑vpn
 Registrant Contact: The IESG
 XML: N/A; the requested URI is an XML namespace.
‑‑‑

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020].

‑‑‑
 Name: ietf‑composite‑vpn‑svc
 Namespace: urn:ietf:params:xml:ns:yang:ietf‑composed‑vpn‑svc
 Prefix: composed‑svc
 Reference: RFC xxxx
 Name: ietf‑segmented‑vpn
 Namespace: urn:ietf:params:xml:ns:yang:ietf‑segment‑vpn
 Prefix: segment‑vpn
 Reference: RFC xxxx
‑‑‑

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8299]
 Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

 [RFC8466]
 Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
 Data Model for Layer 2 Virtual Private Network (L2VPN)
 Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
 2018, <https://www.rfc-editor.org/info/rfc8466>.

12.2. Informative References

 [RFC1136]
 Hares, S. and D. Katz, "Administrative Domains and Routing
 Domains: A model for routing in the Internet", RFC 1136,
 DOI 10.17487/RFC1136, December 1989,
 <https://www.rfc-editor.org/info/rfc1136>.

 [RFC8309]
 Wu, Q., Liu, W., and A. Farrel, "Service Models
 Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
 <https://www.rfc-editor.org/info/rfc8309>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Acknowledges

 Geng Liang,Congfeng Xie, Chen Rui, LiYa Zhang,Hui Deng contributed to
 an earlier version of [I-D.chen-opsawg-composite-vpn-dm]. We would
 like to thank the authors of that document on the operators' view for
 the PE-based VPN service configuration for material that assisted in
 thinking about this document.

Authors' Addresses

Roni Even
Huawei Technologies,Co.,Ltd
Tel Aviv
Israel

 Email: roni.even@huawei.com

Bo Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: lana.wubo@huawei.com

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: bill.wu@huawei.com

YingCheng
China Unicom
No.21 Financial Street, XiCheng District
Beijing 100033
China

 Email: chengying10@chinaunicom.cn

draft-friel-anima-brski-over-802dot11-00 - BRSKI over IEEE 802.11

draft-friel-anima-brski-over-802dot11-00 - BRSKI over IEEE 802.11

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: April 21, 2019

O. Friel

E. Lear

J. Henry

Cisco

M. Richardson

Sandelman Software Works

October 18, 2018

BRSKI over IEEE 802.11

draft-friel-anima-brski-over-802dot11-00

Abstract

 This document outlines the challenges associated with implementing
 Bootstrapping Remote Secure Key Infrastructures over IEEE 802.11 and
 IEEE 802.1x networks. Multiple options are presented for discovering
 and authenticating to the correct IEEE 802.11 SSID. This draft is a
 discussion document and no final recommendations are made on the
 recommended approaches to take. However, the advantages and
 downsides of each possible method are evaluated.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Discovery and Authentication Design Considerations
	 2.1. Incorrect SSID Discovery
	 2.1.1. Leveraging BRSKI MASA

	 2.1.2. Relying on the Network Administrator

	 2.1.3. Requiring the Network to Demonstrate Knowledge of Device

	 2.2. IEEE 802.11 Authentication Mechanisms
	 2.2.1. Authentication Signaling Considerations

	 2.2.2. IP Address Assignment Considerations

	 2.3. Client and Server Implementations

	3. Potential SSID Discovery and Validation Mechanisms
	 3.1. Well-known BRSKI SSID

	 3.2. IEEE 802.11aq

	 3.3. IEEE 802.11 Vendor Specific Information Element

	 3.4. Reusing Existing IEEE 802.11u Elements

	 3.5. IEEE 802.11u Interworking Information - Internet

	 3.6. Define New IEEE 802.11u Extensions

	 3.7. Wi-Fi Protected Setup

	 3.8. Define and Advertise a BRSKI-specific AKM in RSNE

	 3.9. Wi-Fi Device Provisioning Profile

	4. Potential Mutual Validation Options
	 4.1. MAC Address Validation method

	 4.2. Vendor Token Validation method

	 4.3. Device Token Validation method

	 4.4. Infrastructure Response Filtering

	 4.5. Infrastructure Validation Method

	5. Potential Authentication Options
	 5.1. Unauthenticated and Unencrypted or OWE Pre-BRSKI and EAP- TLS Post-BRSKI

	 5.2. DPP Pre-BRSKI and EAP-TLS post-BRSKI

	 5.3. PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI

	 5.4. MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI

	 5.5. EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI

	 5.6. New DPP BRSKI mechanism

	 5.7. New TEAP BRSKI mechanism

	 5.8. New IEEE 802.11 Authentication Algorithm for BRSKI and EAP-TLS Post-BRSKI

	 5.9. New IEEE 802.1X EAPOL-Announcements to encapsulate BRSKI and EAP-TLS Post-BRSKI

	6. IANA Considerations

	7. Security Considerations
	 7.1. Client side exposure

	 7.2. Infrastructure side exposure

	8. Informative References

	Appendix A. IEEE 802.11 Primer
	 A.1. IEEE 802.11i

	 A.2. IEEE 802.11u

	Authors' Addresses

1. Introduction

 Bootstrapping Remote Secure Key Infrastructures (BRSKI)
 [I-D.ietf-anima-bootstrapping-keyinfra] describes how a device can
 bootstrap against a local network using an Initial Device Identity
 X.509 [IEEE802.1AR] IDevID certificate that is pre-installed by the
 vendor on the device in order to obtain an [IEEE802.1AR] LDevID. The
 BRSKI flow assumes the device can obtain an IP address, and thus
 assumes the device has already connected to the local network.
 Further, the draft states that BRSKI use of IDevIDs:

 allows for alignment with [IEEE802.1X] network access control
 methods, its use here is for Pledge authentication rather than
 network access control. Integrating this protocol with network
 access control, perhaps as an Extensible Authentication Protocol
 (EAP) method (see [RFC3748], is out-of-scope.

 The draft does not describe any mechanisms for how an [IEEE802.11]
 enabled device would discover and select a suitable [IEEE802.11] SSID
 when multiple SSIDs are available. A typical deployment scenario
 could involve a device begin deployed in a location were twenty or
 more SSIDs are being broadcast, for example, in a multi-tenanted
 building or campus where multiple independent organizations operate
 [IEEE802.11] networks.

 In order to reduce the administrative overhead of installing new
 devices, it is desirable that the device will automatically discover
 and connect to the correct SSID without the installer having to
 manually provision any network information or credentials on the
 device. It is also desirable that the device does not discover,
 connect to, and automatically enroll with the wrong network as this
 could result in a device that is owned by one organization connecting
 to the network of a different organization in a multi-tenanted
 building or campus.

 Additionally, as noted above, the BRSKI draft does not describe how
 BRSKI could potentially align with [IEEE802.1X] authentication
 mechanisms.

 This document outlines multiple different potential mechanisms that
 would enable a bootstrapping device to choose between different
 available [IEEE802.11] SSIDs in order to associate and execute the
 BRSKI flow. This document also outlines several options for how
 [IEEE802.11] networks enforcing [IEEE802.1X] authentication could
 enable the BRSKI flow, and describes the required device behaviour.

 This document presents both [IEEE802.11] mechanisms and Wi-Fi
 Alliance (WFA) mechanisms. An important consideration when
 determining what the most appropriate solution to device onboarding
 should be is what bodies need to be involved in standardisation
 efforts: IETF, IEEE and/or WFA.

1.1. Terminology

 IEEE 802.11u: an amendment to the IEEE 802.11-2007 standard to add
 features that improve interworking with external networks.

 ANI: Autonomic Networking Infrastructure

 ANQP: Access Network Query Protocol

 AP: IEEE 802.11 Access Point

 CA: Certificate Authority

 EAP: Extensible Authentication Protocol

 EST: Enrollment over Secure Transport

 HotSpot 2.0 / HS2.0: An element of the Wi-Fi Alliance Passpoint
 certificatoin program that enables cell phones to automatically
 discover capabilities and enroll into IEEE 802.11 guest networks
 (hotspots).

 IE: Information Element

 IDevID: Initial Device Identifier

 LDevID: Locally Significant Device Identifier

 OI: Organization Identifier

 MASA: BRSKI Manufacturer Authorized Signing Authority service

 SSID: IEEE 802.11 Service Set Identifier

 STA: IEEE 802.11 station

 WFA: Wi-Fi Alliance

 WLC: Wireless LAN Controller

 WPA/WPA2: Wi-Fi Protected Access / Wi-Fi Protected Access version 2

 WPS: Wi-Fi Protected Setup

2. Discovery and Authentication Design Considerations

2.1. Incorrect SSID Discovery

 As will be seen in the following sections, there are several
 discovery scenarios where the device can choose an incorrect SSID and
 attempt to join the wrong network. For example, the device is being
 deployed by one organization in a multi-tenant building, and chooses
 to connect to the SSID of a neighbor organization. The device is
 dependent upon either detecting that the other networks are unwanted
 candidates, or upon the incorrect networks rejecting its BRSKI
 enrollment attempt. It is possible that the device could end up
 enrolled with the wrong network. It is also possible that the device
 will waste time before identifying and joining the correct network.

2.1.1. Leveraging BRSKI MASA

2.1.1.1. Prevention

 BRSKI allows optional sales channel integration which could be used
 to ensure only the "correct" network can claim the device. In
 theory, this could be achieved if the BRSKI MASA service has explicit
 knowledge of the network where every single device will be deployed.
 After connecting to the incorrect SSID and possibly authenticating to
 the network, the device would present network TLS information in its
 voucher-request, and the MASA server would have to reject the request
 based on this network TLS information and not issue a voucher. The
 device could then reject that SSID and attempt to bootstrap against
 the next available SSID.

 This could possibly be acheieved via sales channel integration, where
 devices are tracked through the supply chain all the way from
 manufacturer factory to target deployment network operator. In
 practice, this approach may be challenging to deploy as it may be
 extremely difficult to implement this tightly coupled sales channel
 integration and ensure that the MASA actually has accurate deployment
 network information.

 An alternative to sales channel integration is to provide the device
 owners with a, possibly authenticated, interface or API to the MASA
 service whereby they would have to explicitly claim devices prior to
 the MASA issuing vouchers for that device. There are similar
 problems with this approach, as there could be a complex sales and
 channel partner chain between the MASA service operator and the
 device operator who owns and deploys the device. This could make
 exposure of APIs by the MASA operator to the device operator
 untenable.

2.1.1.2. Detection

 If a device connects to the wrong network, the correct network
 operator could detect this incorrect association after the fact by
 integration with MASA and checking audit logs for the device. The
 MASA audit logs should indicate all networks that have been issued
 vouchers for a specific device. This mechanism also relies on the
 correct network operator having a list, bill or materials, or similar
 of all device identities that should be connecting to their network
 in order to check MASA logs for devices that have not come online,
 but are known to be physically deployed.

2.1.2. Relying on the Network Administrator

 An obvious mechanism is to rely on network administrators to be good
 citizens and explicitly reject devices that attempt to bootstrap
 against the wrong network. This is not guaranteed to work for two
 main reasons:

 o Some network administrators will configure an open policy on their
 network. Any device that attempts to connect to the network will
 be automatically granted access.

 o Some network administrators will be bad actors and will accept the
 onboarding of devices that they do not own but that are in range
 of their networks.

2.1.3. Requiring the Network to Demonstrate Knowledge of Device

 Technologies such as the WFA Easy Connect (also known as Device
 Provisioning Profile [DPP]) require that a network provisoining
 entity demonstrates knowledge of device information such as the
 device's bootstrapping public key prior to the device attempting to
 connect to the network. This gives a higher level of confidence to
 the device that it is connecting to the correct SSID. These
 mechanisms could leverage a key that is printed on the device label,
 or included in a sales channel bill of materials. The security of
 these types of key distribution mechanisms relies on keeping the
 device label or bill of materials content from being compromised
 prior to device installation.

 [IEEE802.11] also includes several advertisement mechanisms that
 could allow the device to exchange information with the wireless
 infrastructure. Examples are provided throughout this text. Such
 exchange can be added to, or integrated with, the standard
 [IEEE802.11] discovery mechanisms to allow the device to discard the
 networks that would not provide information showing that the network
 knows the device. Similarly, the network could reject the
 association of devices that would fail to show particular indicators
 related to their credentials.

2.2. IEEE 802.11 Authentication Mechanisms

 [IEEE802.11i] allows an SSID to advertise different authentication
 mechanisms via the AKM Suite list in the RSNE. A very brief
 introduction to [IEEE802.11i] is given in the appendices. An SSID
 could advertise PSK or [IEEE802.1X] authentication mechanisms. When
 a network operator needs to enforce two different authentication
 mechanisms, one for pre-BRSKI devices and one for post-BRSKI devices,
 the operator has four options:

 o configure two SSIDs with the same SSID string value, each one
 advertising a different authentication mechanism

 o configure two different SSIDs, each with its own SSID string
 value, with each one advertising a different authentication
 mechanism

 o configure a single SSID, advertising two different authentication
 mechansim in the RSNE

 o configure a single SSID, advertising a general authentication
 mechanism in the RSNE, and particular additional authentication
 options in some other information element.

 If devices have to be flexible enough to handle two of more of these
 options, then this adds complexity to the device firmware and
 internal state machines. Similarly, if network infrastructure (APs,
 WLCs, AAAs) potentially needs to support all options, then this adds
 complexity to network infrastructure configuration flexibility,
 software and state machines. Consideration must be given to the
 practicalities of implementation for both devices and network
 infrastructure when designing the final bootstrap mechanism and
 aligning [IEEE802.11], [IEEE802.1X] and BRSKI protocol interactions.
 As such, a mechanism that allows for the coexistence of pre-BRSKI and
 post-BRSKI authentication on the same SSID is likely to be preferred.

2.2.1. Authentication Signaling Considerations

 Devices should be flexible enough to handle potential options defined
 by any final draft. When discovering a pre-BRSKI SSID, the device
 should also discover the authentication mechanisms enforced by the
 SSID. If the device supports the authentication mechanism being
 advertised, then the device can connect to the SSID in order to
 initiate the BRSKI flow. For example, the device may support
 [IEEE802.1X] as a pre-BRSKI authentication mechanism, but may not
 support PSK as a pre-BRSKI authentication mechanism.

 Once the device has completed the BRKSI flow and has obtained an
 LDevID, a mechanism is needed to tell the device which SSID to use
 for post-BRSKI network access. This may be the same SSID as the pre-
 BRSKI SSID, or another SSID. The decision in whether to onboard
 devices through the production SSID or use an onboarding and
 provisioning SSID that is different from the production SSID is
 dependent on individual organisation networking and security
 architectures. As such, the mechanism by which the post-BRSKI SSID
 is advertised to the device, if that SSID is different from the pre-
 BRSKI SSID, is out-of-scope of this version of this document.

2.2.2. IP Address Assignment Considerations

 If a device has to perform two different authentications, one for
 pre-BRSKI and one for post-BRSKI, network policy will typically
 assign the device to different VLANs for these different stages, and
 may assign the device different IP addresses depending on which
 network segment the device is assigned to. This could be true even
 if a single SSID is used for both pre-BRSKI and post-BRSKI
 connections. Therefore, the bootstrapping device may need to
 completely reset its network connection and network software stack,
 and obtain a new IP address between pre-BRSKI and post-BRSKI
 connections.

2.3. Client and Server Implementations

 When evaluating all possible SSID discovery mechanisms and
 authentication mechanisms outlined in this document, consideration
 must be given to the complexity of the required client and server
 implementation and state machines. Consideration must also be given
 to the network operator configuration complexity if multiple
 permutations and combinations of SSID discovery and network
 authentication mechanisms are possible.

3. Potential SSID Discovery and Validation Mechanisms

 This section outlines multiple different mechanisms that could
 potentially be leveraged that would enable a bootstrapping device to
 choose between multiple different available [IEEE802.11] SSIDs. The
 discovery mechanism needs to include the following steps:

 o A process for the bootstrapping device that has not completed the
 bootstrapping process, and that it is at a stage where such
 process is needed before further connection

 o A process for the Wi-Fi infrastructure to signal that it can
 perform bootstrapping

 o A process for the bootstrapping device and the infrastructure to
 validate each other request. This step includes, for the
 bootstrapping device, discriminating between two SSIDs in range.
 This step may also include, for the Wi-Fi infrastructure,
 validating the bootstrapping device's request (before accepting
 it).

 The discovery options outlined in this document include:

 o Well-known BRSKI SSID

 o [IEEE802.11aq]

 o [IEEE802.11] Vendor Specific Information Element

 o Reusing Existing [IEEE802.11u] Elements

 o [IEEE802.11u] Interworking Information - Internet

 o Define New [IEEE802.11u] Extensions

 o Wi-Fi Protected Setup

 o Define and Advertise a BRSKI-specific AKM in RSNE

 o Wi-Fi Device Provisioning Profile

 These mechanisms are described in more detail in the following
 sections.

3.1. Well-known BRSKI SSID

 A standardized naming convention for SSIDs offering BRSKI services is
 defined such as:

 o BRSKI%ssidname

 Where:

 o BRSKI: is a well-known prefix string of characters. This prefix
 string would be baked into device firmware.

 o %: is a well known delimiter character. This delimiter character
 would be baked into device firmware.

 o ssidname: is the freeform SSID name that the network operator
 defines.

 Device manufacturers would bake the well-known prefix string and
 character delimiter into device firmware. Network operators
 configuring SSIDs which offer BRSKI services would have to ensure
 that the SSID of those networks begins with this prefix. On
 bootstrap, the device would scan all available SSIDs and look for
 ones with this given prefix.

 If multiple SSIDs are available with this prefix, then the device
 could simply round robin through these SSIDs and attempt to start the
 BRSKI flow on each one in turn until it succeeds.

 This mechanism suffers from the limitations outlined in Section 2.1 -
 it does nothing to prevent a device enrolling against an incorrect
 network.

 Another issue with defining a specific naming convention for the SSID
 is that this may require network operators to have to deploy a new
 SSID. In general, network operators attempt to keep the number of
 unique SSIDs deployed to a minimum as each deployed SSID eats up a
 percentage of available air time and network capacity. A good
 discussion of SSID overhead and an SSID overhead [calculator] is
 available.

 Additionally, a third issue with this mechanism is that the
 bootstrapping SSID might be different from the production SSID. As
 such, using this mechanism may force a network operator to maintain
 an SSID (with the overhead concerns detailed above) just for
 occasional boostrapping events. The SSID could be enabled only when
 bootstrapping events are expected, but this manual operation does not
 scale very well (and ignores cases where devices need to re-bootstrap
 or are introduced into the network individually at unpredictable
 intervals). Keeping the SSID enabled at all times consumes airtime
 for low added value outside of the bootstrapping events.

3.2. IEEE 802.11aq

 [IEEE802.11aq] is an amedment to the [IEEE802.11] Standard that was
 published in August 2018. [IEEE802.11aq] defines new elements that
 can be included in [IEEE802.11] Beacon, Probe Request and Probe
 Response frames, and defines new elements for ANQP frames.

 The extensions allow an AP to broadcast support for backend services,
 where allowed services are those registered in the [IANA] Service
 Name and Transport Protocol Port Number Registry. The services can
 be advertised in [IEEE802.11] elements that include either:

 o SHA256 hashes of the registered service names

 o a bloom filter of the SHA256 hashes of the registered service
 names

 Bloom filters simply serve to reduce the size of Beacon and Probe
 Response frames when a large number of services are advertised. If a
 bloom filter is used by the AP, and a device discovers a potential
 service match in the bloom filter, then the device can query the AP
 for the full list of service name hashes using newly defined ANQP
 elements.

 If BRSKI were to leverage [IEEE802.11aq], then a BRSKI service would
 need to be defined in [IANA].

 [IEEE802.11aq] describes two types of exchanges. An unsollicited
 Preassociation Discovery (PAD) procedure, where the AP advertises
 services reachable through the AP, and a sollicited method, where the
 PAD is initated by the unassociated client attempting to discover a
 service offered through the AP and SSID. The unsollictited PAD
 method could be leveraged to advertise support for BRSKI. This
 mechanism suffers from the limitations outlined in Section 2.1 - it
 does nothing to prevent a device enrolling against an incorrect
 network.

 The sollicited method could be used by the device to query about
 general BRSKI support, or to request information about specific BRSKI
 modes or options. This method could be used to overcome the
 Section 2.1 issue.

3.3. IEEE 802.11 Vendor Specific Information Element

 [IEEE802.11] defines Information Element (IE) number 221 for carrying
 Vendor Specific information. The purpose of this document is to
 define an SSID discovery mechanism that can be used across all
 devices and vendors, so use of this IE is not an appropriate long
 term solution.

3.4. Reusing Existing IEEE 802.11u Elements

 [IEEE802.11u] defines mechanisms for interworking. An introduction
 to [IEEE802.11u] is given in the appendices. Existing IEs in
 [IEEE802.11u] include:

 o Roaming Consortium IE (RCOI)

 o NAI Realm IE

 These existing IEs could be used to advertise a well-known, logical
 service that devices implicitly know to look for. This may be
 implemented in the spirit of the 802.11u logic, where the NAI or the
 RCOI point to a specific set of service providers. This could also
 be implemented as a variation where the NAI or the RCOI point to a
 specific service, with no specific service provider identified in the
 IE.

 In the case of NAI Realm, a well-known service name such as
 "_bootstrapks" could be defined and advertised in the NAI Realm IE.
 In the case of Roaming Consortium, a well-known Organization
 Identifier (OI) could be defined and advertised in the Roaming
 Consortium IE.

 Device manufacturers would bake the well-known NAI Realm or Roaming
 Consortium OI into device firmware. Network operators configuring
 SSIDs which offer BRSKI services would have to ensure that the SSID
 offered this NAI Realm or OI. On bootstrap, the device would scan
 all available SSIDs and use ANQP to query for NAI Realms or Roaming
 Consortium OI looking for a match.

 The key concept with this proposal is that BRSKI uses a well-known
 NAI Realm name or Roaming Consortium OI more as a logical service
 advertisement rather than as a backhaul internet provider
 advertisement. This is conceptually very similar to what
 [IEEE802.11aq] is attempting to achieve.

 Leveraging NAI Realm or Roaming Consortium would not require any
 [IEEE802.11] specification changes, and could be defined by this IETF
 draft with the strings suggested above for NAI. However, the RCOI
 has the format of a MAC address, and would need to be allocated by
 the IEEE. In the case where specific vendors would implement a
 specific NAI or RCOI, identifying both the vendor or vendor
 consortium and support for BRSKI, new NAI and RCOI would need to be
 defined by these vendors. Although the Wireless Broadband Alliance
 (WBA) keeps a Next generation Hotspot (NGH) registry of known RCOIs
 and NAIs, there is no official and exahsutive published repository of
 these values.

 In addition to BRSKI support, as the NAI Realm includes advertising
 the EAP mechanism required, if a new EAP-BRSKI were to be defined,
 then this could be advertised. Devices could then scan for an NAI
 Realm that enforced EAP-BRSKI, and ignore the realm name.

 This mechanism suffers from the limitations outlined in Section 2.1 -
 it does nothing to prevent a device enrolling against an incorrect
 network.

 Additionally, as the IEEE is attempting to standardize logical
 service advertisement via [IEEE802.11aq], [IEEE802.11aq] would seem
 to be the more appropriate option than overloading an existing IE.
 However, it is worth noting that configuration of 802.11u IEs is
 commonly supported today by Wi-Fi infrastructure vendors, and this
 mechanism may be suitable for demonstrations or proof-of-concepts.

3.5. IEEE 802.11u Interworking Information - Internet

 It is possible that an SSID may be configured to provide unrestricted
 and unauthenticated internet access. This could be advertised in the
 Interworking Information IE by including:

 o internet bit = 1

 o ASRA bit = 0

 If such a network were discovered, a device could attempt to use the
 BRSKI well-known vendor cloud Registrar. Possibly this could be a
 default fall back mechanism that a device could use when determining
 which SSID to use. However, this mechanism suffers from the
 limitations outlined in Section 2.1 - it does nothing to prevent a
 device enrolling against an incorrect network. Additionally, this
 mechanism does not provide any information about local BRSKI support.

3.6. Define New IEEE 802.11u Extensions

 Of the various elements currently defined by [IEEE802.11u] for
 potentially advertising BRSKI, NAI Realm and Roaming Consortium IE
 are the two existing options that are a closest fit, as outlined
 above. Another possibility that has been suggested in the IETF
 mailers is defining an extension to [IEEE802.11u] specifically for
 advertising BRSKI service capability. Any extensions should be
 included in Beacon and Probe Response frames so that devices can
 discover BRSKI capability without the additional overhead of having
 to explicitly query using ANQP. ANQP queries could be used to
 provide additional information, such as vendor support.

 [IEEE802.11aq] appears to be the proposed mechanism for generically
 advertising any service capability, provided that service is
 registered with [IANA]. It is probably a better approach to
 encourage adoption of [IEEE802.11aq] and register a service name for
 BRSKI with [IANA] rather than attempt to define a completely new
 BRSKI-specific [IEEE802.11u] extension.

3.7. Wi-Fi Protected Setup

 Wi-Fi Protected Setup (WPS) only works with Wi-Fi Protected Access
 (WPA) and WPA2 when in Personal Mode. WPS does not work when the
 network is in Enterprise Mode enforcing [IEEE802.1X] authentication.
 WPS is intended for consumer networks and does not address the
 security requirements of enterprise or IoT deployments.
 Additionally, WPS relies on three methods (button push, PIN or NFC),
 none of which scale easily in an enterprise environement.

3.8. Define and Advertise a BRSKI-specific AKM in RSNE

 [IEEE802.11i] introduced the RSNE element which allows an SSID to
 advertise multiple authentication mechanisms. A new Authentication
 and Key Management (AKM) Suite could be defined that indicates the
 STA can use BRSKI mechanisms to authenticate against the SSID. The
 authentication handshake could be an [IEEE802.1X] handshake, possibly
 leveraging an EAP-BRSKI mechanism, the key thing here is that a new
 AKM is defined and advertised to indicate the specific BRSKI-capable
 EAP method that is supported by [IEEE802.1X], as opposed to the
 current [IEEE802.1X] AKMs which give no indication of the supported
 EAP mechanisms. It is clear that such method would limit the SSID to
 BRSKI-supporting clients. This would require an additional SSID
 specifically for BRSKI clients. As such, this solution also suffers
 from the limitations mentioned about additional overhead.
 Additionally, this mechanism suffers from the limitations outlined in
 Section 2.1 - it does nothing to prevent a device attempting to
 enroll against an incorrect network.

3.9. Wi-Fi Device Provisioning Profile

 The [DPP] specification, also known as Wi-Fi Easy Connect, defines
 how an entity that is already trusted by a network can assist an
 untrusted entity in enrolling with the network. The description
 below assumes the [IEEE802.11] network is in infrastructure mode.
 DPP introduces multiple key roles including:

 o Configurator: A logical entity that is already trusted by the
 network that has capabilities to enroll and provision devices
 called Enrollees. A Configurator may be a STA or an AP.

 o Enrollee: A logical entity that is being provisioned by a
 Configurator. An Enrollee may be a STA or an AP.

 o Initiator: A logical entity that initiates the DPP Authentication
 Protocol. The Initiator may be the Configurator or the Enrollee.

 o Responder: A logical entity that responds to the Initiator of the
 DPP Authentication Protocol. The Responder may be the
 Configurator or the Enrollee.

 In the DPP model, a common Configurator and Initiator is an app
 running on a trusted smartphone. This process is manual, and each
 device is treated individually. In order to support a plug and play
 model for installation of a large number devices, where each device
 is simply powered up for the first time and automatically discovers
 the Wi-Fi network without the need for a helper or supervising
 application, then this implies that the AP must perform the role of
 the Configurator and the device or STA performs the role of Enrollee.
 Note that the AP may simply proxy DPP messages through to a backend
 WLC, but from the perspective of the device, the AP is the
 Configurator.

 The DPP specification also mandates that the Initiator must be
 bootstrapped the bootstrapping public key of the Responder. For
 BRSKI purposes, the DPP bootstrapping public key will be the
 [IEEE802.1AR] IDevID of the device. As the boostrapping device
 cannot know in advance the bootstrapping public key of a specific
 operators network, this implies that the Configurator must take on
 the role of the Initiator. Therefore, the AP must take on the roles
 of both the Configurator and the Initiator.

 At boot time, the device does not know which AP or which SSID is
 likely to provide DPP services. In the DPP model, the Configurator
 advertizes a special Authentication and Key Management (AKM) mode,
 DPP. Announcing this mode outside of onboarding windows might result
 in regular, non-DPP clients to fail to associate to a network which
 AKM they do not recognize. As such, it is preferable that the DPP
 process be started after the device establishes a link with the
 access point. Therefore, DPP is likely not the best process to
 identify a supporting access point. Additionally, this mechanism
 suffers from the limitations outlined in Section 2.1 - it does
 nothing to prevent a device attempting to enroll against an incorrect
 network.

4. Potential Mutual Validation Options

 When the bootstrapping device determines that one or more APs or
 SSIDs are available that provide support for BRSKI, with one or more
 of the mechanisms listed in section 3, then the device needs to
 determine which is the correct SSID. At the same time, an AP
 receiving signals from a bootstrapping device may need to verify if
 the need to determine if the device is attempting to connect the the
 correct network. In essence, this joint requirement means that BRSKi
 could be started immediately after the discovery phase. A case of
 mistaken identity (device attempting to join the wrong network) can
 be resolved with a round robin process, where the device fails the
 BRSKI process on the attempted network, then attempts BRSKi against
 the next candidate network. However, this process may result in
 wasted airtime and possible security exposure where an operator
 attempts to capture information about neighboring bootstrapping
 devices.

4.1. MAC Address Validation method

 An alternative to the round robin mode is a primary selection mode
 where the device and the AP exchange mutual signs of knowledge about
 each other. This could be achieved using the standard 802.11
 process, where the device would send a probe request using its real
 MAC address. This MAC address could be known to a central database
 and validated by the wireless infrastructure. This method has the
 merit of being simple. However, it is more and more common for
 devices with simple network stacks to use locally administered (and
 temporal) MAC addresses. This method only validates the device (not
 the infrastructure).

4.2. Vendor Token Validation method

 An alternative to the MAC address method is to use a token, placed in
 an extension Information Element of the device probe request frame.
 This token would identify the device vendor. A limitation of this
 method is that, in some cases, neighboring networks may bootstrap
 devices from the same vendor. This method validates the vendor, but
 not the device. It also does not validate the infrastructure. It
 can be used as a coarse initial filtering mechanism.

4.3. Device Token Validation method

 An alternative to the vendor token is to use a unique identifier for
 the device. However, as the transaction is exposed to eavesdropping,
 this method exposes the toke. As such, the token should not be an
 element that can be compromised. The token can be the MAC address,
 if the device uses locally administered addresses for its probe
 requests. This method only validates the device (not the
 infrastructure).

4.4. Infrastructure Response Filtering

 When additional filtering is required, the infrastructure may
 validate the additiomal information provided by the device, and
 either respond, if the additional information is computed to match
 the infrastructure knowledge, or ignore the request (no probe
 response) if the additional information does not match the
 infrastructure knowledge.

 In some cases, the AP may not be able to access the database locally,
 and may need to forward the request (including the additional
 information provided by the device) to another system. In this case,
 the AP may respond with a frame that includes a GAS comeback value.
 This value indicates a delay after which the device should ask the
 question again. In that interval, the AP will query the
 infrastructure to obtain the additional iformation required. After
 expiration of the comeback interval, the device may send the probe
 request again, and the AP may respond or ignore the request, or
 request more time. It is understood that the device would accept a
 limited number of comeback requests (for example 3) and a limited
 comeback interval (for example no more than 3 seconds).

4.5. Infrastructure Validation Method

 It is expected, when the device adds information to its probe
 request, that the infrastructure should only respond to those devices
 that have been validated by the infrastructure system. However, some
 systems may not be able to respond in time and may be configured to
 accept all requests. Additionally, bad actors may decide to accept
 any request. There may therefore be a need to mandate the
 infrastructure to return information that indicates proof of
 knowledge of the device. The following modes are envisioned:

 o When the device uses its MAC address, or expresses its MAC address
 in an information element contained in the probe request, the
 infrastructure may be able to express its knowledge of the device
 servial number, and mention this serial number in the probe

 response. As it may be needed to protect the serial number at
 this stage, the serial number could be encoded in a bloom filter.

 o When the device uses a vendor token, the AP can only reply with
 another token identifying the same vendor, as the device itself is
 not known.

5. Potential Authentication Options

 When the bootstrapping device determines which SSID to connect to,
 there are multiple potential options available for how the device
 authenticates with the network while bootstrapping. Several options
 are outlined in this section. This list is not exhaustive.

 At a high level, authentication can generally be split into two
 phases using two different credentials:

 o Pre-BRSKI: The device can use its [IEEE802.1AR] IDevID to connect
 to the network while executing the BRSKI flow

 o Post-BRSKI: The device can use its [IEEE802.1AR] LDevID to connect
 to the network after completing BRSKI enrollment

 The authentication options outlined in this document include:

 o Unauthenticated Pre-BRSKI and EAP-TLS Post-BRSKI

 o DPP Pre-BRSKI and EAP-TLS Post-BRSKI

 o PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI

 o MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI

 o EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI

 o New DPP BRSKI mechanism

 o New TEAP BRSKI mechanism

 o New [IEEE802.11] Authentication Algorithm for BRSKI and EAP-TLS
 Post-BRSKI

 o New [IEEE802.1X] EAPOL-Announcements to encapsulate BRSKI prior to
 EAP-TLS Post-BRSKI

 These mechanisms are described in more detail in the following
 sections. Note that any mechanisms leveraging [IEEE802.1X] are
 [IEEE802.11] MAC layer authentication mechanisms and therefore the
 SSID must advertise WPA2 capability.

 When evaluating the multiple authentication options outlined below,
 care and consideration must be given to the complexity of the
 software state machine required in both devices and services for
 implementation.

5.1. Unauthenticated and Unencrypted or OWE Pre-BRSKI and EAP-TLS Post-
 BRSKI

 The device connects to an unauthenticated network pre-BRSKI. The
 device connects to a network enforcing EAP-TLS post-BRSKI. The
 device uses its LDevID as the post-BRSKI EAP-TLS credential.

 In the pre-BRSKI phase, the device may establish a secure connection
 with the AP using WPA3 to protect the BRSKI exchange from
 eavesdroppers. The pre-BRSKi phase can be protected, but is not
 authenticated.

5.2. DPP Pre-BRSKI and EAP-TLS post-BRSKI

 The device can be provisioned with DPP for the pre-BRSKI phase,
 receiving the SSID value and optionally a temporal PSK. It should be
 noted that the device at that point is not untampered anymore.
 However, the configuration is temporal and limited. In a WPA3
 network, when DPP from a mobile (e.g. smartphone) is used, the DPP
 process may provision the SSID and leave the device to use OWE for
 its connection to the AP.

 Alternatively, when DPP is processed through the AP in an automated
 fashion, the AP first establishes an OWE connection with the device.
 Through this encrypted connection, the AP provides the SSID and the
 temporal PSK value.

5.3. PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI

 The device connects to a network enforcing PSK pre-BRSKI. If DPP is
 not used, the PSK may be factory-set (default PSK) or provisioned by
 direct action on the device. Neither of these modes is preferred as
 factory-defauls are weak and direct interaction with the device does
 not allow for massive automated bootstrapping. After the PSK-based
 pre-BRSKI connection, the device connects to a network enforcing EAP-
 TLS post-BRSKI. The device uses the LDevID obtained via BRSKI as the
 post-BRSKI EAP-TLS credential.

 When the device connects to the post-BRSKI network that is enforcing
 EAP-TLS, the device uses its LDevID as its credential. The device
 should verify the certificate presented by the server during that
 EAP-TLS exchange against the trusted CA list it obtained during
 BRSKI.

 If the [IEEE802.1X] network enforces a tunneled EAP method, for
 example [RFC7170], where the device must present an additional
 credential such as a password, the mechanism by which that additional
 credential is provisioned on the device for post-BRSKI authentication
 is out-of-scope of this version of this document. NAI Realm may be
 used to advertise the EAP methods being enforced by an SSID. It is
 to be determined if guidelines should be provided on use of NAI Realm
 for advertising EAP method in order to streamline BRSKI.

5.4. MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI

 Many AAA server state machine logic allows for the network to
 fallback to MAC Address Bypass (MAB) when initial authentication
 against the network fails. If the device does not present a valid
 credential to the network, then the network will check if the
 device's MAC address is whitelisted. If it is, then the network may
 grant the device access to a network segment that will allow it to
 complete the BRSKI flow and get provisioned with an LDevID. Once the
 device has an LDevID, it can then reauthenticate against the network
 using its EAP-TLS and its LDevID.

5.5. EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI

 The device connects to a network enforcing EAP-TLS pre-BRSKI. The
 device uses its IDevID as the pre-BRSKI EAP-TLS credential. The
 device connects to a network enforcing EAP-TLS post-BRSKI. The
 device uses its LDevID as the post-BRSKI EAP-TLS credential.

 When the device connects to a pre-BRSKI network that is enforcing
 EAP-TLS, the device uses its IDevID as its credential. The device
 should not attempt to verify the certificate presented by the server
 during that EAP-TLS exchange, as it has not yet discovered the local
 domain trusted CA list.

 When the device connects to the post-BRSKI network that is enforcing
 EAP-TLS, the device uses its LDevID as its credential. The device
 should verify the certificate presented by the server during that
 EAP-TLS exchange against the trusted CA list it obtained during
 BRSKI.

 Again, if the post-BRSKI network enforces a tunneled EAP method, the
 mechanism by which that second credential is provisioned on the
 device is out-of-scope of this version of this document.

5.6. New DPP BRSKI mechanism

 BRSKI can be integrated into the DPP choreography, in three modes:

 o When a local commissioning tool is used (e.g. application on a
 mobile device), the standard DPP process is used for the
 configurator to establish a trusted connection to the enrolee (the
 bootstrapping device), over Bluetoot, NFC, Wi-Fi or other means
 defined by DPP. The configurator then provision the boostrapping
 device with the target SSID, but also installs on the device the
 TrustAnchor. The bootstrapping device then connects to the target
 SSID using EAP-BRSKI (EST). The query is relayed to the
 registrar, which validates the device identity. An EAP-Success
 message is then returned to the access point.

 o When the commissioning tool is not mobile and not interacting
 directly with the bootstrapping device, identifiers for the device
 may be fed into an authentication database (e.g. serial number,
 MAC address, DPP key, device-specific factory-set PSK or other).
 Upon device request (probe request with request for network proof
 of knowledge), the AP retrieves one or more of these parameters
 from the authentication database, and uses them to provide proof
 of knowledge to the device. Once trust is established, a temporal
 trusted link is established between the device and the AP (using
 DPP parameters or OWE) and the AP provisions the device with the
 SSID. The device then connects to the target SSID using EAP-BRSKI
 as above.

 o When the authentication server has reachability to the MASA
 server, the process above is started. As the device conencst to
 the target SSID, its identity is not only validated by the
 authentication server, but the authentication server also
 initiates a voucher request to the MASA server. The exchange
 between the bootstrapping device and the authentication server,
 now in possession of the voucher, continues as per
 [I-D.ietf-anima-bootstrapping-keyinfra].

5.7. New TEAP BRSKI mechanism

 New TEAP TLVs are defined to transport BRSKI messages inside an outer
 EAP TLS tunnel such as TEAP [RFC7170]. [I-D.lear-eap-teap-brski]
 outlines a proposal for how BRSKI messages could be transported
 inside TEAP TLVs. At a high level, this enables the device to obtain
 an LDevID during the Layer 2 authentication stage. This has multiple
 advantages including:

 o avoids the need for the device to potentially connect to two
 different SSIDs during bootstrap

 o the device only needs to handle one authentication mechanism
 during bootstrap

 o the device only needs to obtain one IP address, which it obtains
 after BRSKI is complete

 o avoids the need for the device to have to disconnect from the
 network, reset its network stack, and reconnect to the network

 o potentially simplifies network policy configuration

 There are two suboptions to choose from when tunneling BRSKI messages
 inside TEAP:

 o define new TLVs for transporting BRSKI messages inside the TEAP
 tunnel

 o define a new EAP BRSKI method type that is tunneled within the
 outer TEAP method

 This section assumes that new TLVs are defined for transporting BRSKI
 messages inside the TEAP tunnel and that a new EAP BRSKI method type
 is not defined.

 The device discovers and connects to a network enforcing TEAP. A
 high level TEAP with BRSKI extensions flow would look something like:

 o Device starts the EAP flow by sending the EAP TLS ClientHello
 message

 o EAP server replies and includes CertificateRequest message, and
 may specify certificate_authorities in the message

 o if the device has an LDevID and the LDevID issuing CA is allowed
 by the certificate_authorities list (i.e. the issuing CA is
 explicitly included in the list, or else the list is empty) then
 the device uses its LDevID to establish the TLS tunnel

 o if the device does not have an LDevID, or certificate_authorities
 prevents it using its LDevID, then the device uses its IDevID to
 establish the TLS tunnel

 o if certificate_authorities prevents the device from using its
 IDevID (and its LDevID if it has one) then the device fails to
 connect

 The EAP server continues with TLS tunnel establishment:

 o if the device certificate is invalid or expired, then the EAP
 server fails the connection request.

 o if the device certificate is valid but is not allowed due to a
 configured policy on the EAP server, then the EAP server fails the
 connection request

 o if the device certificate is accepted, then the EAP server
 establishes the TLS tunnel and starts the tunneled EAP-BRSKI
 procedures

 At this stage, the EAP server has some policy decisions to make:

 o if network policy indicates that the device certificate is
 sufficient to grant network access, whether it is an LDevID or an
 IDevID, then the EAP server simply initiates the Crypto-Binding
 TLV and 'Success' Result TLV exchange. The device can now obtain
 an IP address and connect to the network.

 o the EAP server may instruct the device to initialise a full BRSKI
 flow. Typically, the EAP server will instruct the device to
 initialize a BRSKI flow when it presents an IDevID, however, the
 EAP server may instruct the device to initialize a BRSKI flow even
 if it presented a valid LDevID. The device sends all BRSKI
 messages, for example 'requestvoucher', inside the TLS tunnel
 using new TEAP TLVs. Assuming the BRSKI flow completes
 successfully and the device is issued an LDevID, the EAP server
 completes the exchange by initiating the Crypto-Binding TLV and
 'Success' Result TLV exchange.

 Once the EAP flow has successfully completed, then:

 o network policy will automatically assign the device to the correct
 network segment

 o the device obtains an IP address

 o the device can access production service

 It is assumed that the device will automatically handle LDevID
 certificate reenrolment via standard EST [RFC7030] outside the
 context of the EAP tunnel.

 An item to be considered here is what information is included in
 Beacon or Probe Response frames to explicitly indicate that
 [IEEE802.1X] authentication using TEAP supporting BRSKI extensions is
 allowed. Currently, the RSNE included in Beacon and Probe Response
 frames can only indicate [IEEE802.1X] support.

5.8. New IEEE 802.11 Authentication Algorithm for BRSKI and EAP-TLS
 Post-BRSKI

 [IEEE802.11] supports multiple authentication algorithms in its
 Authentication frame including:

 o Open System

 o Shared Key

 o Fast BSS Transition

 o Simultaneous Authentication of Equals

 Shared Key authentication is used to indicate that the legacy WEP
 authentication mechanism is to be used. Simultaneous Authentication
 of Equals is used to indicate that the Dragonfly-based shared
 passphrase authentication mechanism introduced in [IEEE802.11s] is to
 be used. One thing that these two methods have in common is that a
 series of handshake data exchanges occur between the device and the
 AP as elements inside Authentication frames, and these Authentication
 exchanges happen prior to [IEEE802.11] Association.

 It would be possible to define a new Authentication Algorithm and
 define new elements to encapsulate BRSKI messages inside
 Authentication frames. For example, new elements could be defined to
 encapsulate BRSKI requestvoucher, voucher and voucher telemetry JSON
 messages. The full BRSKI flow completes and the device gets issued
 an LDevID prior to associating with an SSID, and prior to doing full
 [IEEE802.1X] authentication using its LDevID.

 The high level flow would be something like:

 o SSID Beacon / Probe Response indicates in RSNE that it supports
 BRSKI based Authentication Algorithm

 o SSIDs could also advertise that they support both BRSKI based
 Authentication and [IEEE802.1X]

 o device discovers SSID via suitable mechanism

 o device completes BRSKI by sending new elements inside
 Authentication frames and obtains an LDevID

 o device associates with the AP

 o device completes [IEEE802.1X] authentication using its LDevID as
 credential for EAP-TLS or TEAP

5.9. New IEEE 802.1X EAPOL-Announcements to encapsulate BRSKI and EAP-
 TLS Post-BRSKI

 [IEEE802.1X] defines multiple EAPOL packet types, including EAPOL-
 Announcement and EAPOL-Announcement-Req messages. EAPOL-Annoncement
 and EAPOL-Announcement-Req messages can include multiple TLVs.
 EAPOL-Annoncement messages can be sent prior to starting any EAP
 authentication flow. New TLVs could be defined to encapsulate BRSKI
 messages inside EAPOL-Announcement and EAPOL-Announcement-Req TLVs.
 For example, new TLVs could be defined to encapsulate BRSKI
 requestvoucher, voucher and voucher telemetry JSON messages. The
 full BRSKI flow could complete inside EAPOL-Announcement exchanges
 prior to sending EAPOL-Start or EAPOL-EAP messages.

 The high level flow would be something like:

 o SSID Beacon / Probe Response indicates somehow in RSNE that it
 supports [IEEE802.1X] including BRSKI extensions.

 o device connects to SSID and completes standard Open System
 Authentication and Association

 o device starts [IEEE802.1X] EAPOL flow and uses new EAPOL-
 Announcement frames to encapsulate and complete BRSKI flow to
 obtain an LDevID

 o device completes [IEEE802.1X] authentication using its LDevID as
 credential for EAP-TLS or TEAP

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

 The mechanisms described in this document rely on BRSKI. As such,
 the same security considerations are applicable to this document as
 they are in [I-D.ietf-anima-bootstrapping-keyinfra].

 Additionally, the Wireless LAN presents a unique DOS attack vector,
 as endpoints contend for the shared medium on a completely
 egalitarian basis with the AP. This means that any wireless device
 could potentially monopolize the air by constantly sending frames.
 This would prevent the bootstrapping device, or the infrastrcuture,
 to complete their exchange and would make the BRSKI process fail.
 This risk is inherent to the nature of 802.11 transmissions, and can
 only be mitigated by physical access control to the cell area. Such
 attack is also easily detected.

 Also, initial exchanges between the bootstrapping device and the AP
 are not protected. Whenever a unicast communication is initiated
 between a bootstrapping device and an AP in an attempt to start
 active bootstrapping or provisioning, the link should first be
 protected whenever possible, for example with OWE.

7.1. Client side exposure

 The discovery mechanism imposes that the bootstrapping device and the
 infrastructure must exchange messages to be aware of each other's
 existence. If these messages are generic, then the bootstrapping
 device has no mechanism to distinguish the correct SSID from a
 neighboring SSID. The bootstrapping device then is faced with two
 options:

 o Try all possible SSIDs in a round-robin fashion. By doing so, the
 bootstrapping device will potentially expose parameters to the
 wrong SSID and infrastructure. Although such exposure is unlikely
 tor esult in device compromission, it will still expose
 unnecessarily device parameters to the wrong network. As such, it
 is recommended that a pre-BRSKI filtering mechanism be implemented
 to avoid this exposure, conducting the bootstrapping device to
 only start the BRSKI process with an SSID that has been confirmed
 to be a likely correct candidate.

 o When the boostrapping device attempts to proceed to an SSID
 filtering, it may need to expose parameters to allow for the
 infrastructure to respond and provide a proof of knowledge. If
 this mechanism is implemented, the bootstrapping device should
 only expose information that is not sufficient to acquire complete
 knwledge of the bootstrapping device. For example, the
 bootstrapping device should not send both its serial number and
 MAC address, but should only expose an element that has low
 security value (such as a MAC address), and only in scenarios
 where the infrastructure has to respond with another element that
 will confirm to the bootstrapping device that it is communicating
 with the correct infrastructure.

7.2. Infrastructure side exposure

 The general choreography of 802.11 networks imply that the
 infrastructure advertizes capabilities and support for specific
 features through beacons and probe responses. As such, the AP is
 likely to have to expose its support for BRSKI. This exposure is not
 a security concern.

 When the infrastructure is requested to provide bre-BRSKI proof of
 knowledge, it has to process a frame received from an unknown
 candidate device and either respond (if the device is found to be
 known), delay the response (if additional processing is needed) or
 ignore the request. Each of these behaviors may be tested by a rogue
 device in an attempt to gain information about the wireless
 infrastructure. It is therefore recommended that the proof of
 knowledge test should only focus on parameters specific to a
 particular device, and not to parameters generally applicable to
 multiple devices (for example parameters that would apply to multiple
 devices of one or more vendors).

8. Informative References

 [calculator]

 Revolution Wi-Fi, "SSID Overhead Calculator", n.d.,
 <http://www.revolutionwifi.net/revolutionwifi/p/
 ssid-overhead-calculator.html>.

 [DPP]
 Wi-Fi Alliance, "Wi-Fi Device Provisioning Protocol",
 n.d., <https://www.wi-fi.org/file/wi-fi-device-
 provisioning-protocol-dpp-draft-technical-specification-
 v0023>.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-16 (work in progress), June 2018.

 [I-D.lear-eap-teap-brski]

 Lear, E., Friel, O., and N. Cam-Winget, "Bootstrapping Key
 Infrastructure over EAP", draft-lear-eap-teap-brski-01
 (work in progress), October 2018.

 [IANA]
 Internet Assigned Numbers Authority, "Service Name and
 Transport Protocol Port Number Registry", n.d.,
 <https://www.iana.org/assignments/service-names-port-
 numbers/service-names-port-numbers.xhtml>.

 [IEEE802.11]

 IEEE, ., "Wireless LAN Medium Access Control (MAC) and
 Physical Layer (PHY) Specifications", 2016.

 [IEEE802.11aq]

 IEEE, ., "802.11 Amendment 5 Pre-Association Discovery",
 2017.

 [IEEE802.11i]

 IEEE, ., "802.11 Amendment 6 Medium Access Control (MAC)
 Security Enhancements", 2004.

 [IEEE802.11s]

 IEEE, ., "802.11 Amendment 10 Mesh Networking", 2011.

 [IEEE802.11u]

 IEEE, ., "802.11 Amendment 9 Interworking with External
 Networks", 2011.

 [IEEE802.1AR]

 IEEE, ., "Secure Device Identity", 2017.

 [IEEE802.1X]

 IEEE, ., "Port-Based Network Access Control", 2010.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282,
 DOI 10.17487/RFC4282, December 2005,
 <https://www.rfc-editor.org/info/rfc4282>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7170]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel Extensible Authentication Protocol (TEAP) Version
 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
 <https://www.rfc-editor.org/info/rfc7170>.

Appendix A. IEEE 802.11 Primer

A.1. IEEE 802.11i

 802.11i-2004 is an IEEE standard from 2004 that improves connection
 security. 802.11i-2004 is incorporated into 802.11-2014. 802.11i
 defines the Robust Security Network IE which includes information on:

 o Pairwise Cipher Suites (WEP-40, WEP-104, CCMP-128, etc.)

 o Authentication and Key Management Suites (PSK, 802.1X, etc.)

 The RSN IEs are included in Beacon and Probe Response frames. STAs
 can use this frame to determine the authentication mechanisms offered
 by a particular AP e.g. PSK or 802.1X.

A.2. IEEE 802.11u

 802.11u-2011 is an IEEE standard from 2011 that adds features that
 improve interworking with external networks. 802.11u-2011 is
 incorporated into 802.11-2016.

 STAs and APs advertise support for 802.11u by setting the
 Interworking bit in the Extended Capabilities IE, and by including
 the Interworking IE in Beacon, Probe Request and Probe Response
 frames.

 The Interworking IE includes information on:

 o Access Network Type (Private, Free public, Chargeable public,
 etc.)

 o Internet bit (yes/no)

 o ASRA (Additional Step required for Access - e.g. Acceptance of
 terms and conditions, On-line enrollment, etc.)

 802.11u introduced Access Network Query Protocol (ANQP) which enables
 STAs to query APs for information not present in Beacons/Probe
 Responses.

 ANQP defines these key IEs for enabling the STA to determine which
 network to connect to:

 o Roaming consortium IE: includes the Organization Identifier(s) of
 the roaming consortium(s). The OI is typically provisioned on
 cell phones by the SP, so the cell phone can automatically detect
 802.11 networks that provide access to its SP's consortium.

 o 3GPP Cellular Network IE: includes the Mobile Country Code (MCC)
 and Mobile Network Code (MNC) of the SP the AP provides access to.

 o Network Access Identifier Realm IE: includes [RFC4282] realm names
 that the AP provides access to (e.g. wifi.service-provider.com).
 The NAI Realm IE also includes info on the EAP type required to
 access that realm e.g. EAP-TLS.

 o Domain name IE: the domain name(s) of the local AP operator. Its
 purpose is to enable a STA to connect to a domain operator that
 may have a roaming agreement with STA's Service Provider.

 STAs can use one or more of the above IEs to make a suitable decision
 on which SSID to pick.

 HotSpot 2.0 is an example of a specification built on top of 802.11u
 and defines 10 additional ANQP elements using the standard vendor
 extensions mechanisms defined in 802.11. It also defines a HS2.0
 Indication element that is included in Beacons and Probe Responses so
 that STAs can immediately tell if an SSID supports HS2.0.

Authors' Addresses

Owen Friel
Cisco

 Email: ofriel@cisco.com

Eliot Lear
Cisco

 Email: lear@cisco.com

Jerome Henry
Cisco

 Email: jerhenry@cisco.com

Michael Richardson
Sandelman Software Works

 Email: mcr+ietf@sandelman.ca

draft-fries-anima-brski-async-enroll-00 - Support of asynchronous Enrollment in BRSKI

draft-fries-anima-brski-async-enroll-00 - Support of asynchronous Enrollment in

Index
Back 5
Prev
Next
Forward 5

ANIMA WG

Internet-Draft

Intended status: Standards Track

Expires: September 12, 2019

S. Fries

H. Brockhaus

Siemens

E. Lear

Cisco Systems

March 11, 2019

Support of asynchronous Enrollment in BRSKI

draft-fries-anima-brski-async-enroll-00

Abstract

 This document discusses the enhancement of automated bootstrapping of
 a remote secure key infrastructure (BRSKI) to operate in domains
 featuring no or only timely limited connectivity to backend services
 offering enrollment functionality like a Public Key Infrastructure
 (PKI). In the context of deploying new devices the design of BRSKI
 allows for online (synchronous object exchange) and offline
 interactions (asynchronous object exchange) with a manufacturer's
 authorization service. It utilizes a self-contained voucher to
 transport the domain credentials as a signed object to establish an
 initial trust between the pledge and the deployment domain. The
 currently supported enrollment protocol for request and distribution
 of deployment domain specific device certificates provides only
 limited support for asynchronous PKI interactions. This memo
 motivates support of self-contained objects also for certificate
 management by using an abstract notation to allow off-site operation
 of PKI services, with only limited connectivity to the pledge
 deployment domain. This addresses specifically scenarios, in which
 the deployment domain of a pledge does not perform the final
 authorization of a certification request and rather delegates this
 decision to an operator backend. The goal is to enable the usage of
 existing and potentially new PKI protocols supporting self-
 containment for certificate management.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Scope of solution
	 3.1. Supported environment

	 3.2. Application Examples
	 3.2.1. Rolling stock

	 3.2.2. Building automation

	 3.2.3. Substation automation

	 3.2.4. Electric vehicle charging infrastructure

	 3.3. Requirements for asynchronous operation

	4. Architectural Overview
	 4.1. Secure Imprinting using Vouchers

	 4.2. Addressing

	5. Protocol Flow
	 5.1. Pledge - Registrar discovery and voucher exchange

	 5.2. Registrar - MASA voucher exchange

	 5.3. Pledge - Registrar - RA/CA certificate enrollment

	6. IANA Considerations

	7. Privacy Considerations

	8. Security Considerations

	9. Acknowledgements

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

 BRSKI as defined in [I-D.ietf-anima-bootstrapping-keyinfra] specifies
 a solution for secure zero-touch (automated) bootstrapping of devices
 (pledges) in a target deployment domain. This includes the discovery
 of network elements in the deployment domain, time synchronization,
 and the exchange of security information necessary to adopt a pledge
 as new network and application element. Security information about
 the deployment domain, specifically the deployment domain certificate
 (domain root certificate), is exchanged utilizing vouchers as defined
 in [RFC8366]. These vouchers are self-contained objects, which may
 be provided online (synchronous) or offline (asynchronous) via the
 domain registrar to the pledge and originate from a manufacturer's
 authorization service (MASA). The manufacturer signed voucher
 contains the target domain certificate and can be verified by the
 pledge due to the possession of a manufacturer root certificate. It
 facilitates the enrollment of the pledge in the deployment domain and
 is used to establish trust.

 For the enrollment of devices BRSKI relies on EST [RFC7030] to
 request and distribute deployment domain specific device
 certificates. EST in turn relies on a binding of the certification
 request to an underlying TLS connection between the EST client and
 the EST server. The EST server is likely collocated with a
 registration authority (RA) or local registration authority (LRA).
 The binding to TLS is used to protect the exchange of a certification
 request (for an LDevID certificate) and to provide data origin
 authentication to support the authorization decision for processing
 the certification request. The TLS connection is mutually
 authenticated and the client side authentication bases on the
 pledge's manufacturer issued device certificate (IDevID certificate).
 This approach requires an on-site availability of a PKI component
 and/or a local asset or inventory management system performing the
 authorization decision to issue a domain specific certificate to the
 pledge. This is due to the fact that the EST server terminates the
 security association with the pledge and thus the binding between the
 certification request and the authentication of the pledge.
 Moreover, it may also require to setup a new security association
 between the EST and the issuing RA/CA. This type of enrollment
 utilizing an online connection to the PKI is considered as
 synchronous enrollment.

 For certain use cases on-site support of a RA/CA component and/or an
 asset management is not available and rather provided in a timely
 limited fashion or completely offline. This may be due to higher
 security requirements for the certification authority. This also
 means that a PKI component, performing the authorization decision for
 a certification request from a pledge may not be available on-site at
 enrollment time. Enrollment, which cannot be performed in a (timely)
 consistent fashion is considered as asynchronous enrollment in this
 document. In this case a support of a store and forward
 functionality of certification request together with the requester
 authentication information is necessary, to enable the processing of
 the request at a later point in time. A similar situation may occur
 through network segmentation, which is utilized in industrial systems
 to separate certain tasks. Here, a similar requirement arises if the
 communication channel carrying the requester authentication is
 terminated before the RA/CA. If a second communication channel is
 opened to forward the certification request to the issuing CA, the
 requester authentication information needs to be bound to the
 certification request. For both cases, it is assumed that the
 requester authentication information is utilized in the process of
 authorization of a certification request. There are different
 options to perform store and forward of certification requests:

 o Providing a trusted component (e.g., an LRA) in the deployment
 domain, which handles the storage of the certification request
 combined with the requester authentication information (the
 IDevID) and potentially the information about a successful proof
 of possession in a way prohibiting changes to the combined
 information. Note that the assumption is that the information
 elements are not cryptographically bound together. Once the PKI
 functionality (RA/CA)) is available, the trusted component
 forwards the certification request together with the originator
 information and the information about the successful proof of
 possession as triple to the off-site PKI for further processing.
 It is assumed that the off-site PKI in this case relies on the
 local authentication result and thus on the authorization and
 issues the requested certificate. In BRSKI the trusted component
 may be the EST server residing co-located with the registrar in
 the deployment domain.

 o Utilization of a self-contained object for the certification
 request, which cryptographically binds the requester
 authentication information to the certification request. This
 approach reduces the necessary trust in a domain component to
 storage and delivery. Unauthorized modifications can be detected
 during the verification of the cryptographic binding of the
 certification request in the off-site PKI.

 This document targets environments, in which connectivity to the PKI
 functionality is only temporary or not directly available by
 specifying support for handling asynchronous objects supporting
 enrollment. As it is intended to enhance BRSKI it is named BRSKI-AE,
 where AE stands for asynchronous enrollment. Note that BRSKI-AE is
 also intended to be applicable for synchronous enrollment, e.g., if a
 connection carrying the requester authentication is terminated before
 the actual registration authority.

 /* to be clarified: Describe as abstract type in Yang? */

 The ultimate goal is to allow existing certificate management
 protocols to be applied or to allow other types of encoding for the
 certificate management information exchange.

 Note that in contrast to BRSKI, BRSKI-AE assumes support of multiple
 enrollment protocols on the infrastructure side, allowing the pledge
 manufacturer to select the most appropriate.

 As BRSKI, BRSKI-AE results in the pledge storing a X.509 root domain
 certificate sufficient for verifying the domain registrar / proxy
 identity. In the process a TLS connection is established that can be
 directly used for certification request/response exchanges. The
 certification request may be stored on the domain registrar / proxy
 until connectivity to the PKI (issuing CA) becomes available. With
 this, BRSKI-AE supports the automated mechanism for asynchronous
 enrollment of a pledge in a deployment domain utilizing a voucher of
 the pledge manufacturer resulting in a domain specific X.509 device
 certificate (LDevID certificate) available on the pledge.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document relies on the terminology defined in
 [I-D.ietf-anima-bootstrapping-keyinfra]. The following terms are
 defined additionally:

CA: Certification authority, issues certificates.

RA: Registration authority, an optional system component to which a
 CA delegates certificate management functions such as
 authorization checks.

LRA: Local registration authority, an optional RA system component
 with proximity to end entities.

IED: Intelligent Electronic Device (in essence a pledge).

on‑site: Describes a component or service or functionality available
 in the target deployment domain.

off‑site: Describes a component or service or functionality
 available in a operator domain different from the target
 deployment domain. This may be a central side, to which only a
 temporarily connection is available or which is in a different
 administrative domain.

asynchronous communication: Describes a timely interrupted
 communication between an end entity and a PKI component.

synchronous communication: Describes a timely uninterrupted
 communication between an end entity and a PKI component.

3. Scope of solution

3.1. Supported environment

 This solution is intended to be used in environments with no or only
 limited connectivity to backend services provided in the operator
 domain. Beyond others this comprises cases in which:

 o there is no registration authority available in the deployment
 domain. The connectivity to the registration authority may only
 be temporarily available. A local store and forward device is
 used for the communication with the backend services.

 o authoritive actions of a local registration authority are limited
 and may not comprise local authorization of certification requests
 of enrolling pledges. Final authorization is done at the
 registration authority residing in the operator domain.

 o the target deployment domain already uses a certificate management
 approach that shall be kept consistent throughout the lifecycle.

3.2. Application Examples

 The following examples are intended to motivate the support of
 different enrollment approaches in general and asynchronous
 enrollment specifically, by introducing industrial applications
 cases, which could leverage BRSKI as such but also require support of
 asynchronous operation as intended with BRSKI-AE.

3.2.1. Rolling stock

 Rolling stock or railroad cars contain a variety of sensors,
 actuators, and controller, which communicate within the railroad car
 but also exchange information between railroad cars building a train
 or with a backend. These devices are typically unaware of backend
 connectivity. Managing certificates may be done during maintenance
 cycles of the railroad car, but can already be prepared during
 operation. The preparation may comprise the generation of
 certificate signing requests, to apply for a new or an updated domain
 specific device certificate. The authorization of the certificate
 signing request is done using inventory information available in the
 backend.

 /* to be done: more information to be provided */

3.2.2. Building automation

 Detached building equipped with sensor, actuators, and controllers
 connected to centralized building management system. Limited/no
 connectivity to backend during the installation phase and even later.
 (Example: School, etc.)

 /* to be done: more information to be provided */

3.2.3. Substation automation

 In substation automation a control center typically hosts PKI
 services to issue certificates for IEDs in a substation.
 Communication between the substation and control center is typically
 done through a proxy/gateway/DMZ, which terminates protocol flows.
 Note that NERC CIP (reference to be included) requires inspection of
 protocols at the boundary of a security perimeter. In addition,
 security in substation automation assumes central support of
 different enrollment protocols to facilitate the capabilities of IEDs
 from different vendors. The IEC standard IEC62351-9 [IEC-62351-9]
 specifies the mandatory support of two enrollment protocols, SCEP
 [I-D.gutmann-scep] and EST [RFC7030] for the infrastructure side,
 while the IEDs must only support one of the two.

3.2.4. Electric vehicle charging infrastructure

 For the electric vehicle charging infrastructure protocols have been
 defined for the interaction between the electric vehicle and the
 charging spot (e.g., ISO 15118 [ISO-IEC-15118-2]) as well as between
 the charging spot and the operator backend (e.g. OCPP [OCPP]).
 Depending on the charging model, unilateral or mutual authentication
 is required. In both cases the charging spot authenticates using an
 X.509 certificate. The management of this certificate depends
 (beyond others) on the selected backend connectivity protocol. In
 case of OCPP there is the desire to have a single communication
 protocol between the charging spot and the backend carrying all
 information to control and manage the charging operations and the
 charging spot itself. This means that the certificate management is
 intended to be handled in-band of OCPP. This requires to be able to
 encapsulate the certificate management exchanges in a transport
 independent way. Self-containment will ease this by allowing the
 transport without a separate communication protocol.

3.3. Requirements for asynchronous operation

 Based on the supported environment described in Section 3.1 and the
 motivated application examples described in Section 3.2 the following
 base requirements are derived:

 o Certificate management exchanges (e.g., certification request and
 certification response message(s)) are ideally carried in a
 container protecting at least integrity of the exchanges and
 providing source authentication. /* to be clarified: reference to
 PKCS#10 or CRMF to be used? */

 o The container with the certification request should provide a
 proof of possession of corresponding private key. Note: this is
 typically provided by the existing enrollment protocols and is
 stated here for completeness if a different approach (encoding,
 transport) is desired.

 o The container with the certification request should support a
 cryptographic binding to an existing credential known to the
 operator domain. /* to be clarified: reference to existing
 enrollment protocols EST, CMC, CMP, SCEP to be used? */

 o The container with the certification request should support direct
 protection using an existing credential on the pledge verifiable
 in the operator domain. /* to be clarified: reference to CMS or
 CMP to be used? */

4. Architectural Overview

 The intended architecture for supporting asynchronous enrollment
 relies architecture defined in BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra] with certain changes as shown
 in the placement or enhancements of the logical elements in Figure 1.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑Drop Ship‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Vendor Service |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | M anufacturer| |
 | | A uthorized |Ownership|
 | | S igning |Tracker |
 | | A uthority | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
 | ^
 | |
 V |
+‑‑‑‑‑‑‑‑+ ... |
| | . . |
| | . +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ . | BRSKI‑
| | . | | | | . | MASA
| Pledge | . | Join | | Domain <‑‑‑‑‑+
| | . | Proxy | | Registrar/ | . ^
| <‑‑‑‑‑‑‑‑>............<‑‑‑‑‑‑‑> Proxy | . '
| | . | BRSKI‑AE | | . | [alt.]
| IDevID | . | | +‑‑‑‑‑‑^‑‑‑‑‑+ . '
| | . +‑‑‑‑‑‑‑‑‑‑‑‑+ | . |
| | . | . '
+‑‑‑‑‑‑‑‑+ |......... |
 "on‑site domain" components | '
 | |
 | '
 ...|...........|.........
 . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑v‑‑‑‑‑‑+ .
 . | Public Key Infrastructure |<‑‑‑‑+ PKI RA | .
 . | PKI CA |‑‑‑‑>+ [(Domain) Registrar (opt)]| .
 . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑^‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ .
 . | | .
 . +‑‑‑‑‑‑‑‑v‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ .
 . | Inventory (Asset) | .
 . | Management | .
 . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ .
 ...
 "off‑site domain" components

 Figure 1: Architecture overview of BRSKI-AE

 The architecture overview in Figure 1 utilizes the same logical
 elements as BRSKI but with a different placement in the architecture
 for some of the elements in terms of connected domains. The main
 difference is the placement of the PKI RA/CA component as well as the
 connectivity of the RA/CA with an inventory management system. Both
 are placed in the operator domain , which may have no or only
 temporary connectivity to the deployment domain of the pledge. Based
 on the assumed connectivity of the deployment domain, the MASA
 interaction may also be done asynchronous to the actual deployment
 domain. The following list describes the deployment domain
 components:

 o Join Proxy: same functionality as describe in BRSKI

 o Domain Registrar / Proxy: In general the domain registrar / proxy
 has a similar functionality regarding the imprinting of the pledge
 in the deployment domain. Differences arise, if the deployment
 domain has temporary or no connectivity to an operator domain and/
 or the manufacturers MASA. There may be use cases, in which the
 (domain) registrar may even be operated in the operator domain.
 /* to do: needs more description */

 * Voucher exchange: The voucher exchange with the MASA is
 performed as described in BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra] . If the voucher
 exchange is facilitated by the operator domain, additional
 description is necessary. In Figure 1 this is characterized by
 indicating an alternative path for the voucher request/response
 interaction.

 * Certificate enrollment: For the pledge enrollment the domain
 registrar in the deployment domain is expected to support the
 authorization of the pledge to be part of the domain, but not
 necessarily to authorize the certification request provided
 during enrollment. This may be due to lack of authorization
 information in the deployment domain. If the authorization is
 done in the operator domain, the domain registrar is used as
 store and forward component (or proxy) of the certification
 requests. To enable this, the domain registrar needs
 functionality enhancements regarding the support of alternative
 enrollment approaches supporting self-containment. To support
 alternative enrollment approaches (protocols, encodings), it is
 necessary to enhance the addressing scheme at the domain
 registrar. The communication channel between the pledge and
 the domain registrar may be similarly described within the same
 "/.well-known" tree and may result for instance in "/.well-
 known/enrollment-variant/request".

 The following list describes the vendor related components/service
 outside the deployment domain:

 o MASA: general functionality as described in BRSKI. Assumption
 that the interaction may be done synchronous and asynchronous
 based on the general assumption that the deployment domain has

 limited outside connectivity. Note: additional steps for offline
 operation may need to be defined.

 o Ownership tracker: as defined in BRSKI.

 The following list describes the operator related components/service
 outside the deployment domain in the operator domain:

 o (Domain) registrar: Optional component if the deployment domain
 does not feature a domain registrar but only a proxy. In this
 case it is involved in the certification request processing and is
 assumed to be co-located with the PKI RA. In addition, the
 registrar may be involved in the voucher exchange with the MASA.
 /* to be done: more elaboration necessary */

 o PKI RA: Perform certificate management functions (validation of
 certification requests, interaction with inventory/asset
 management for authorization, etc.) for issuing, updating, and
 revoking certificates for a domain as a centralized infrastructure
 for the operator.

 o PKI CA: Perform certificate generation by signing the certificate
 structure management.

 o Inventory (asset) management: contains information about the known
 devices belonging to the operator. Specifically, the inventory is
 used to provide the information to authorize issuing a certificate
 based on the certification request of the pledge. Note: the
 communication between the inventory (asset) management and the PKI
 components (RA/CA) in the operator domain are out of scope for
 this document.

4.1. Secure Imprinting using Vouchers

 /* to be done, should contain - review of the domain registrar - MASA
 interaction regarding offline operation - changes to the enrollment
 interaction through off-site RA/CA support */

4.2. Addressing

 For the provisioning of different enrollment options at the domain
 registrar, the addressing approach of BRSKI using a "/.well-known"
 tree from [RFC5785] is enhanced.

 /* to be done: Description of "/.well-known/enrollment-protocol/
 request" in which enrollment-protocol may be an already existing
 protocol like "est" or "scep" or "cmp" or a newly defined protocol.
 */

5. Protocol Flow

 Based on BRSKI and the architectural changes the original protocol
 flow is divided into three phases showing commonalities and
 differences to the original approach as depicted in the following.

 o Discovery phase (same as BRSKI)

 o Voucher exchange with deployment domain registrar (may have
 changes due the handling of phases without communication to the
 operator domain.

 o Enrollment phase (changed to accompany the asynchronous operation)

5.1. Pledge - Registrar discovery and voucher exchange

 /* to be done: description of unchanged BRSKI approach */

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Pledge		Circuit		Domain		Vendor
		Join		Registrar		Service
		Proxy		(JRC)		(MASA)
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+						
		Internet				
<‑RFC4862 IPv6 addr						
<‑RFC3927 IPv4 addr	Appendix A	Legend				
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>		C ‑ circuit				
optional: mDNS query	Appendix B	join proxy				
RFC6763/RFC6762		P ‑ provisional				
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑		TLS connection				
GRASP M_FLOOD						
periodic broadcast						
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>C<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>						
TLS via the Join Proxy						
<‑‑Registrar TLS server authentication‑‑‑						
[PROVISIONAL accept of server cert]						
P‑‑‑X.509 client authentication‑‑‑‑‑‑‑‑‑‑>						
P						
P‑‑‑Voucher Request (include nonce)‑‑‑‑‑‑>						
/‑‑>						
P [if connection to operator domain is not available]						
P<‑‑‑‑‑‑‑‑‑‑ Voucher Waiting ‑‑‑‑‑‑‑‑‑‑‑‑‑						
P						
P‑ Voucher Polling (with serial number) ‑>						
/‑‑>						
P	/‑‑‑>					
P		see Figure 3 below				
P	\‑‑‑‑>					
P<‑‑‑‑‑‑voucher‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑						
[verify voucher , verify provisional cert]						
‑‑>						
[voucher status telemetry]	<‑device audit log‑‑					
	[verify audit log and voucher]					
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>						

 Figure 2: Pledge discovery of domain registrar discovery and voucher
 exchange

 /* to be done: - discuss call flow in the context of asynchronous
 operation, when the domain registrar works as proxy. The voucher
 waiting indication can be used in this way to inform the pledge not
 to expect an immediate response (may contain the time for the
 polling) - may utilize a parallel provisioning of a voucher request
 and a certification request by the pledge. - both may be provided
 when the operator domain is available and processed sequentially by
 the pledge, first the voucher, second the certification response */

5.2. Registrar - MASA voucher exchange

 /* to be done: - clarification if BRSKI protocol sequence kept
 unchanged - changes for complete offline operation may be necessary,
 verify BRSKI document section 6.2. Pledge security reductions */

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Pledge		Circuit		Domain		Vendor
		Join		Registrar		Service
		Proxy		(JRC)		(MASA)
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 P | /‑‑‑> | |
 P | | [accept device in domain] |
 P | | [contact Vendor] |
 P | | |‑‑Pledge ID‑‑‑‑‑‑‑‑>|
 P | | |‑‑Domain ID‑‑‑‑‑‑‑‑>|
 P | | |‑‑optional:nonce‑‑‑>|
 P | | | [extract DomainID]
 P | optional: | [update audit log]
 P | can occur in advance if nonceless |

 Figure 3: Domain registrar - MASA voucher exchange

5.3. Pledge - Registrar - RA/CA certificate enrollment

 /* to be done: overview description of operation */

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Pledge		Circuit		Domain		Operator
		Join		Registrar		RA/CA
		Proxy		(JRC)		(OPKI)
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+						
‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Cert Request ‑‑‑‑‑‑‑‑‑‑‑‑>						
[if connection to operator domain is available]						
	‑‑‑ Cert Request ‑‑>					
	<‑‑ Cert Response ‑‑					
/‑‑>						
[if connection to operator domain is not available]						
<‑‑‑‑‑‑‑‑‑‑ Cert Waiting ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑						
‑‑ Cert Polling (with orig request ID) ‑>						
[if connection to operator domain is available]						
	‑‑‑ Cert Request ‑‑>					
	<‑‑ Cert Response ‑‑					
/‑‑>						
<‑‑‑‑‑‑‑‑‑‑‑‑‑ Cert Response ‑‑‑‑‑‑‑‑‑‑‑‑						
‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Cert Confirm ‑‑‑‑‑‑‑‑‑‑‑‑>						
/‑‑>						
	[optional]					
	‑‑‑ Cert Confirm ‑‑>					
	<‑‑ PKI Confirm ‑‑‑‑					
<‑‑‑‑‑‑‑‑‑‑‑‑‑ PKI/Registrar Confirm ‑‑‑‑						

 Figure 4: Certificate enrollment

 o Cert Request: certification request message (to be done: reference
 to PKCS#10 or CRMF, proof of possession, pledge authentication)

 o Cert Response: certification response message containing the
 requested certificate and potentially further information like
 certificates of intermediary CAs on the certification path.

 o Cert Waiting: waiting indication for the pledge to retry after a
 given time.

 o Cert Poling: querying the registrar, if the certificate request
 was already processed; can be answered either with another Cert
 Waiting, or a Cert Response.

 o Cert Confirm: confirmation message from pledge after receiving and
 verifying the certificate.

 o PKI/Registrar Confirm: confirmation message from PKI/registrar
 about reception of the pledge's certificate confirmation.

 /* to be done: - investigation into handling of certificate request
 retries - message exchange description - confirmation message
 (necessary? optional? from Registrar and/or PKI?) */

6. IANA Considerations

 This document requires the following IANA actions:

 /* to be done: clarification necessary */

7. Privacy Considerations

 /* to be done: clarification necessary */

8. Security Considerations

 /* to be done: clarification necessary */

9. Acknowledgements

 We would like to thank the various reviewers for their input, in
 particular ...

10. References

10.1. Normative References

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-19 (work in progress), March 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

10.2. Informative References

 [I-D.gutmann-scep]

 Gutmann, P., "Simple Certificate Enrolment Protocol",
 draft-gutmann-scep-13 (work in progress), January 2019.

 [IEC-62351-9]

 International Electrotechnical Commission, "IEC 62351 -
 Power systems management and associated information
 exchange - Data and communications security - Part 9:
 Cyber security key management for power system equipment",
 IEC 62351-9 , May 2017.

 [ISO-IEC-15118-2]

 International Standardization Organization / International
 Electrotechnical Commission, "ISO/IEC 15118-2 Road
 vehicles - Vehicle-to-Grid Communication Interface - Part
 2: Network and application protocol requirements", ISO/
 IEC 15118 , April 2014.

 [OCPP]
 Open Charge Alliance, "Open Charge Point Protocol 2.0",
 April 2018.

 [RFC5785]
 Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

Authors' Addresses

Steffen Fries
Siemens AG
Otto‑Hahn‑Ring 6
Munich, Bavaria 81739
Germany

Email: steffen.fries@siemens.com
URI: http://www.siemens.com/

Hendrik Brockhaus
Siemens AG
Otto‑Hahn‑Ring 6
Munich, Bavaria 81739
Germany

Email: hendrik.brockhaus@siemens.com
URI: http://www.siemens.com/

Eliot Lear
Cisco Systems
Richtistrasse 7
Wallisellen CH‑8304
Switzerland

Phone: +41 44 878 9200
Email: lear@cisco.com

draft-fujiwara-dnsop-fragment-attack-01 - Measures against cache poisoning attacks using IP fragmentation in DNS

draft-fujiwara-dnsop-fragment-attack-01 - Measures against cache poisoning attac

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: September 2, 2019

K. Fujiwara

JPRS

March 01, 2019

Measures against cache poisoning attacks using IP fragmentation in DNS

draft-fujiwara-dnsop-fragment-attack-01

Abstract

 Researchers proposed practical DNS cache poisoning attacks using IP
 fragmentation. This document shows feasible and adequate measures at
 full-service resolvers and authoritative servers against these
 attacks. To protect resolvers from these attacks, avoid
 fragmentation (limit requestor's UDP payload size to 1220/1232), drop
 fragmented UDP DNS responses and use TCP at resolver side. To make a
 domain name robust against these attacks, limit EDNS0 Responder's
 maximum payload size to 1220, set DONTFRAG option to DNS response
 packets and use good random fragmentation ID at authoritative server
 side.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 2, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Methodology of the attack

	3. Current status

	4. Possible measures
	 4.1. Use DNSSEC

	 4.2. Limit requestor's UDP payload size to 1220/1232 on IPv6

	 4.3. Limit requestor's UDP payload size to 512

	 4.4. Set IP_DONTFRAG / IPv6 DONTFRAG at authoritative servers

	 4.5. Drop path MTU discovery or filter ICMP related to path MTU discovery

	 4.6. Drop all fragmented packets

	 4.7. Drop fragmented UDP DNS responses at full-service resolvers

	 4.8. Use TCP only

	 4.9. Use good randomness for Fragmentation Identification field

	5. Proposal

	6. Example firewall configuration

	7. IANA Considerations

	8. Security Considerations

	9. Acknowledgments

	10. Change History
	 10.1. 00

	 10.2. 01

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. How to know path MTU size

	Appendix B. How to generate crafted ICMP packets
	 B.1. Example of crafted ICMP Need Fragmentation and DF set packet

	 B.2. Example of crafted ICMPv6 Packet Too Big

	Author's Address

1. Introduction

 "Fragmentation Considered Poisonous" [Herzberg2013] proposed
 effective off-path DNS cache poisoning attacks using IP
 fragmentation. The attacks mainly depend on the use of UDP to
 retrieve long DNS responses, resulting in packet fragmentation.
 Recent full-service resolvers use good randomness for query source
 port numbers and ID field in DNS header to prevent cache poisoning
 attacks by off-path attackers. However, IP fragmentation is
 performed by OS kernel or routers that operators of DNS servers
 cannot control, and the query source port number and ID field in DNS
 header exist only in first fragment. The attack depends on poor
 randomness of "Identification" field generated by IP fragmentation
 and some bugs in IP reassembly code. Attackers can know path MTU
 size between authoritative servers and victim full-service resolvers,
 and responses from the authoritative servers. If attackers know
 generation algorithm of the "Identification" field, they can generate
 crafted second fragment packets that will be accepted by victim full-
 service resolvers.

 [Hlavacek2013] also discussed the attacks and pointed that attackers
 can control path MTU size between some authoritative servers and
 victim full-service resolvers by sending crafted ICMP packets
 (Fragmentation needed and DF set, or ICMPv6 Packet Too Big).
 [Hlavacek2013] proposed a defense and two workarounds. The defence
 is DNSSEC and workarounds are ignoring ICMP type=3 code=4
 (fragmentation needed and DF set), and limiting response size / EDNS0
 buffer size fit to MTU size.

 And more, "Domain Validation++ For MitM-Resilient PKI" [Brandt2018]
 proved that off-path attackers can intervene in path MTU discovery
 [RFC1191] to perform intentionally fragment responses from
 authoritative servers. They also proved that they poisoned
 Certificate Authorities (CAs)' full-service resolvers and
 successfully issued some fraudulent certificates.

 As a result, we cannot trust all fragmented UDP packets and path MTU
 discovery.

 By the way, TCP is considered strong against fragmentation attacks
 because TCP has sequence number and acknowledgement number in each
 sequence.

 This document describes possible measures of cache poisoning attacks
 using IP fragmentation.

2. Methodology of the attack

 DNS cache poisoning attacks using IP fragmentation are performed by
 combining the path MTU attack and cache poisoning attack. Path MTU
 attack targets are authoritative DNS servers. Cache poisoning attack
 targets are full-service resolvers.

 Cache poisoning attacks using IP fragmentation are performed as
 follows steps. Path MTU attack is performed by step 3. Cache
 poisoning attack is performed by step 4 to 6.

 1. Choose victim full-service resolver and target domain name.

 2. Get the correct response from authoritative servers of the target
 domain name.

 3. Send crafted ICMP/ICMPv6 packet to authoritative servers of the
 target domain name. The crafted ICMP packet indicates small path
 MTU size from the authoritative server to the victim full-
 resolver. If control of the path MTU succeed, proceed to the
 next step.

 4. Generate second fragments from the correct response retrieved at
 step 2 with specified path MTU size, and calculate partial
 checksum value of the second fragment. Generate crafted second
 fragment that has the same partial checksum value. (If the
 partial checksum value of the correct second fragment and the
 partial checksum value of the crafted second fragment are the
 same, the UDP checksum value are the same.)

 5. Send trigger query (target domain name / type) to the victim
 full-service resolver.

 6. Send the crafted second fragment to victim full-service resolver
 with assumed fragment ID (or all possible IDs, at most 65536 on
 IPv4).

 7. If victim full-service resolver accepts the crafted second
 fragment, the attack is successful.

 The keys of the attack are:

 o The attacker can control the fragmentation.

 o The attacker can generate second fragment that generates the same
 UDP checksum value as the original response.

 o The query source port and DNS ID field exist in the first
 fragment.

 o the reassembly process holds received second fragment until
 arrival of the first fragment (timing is not strict),

 o IPv4 fragmentation ID field has only 16 bits.

 o Some IPv6 implementations use predictable fragment Identification
 values [RFC7739].

 The probability of spoofing a resolver is described in Section 7.2 of
 [RFC5452]. The DNS cache poisoning attack using IP fragmentation
 changes to P=1 and I=1 (source port and ID are in the first fragment
 and need not predict), and adds number of fragment IDs as a
 denominator.

 On IPv6, the attack does not change the probability because IPv6
 fragment ID field has 32 bits. On IPv4, the attack changes the
 probability from 1/2^32 to 1/2^16 because IPv4 fragment ID field has
 only 16 bits.

3. Current status

 [Brandt2018] showed that Linux version 3.13 and older versions are
 vulnerable to crafted ICMP fragmentation needed and DF set packet and
 off-path attackers can set some of authoritative servers' path MTU
 size to 296.

 The author tested Linux version 2.6.32, 4.18.20 and FreeBSD 12.0.
 Linux 2.6.32 accepts crafted "ICMP Need Fragmentation and DF set"
 packet and path MTU decreased to 552. Linux 2.6.32, Linux 4.18.20
 and FreeBSD 12.0 accept crafted "ICMPv6 Packet Too Big" packet and
 path MTU decreased to 1280.

 Linux version 4.18.20 may ignore crafted ICMP packet.

 FreeBSD and NetBSD accept "ICMP Need Fragmentation and DF set" packet
 related to established TCP and ignore "ICMP Need Fragmentation and DF
 set" packet related to UDP.

 Then, off-path attackers can decrease path MTU size from some IPv4
 authoritative servers to 552 (or 296), and can decrease path MTU size
 from IPv6 authoritative servers to 1280 (minimal IPv6 MTU size).

 As described before, some old operating systems use predictable
 (incremental) fragmentation ID.

 Furthermore, off-path attackers can know path MTU size related to
 authoritative servers and they can generate crafted fragmented DNS
 responses to victim full-service resolvers.

 Then, measures against these attacks at full-service resolvers is
 important.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| OS / | crafted | minimal | crafted | minimal |
| source | ICMPv4 | IPv4 MTU | ICMPv6 | IPv6 MTU |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| [Brandt2018] | accept | 552/296 | unknown | unknown |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
Linux 2.6.32	accept	552	accept	1280
Linux 4.18.20	ignore?		accept	1280
FreeBSD 12	ignore		accept	1280
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

4. Possible measures

4.1. Use DNSSEC

 DNSSEC is a measure against cache poisoning attacks. However, there
 are many unsigned zones and full-service resolver operator need to
 consider these zones.

 "Use DNSSEC" requires both authoritative side and resolver side
 support.

4.2. Limit requestor's UDP payload size to 1220/1232 on IPv6

 Limiting EDNS0 requestor's UDP payload size [RFC6891] to 1220/1232 on
 IPv6 is a measure of path MTU attacks on IPv6 because minimal MTU
 size of IPv6 is 1280 and most of implementations ignore ICMPv6 packet
 too big packets whose MTU size is smaller than 1280.

4.3. Limit requestor's UDP payload size to 512

 Limiting EDNS0 requestor's UDP payload size [RFC6891] to 512 may be a
 measure of path MTU attacks.

 However, since most of DNSSEC responses exceed 512 octets, limiting
 EDNS0 requestor's UDP payload size to 512 results truncated responses
 and resolvers need to retry queries by TCP. It always decreases name
 resolution performance.

 And more, [Brandt2018] showed that off-path attackers can set some of
 authoritative servers' path MTU cache to 296. In this case, limiting
 EDNS0 payload size is not a measure.

 Section 3 of [RFC4035] defines that A security-aware name server MUST
 support a message size of at least 1220 octets.

4.4. Set IP_DONTFRAG / IPv6 DONTFRAG at authoritative servers

 It is a measure of authoritative server side.

4.5. Drop path MTU discovery or filter ICMP related to path MTU
 discovery

 It is not a measure of resolver side. All authoritative servers need
 to be changed. Changing all authoritative servers is impossible.
 TCP requires path MTU discovery.

4.6. Drop all fragmented packets

 To avoid the fragmentation attacks, "drop all fragmented packets" is
 one of the ideas. However, under path MTU discovery attacks, TCP
 packets may be fragmented and dropped. Then, "drop all fragmented
 UDP packets related to DNS" is the solution.

4.7. Drop fragmented UDP DNS responses at full-service resolvers

 Drop fragmented UDP DNS responses at full-service resolvers may be a
 measure of cache poisoning attacks using IP fragmentation.

 To avoid fragmentation in normal condition, use EDNS0 requestor's and
 responder's UDP payload size as 1220 to avoid fragmentation. 1220 is
 the minimal value defined by [RFC4035].

 Under path MTU discovery attacks and cache poisoning attacks using IP
 fragmentation, UDP DNS response packets are fragmented and dropped
 and name resolution fails.

 If resolver software retries by TCP, TCP is strong for fragmentation
 attacks and name resolution by TCP will success.

4.8. Use TCP only

 It is believed that TCP is not vulnerable to fragmentation attacks.
 Unbound has "tcp-upstream" option that changes the upstream queries
 use TCP only for transport.

 Some operators that support [RFC8078] said that they use TCP only for
 transport to avoid cache poisoning attacks.

 The full-service resolvers of multiple CAs issuing domain validation
 (DV) certificates are required to withstand cache poisoning attacks,
 it is better to implement their full-service resolvers use TCP
 upstream queries only. Section 11.2 "DNS security" of
 [I-D.ietf-acme-acme] recommends that servers SHOULD perform DNS
 queries over TCP, which provides better resistance to some forgery
 attacks than DNS over UDP.

4.9. Use good randomness for Fragmentation Identification field

 See [RFC7739].

5. Proposal

 To avoid cache poisoning attacks using IP fragmentation by full-
 service resolvers,

 o Full-service resolvers set EDNS0 requestor's UDP payload size to
 1220. (minimal size defined by [RFC4035])

 o Full-service resolvers drop fragmented UDP responses related to
 DNS.

 o Full-service resolvers may retry name resolution by TCP.

 o (Full-service resolvers support DNSSEC validation.)

 To make a domain name robust for cache poisoning attacks using IP
 fragmentation,

 o Authoritative servers choose EDNS0 responder's maximum payload
 size limit to 1220 (to avoid IP fragmentation).

 o Authoritative servers send DNS responses with IP_DONTFRAG /
 IPV6_DONTFRAG options.

 o (Authoritative servers support DNSSEC and sign the domain name.)

 o Authoritative servers and network devices use good randomness for
 fragmentation Identification field.

 Exception: If authoritative servers and full-service resolvers are
 located beyond the link with the MTU value less than 1280, choose
 EDNS0 requestor's and responder's maximum payload size limit to the
 smallest link MTU value.

6. Example firewall configuration

 Linux iptables support dropping first fragment with UDP source port
 53 by using m32 module. Other first fragments that is not UDP, not
 source port 53 are not dropped. Second and following fragments
 should not be dropped because they may relate to other protocols.
 Second fragments related to DNS will be dropped because their first
 fragments dropped.

 iptables -t raw -A PREROUTING -m u32 --u32 \\

 "6&0xFFFF00FF=0x20000011&&18&0xffff=53" -j DROP

or iptables ‑t raw ‑A PREROUTING ‑p udp ‑f ‑j DROP

 ip6tables -A INPUT -p udp -m frag --fragfirst -m udp --sport 53 -j DROP

 Other OSs may not handle first fragments. Then, drop all fragmented
 UDP packets.

 On FreeBSD, 'ipfw' can drop all fragmented UDP packets (second
 fragments).

 ipfw deny log udp from any to me in frag

7. IANA Considerations

 This document has no IANA actions.

8. Security Considerations

 Under path MTU discovery and fragmentation attacks, most full-service
 resolver software do not retry name resolution by TCP, name
 resolution related to attacks fails.

9. Acknowledgments

 The author would like to specifically thank Mark Andrews and Daisuke
 HIGASHI.

10. Change History

10.1. 00

 Initial version

10.2. 01

 o Added Attack methodology

 o Added measures at authoritative servers

11. References

11.1. Normative References

 [RFC1191]
 Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5452]
 Hubert, A. and R. van Mook, "Measures for Making DNS More
 Resilient against Forged Answers", RFC 5452,
 DOI 10.17487/RFC5452, January 2009,
 <https://www.rfc-editor.org/info/rfc5452>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC7739]
 Gont, F., "Security Implications of Predictable Fragment
 Identification Values", RFC 7739, DOI 10.17487/RFC7739,
 February 2016, <https://www.rfc-editor.org/info/rfc7739>.

11.2. Informative References

 [Brandt2018]

 Brandt, M., Dai, T., Klein, A., Shulman, H., and M.
 Waidner, "Domain Validation++ For MitM-Resilient PKI",
 Proceedings of the 2018 ACM SIGSAC Conference on Computer
 and Communications Security , 2018.

 [Herzberg2013]

 Herzberg, A. and H. Shulman, "Fragmentation Considered
 Poisonous", IEEE Conference on Communications and Network
 Security , 2013.

 [Hlavacek2013]

 Hlavacek, T., "IP fragmentation attack on DNS", RIPE 67
 Meeting , 2013, <https://ripe67.ripe.net/
 presentations/240-ipfragattack.pdf>.

 [I-D.ietf-acme-acme]

 Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", draft-ietf-acme-acme-18 (work in progress),
 December 2018.

 [RFC8078]
 Gudmundsson, O. and P. Wouters, "Managing DS Records from
 the Parent via CDS/CDNSKEY", RFC 8078,
 DOI 10.17487/RFC8078, March 2017,
 <https://www.rfc-editor.org/info/rfc8078>.

Appendix A. How to know path MTU size

 o Linux: ip route get <IPv4/IPv6 address>

 o FreeBSD: sysctl -o net.inet.tcp.hostcache.list

Appendix B. How to generate crafted ICMP packets

 Let the crafted path MTU size be cMTU.

B.1. Example of crafted ICMP Need Fragmentation and DF set packet

IP header:
 +‑‑‑+
 | V/HL 0x45 / TOS any / Total Length 20+8+20+8 |
 | Identification any / Flags/Offset 0 |
 | TTL any / Protocol 1 / Header checksum: calc |
 | Source Address: attack tool address or any |
 | Destination: target auth server address |
 +‑‑‑+

ICMP header:
 +‑‑‑+
 | Type 3 / Code 4 / Checksum: calculate |
 | unused 0 / Next‑Hop MTU: cMTU |
 +‑‑‑+

Internet Header + 64 bits of Original Datagram:
IP header: +‑‑‑+
 | V/HL 0x45 / TOS any / Total Length 1420 |
 | Identification any / Flags/Offset 0x4000(DF)|
 | TTL any / Protocol 17/ Header checksum: calc |
 | Source Address: target auth server address |
 | Destination: victim full‑resolver address |
 +‑‑‑+
UDP header:
 +‑‑‑+
 | Source Port 53 / Destination Port: any |
 | Length 1400 / Checksum: any |
 +‑‑‑+

B.2. Example of crafted ICMPv6 Packet Too Big

IPv6 header:
 +‑‑+
 | Version/Traffic Class/Flow Label: 0x60000000 |
 |Payload Len: cMTU‑40 / NextHeader 58 / HopLimit any |
 | Source Address: attack tool address or any |
 | Destination Address: target auth server address |
 +‑‑+
ICMPv6 header:
 +‑‑+
 | Type 2 / Code 0 / Checksum: calculate |
 | MTU: (64bit) cMTU |
 +‑‑+
Fake invoking packet
IPv6 header:
 +‑‑+
 | Version/Traffic Class/Flow Label: 0x60000000 |
 |Payload Len: 1400 / NextHeader 17 / HopLimit any |
 | Source Address: target auth server address |
 | Destination Address: victim full‑resolver address |
 +‑‑+
UDP header:
 +‑‑+
 | Source Port 53 / Destination Port: any |
 | Length 1400 / Checksum: any |
 +‑‑+
Rest: Fill zero to end of packet

Author's Address

Kazunori Fujiwara
Japan Registry Services Co., Ltd.
Chiyoda First Bldg. East 13F, 3‑8‑1 Nishi‑Kanda
Chiyoda‑ku, Tokyo 101‑0065
Japan

Phone: +81 3 5215 8451
Email: fujiwara@jprs.co.jp

draft-galis-anima-autonomic-slice-networking-05 - Autonomic Slice Networking

draft-galis-anima-autonomic-slice-networking-05 - Autonomic Slice Networking

Index
Back 5
Prev
Next
Forward 5

No Working Group

Internet-Draft

Intended Status: Standards Track

Expires: March 30, 2019

A. Galis

University College London

K. Makhijani

D. Yu

B. Liu

Huawei Technologies

September 26, 2018

Autonomic Slice Networking

draft-galis-anima-autonomic-slice-networking-05

Abstract

 This document describes the technical requirements and the related
 reference model for the intercommunication and coordination among
 devices in Autonomic Slicing Networking. The goal is to define how
 the various elements in a network slicing context work and
 orchestrate together, to describe their interfaces and relations.
 While the document is written as generally as possible, the initial
 solutions are limited to the chartered scope of the WG.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 The list of current Internet-Drafts can be accessed at
 https://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 https://www.ietf.org/shadow.html

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2017.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1 Introduction

	2. The Network Slicing Overall View
	 2.1. Key Terms and Context

	 2.2. High Level Requirements

	3. Autonomic Slice Networking

	4. Autonomic Inter-Slice Orchestration

	5. GRASP Resource Reservation / Release Messages flow

	6. The Autonomic Network Slicing Element

	7. The Autonomic Slice Networking Ianfrastructure
	 7.1. Signaling Between Autonomic Slice Element Managers

	 7.2. The Autonomic Control Plane

	 7.3. Naming & Addressing

	 7.4. Discovery

	 7.5. Routing

	8. Security and Trust Infrastructure
	 8.1. Public Key Infrastructure

	 8.2. Domain Certificate

	9. Cross-Domain Functionality

	10. Autonomic Service Agents (ASA)

	11. Management and Programmability
	 11.1. How a Slice Network Is Managed

	 11.2. Autonomic Resource Information Model

	 11.3. Control Loops

	 11.4. APIs
	 11.4.1. Slice Control APIs

	 11.4.2. Service Agent - Device APIs

	 11.4.3. Service Agent - Port APIs

	 11.4.4. Service Agent - Link APIs

	 11.5. Relationship with MANO

	12. Security Considerations
	 12.1. Threat Analysis

	 12.2. Security Mechanisms

	13. IANA Considerations

	14. Acknowledgements

	14. References
	 14.1. Normative References

	 14.2. Informative References

	Authors' Addresses

1 Introduction

 The document "Autonomic Networking - Definitions and Design Goals"
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space, as well as
 a high level reference model. This document defines this reference
 model with more detail, to allow for functional and protocol
 specifications to be developed in an architecturally consistent, non-
 overlapping manner. While the document is written as generally as
 possible, the initial solutions are limited to the chartered scope of
 the WG.

 Most networks will run with some autonomic functions for the full
 networks or for a group of nodes [RFC7576] or for a group of slice
 networks while the rest of the network is traditionally managed.

 The goal of this document is to focus on the autonomic slicing
 networking. [RFC7575] is focusing on fully or partially autonomic
 nodes or networks.

 The proposed revised ANIMA reference model allows for this hybrid
 approach across all such capabilities. It enhances [ASN].

 This is a living document and will evolve with the technical
 solutions developed in the ANIMA WG. Sections marked with (*) do not
 represent current charter items.

 While this document must give a long term architectural view, not all
 functions will be standardized at the same time.

2. The Network Slicing Overall View

2.1. Key Terms and Context

 A number of slice definitions were used in the last 10 years in
 distributed and federated testbed research [GENI], future internet
 research [ChinaCom09] and more recently in the context of 5G research
 [NGMN], [ONF], [IMT2020], [NGS-3GPP], [NS-ETSI]. Such definitions
 converge towards NS as group of components: Service Instance, Network
 Slice Instance, Resources and Slice Element Manager

 In this draft we are using the following terms:

 Logical resource - An independently manageable partition of a
 physical resource, which inherits the same characteristics as the
 physical resource and whose capability is bound to the capability of
 the physical resource. It is dedicated to a Network Function or
 shared between a set of Network Functions.

 Virtual resource - An abstraction of a physical or logical resource,
 which may have different characteristics from that resource, and
 whose capability may not be bound to the capability of that resource

 Network Function (NF) - A processing function in a network. It
 includes but is not limited to network nodes functionality, e.g.
 session management, mobility management, switching, routing
 functions, which has defined functional behaviour and interfaces.
 Network functions can be implemented as a network node on a dedicated
 hardware or as a virtualized software functions. Data, Control,
 Management, Orchestration planes functions are Network Functions.

 Virtual Network Function (VNF) - A network function whose functional
 software is decoupled from hardware. One or more virtual machines
 running different software and processes on top of industry-standard
 high-volume servers, switches and storage, or cloud computing
 infrastructure, and capable of implementing network functions
 traditionally implemented via custom hardware appliances and middle.
 boxes (e.g. router, NAT, firewall, load balancer, etc.) Network
 Slicing (NS) refers to a managed group of subsets of resources,
 network functions / network virtual functions at the data, control,
 management/orchestration planes and services at a given time. Network
 slice is programmable and has the ability to expose its capabilities.
 The behaviour of the network slice realized via network slice
 instance(s). Network resources include connectivity, compute, and
 storage resources.

 Network Slicing is end-to-end concept covering the radio and non-
 radio networks inclusive of access, core and edge / enterprise
 networks. It enables the concurrent deployment of multiple logical,
 self-contained and independent shared or partitioned networks on a
 common infrastructure platform

 Network slicing represents logically or physically isolated groups of
 network resources and network function/virtual network functions
 configurations separating its behavior from the underlying physical
 network.

 Network Slice Instance - An activated network slice. It is created
 based on network template. A set of managed run-time network
 functions, and resources to run these network functions, forming a
 complete instantiated logical network to meet certain network
 characteristics required by the service instance(s). It provides the
 network characteristics that are required by a service instance. A
 network slice instance may also be shared across multiple service
 instances provided by the network operator.

 From a business point of view, a slice includes combination of all
 relevant network resources / functions / assets required to fulfill a
 specific business case or service, including OSS, BSS and DevOps
 processes.

 From the network infrastructure point of view, slicing instances
 require the partitioning and assignment of a set of resources that
 can be used in an isolated, disjunctive or non- disjunctive manner.

 Examples of physical or virtual resources to be shared or partitioned
 would include: bandwidth on a network link, forwarding tables in a
 network element (switch, router), processing capacity of servers,
 processing capacity of network or network clouds elements [SLICING].
 As such slice instances would contain:

(i) a combination/group of the above resources which can act as a
 network,
(ii) appropriate resource abstractions,
(iii) capability exposure of abstract resources towards service and
 management clients that are needed for the operation of slices

 The capability exposure creates an abstraction of physical network
 devices that would provide information and information models
 allowing operators to manipulate the network resources. By utilizing
 open programmable network interfaces, it would enable access to
 control layer by customer interfaces and applications.

 The establishment of slices is both business-driven (i.e. slices are
 in support for different types and service characteristics and
 business cases) and technology-driven as slice is a grouping of
 physical or virtual) resources (network, compute, storage) which can
 act as a sub network and/or a cloud. A slice can accommodate service
 components and network functions (physical or virtual) in all network
 segments: access, core and edge / enterprise networks.

 A complete slice is composed of not only various network functions
 which are based on virtual machines at C-RAN and C-Core, but also
 transport network resources that can be assigned to the slice at
 radio access/transport network. Different future businesses require
 different throughput, delay and mobility, and some businesses need
 very high throughput or/and low delay.

2.2. High Level Requirements

 Slice creation: management plane create virtual or physical network
 functions and connects them as appropriate and instantiate them in
 the slice, which is a subnetworks.

 The instance of slice management then takes over the management and
 operations of all the (virtualised) network functions and network
 programmability functions assigned to the slice, and (re-)configure
 them as appropriate to provide the end-to-end service.

 A complete slice is composed of not only various network functions
 which are based on virtual machines at C-RAN and C-Core, but also
 transport network resources that can be assigned to the slice at
 radio access/transport network. Different future businesses [5GNS],
 [PER-NS] require different throughput, delay and mobility, and some
 businesses need very high throughput or/and low delay. Transport
 network shall provide QoS isolation, flexible network operation and
 management, and improve network utilization among different business.

 (1) Separation from partition of the physical network: Network

 slicing represents logically or physically isolated groups of
 network resources and network function/virtual network functions
 configurations separating its behavior from the underlying
 physical network.

 (2) QoS Isolation: Although traditional VPN technology can provide

 physical network resource isolation across multiple network
 segments, it is deemed far less capable of supporting QoS hard
 isolation, Which means QoS isolation on forwarding plane
 requires better coordination with management plane.

 (3) Independent Management Plane: Like above, network isolation is

 not sufficient, a flexible and more importantly a management
 plane per instance is required to operate on a slice
 independently and autonomously within the constraints of
 resources allocated to the slice.

 (4) Another flexibility requirement is that an operator can deploy

 their new business application or a service in network slice
 with low cost and high speed, and ensure that it does not affect
 existing of business applications adversely.

 (5) Stringent Resource Characteristics: A Network Slicing aware

 infrastructure allows operators to use part of the network
 resources to meet stringent resource characteristics.

 (6) Type of resources: Network Slice instance is a dedicated network

 that is build and activated on an infrastructure mainly composed
 of, but not limited to, connectivity, storage and computing.

 (7) Programmability: Operator not only can slice a common physical

 infrastructure into different logical networks to meet all kinds
 of new business requirements, but also can use SDN based
 technology to improve the overall network utilization. By
 providing a flexible programmable interface; the 3rd party can
 develop and deploy new network business rapidly. Further, if a
 network slicing can run with its own slice controller, this
 network slicing will get more granular control capability [I-
 D.ietf-anima-autonomic-control-plane] to retrieve slice status,
 and issuing slicing flow table, statistics fetch etc.

 (8) Life cycle self-management: It includes creation, operations,

 re- configuration, composition, decomposition, deletion of
 slices. It would be performed automatically, without human
 intervention and based on a governance configurable model of the
 operators. As such protocols for slice set-up /operations
 /(de)composition / deletion must also work completely
 automatically. Self-management (i.e. self- configuration, self-
 composition, self-monitoring, self-optimisation, self-
 elasticity) is carried as part of the slice protocol
 characterization.

 (9) Network slice Self-management: Network slices will need to be

 self-managed by automated, autonomic and autonomous systems in
 order to cope with dynamic requirements, such as flexible
 scalability, extensibility, elasticity, residency and
 reliability of an infrastructure. Network slices will need to be
 self-managed by automated, autonomic and autonomous systems in
 order to cope with dynamic requirements, such as scalability or
 extensibility of an infrastructure. A common information model
 describing uniformly the NS in a single and/or multiple domain
 would support such self-managed.

 (10) Extensibility: Since the Autonomic Slice Networking

 Infrastructure is a relatively new concept, it is likely that
 changes in the way of operation will happen over time. As such
 new networking functions will be introduced later, which allow
 changes to the way the slices operate.

 (11) Network Slice elasticity: A Network Slice instance has the

 mechanisms and triggers for the growth/shrinkage of all
 resources, and/or network and service functions as enabled by a
 common information model that explicitly provides for elasticity
 policies for scaling up/down resources.

 (12) Multiple domains activation: Network slice instances are

 concurrently activated as multiple logical, self-contained and
 independent, partitioned network functions and resources on a
 specific infrastructure domain.

 (13) Resource Exposure: Each network slice has the ability to

 dynamically expose and possibly negotiate the parameters that
 characterize an NS as enabled by a common information model that
 explicitly provides monitoring policies for all model
 descriptors.

 (14) Network Tenants: Network slicing support tenants that are

 strongly independent on infrastructure as enabled by a common
 information model that explicitly provides for a level of
 tenants management for the resources dedicated to an instance of
 network slice.

 (15) End-to-end Orchestration of Network Slicing: Coordinating

 underlay network infrastructure and service function resources.
 In the process of orchestration of network slice, resource
 registration and templates for network slice repository are
 needed.

3. Autonomic Slice Networking

This section describes the various elements in a network with
autonomic functions, and how these entities work together, on a high
level. Subsequent sections explain the detailed inside view for
each of the autonomic network elements, as well as the network
functions (or interfaces) between those elements.

 From a business point of view, a slice includes a combination of all
 the relevant network resources, functions, and assets required to
 fulfill a specific business case or service, including OSS, BSS and
 DevOps processes.

 From the network infrastructure point of view, network slice requires
 the partitioning and assignment of a set of resources that can be
 used in an isolated, disjunctive or non- disjunctive manner for that
 slice.

 From the tenant point of view, network slice provides different
 capabilities, specifically in terms of their management and control
 capabilities, and how much of them the network service provider hands
 over to the slice tenant. As such there are two kinds of slices: (A)
 Inner slices, understood as the partitions used for internal services
 of the provider, retaining full control and management of them. (B)
 Outer slices, being those partitions hosting customer services,
 appearing to the customer as dedicated networks.

 Network Slicing lifecycle includes the management plane selecting a
 group of network resources (whereby network resources can be
 physical, virtual or a combination thereof); it connects with the
 physical and virtual network and service functions as appropriate,
 and it instantiates all of the network and service functions assigned
 to the slice. For slice operations, the control plane takes over
 governing of all the network resources, network and service functions
 assigned to the slice. It (re-) configures them as appropriate and as
 per elasticity needs, in order to provide an end-to-end service.

 One expected autonomic Slice Networking function is the capability
 and resource Usability for a slice. Applications or services
 requiring information of available slice capabilities and resources
 are satisfied by abstracted resource view and control. Usability of
 capabilities and resources can be enabled either by resource
 publishing or by discovery. In the latter case, the service performs
 resource collection directly from the provider of the slice by using
 discovery mechanisms to get total information about the available
 resources to be consumed. In the former, the network provider exposes
 available resources to services (e.g., through a resource catalog)
 reducing the amount of detail of the underlying network.

Slice Element Manager (SEM) is installed for each control domain.
Control domain is defined according to geographic location and
control functions. Each SEM converts requirements from orchestrator
into virtual resources and manages virtual resources of a slice. SEM
also exchanges information of virtual resources with other slice
element managers via a dedicated resource interface. SEM provides
also capability exposure facilities by allowing 3rd parties to access
/ use via APIs information regarding services provided by the slice
(e.g. connectivity information, QoS, mobility, autonomicity, etc.)
and to dynamically customize the network characteristics for
different diverse use cases (e.g. ultra‑low latency, ultra‑
reliability, value‑added services for enterprises, etc.) within the
limits set of functions by the operator.

 Physical Element Manager (PEM) is installed for each control domain.
 Control domain is defined according to geographic location and
 control functions. PEM exchanges information of virtual resource with
 SEM via virtual resource interface and interconverts between virtual
 resource and physical resource. The PEM orders physical functions
 (ex. switches) to allocate physical resource via physical resource
 interface.

 Figure 1 shows the high level view of an Autonomic Slice Networking.

 It consists of a number of autonomic nodes resources, which interact
 directly with each other. Those autonomic nodes resources provide a
 common set of capabilities across a network slice, called the
 "Autonomic Slice Networking Infrastructure" (ASNI).

 The ASN provides functions like naming, addressing, negotiation,
 synchronization, discovery and messaging.

 Autonomic network functions typically span several slices in the
 network. The atomic entities of an autonomic function are called the
 "Autonomic Service Agents" (ASA), which are instantiated on slices.

 In a horizontal view, autonomic functions span across the network, as
 well as the Autonomic Slice Networking Infrastructure. In a vertical
 view, a slice always implements the ASNI, plus it may have one or
 several Autonomic Service Agents as part of slice capability
 exposure. The Autonomic Networking Infrastructure (ASNI) therefore is
 the foundation for autonomic functions. The current charter of the
 ANIMA WG includes the specification of the ASNI, using a few
 autonomic functions as use cases. ASNI would represent a customized
 and an approach [I-D.ietf-anima-reference-model] for implementing a
 general purposed ASI.

+‑ +
: : Autonomic Slice Function 1 : :
: SSA 1 : SSA 1 : SSA 1 : SSA 1 :
+‑ +
 : : :
 : +‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ + :
 : : Autonomic Slice Function 2 : :
 : : ASC 2 : ASC 2 : :
 : +‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ + :
 : : :
+‑ ‑+
: Autonomic Slice Networking Infrastructure :
+‑ ‑+
+ +
+ +‑‑‑+ +
+ | Autonomic Inter‑Slice Orchestration | +
+ +‑‑‑+ +
+ | | | +
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
Slice 1		Slice 2		Slice N
SEM	‑‑‑‑‑‑‑	SEM	‑‑‑‑‑‑ ... ‑‑‑‑	SEM
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | | |

+‑‑‑+
| |
| PEC1 PEC2 PECm |
| | ... | ... | |
| |
| Resources / Network Functions / ANI |
| |
+‑‑‑+
 | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ + +‑‑‑‑‑‑‑+ + + +‑‑‑‑‑‑‑‑+ +
| Node1.1 ‑‑| Node1.N |‑‑‑‑‑‑ |Node2.x|‑...‑‑‑‑‑‑ | NodeM.y| +
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ + +‑‑‑‑‑‑‑+ + + +‑‑‑‑‑‑‑‑+ +
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 Domain 1 Domain 2 Domain M

 Figure 1: High level view of Autonomic Slice Networking

 Additionally, at least 2 autonomous functions are envisioned -
 Autonomous Slice control (ASC) and Slice Service agent (SSA). These
 are explained in sections below.

4. Autonomic Inter-Slice Orchestration

 This section describes an autonomic orchestration and its
 functionality.

 Orchestration refers to the system functions that:

* automated and autonomically co‑ordination of network functions
 in slices

 * autonomically coordinate the slices lifecycle and all the
 components that are part of the slice (i.e. Service Instances,
 Network Slice Instances, Resources, Capabilities exposure) to
 ensure an optimized allocation of the necessary resources across
 the network.

 * coordinate a number of interrelated resources, often distributed
 across a number of subordinate domains, and to assure
 transactional integrity as part of the process [TETT1].

* autonomically control of slice life cycle management, including
 concatenation of slices in each segment of the infrastructure
 including the data pane, the control plane, and the management
 plane.

 * autonomically coordinate and trigger of slice elasticity and
 placement of logical resources in slices.

 * coordinates and (re)-configure logical resources in the slice by
 taking over the control of all the virtualized network functions
 assigned to the slice.

 It is also the continuing process of allocating resources to satisfy
 contending demands in an optimal manner [TETT2]. The idea of optimal
 would include at least prioritized SLA commitments [SERMODEL], and
 factors such as customer endpoint location, geographic or topological
 proximity, delay, aggregate or fine-grained load, monetary cost,
 fate- sharing or affinity. The word continuing incorporates
 recognition that the environment and the service demands constantly
 change over the course of time, so that orchestration is a
 continuous, multi-dimensional optimization feedback loop [I-
 D.strassner-anima-control-loops].

 It protects the infrastructure from instabilities and side effects
 due to the presence of many slice components running in parallel. It
 ensures the proper triggering sequence of slice functionality and
 their stable operation. It defines conditions/constraints under
 which service components will be activated, taking into account
 operator service and network requirements (inclusive of optimize the
 use of the available network & compute resources and avoid situations
 that can lead to sub-par performance and even unstable and
 oscillatory behaviors.

5. GRASP Resource Reservation / Release Messages flow

 Inter Slice Physical
 Slice Element Element Domain Physical
 Orchestrator Manager Manager Manager Function

GRASP Discovery	GRASP Discovery	GRASP Discovery	GRASP Discovery
‑Response	‑Response	‑Response	‑Response
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	<‑‑‑‑‑‑‑‑‑‑‑‑>	<‑‑‑‑‑‑‑‑‑‑‑>	<‑‑‑‑‑‑‑‑‑‑‑>
GRASP Request			
Slicing Objective	GRASP Request		
‑‑‑‑‑‑‑‑‑‑‑‑‑>	Slicing		
	Objectives	GRASP Request	
	‑‑‑‑‑‑‑‑‑‑‑‑>	Slicing	GRASP Request
		Objectives	Slicing

		‑‑‑‑‑‑‑‑‑‑‑>	Objectives
			‑‑‑‑‑‑‑‑‑‑‑>
		GRASP	
		Confirm‑Waiting	
		<‑‑‑‑‑‑‑‑‑	
	GRASP		
	Confirm‑Waiting		GRASP
	<‑‑‑‑‑‑‑‑‑‑‑		Negotiation
			Single/Multiple
		GRASP Negotiation	Rounds
		Single/Multiple	<‑‑‑‑‑‑‑‑‑‑‑>
		Rounds	
GRASP		<‑‑‑‑‑‑‑‑‑‑‑>	
Confirm‑Waiting			
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	GRASP		
	Negotiation		
	Single/Multiple		
	Rounds		
GRASP Negotiation	<‑‑‑‑‑‑‑‑‑‑‑>		
Single/Multiple			
Rounds			
<‑‑‑‑‑‑‑‑‑‑‑‑>			
Figure 2 ‑ GRASP: Network Slice reservation / Release3 Messages Flow

 The above message sequence figure shows the message flows of the
 interactions between Inter-Slice Orchestrator, Slice Element Manager,
 Physical Element Manager, Domain Manager and Physical Network
 functions.

6. The Autonomic Network Slicing Element

 This section describes an autonomic slice network element and its
 internal architecture. The reference model explained in the document
 "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
 the sources of information that an autonomic service agent can
 leverage: Self-management, Self-knowledge, network knowledge (through
 discovery), Intent [I-D.du-anima-an-intent], and feedback loops.
 Fundamentally, there are two levels inside an autonomic node: the
 level of Autonomic Service Agents, and the level of the Autonomic
 Slice Networking Infrastructure, with the former using the services
 of the latter. The self management functionality (self-configuration,
 self-optimisation, self- healing) could be implemented across the
 Inter Slice Orchestrator, Slice Element Manager and Physical Element
 Manager. Such functionality deals with dynamic

 * coordination the life cycle of slices

 * allocation of resources to slice instances in an efficient way
 that provides required slice instances performance,

 * self-configuration, self-optimization and self-healing of slice
 instances during their lifecycle management including deployment
 and operations

 * self-configuration, self-optimization and self-healing of
 services of each slice instance. Service lifecycle, that is
 typically different than slice instance lifecycle should also be
 managed in the autonomous way.

 Figure 3 illustrates this concept.

+‑‑+
| |
| +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ |
	Autonomic		Autonomic		Autonomic	
	Service		Service		Service	
	Agent 1		Agent 2		Agent 3	
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+						
^ ^ ^						
‑ ‑ ‑	‑ ‑ API level ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑ ‑ ‑			
V V V						
‑‑						
Autonomic Slice Networking Infrastructure						
‑ Service characteristics (ultra‑low latency,						
ultra‑reliability, etc)						
‑ Autonomic Control Plane functions						
‑ Autonomic Management Plane functions						
‑ Self‑x functions and related control loops elements						
‑ Autonomic Slice Addressing						
Discovery, negotiation and synchronisation functions						
‑ Intent distribution						
‑ Aggregated reporting and feedback loops						
‑ Routing						
‑ Security mechanisms						
‑‑						
Basic Operating System Functions						
+‑‑+
 Figure 3: Model of an autonomic element

 The Autonomic Slice Networking Infrastructure (lower part of Figure
 2) contains slice specific data structures, for example trust
 information about itself and its peers, as well as a generic set of
 functions, independent of a particular usage. This infrastructure
 should be generic, and support a variety of Autonomic Service Agents
 (upper part of Figure 2). The Autonomic Control Plane is the summary
 of all interactions of the Autonomic Slice Networking Infrastructure
 with other services.

 The use cases of "Autonomics" such as self-management, self-
 optimisation, etc, are implemented as Autonomic Service Agents. They
 use the services and data structures of the underlying autonomic
 networking infrastructure. The Autonomic Slice Networking
 Infrastructure should itself be self-managing.

 The "Basic Operating System Functions" include the "normal OS",
 including the network stack, security functions, etc. Autonomic
 Network Slicing Element is a composition of autonomic slice service
 agents and autonomic slice control. Autonomic slice service agents
 obtain specific network resources and provide self-managing and self-
 controlling functions. An autonomic slice control is a higher-level
 autonomic function that takes the role of life-cycle management of a
 or many slice instances. There can be many slice control functions
 based on different types or attributes of slice.

7. The Autonomic Slice Networking Ianfrastructure

 The Autonomic Networking Infrastructure provides a layer of common
 functionality across an Autonomic Network. It comprises "must
 implement" functions and services, as well as extensions. The
 Autonomic Slice Networking Infrastructure (ASNI) resides on top of an
 abstraction layer of resource, network function and network
 infrastructure as shown in figure 1. The document assumes
 abstraction layer enables different autonomous service agents to
 communicate with the underlying disaggregated and distributed network
 infrastructure, which itself maybe an autonomous networking (AN)
 domain or combination of multiple AN domain. The goal of ASNI is to
 provide autonomic life-cycle management of network slices.

7.1. Signaling Between Autonomic Slice Element Managers

The basic network capabilities are autonomically or through
traditional techniques are learnt by slice agents. This depends on
the fact that physical infrastructure is an autonomic network or not.
The GASP extensions signaling [I‑D.liu‑anima‑grasp‑distribution]
[I‑D.liu‑anima‑grasp‑api] [I‑D.ietf‑anima‑grasp] may be used for

 * Discovery of SEMs - a process by which an one SEM discovers
 peers according to a specific discovery objective. The
 discovered SEMs peers may later be used as negotiation
 counterparts or as sources of other coordination activities.

 * Negotiation between SEMs - a process by which two SEMs interact
 to agree on slice logical resource settings that best satisfy
 the objectives of both SEMs.

* The Synchronization between SEMs ‑ a process by which
 Orchestrator and SEMs interact to receive the current state of
 capability exposure values used at a given time in other SEM.
 This is a special case of negotiation in which information is
 sent but the SEM or Orchestrator do not request their peers to
 change configuration settings.

 * Self configuration of SEMs - a process by which Orchestrator and
 SEMs interact to receive the current state of capability
 exposure values used at a given time in other SEM. This is a
 special case of synchronization in which information is sent and
 the SEM is requesting their peers to change configuration
 settings.

 * Self optimization of SEMs - a process by which Orchestrator and
 SEMs interact to receive the current state of capability
 exposure values used at a given time in other SEMs. This is a
 special case of configuration in which information is sent and
 the SEM is requesting their peers to change logical resource
 settings in a slice based on an optimisation criteria.

* Mediation for slice resources ‑ a process by which two SEMs
 interact to agree to logically move resources between slices
 that best satisfy the objectives of both SEMs triggering of
 slice elasticity and placement of logical resources in slices.
 Th???is is a special case of negotiation in which information
 is sent Orchestrator do request SEMs to change logical resource
 configuration settings.

 * Triggering and governing of elasticity ? a process for autonomic
 scaling intent configuration mechanisms and resources on the
 slice level; it allows rapid provisioning, automatic scaling
 out, or in, of resources. Scale in/out criteria might be used
 for network autonomics in order the controller to react to a
 certain set of variations in monitored slices.

 * Providing on-demand a self-service network slicing.

 Optionally, SSA capabilities are more interesting to slice control
 autonomic functions for slice creation and install. The slice control
 must have the independent intelligence to process and filter
 capabilities to meet a network slice specification and have low level
 resources allocated for a slice through SSAs.

7.2. The Autonomic Control Plane

 TBD.

7.3. Naming & Addressing

 A slice can be instantiated on demand, represents a logical network
 and therefore, must be assigned a unique identifier. A Slice Service
 Agent (SSA) may support functions of a single or multiple slices and
 communicate with each other, using the addressing of the Autonomic or
 traditional (non-autonomic) Networking Infrastructure reside on. An

 SSA complies with ACP addressing mechanisms and in a domain, i.e., As
 part of the enrolment process the registrar assigns a number to the
 device, which is unique for slicing registrar and in ASNI domain.

7.4. Discovery

 Slices themselves are not discovered but are instantiated through
 slice control autonomic function. However, both slice service agents
 and slice control functions must be discovered. Even though
 autonomic control plane will support discovery of all the SSAs and
 slice control, it may not be necessary.

7.5. Routing

 Autonomic network slicing follows single routing protocol as
 described in [I-D.ietf-anima-autonomic-control-plane].

8. Security and Trust Infrastructure

 An Autonomic Slice Network is self-protecting. All protocols are
 secure by default, without the requirement for the administrator to
 explicitly configure security.

 TBD.

8.1. Public Key Infrastructure

 An autonomic domain uses a PKI model. The root of trust is a
 certification authority (CA). A registrar acts as a registration
 authority (RA).

 A minimum implementation of an autonomic domain contains one CA, one
 Registrar, and network elements.

8.2. Domain Certificate

 TBD.

9. Cross-Domain Functionality

 TBD.

10. Autonomic Service Agents (ASA)

 This section describes how autonomic services run on top of the
 Autonomic Slice Networking Infrastructure. There are at least two
 different types of autonomic functions are known:

 1. Slice Service Agents are low level functions that learn
 capabilities of underlying infrastructure in terms of interfaces
 and available resources. They coordinate with Slice control to
 associate these resources with specific slice instances in
 effect performing full life cycle management of these resources.
 2. Slice Control Autonomic Function: Slice control is responsible
 for high-level life-cycle management of a slice itself. This
 function will hold slice instances and their attributes related
 data structures in autonomic network slice infrastructure. As
 an example, a slice is defined for high bandwidth, highly secure
 transactional application. A slice control must be capable of
 negotiating resources required across different SSAs.

 Out of scope are details of the mechanisms how the information is
 represented and exchanged between the two autonomic functions.

11. Management and Programmability

 This section describes how an Autonomic Network is managed, and
 programmed.

11.1. How a Slice Network Is Managed

Slice autonomic management is driven by Slice Element Managers,
there are five categories operation:

 1. Creating a network slice: Receive a network slice resource
 description request, upon successful negotiation with SSA
 allocate resource for it.
 2. Shrink/Expand slice network: Dynamically alter resource
 requirements for a running slice network according service load.
 3. (Re‑)Configure slice network: The slice management user deploys
 a user level service into the slice. The slice control takes
 over the control of all the virtualized network functions and
 network programmability functions assigned to the slice, and

 (re‑)configure them as appropriate to provide the end‑to‑end
 service.
 5. Self‑X slice operation: namely self‑configuration, self‑
 composition, self‑monitoring, self‑optimisation, self‑elasticity
 would be carried out as part of new slice protocols.

11.2. Autonomic Resource Information Model

 TBD.

 The proposed autonomic resource information model is presented as a
 tree structure of attributes including the following elements:
 connectivity resources, storage resources, compute resources, service
 instances, network slice level attributes, etc. The Yang language
 would be used to represent the autonomic resource information model.

11.3. Control Loops

 TBD.

11.4. APIs

 The API model of for autonomic slicing semantically, is grouped into
 the following APIs to be defined.

11.4.1. Slice Control APIs

1. Create a slice network on user request. The request includes
 resource description. A unique identify a slice network, group
 all the resource.
2. Destroy a slice network identified by it's id.
3. Query a slice network slicing state by it's uuid.
4. Modify a slice network.

11.4.2. Service Agent - Device APIs

 A service agent will interface with the physical infrastructure
 either through an autonomic network or traditional infrastructure.
 Depending upon which a device can either have autonomic or non-
 autonomic addressing. Service agents are required to perform life
 cycle management of network elements participating in a network slice
 and the following APIs are needed for addition, removal or update of
 a specific device. A device may be a logical or physical network
 element. Optionally, it may be a network function.

11.4.3. Service Agent - Port APIs

 A port may be a physical or logical network port in a slice depending
 upon whether underlying infrastructure is an autonomic or traditional
 network. Service agents must be able to control the operational
 state of these ports. APIs are needed for addition, removal, update
 and operational state retrieval of a specific port.

11.4.4. Service Agent - Link APIs

 A link connects two or more ports of devices described in above
 section. Service agents must be able to control the operational and
 connection status of these links through APIs for addition, removal,
 update and state retrieval for each link.

11.5. Relationship with MANO

 Please refer to [MANO] for MANO introduction.

12. Security Considerations

12.1. Threat Analysis

 TBD.

12.2. Security Mechanisms

 TBD.

13. IANA Considerations

 This document requests no action by IANA.

14. Acknowledgements

 This document was converted to nroff by Stuart Clayman (UCL) to
 comply with RFC format [RFC2629].

14. References

14.1. Normative References

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A
 Generic Autonomic Signaling Protocol (GRASP)", draft-ietf-
 anima- grasp-10 (work in progress), March 2017.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <http://www.rfc-
 editor.org/info/rfc2119>.

 [RFC7665]
 Halpern, J., Pignataro, C., "Service Function Chaining
 (SFC) Architecture", October 2015
 <https://tools.ietf.org/html/rfc7665>.

 [RFC2629]
 Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629, DOI
 10.17487/RFC2629, June 1999, <http://www.rfc-
 editor.org/info/rfc2629>.

14.2. Informative References

 [ChinaCom09]
 A. Galis et all - "Management and Service-aware
 Networking Architectures (MANA) for Future Internet" -
 Invited paper IEEE 2009 Fourth International Conference on
 Communications and Networking in China (ChinaCom09) 26-28
 August 2009, Xi'an, China,
 <http://www.chinacom.org/2009/index.html>.

 [GENI]
 "GENI Key Concepts - Global Environment for Network
 Innovations (GENI)"
 <http://groups.geni.net/geni/wiki/GENIConcepts>.

 [I-D.du-anima-an-intent]
 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L.,
 and M. Behringer, "ANIMA Intent Policy and Format", draft-
 du- anima-an-intent-04 (work in progress), July 2016.

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T.,
 and S. Bjarnason, "An Autonomic Control Plane", draft-
 ietf-anima-autonomic-control- plane-03 (work in progress),
 July 2016.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B.,
 Eckert, T., Ciavaglia, L., Pierre, P., Liu, B., Nobre, J.,
 and J. Strassner, "A Reference Model for Autonomic
 Networking", draft-ietf- anima-reference-model-02 (work in
 progress), July 2016.

 [I-D.liu-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X.
 Gong, "Generic Autonomic Signaling Protocol Application
 Program Interface (GRASP API)", draft-liu-anima-grasp-api-
 02 (work in progress), September 2016.

 [I-D.liu-anima-grasp-distribution]
 Liu, B. and S. Jiang, "Information
 Distribution over GRASP", draft-liu-anima-grasp-
 distribution-02 (work in progress), September 2016.

 [I-D.strassner-anima-control-loops]
 Strassner, J., Halpern, J., and
 M. Behringer, "The Use of Control Loops in Autonomic
 Networking", draft-strassner- anima-control-loops-01 (work
 in progress), April 2016.

 [IMT2020]
 ITU-T IMT2020 document "Report on Gap Analysis" - ITU-T
 IMT2020 ITU- Dec 2015 Published by ITU-T IMT2020.
 <http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Pages/
 default.aspx>.

 [MANO]
 "ETSI European Telecommunications Standards Institute.
 Network Functions Virtualisation (NFV); Management and
 Orchestration v1.1.1." Website, December 2014.
 <http://www.etsi.org/deliver/etsi_gs/NFV-
 MAN/001_099/001/01.01.01_60/gs_ nfv-man001v010101p.pdf>.

 [NGMN]
 Hedmar,P., Mschner, K., et all - NGMN Alliance document
 "Description of Network Slicing Concept", January 2016.
 <https://www.ngmn.org/uploads/
 media/160113_Network_Slicing_v1_0.pdf>.

 [NGS-3GPP]
 "Study on Architecture for Next Generation System" -
 latest version v1.0.2 September 2016
 <http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/Latest_SA2_Specs/
 Latest_draft_S2_Specs>.

 [ONF]
 Paul, M, Schallen, S., Betts, M., Hood, D., Shirazipor,
 M., Lopes, D., Kaippallimalit, J., - Open Network
 Fundation document "Applying SDN Architecture to 5G
 Slicing", April 2016.
 <https://www.opennetworking.org/images/stories/downloads/
 sdn-resources/technical-reports/
 Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf>.

 [NS1]
 L. Geng, J. Dong, S. Bryant, K., Makhijani, A., Galis, X.
 de Foy, S. Kuklinski, - "Network Slicing Architecture",
 July 2017. <https://tools.ietf.org/html/draft-geng-
 netslices- architecture-02>.

 [NS2]
 L. Geng, L. Wang, S. Kuklinski, L. Qiang, S. Matsushima,
 A., Galis, L. Contreras - "Problem Statement of Supervised
 Heterogeneous Network Slicing", October 2017
 <https://datatracker.ietf.org/doc/draft-geng-coms-problem-
 statement/>.

 [ASN]
 A., Galis, K., Makhijani, D. Yu, B. Liu - "Autonomic Slice
 Networking-Requirements and Reference Model" - May 2017 <
 https://datatracker.ietf.org/doc/draft-galis-anima-
 autonomic-slice-networking/>.

[RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,

 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575, DOI
 10.17487/RFC7575, June 2015, <http://www.rfc-
 editor.org/info/rfc7575>.

 [RFC7576]
 Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576, DOI
 10.17487/RFC7576, July 2016, <http://www.rfc-
 editor.org/info/rfc7576>.

 [TETT1]
 Guerzoni, R., Vaishnavi, I., Pares-Caparros, D., Galis,
 A., et al, "Analysis of End-to-End Multi Domain Management
 and Orchestration Frameworks for Software Defined
 Infrastructures: an Architectural Survey", Transactions on
 Emerging Telecommunications Technologies, Wiley Online
 Library, DOI: 10.1002/ett.3103, June 2016,
 <onlinelibrary.wiley.com/doi/10.1002/ett.3103/pdf>.

 [TETT2]
 Karl, H., Draxler, S., Peuster, M, Galis, A., et all
 "DevOps for Network Function Virtualization: An
 Architectural Approach", Transactions on Emerging
 Telecommunications Technologies Wiley Online Library, DOI:
 10.1002/ett.3084, July 2016,
 <http://onlinelibrary.wiley.com/doi/10.1002/ett.3084/full>.

 [SERMODEL]
 C., Borman, B. Carpenter, B., Liu, "Service Models
 Explained " draft-wu-opsawg-service-model-explained-05
 <https://datatracker.ietf.org/doc/draft-wu-opsawg-service-
 model- explained/>.

 [5GNS]
 Galis, A. (UCL), Chih-Lin I (China Mobile) - "Towards 5G
 Network Slicing - Motivations and Challenges" March 2017,
 IEEE 5G Tech Focus, Volume 1, Number 1, March 2017-
 <http://5g.ieee.org/tech-focus/march-2017#networkslicing>.

 [PER-NS]
 Galis, A. - " Perspectives on Network Slicing - Towards the
 New 'Bread and Butter' of Networking and Servicing", IEEE
 SDN Initiative - January 2018
 <https://sdn.ieee.org/newsletter/january-
 2018/perspectives-on- network-slicing-towards-the-new-
 bread-and-butter-of-networking-and-servicing>.

 [NS-ETSI]
 "Network Functions Virtualisation (NFV) Release 3;
 Evolution and Ecosystem; Report on Network Slicing Support
 with ETSI NFV Architecture Framework- ETSI GR NFV-EVE 012
 V3.1.1 (2017-12)"
 <http://www.etsi.org/deliver/etsi_gr/NFV-
 EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf>

Authors' Addresses

Alex Galis (editor)
University College London
Department of Electronic and Electrical Engineering
Torrington Place
London WC1E 7JE
United Kingdom

 Email: a.galis@ucl.ac.uk

Kiran Makhijani
Huawei Technologies
2890, Central Expressway
Santa Clara CA 95032
USA

 Email: USA Email: kiran.makhijani@huawei.com

Delei Yu
Huawei Technologies
Q22, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: yudelei@huawei.com

Bing Liu
Huawei Technologies Co., Ltd
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

draft-gu-grow-bmp-route-leak-detection-01 - BMP for BGP Route Leak Detection

draft-gu-grow-bmp-route-leak-detection-01 - BMP for BGP Route Leak Detection

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 12, 2019

Y. Gu

Huawei

H. Chen

China Telecom Co., Ltd.

S. Zhuang

Huawei

March 11, 2019

BMP for BGP Route Leak Detection

draft-gu-grow-bmp-route-leak-detection-01

Abstract

 According to RFC7908 [RFC7908], Route leaks refer to case that the
 delivery range of route advertisements is beyond the expected range.
 For many current security protection solutions, the ISPs (Internet
 Service Providers) are focusing on finding ways to detect the
 happening of route leaks. However, the real-time route leak
 detection if any occurs is important as well. This document extends
 the BGP Monitoring Protocol (BMP) [RFC7854] to provide a routing
 security scheme suitable for ISPs to detect BGP route leaks within
 their own networks.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Terminology

	2. Introduction
	 2.1. ISP Route Leak Prevention Methods

	 2.2. Challenge of the Current Route Leak Prevention Methods

	3. Route Leak Detection Considerations

	4. Extending BMP for RLD

	5. Acknowledgements

	6. IANA Considerations

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Terminology

 BMP: BGP Monitoring Protocol

 BMS: BGP Monitoring Station

 C2P: Customer to Provider

 ISP: Internet Service Provider

 P2P: Peer to Peer

 RIB: Routing Information Base

 RLD: Route Leak Detection

2. Introduction

 RFC 7908 defines "Route Leak" as: A route leak is the propagation of
 routing announcement(s) beyond their intended scope, which can result
 in possible situations such as eavesdropping, device overload, route
 black hole and so on. More specifically, the intended scope of route
 announcements is usually defined by local route filtering/
 distribution policies within devices. These policies are designed to
 realise the pair-wise peering business relationships between ASes
 (autonomous systems), which include Customer to Provider (C2P), Peer
 to Peer (Peer to Peer), and Provider to Customer (P2C). In a C2P
 relationship, the customer pays the provider for traffic sent between
 the two ASes. In return, the customer gains access to the ASes the
 provider can reach, including those which the provider reaches
 through its own providers. In a P2P relationship, the peering ASes
 gain access to each other's customers, typically without either AS
 paying the other[Luckie]. RFC 7908 classifies six typical route
 leaks situations based on the documented events.

2.1. ISP Route Leak Prevention Methods

Since BGP itself does not provide any route leak prevention/
protection, in the current networks, network administrators/operators
typically configure export policies on the AS border routers (ASBRs)
to prevent route leak. For example, refer to the topology in
Figure 1, the bussiness relationship between AS2 and AS1 is P2C, and
P2C between AS1 and AS3, and C2P between AS1 and AS4. According to
RFC 7908, for AS1, any route received from the provider AS (i.e., AS2
here) and then distributed to its provider AS (i.e., AS4) is treated
as route leak (Type 1 route leak). Thus, to prevent such case from
happening, an export policy is configured at ASBR R2 of AS1. The
export strategies are meant for the intention that "routes from AS2
can be sent to AS3, and cannot be sent to AS4." Routes received from
AS2 at AS1 (i.e., R1 here) are marked with BGP community attributes
so that when these routes arrive at any exit ASBR of AS1 (i.e., R2
here) is filtered by the route leak policy configured at R2 by
identifying the community attribute attached from R1. This community
attribute stands for the peering business relationship between AS2
and AS1. Suppose the destination of the route A is AS4, then R2 will
not distribute Route A to AS4 were the export policies configured
correctly.

 * * "Send Route
 Route A * AS1 +*+‑‑‑‑‑> A to AS3"
 +‑‑> * + * +‑‑‑‑‑+
 +‑‑‑‑‑+ * +‑‑‑+ +‑‑‑+ *+P2C+‑‑|AS3 +‑‑‑‑+ ...
+‑‑+ AS2 +‑‑‑+P2C+*+‑+ R1+‑‑‑‑‑‑‑‑‑+ R2| * +‑‑‑‑‑+
 +‑‑‑‑‑+ * +‑+‑+\ +‑‑‑+ *
 * | \\ // |\ *
 * | \\// | \ * "Do not send
 * | //\ | \+‑‑‑‑‑‑‑> Route A to AS4"
 * | // \\ | * +‑‑‑‑‑+
 * | / \ | *+C2P+‑‑|AS4 +‑‑‑‑+ ...
 * +‑+‑+ +‑+‑+ * +‑‑‑‑‑+
 +‑‑+ R3+‑‑‑‑‑‑‑‑‑+ R4| *
 * +‑‑‑+ +‑‑‑+ *
 * *

 Figure 1: Route propagatin between ISPs

2.2. Challenge of the Current Route Leak Prevention Methods

 However, it could happen that the export policies configured at ASBRs
 to prevent route leak are misconfigured or simply out of date
 considering the changes of bussiness relationships between ASes. For
 example, the export policies at R2 fails to filter Route A and
 distributes it to AS4, then a route leak happens. Thus, in addition
 to such route leak prevention methods, there requires a valid
 detection method to detect any occurred leak in a timely manner so
 that the incorrect policies can be identified to avoid further leaks.

3. Route Leak Detection Considerations

 There are some existing methods proposed for Route Leak Detection
 (RLD).

 It's straightforward to think of the idea of using a route's AS path
 combined with the business relationship information between ISPs/ASes
 to detect any route leak. However, there exist implementation
 difficuties.

 First of all, the business relationship information between ISPs/ASes
 is not publicly disclosed due to confidentiality reasons. Thus, many
 attempts have been made to infer relationships and strategies between
 ASs, however, the accuracy of these techniques is often questioned.
 In particular, the increase in the number of Internet Exchange Points
 (IXPs) and their role in the recent "flattening" of the Internet
 topology, makes that a large fraction of AS relationships cannot be
 discovered using these data collection points [Siddiqui].

 Secondly, the acquisition of BGP AS path information is also no easy
 work. Some BGP monitoring tools, such as Looking Glass and Route
 View, the data accuracy or completeness remains to be an issue. This
 has led to the such BGP monitoring tools not being well used by
 various ISPs.

 Some other technologies extend existing routing protocols to realize
 RLD. For example, modify the BGP update message, which may bring
 about compatibility problems involved in the implementation of the
 solution. Besides, new extension brings interoperation, device
 upgrade issues. Thus, extending the routing protocols is not the
 first choice for leak detection if there are other options.

 Summarizing the above discussions, we have identified the following
 considerations when designing a RLD solution:

 o Consideration 1: The detection should not depend on inferred
 business relationship information, which leads to inaccurate
 detection;

 o Consideration 2: The detection should not depend on inaccurate/
 incomplete AS path information , which leads to inaccurate
 detection or a detection miss;

 o Consideration 3: The detection should try to avoid extension works
 of routing protocols considering the interoperation issues;

 BMP (BGP Monitoring Protocol) is currently deployed by OTT and
 operators to monitor the BGP routes, such as monitoring BGP Adj-RIB-
 In using the process defined in [RFC7854], and monitoring BGP Adj-
 RIB-Out using the process defined in [I-D.ietf-grow-bmp-adj-rib-out].
 Considering the above mentioned requirements of RLD design, extending
 BMP to collect the business relationships between an ISP and its
 neighboring ASes can be a good choice for this single ISP to do RLD.
 There are several merits:

 o First of all, it does not involve data disclosure issue since the
 collected relationship information is only between itself and its
 neighboring ASes;

 o Secondly, BMP provides accurate and complete BGP data monitoring
 within a singe AS;

 o Thirdly, it does not require BGP extension work, and thus no
 interoperation concern.

 Thus, a single ISP can deploy this method to do RLD without relying
 on any other information from either other ISPs or third party tools.

4. Extending BMP for RLD

 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | BMP server |
 +‑‑‑‑‑‑> + +<‑‑‑‑‑‑‑+
 | | RLD ser^er | |
 + +‑‑‑‑‑‑‑‑‑‑‑‑+ +
 BMP RM adj_rib_in: BMP RM adj_rib_out:
 relationship between relationship between
 AS2 and AS1 AS1 and AS4
 | +
 |****************** |
 * | * | "Send Route
 Route A * | A 1 +*+‑‑‑‑‑‑‑‑‑> A to AS3"
 +‑‑> * | + * | +‑‑‑‑‑+
 +‑‑‑‑‑+ * +‑‑‑+ +‑‑‑+ *+P2C+‑‑‑‑‑+ AS3 +‑‑‑‑+ ...
+‑‑+ AS2 +‑‑‑+P2C+*+‑+ R1+‑‑‑‑‑‑‑‑‑+ R2| * | +‑‑‑‑‑+
 +‑‑‑‑‑+ * +‑+‑+\ +‑‑‑+ * |
 * | \\ // |\ * |
 * | \\// | \ * | "Do not send
 * | //\ | \+‑‑‑‑‑‑‑‑‑‑‑> Route A to AS4"
 * | // \\ | * | +‑‑‑‑‑+
 * | / \ | *+C2P+‑‑‑‑‑+ AS4 +‑‑‑‑+ ...
 * +‑+‑+ +‑+‑+ * | +‑‑‑‑‑+
 +‑‑+ R3+‑‑‑‑‑‑‑‑‑+ R4+‑‑‑‑‑‑‑‑‑‑+
 * +‑‑‑+ +‑‑‑+ *
 * *

 Figure 2: RLD depolyment by a single ISP

 A Relationship TLV is defined for BMP Route Monitoring Message.
 Considering that the AS relationships are sometims per route based
 instead of per peer/AS based, this TLV is added at the end of each
 BGP Update Message, and then wrapped up by the BMP per peer header
 and comon header. The TLV format is defined as follows:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Type | Value |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3: Relationship TLV

 Type = TBD, the Relatiship TLV indicates that this TLV represents the
 business relationship between the AS that sends the route and the AS
 that receives the route.

 The Value field is a 2 bit field, and can be "00", "01", and "10",
 which represents three types of relationships, i.e., P2C, P2P, C2P,
 respectively.

 As shown in Figure 2, with the Relationship TLV attached to each
 Route Monitoring Message, the RLD server (also working as the BMP
 server) combines the BMP adj_rib_in message collected from R1 and the
 BMP adj_rib_out message collected from R4 to decide if there's a
 route leak. For example, if the Relationship TLV in R1's adj_rib_in
 message indicates a value of "00", and the Relationship TLV in R4's
 adj_rib_out message indicates a value of "10", then the RLD server
 knows there exists a route leak.

5. Acknowledgements

 TBD.

6. IANA Considerations

 TBD.

7. Security Considerations

 TBD.

8. References

8.1. Normative References

 [I-D.ietf-grow-bmp-adj-rib-out]

 Evens, T., Bayraktar, S., Lucente, P., Mi, K., and S.
 Zhuang, "Support for Adj-RIB-Out in BGP Monitoring
 Protocol (BMP)", draft-ietf-grow-bmp-adj-rib-out-03 (work
 in progress), December 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

 [RFC7908]
 Sriram, K., Montgomery, D., McPherson, D., Osterweil, E.,
 and B. Dickson, "Problem Definition and Classification of
 BGP Route Leaks", RFC 7908, DOI 10.17487/RFC7908, June
 2016, <https://www.rfc-editor.org/info/rfc7908>.

8.2. Informative References

 [Luckie]
 claffy, M. L. M. L. A. D. V. G. K., "AS Relationships,
 Customer Cones, and Validation", October 2013.

 [Siddiqui]

 Ramirez, M. S. S. D. M. M. Y. R. S. X. M. W., "Route Leak
 Detection Using Real-Time Analytics on local BGP
 Information", 2014.

Authors' Addresses

Yunan Gu
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: guyunan@huawei.com

Huanan Chen
China Telecom Co., Ltd.
109 Zhongshan W Ave
Guangzhou 510630
China

 Email: chenhn8.gd@chinatelecom.cn

Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: zhuangshunwan@huawei.com

draft-gu-grow-bmp-vpn-te-00 - VPN Traffic Engineering Using BMP

draft-gu-grow-bmp-vpn-te-00 - VPN Traffic Engineering Using BMP

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 12, 2019

Y. Gu

Huawei

J. Chen

Tencent

P. Mi

S. Zhuang

Z. Li

Huawei

March 11, 2019

VPN Traffic Engineering Using BMP

draft-gu-grow-bmp-vpn-te-00

Abstract

 The BGP Monitoring Protocol (BMP) is designed to monitor BGP running
 status, such as BGP peer relationship establishment and termination
 and route updates. This document provides a traffic engineering (TE)
 method in the VPN (Virtual Private Network) scenario using BMP.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. VPN TE Using BMP
	 2.1. Common Header

	 2.2. Per Peer Header

	 2.3. Label Message

	3. Implementation Examples

	4. Acknowledgements

	5. IANA Considerations

	6. Security Considerations

	7. Normative References

	Authors' Addresses

1. Introduction

 The Border Gateway Protocol (BGP) [RFC4271], as an inter-Autonomous
 (AS) routing protocol, is used to exchange network reachability
 information between BGP systems. Later on, RFC4760 [RFC4760] extends
 BGP to carry not only the routing information for BGP, but also for
 multiple Network Layer protocols (e.g., IPv6, Multicast, etc.), known
 as the MP-BGP (Multiprotocol BGP). The MP-BGP is currently widely
 deployed in case of MPLS L3VPN, to exchange VPN labels learned for
 the routes from the customer sites over the MPLS network. BGP routes
 are needed for both intra-domain and inter-domain route optimization.
 Before BGP Monitoring Protocol (BMP) [RFC7854] was introduced, BGP
 routes could be only obtained through manual query, such as screen
 scraping. The introduction of BMP greatly improves the BGP route
 monitoring efficiency and accuracy.Currently, it provides the
 monitoring of BGP adj-rib-in [RFC7854], BGP local-rib
 [I-D.ietf-grow-bmp-local-rib] and BGP adj-rib-out
 [I-D.ietf-grow-bmp-adj-rib-out].

 In the MPLS (Multiprotocol Label Switching) VPN traffic egnieering
 scenario, the controller distributes optimized route entries with
 MPLS VPN labels (inner labels) to the target devices. The target
 devices use the inner MPLS VPN labels to find the corresponding VRF
 (Virtual routing and forwarding) instance, and then add the optimized
 route entries into the target VRF table. Techically, it's workable
 to extract the labels from VPNv4 routes by monitoring the VPNv4
 routes exchanged between two PE (provider edge) devices, i.e., by
 monitoring the adj-rib-out of and adj-rib-in of both PEs. However,
 unlike the public BGP routes and IGP routes, VPNv4 routes are not
 usually used for either the inter-domain or intra-domain traffic
 optmization. Thus, it's not very cost efficient, from the
 perspective of CPU and network bandwidth consumption, to monitor the
 VPNv4 routes only for the purpose of label extraction.

 Depending on the implementation scenarios, there are typically
 different ways of allocating the VPN route labels: per route per
 label, per VRF per label, per next hop per label, and so on. For
 example, in the Multi-AS VPN case, the redistribution of labeled
 VPNv4 routes from one AS to another can be realized through setting
 up the EBGP peering between ASBRs (Autonomous System Border Routers).
 In this case, the per route per label allocation method is preferred.
 However, per route per label allocation can be very consuming as for
 the label space, thus, in many cases the per VRF/next hop per label
 assignment modes are adopted.

 This document descrbes a method using BMP to collect the MPLS VPN
 label information. A new BMP message type is proposed to carry the
 label information. More specifically, in the per route per label
 case, the VRF nformation, route prefix and label are included in the
 newly defined BMP Label Message. In the per instance per label case,
 the VRF information and label are included in the newly defined BMP
 Label Message, while in the per next hop per label case, the VRF
 information, next hop and label are included in the newly defined BMP
 Label Message. The report of BMP Label Message is triggered by the
 label assignment chnage.

 There are several merits of using the BMP Label Message type to
 collect the MPLS VPN labels compared with extracting labels from the
 monitored VPNv4 routes:

 o It saves work of extracting the label information from the VPNv4
 routes, and saves network bandwidth considering that VPNv4 routes
 includes all route attributes that are not necessary in this case.

 o In the per instance/next hop per label assignment cases, the same
 VPN label is used for multiple VPNv4 routes. The BMP Label
 Message only report the label information once (if no change), and

 thus saves network resources compared with the repeated label
 report by monitoring VPNv4 routes.

 o The label assignments are typically less dynamic compared with the
 VPNv4 routes. Thus, acquiring the label information through the
 real-time monitoring of VPNv4 routes is not quite necessary.

 All in all, it's more efficient to collect the MPLS VPN label
 independently than extracting it from VPNv4 routes. In Section 2,
 the BMP Label Message format is defined, and in Section 3, two
 specific implementation examples are provided to show case the usage
 of BMP Label Message.

2. VPN TE Using BMP

 This document defines a new BMP message type called the Label Message
 to carry the VPN label.

2.1. Common Header

 This document defines a new BMP message type to carry the VPN label
 data.

 o Type = TBD: Label Message

 The new defined message type is indicated in the Message Type field
 of the BMP common header.

2.2. Per Peer Header

 The Label Message is not per peer based, thus it does not require the
 Per Peer Header.

2.3. Label Message

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Label Assignment Mode | Reserved |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Label Mapping Information |
+‑‑‑+
| Label |
+‑‑‑+

 Figure 1: BMP Label Message

 o Label Assignment Mode (4 Bits): indicates how label is assigned.
 Curerntly, 3 types of label assignment mode are defined: "0000"
 indicating the per instance per label assignment mode, "0001"

 indicating the per next hop per label assignment mode, "0010"
 indicating the per instance per label assignment mode. More modes
 can be defined per requirement.

 o Reserved (1 Byte): reserved for future use.

 o Label Mapping Information (Variable): is interpreted in
 combination with the Label Assignment Mode field. If the Label
 Assignment Mode field is set to "0000", meaning per instance per
 label assignment mode, then this field is set to VRF Route
 Distinguisher; If the Label Assignment Mode field is set to
 "0001", meaning per next hop per label assignment mode, then this
 field is set to the next hop address; If the Label Assignment Mode
 field is set to "0010", meaning per route per label assignment
 mode, then this field is set to the route prefix.

 o Label (3 Bytes): indicates the label value with 20 bits label and
 4 bits zero padding.

 More specifically, the Label Mapping Information field is defined as
 follows. Regarding different values indicated in the Label
 Assignment Mode field,

+‑‑‑+
| Length |
+‑‑‑+
| VRF RD |
+‑‑‑+
| Next Hop/Prefix |
+‑‑‑+

 Figure 2: Label Mapping Information

 o Length (2 Bytes): indicates the length of the following Label
 Mapping Information value fields. The Length field value SHALL be
 set in accordance with the Label Assignment Mode field. If the
 Label Assignment Mode is set to "0000", the Length field is set to
 the length of the VRF RD field (i.e., 8 Bytes); If the Label
 Assignment Mode is set to "0001", the Length field is set to the
 length of the VRF RD field (8 Bytes) + the length of the Next Hop
 field (variable); If the Label Assignment Mode is set to "0010",
 the Length field is set to the length of the VRF RD field (8
 Bytes) + the length of the Prefix field (variable).

 o VRF RD (8 Bytes): indicates the route distinguisher (RD) of the
 VRF. In either the "per instance per label" case, or "per next
 hop per label" case, or "per route per label" case, the VRF
 information (i.e., RD) SHALL be indicated in this field.

 o Next Hop/Prefix (Variable): is interpreted in combination with the
 Label Assignment Mode field and the Length field. If the Label
 Assignment Mode is set to "0000", this field SHALL be set empty;
 If the Label Assignment Mode is set to "0001", this field SHALL be
 set to the next hop address (i.e., the CE's address), with length
 indicated by the Length field (i.e., Length value - 8 Bytes); If
 the Label Assignment Mode is set to "0010", this field SHALL be
 set to the prefix of the route, with length indicated by the
 Length field (i.e., Length value - 8 Bytes)

3. Implementation Examples

 In this section, we use two examples to more specifically explain how
 to use BMP for VPN traffic engineering.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Option 1: | BMP server | Option2:
 10.2.1.0/24 +‑‑‑‑‑‑+ + +‑‑‑‑‑‑‑‑‑+10.2.1.0/24
 NH:CE1 | | Controller | |NH:PE1
 Label:100 | +‑+‑‑‑‑‑‑‑‑‑‑++ |Label:100
10.2.0.0/24 | VRF1 ^ ^VRF1 | |
10.1.0.0/24 10.1.1.0/24 | R1:100| |R1:500 | |10.1.1.0/24
 +++ NH:PE2 | R2:200| |R2:600 | |NH:PE2
 | Label:600 | R3:300| |R3:700 | |Label:600
 | | R4:400| |R4:800 | |
 | | ******|**|*******|******** |
+‑‑‑‑+‑‑‑+ R1:10.2.0.0/16 v * | | + AS0 * |
CE1	R2:10.1.0.0/16 ++‑‑‑‑‑+		Option 1: *	
(ISP1 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>+ PE1 +‑‑+	10.2.1.0/24 *			
AS1) +‑‑‑‑‑‑‑‑‑‑‑‑		VRF1		NH:PE1 *
+‑‑‑‑‑‑‑‑+ R1,R2 +‑‑‑‑‑>+ | | Label:100 * |
R3:10.2.0.0/17 | | +‑‑‑‑‑‑+ | 10.1.1.0/24 * v
R4:10.1.0.0/17 | | * | NH:CE1 +‑‑‑‑‑++ +‑‑‑+
 + | | * | Label:600 | PE3 +‑‑‑+AS4|
 v | | * | + | VRF1 | +‑‑‑+
+‑‑‑‑+‑‑‑+ R3,R4 | | +‑‑‑‑‑‑+‑‑‑‑‑+ | | |
| CE2 +‑‑‑‑‑‑‑‑‑+ +‑‑>+ PE2 | | +‑‑‑‑‑‑+
| (ISP2 | | VRF1 +<‑‑‑‑‑‑‑‑‑‑‑‑+ *
| AS2) +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>+ | *
+‑‑‑‑‑‑‑‑+ R3,R4 +‑‑‑‑‑‑+ *

 Figure 3: VPN TE using BMP example: per route per label

 Two prefixes 10.2.0.0/24 and 10.1.0.0/24 are generated from ISP1
 (AS1), advertised to ISP 2 (AS2) in the format of R3: 10.2.0.0/17,
 and R4: 10.1.0.0/17, and also advertised to AS0 in the format of R1:
 10.2.0.0/16, and R2: 10.1.0.0/16. R1, R2 are advertised to both PE1
 and PE2 in AS0, and so are R3 and R4. By the rule of the longest
 prefix match, any traffic, with the destination address within the
 subnets of 10.2.0.0/16 or 10.1.0.0/16, coming from AS4 that traverses
 AS0 will exit from PE2. This may cause unbalanced traffic loads on
 PE2 and PE1. In addition, the costs of traversing through AS1 and
 AS2 might be different due to business contracts assigned between
 different ISPs. Now suppose for traffic and cost optimization
 purposes, the operator wants to: 1) steer the traffic, with the
 destination address within the subnets of 10.2.0.0/16, to exit from
 PE1 and then traverse AS1 (ISP1) to its destination; 2) steer the
 traffic, with the destination address within the subnets of
 10.1.0.0/16, to exit from PE2 and then traverse AS1 (ISP1) to its
 destination.

 In the example shown in Figure 2, the VPN label assignement mode is
 per route per label. Thus, PE1 assigns R1, R2, R3, R4 with label
 100, 200, 300, 400, respectively, under VRF1. PE2 assigns R1, R2,
 R3, R4 with label 600, 700, 800, 900, respectively, under VRF1.
 Using the BMP Label Message, PE1 and PE2 reports to the BMP server
 with the per-route labels, which also includes the VRF RD
 information. Then the TE controller (suppose it's colocated with the
 BMP server) combines the label information with routes, and
 distribute the optimized routes with label to either the ingress or
 egress devices. There are typically two options:

 o Option 1: The controller distributes the optimized route to the
 Egress devices, i.e., PE1 and PE2. For optimizing 10.2.0.0/16
 traffic, controller distributes 10.2.0.0/24 with next hop as CE1,
 label as 100, RT as 100:1 to PE1, so that when traffic, with the
 destination address within the subnets of 10.2.0.0/16, arrives at
 PE1 will exit from PE1 and choose CE1 (ISP1) as its next hop.
 Controller also distributes 10.2.0.0/24 with next hop as PE1,
 label as 100, RT as 100:1 to PE1, so that when traffic, with the
 destination address within the subnets of 10.2.0.0/16, arrives at
 PE2 will exit from PE1 and choose CE1 (ISP1) as its next hop. For
 optimizing 10.1.0.0/16 traffic, controller distributes 10.1.0.0/24
 with next hop as PE2, label as 600, RT as 100:1 to PE1, so that
 when traffic, with the destination address within the subnets of
 10.1.0.0/16, arrives at PE1 will exit from PE2 and choose CE1
 (ISP1) as its next hop. Controller also distributes 10.1.0.0/24
 with next hop as CE1, label as 600, RT as 100:1 to PE2, so that
 when traffic, with the destination address within the subnets of
 10.1.0.0/16, arrives at PE2 will exit from PE2 and choose CE1
 (ISP1) as its next hop.

 o Option 2: The controller distributes a more specific route to the
 Ingress device, i.e., PE3. Controller distributes 10.2.0.0/24

 with next hop as PE1, label as 100, RT as 100:1 to PE3, so that
 when traffic, with the destination address within the subnets of
 10.2.0.0/16, arrives at PE3 will exit from PE1 and choose CE1
 (ISP1) as its next hop. Controller also distributes 10.1.0.0/24
 with next hop as PE2, label as 600, RT as 100:1 to PE3, so that
 when traffic, with the destination address within the subnets of
 10.2.0.0/16, arrives at PE3 will exit from PE2 and choose CE1
 (ISP1) as its next hop.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Option 1: | BMP server | Option2:
 10.2.1.0/24 +‑‑‑‑‑‑+ + +‑+ +‑‑‑‑‑+10.2.1.0/24
 NH:CE1 | | Controller | |NH:PE1
 Label:1000 | +‑+‑‑‑‑‑‑‑‑‑‑++ |Label:1000
 | VRF1 ^ ^VRF1 + |
 10.2.0.0/24 10.1.1.0/24 |CE1:1000| |CE1:3000 |10.1.1.0/24
 10.1.0.0/24 NH:PE2 |CE2:2000| |CE2:4000 |NH:PE2
 +++ Label:3000 | | | + |Label:3000
 | | | | | |
 | | ******|**|*******|******** |
 +‑‑‑‑+‑‑‑+ R1:10.2.0.0/16 v * | | + AS0 * |
CE1	R2:10.1.0.0/16 ++‑‑‑‑‑+		Option 1: *	
(ISP1 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>+ PE1 +‑‑+	10.2.1.0/24 *			
AS1) +‑‑‑‑‑‑‑‑‑‑‑‑		VRF1		NH:PE1 *
 +‑‑‑‑‑‑‑‑+ R1,R2 +‑‑‑‑‑>+ | | Label:1000 * |
R3:10.2.0.0/17 | | +‑‑‑‑‑‑+ | 10.1.1.0/24 * v
R4:10.1.0.0/17 | | * | NH:CE1 +‑‑‑‑‑++ +‑‑‑+
 | | | * | Label:3000| PE3 +‑‑‑+AS4|
 v | | * | + | VRF1 | +‑‑‑+
 +‑‑‑‑+‑‑‑+ R3,R4 | | +‑‑‑‑‑‑+‑‑‑‑‑+ | | |
 | CE2 +‑‑‑‑‑‑‑‑‑+ +‑‑>+ PE2 | | +‑‑‑‑‑‑+
 | (ISP2 | | VRF1 +<‑‑‑‑‑‑‑‑‑‑‑‑+ *
 | AS2) +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>+ | *
 +‑‑‑‑‑‑‑‑+ R3,R4 +‑‑‑‑‑‑+ *

 Figure 4: VPN TE using BMP example: per next hop per label

 In the example shown in Figure 3, he VPN label assignement mode is
 per next hop per label. Comparing the two examples in Figure 2 and
 Figure 3, less label information are reported though BMP if the label
 is allocated per next hop.

4. Acknowledgements

 TBD.

5. IANA Considerations

 TBD.

6. Security Considerations

 TBD.

7. Normative References

 [I-D.ietf-grow-bmp-adj-rib-out]

 Evens, T., Bayraktar, S., Lucente, P., Mi, K., and S.
 Zhuang, "Support for Adj-RIB-Out in BGP Monitoring
 Protocol (BMP)", draft-ietf-grow-bmp-adj-rib-out-03 (work
 in progress), December 2018.

 [I-D.ietf-grow-bmp-local-rib]

 Evens, T., Bayraktar, S., Bhardwaj, M., and P. Lucente,
 "Support for Local RIB in BGP Monitoring Protocol (BMP)",
 draft-ietf-grow-bmp-local-rib-02 (work in progress),
 September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4760]
 Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
 "Multiprotocol Extensions for BGP-4", RFC 4760,
 DOI 10.17487/RFC4760, January 2007,
 <https://www.rfc-editor.org/info/rfc4760>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

Authors' Addresses

Yunan Gu
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: guyunan@huawei.com

Jie Chen
Tencent

 Email: jasonjchen@tencent.com

Penghui Mi
Huawei
Shenzhen, Guangdong
China

 Email: mipenghui@huawei.com

Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: zhuangshunwan@huawei.com

Zhenbin Li
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: lizhenbin@huawei.com

draft-hoffman-dns-special-labels-00 - IANA Registry for Special Labels in the DNS

draft-hoffman-dns-special-labels-00 - IANA Registry for Special Labels in the DN

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 4, 2019

P. Hoffman

ICANN

October 1, 2018

IANA Registry for Special Labels in the DNS

draft-hoffman-dns-special-labels-00

Abstract

 This document defines an new IANA registry for special labels in the
 DNS. The registry is useful because the labels cause special
 handling in DNS entities such as stub resolvers, recursive resolvers,
 and applications that use DNS, and developers of software for those
 entities should be aware of the many types of special labels in use.

 [[A GitHub repo for this document is at
 https://github.com/paulehoffman/dns-special-labels]]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Definition of the New IANA Registry

	3. Existing Special Labels
	 3.1. The Root Label

	 3.2. Underscore Labels

	 3.3. IDNA

	 3.4. Sentinel

	 3.5. MTA-STS

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Acknowledgements

	Author's Address

1. Introduction

 Some DNS-related RFCs define labels that are treated specially by
 stub resolvers, by recursive resolvers, and by applications. It
 would be useful for DNS software developers to know what the entire
 set of such special labels are so they can determine if their
 software needs to handle those labels different than other labels.
 This document defines an IANA registry for special labels and lists
 the initial entries for that registry.

 The special labels defined in the various RFCs were developed after
 extensive IETF evaluation of alternative patterns and approaches in
 light of the desired behavior of the associated protocols. The group
 designing each protocol looked at the many different ways that the
 protocol might be best deployed.

1.1. Terminology

 In this document, "left-most label" means the label that appears at
 the left of a domain name when it is wire format or presentation
 format, as defined in [I-D.ietf-dnsop-terminology-bis]. In an
 application that uses IDNA [RFC5891] with one or more right-to-left
 labels, the order of the labels might appear different in the
 application.

2. Definition of the New IANA Registry

 The creation of the registry is defined in Section 4.

 @@ Proposed rule for getting in the registry: @@

 A label or label-type can be added to the registry only by IESG
 approval. This approval will likely come when an Internet Draft is
 progressed toward publication by the RFC Editor, but can come at any
 time. The reason to require IESG approval as compared to something
 less onerous such as "expert review" is that developers who rely on
 the registry will expect it to contain labels and label types that
 are relatively stable.

 The columns of the registry are as follows:

 @@ Define the columns here @@

3. Existing Special Labels

 The following describes the labels that are the initial contents of
 the registry described in Section 4.

3.1. The Root Label

 According to [RFC1035], a zero-length label always indicates the root
 label in a domain name.

3.2. Underscore Labels

 In many protocols, one or more of the left-most labels might be a
 label that starts with an underscore (_) character. Those labels are
 considered special within the context of those protocols.

 The use of underscore labels is described in
 [I-D.ietf-dnsop-attrleaf] and [I-D.ietf-dnsop-attrleaf-fix].

3.3. IDNA

 [RFC5891]
 defines "A-labels" as labels that begin with the characters
 "xn-". These labels can appear at any position in a domain name.

3.4. Sentinel

 [I-D.ietf-dnsop-kskroll-sentinel]
 (if approved as an RFC) defines
 root-key-sentinel-is-ta-<key-tag> and root-key-sentinel-not-ta-<key-
 tag> as special labels when they are the left-most label. In these
 labels, "<key-tag>" is an unsigned decimal integer that is zero-
 padded to five digits.

3.5. MTA-STS

 [RFC8461]
 defines "mta-sts" as as special label when it is the left-
 most label.

4. IANA Considerations

 @@@ Formally define the new registry here @@@

5. Security Considerations

 This document doesn't introduce any new security considerations.

6. References

6.1. Normative References

 [I-D.ietf-dnsop-attrleaf]

 Crocker, D., "DNS Scoped Data Through "Underscore" Naming
 of Attribute Leaves", draft-ietf-dnsop-attrleaf-13 (work
 in progress), August 2018.

 [I-D.ietf-dnsop-attrleaf-fix]

 Crocker, D., "DNS Attrleaf Changes: Fixing Specifications
 with Underscored Node Name Use", draft-ietf-dnsop-
 attrleaf-fix-04 (work in progress), August 2018.

 [I-D.ietf-dnsop-kskroll-sentinel]

 Huston, G., Damas, J., and W. Kumari, "A Root Key Trust
 Anchor Sentinel for DNSSEC", draft-ietf-dnsop-kskroll-
 sentinel-15 (work in progress), July 2018.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC5891]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC8461]
 Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A.,
 and J. Jones, "SMTP MTA Strict Transport Security (MTA-
 STS)", RFC 8461, DOI 10.17487/RFC8461, September 2018,
 <https://www.rfc-editor.org/info/rfc8461>.

6.2. Informative References

 [I-D.ietf-dnsop-terminology-bis]

 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", draft-ietf-dnsop-terminology-bis-14 (work in
 progress), September 2018.

Appendix A. Acknowledgements

 @@@ List folks who think of other new labels to add or come up with
 additional wording for the document @@@

Author's Address

Paul Hoffman
ICANN

 Email: paul.hoffman@icann.org

draft-ietf-anima-autonomic-control-plane-19 - An Autonomic Control Plane (ACP)

draft-ietf-anima-autonomic-control-plane-19 - An Autonomic Control Plane (ACP)

Index
Next
Forward 5

ANIMA WG

Internet-Draft

Intended status: Standards Track

Expires: September 12, 2019

T. Eckert, Ed.

Huawei

M. Behringer, Ed.

S. Bjarnason

Arbor Networks

March 11, 2019

An Autonomic Control Plane (ACP)

draft-ietf-anima-autonomic-control-plane-19

Abstract

 Autonomic functions need a control plane to communicate, which
 depends on some addressing and routing. This Autonomic Management
 and Control Plane should ideally be self-managing, and as independent
 as possible of configuration. This document defines such a plane and
 calls it the "Autonomic Control Plane", with the primary use as a
 control plane for autonomic functions. It also serves as a "virtual
 out-of-band channel" for Operations Administration and Management
 (OAM) communications over a network that provides automatically
 configured hop-by-hop authenticated and encrypted communications via
 automatically configured IPv6 even when the network is not
 configured, or misconfigured.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction (Informative)
	 1.1. Applicability and Scope

	2. Acronyms and Terminology (Informative)

	3. Use Cases for an Autonomic Control Plane (Informative)
	 3.1. An Infrastructure for Autonomic Functions

	 3.2. Secure Bootstrap over a not configured Network

	 3.3. Data-Plane Independent Permanent Reachability

	4. Requirements (Informative)

	5. Overview (Informative)

	6. Self-Creation of an Autonomic Control Plane (ACP) (Normative)
	 6.1. ACP Domain, Certificate and Network
	 6.1.1. Certificate ACP Domain Information Field

	 6.1.2. ACP domain membership check

	 6.1.3. Trust Points and Trust Anchors

	 6.1.4. Certificate and Trust Point Maintenance
	 6.1.4.1. GRASP objective for EST server

	 6.1.4.2. Renewal

	 6.1.4.3. Certificate Revocation Lists (CRLs)

	 6.1.4.4. Lifetimes

	 6.1.4.5. Re-enrollment

	 6.1.4.6. Failing Certificates

	 6.2. ACP Adjacency Table

	 6.3. Neighbor Discovery with DULL GRASP

	 6.4. Candidate ACP Neighbor Selection

	 6.5. Channel Selection

	 6.6. Candidate ACP Neighbor verification

	 6.7. Security Association protocols
	 6.7.1. ACP via IKEv2
	 6.7.1.1. Native IPsec

	 6.7.1.2. IPsec with GRE encapsulation

	 6.7.2. ACP via DTLS

	 6.7.3. ACP Secure Channel Requirements

	 6.8. GRASP in the ACP
	 6.8.1. GRASP as a core service of the ACP

	 6.8.2. ACP as the Security and Transport substrate for GRASP
	 6.8.2.1. Discussion

	 6.9. Context Separation

	 6.10. Addressing inside the ACP
	 6.10.1. Fundamental Concepts of Autonomic Addressing

	 6.10.2. The ACP Addressing Base Scheme

	 6.10.3. ACP Zone Addressing Sub-Scheme
	 6.10.3.1. Usage of the Zone-ID Field

	 6.10.4. ACP Manual Addressing Sub-Scheme

	 6.10.5. ACP Vlong Addressing Sub-Scheme

	 6.10.6. Other ACP Addressing Sub-Schemes

	 6.10.7. ACP Registrars
	 6.10.7.1. Use of BRSKI or other Mechanism/Protocols

	 6.10.7.2. Unique Address/Prefix allocation

	 6.10.7.3. Addressing Sub-Scheme Policies

	 6.10.7.4. Address/Prefix Persistence

	 6.10.7.5. Further Details

	 6.11. Routing in the ACP
	 6.11.1. RPL Profile
	 6.11.1.1. Overview

	 6.11.1.2. RPL Instances

	 6.11.1.3. Storing vs. Non-Storing Mode

	 6.11.1.4. DAO Policy

	 6.11.1.5. Path Metric

	 6.11.1.6. Objective Function

	 6.11.1.7. DODAG Repair

	 6.11.1.8. Multicast

	 6.11.1.9. Security

	 6.11.1.10. P2P communications

	 6.11.1.11. IPv6 address configuration

	 6.11.1.12. Administrative parameters

	 6.11.1.13. RPL Data-Plane artifacts

	 6.11.1.14. Unknown Destinations

	 6.12. General ACP Considerations
	 6.12.1. Performance

	 6.12.2. Addressing of Secure Channels

	 6.12.3. MTU

	 6.12.4. Multiple links between nodes

	 6.12.5. ACP interfaces

	7. ACP support on L2 switches/ports (Normative)
	 7.1. Why (Benefits of ACP on L2 switches)

	 7.2. How (per L2 port DULL GRASP)

	8. Support for Non-ACP Components (Normative)
	 8.1. ACP Connect
	 8.1.1. Non-ACP Controller / NMS system

	 8.1.2. Software Components

	 8.1.3. Auto Configuration

	 8.1.4. Combined ACP/Data-Plane Interface (VRF Select)

	 8.1.5. Use of GRASP

	 8.2. ACP through Non-ACP L3 Clouds (Remote ACP neighbors)
	 8.2.1. Configured Remote ACP neighbor

	 8.2.2. Tunneled Remote ACP Neighbor

	 8.2.3. Summary

	9. Benefits (Informative)
	 9.1. Self-Healing Properties

	 9.2. Self-Protection Properties
	 9.2.1. From the outside

	 9.2.2. From the inside

	 9.3. The Administrator View

	10. ACP Operations (Informative)
	 10.1. ACP (and BRSKI) Diagnostics

	 10.2. ACP Registrars
	 10.2.1. Registrar interactions

	 10.2.2. Registrar Parameter

	 10.2.3. Certificate renewal and limitations

	 10.2.4. ACP Registrars with sub-CA

	 10.2.5. Centralized Policy Control

	 10.3. Enabling and disabling ACP/ANI
	 10.3.1. Filtering for non-ACP/ANI packets

	 10.3.2. Admin Down State
	 10.3.2.1. Security

	 10.3.2.2. Fast state propagation and Diagnostics

	 10.3.2.3. Low Level Link Diagnostics

	 10.3.2.4. Power Consumption Issues

	 10.3.3. Interface level ACP/ANI enable

	 10.3.4. Which interfaces to auto-enable?

	 10.3.5. Node Level ACP/ANI enable
	 10.3.5.1. Brownfield nodes

	 10.3.5.2. Greenfield nodes

	 10.3.6. Undoing ANI/ACP enable

	 10.3.7. Summary

	 10.4. Configuration and the ACP (summary)

	11. Security Considerations

	12. IANA Considerations

	13. Acknowledgements

	14. Change log [RFC Editor: Please remove]
	 14.1. Initial version

	 14.2. draft-behringer-anima-autonomic-control-plane-00

	 14.3. draft-behringer-anima-autonomic-control-plane-01

	 14.4. draft-behringer-anima-autonomic-control-plane-02

	 14.5. draft-behringer-anima-autonomic-control-plane-03

	 14.6. draft-ietf-anima-autonomic-control-plane-00

	 14.7. draft-ietf-anima-autonomic-control-plane-01

	 14.8. draft-ietf-anima-autonomic-control-plane-02

	 14.9. draft-ietf-anima-autonomic-control-plane-03

	 14.10. draft-ietf-anima-autonomic-control-plane-04

	 14.11. draft-ietf-anima-autonomic-control-plane-05

	 14.12. draft-ietf-anima-autonomic-control-plane-06

	 14.13. draft-ietf-anima-autonomic-control-plane-07

	 14.14. draft-ietf-anima-autonomic-control-plane-08

	 14.15. draft-ietf-anima-autonomic-control-plane-09

	 14.16. draft-ietf-anima-autonomic-control-plane-10

	 14.17. draft-ietf-anima-autonomic-control-plane-11

	 14.18. draft-ietf-anima-autonomic-control-plane-12

	 14.19. draft-ietf-anima-autonomic-control-plane-13

	 14.20. draft-ietf-anima-autonomic-control-plane-14

	 14.21. draft-ietf-anima-autonomic-control-plane-15

	 14.22. draft-ietf-anima-autonomic-control-plane-16

	 14.23. draft-ietf-anima-autonomic-control-plane-17

	 14.24. draft-ietf-anima-autonomic-control-plane-18

	 14.25. draft-ietf-anima-autonomic-control-plane-19

	 14.26. Open Issues in -19

	15. References
	 15.1. Normative References

	 15.2. Informative References

	 15.3. URIs

	Appendix A. Background and Futures (Informative)
	 A.1. ACP Address Space Schemes

	 A.2. BRSKI Bootstrap (ANI)

	 A.3. ACP Neighbor discovery protocol selection
	 A.3.1. LLDP

	 A.3.2. mDNS and L2 support

	 A.3.3. Why DULL GRASP

	 A.4. Choice of routing protocol (RPL)

	 A.5. ACP Information Distribution and multicast

	 A.6. Extending ACP channel negotiation (via GRASP)

	 A.7. CAs, domains and routing subdomains

	 A.8. Intent for the ACP

	 A.9. Adopting ACP concepts for other environments

	 A.10. Further options / futures
	 A.10.1. Auto-aggregation of routes

	 A.10.2. More options for avoiding IPv6 Data-Plane dependency

	 A.10.3. ACP APIs and operational models (YANG)

	 A.10.4. RPL enhancements

	 A.10.5. Role assignments

	 A.10.6. Autonomic L3 transit

	 A.10.7. Diagnostics

	 A.10.8. Avoiding and dealing with compromised ACP nodes

	Authors' Addresses

1. Introduction (Informative)

 Autonomic Networking is a concept of self-management: Autonomic
 functions self-configure, and negotiate parameters and settings
 across the network. [RFC7575] defines the fundamental ideas and
 design goals of Autonomic Networking. A gap analysis of Autonomic
 Networking is given in [RFC7576]. The reference architecture for
 Autonomic Networking in the IETF is specified in the document
 [I-D.ietf-anima-reference-model].

 Autonomic functions need an autonomically built communications
 infrastructure. This infrastructure needs to be secure, resilient
 and re-usable by all autonomic functions. Section 5 of [RFC7575]
 introduces that infrastructure and calls it the Autonomic Control
 Plane (ACP). More descriptively it would be the "Autonomic
 communications infrastructure for Management and Control". For
 naming consistency with that prior document, this document continues
 to use the name ACP though.

 Today, the management and control plane of networks typically uses a
 routing and forwarding table which is dependent on correct
 configuration and routing. Misconfigurations or routing problems can
 disrupt management and control channels. Traditionally, an out-of-
 band network has been used to avoid or allow recovery from such
 problems, or personnel are sent on site to access devices through
 out-of-band management ports (also called craft ports, serial
 console, management ethernet port). However, both options are
 expensive.

 In increasingly automated networks either centralized management
 systems or distributed autonomic service agents in the network
 require a control plane which is independent of the configuration of
 the network they manage, to avoid impacting their own operations
 through the configuration actions they take.

 This document describes a modular design for a self-forming, self-
 managing and self-protecting Autonomic Control Plane (ACP), which is
 a virtual in-band network designed to be as independent as possible
 of configuration, addressing and routing problems. The details how
 this is achieved are described in Section 6. The ACP is designed to
 remain operational even in the presence of configuration errors,
 addressing or routing issues, or where policy could inadvertently
 affect connectivity of both data packets or control packets.

 This document uses the term "Data-Plane" to refer to anything in the
 network nodes that is not the ACP, and therefore considered to be
 dependent on (mis-)configuration. This Data-Plane includes both the
 traditional forwarding-plane, as well as any pre-existing control-
 plane, such as routing protocols that establish routing tables for
 the forwarding plane.

 The Autonomic Control Plane serves several purposes at the same time:

 1. Autonomic functions communicate over the ACP. The ACP therefore
 directly supports Autonomic Networking functions, as described in
 [I-D.ietf-anima-reference-model]. For example, Generic Autonomic
 Signaling Protocol (GRASP - [I-D.ietf-anima-grasp]) runs securely
 inside the ACP and depends on the ACP as its "security and
 transport substrate".

 2. A controller or network management system can use it to securely
 bootstrap network devices in remote locations, even if the (Data-
 Plane) network in between is not yet configured; no Data-Plane
 dependent bootstrap configuration is required. An example of
 such a secure bootstrap process is described in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 3. An operator can use it to log into remote devices, even if the
 network is misconfigured or not configured.

 This document describes these purposes as use cases for the ACP in
 Section 3, it defines the requirements in Section 4. Section 5 gives
 an overview how the ACP is constructed.

 The normative part of this document starts with Section 6, where the
 ACP is specified. Section 7 defines normative how to support ACP on
 L2 switches. Section 8 explains normative how non-ACP nodes and
 networks can be integrated.

 The remaining sections are non-normative: Section 9 reviews benefits
 of the ACP (after all the details have been defined), Section 10
 provides operational recommendations, Appendix A provides additional
 explanations and describes additional details or future standard or
 propriety extensions that were considered not to be appropriate for
 standardization in this document but were considered important to
 document. There are no dependencies against Appendix A to build a
 complete working and interoperable ACP according to this document.

 The ACP provides secure IPv6 connectivity, therefore it can be used
 not only as the secure connectivity for self-management as required
 for the ACP in [RFC7575], but it can also be used as the secure
 connectivity for traditional (centralized) management. The ACP can
 be implemented and operated without any other components of autonomic
 networks, except for the GRASP protocol. ACP relies on per-link DULL
 GRASP (see Section 6.3) to autodiscover ACP neighbors, and includes
 the ACP GRASP instance to provide service discovery for clients of
 the ACP (see Section 6.8) including for its own maintenance of ACP
 certificates.

 The document "Using Autonomic Control Plane for Stable Connectivity
 of Network OAM" [RFC8368] describes how the ACP alone can be used to
 provide secure and stable connectivity for autonomic and non-
 autonomic Operations Administration and Management (OAM)
 applications. That document also explains how existing management
 solutions can leverage the ACP in parallel with traditional
 management models, when to use the ACP and how to integrate with
 potentially IPv4 only OAM backends.

 Combining ACP with Bootstrapping Remote Secure Key Infrastructures
 (BRSKI), see [I-D.ietf-anima-bootstrapping-keyinfra]) results in the
 "Autonomic Network Infrastructure" as defined in
 [I-D.ietf-anima-reference-model], which provides autonomic
 connectivity (from ACP) with fully secure zero-touch (automated)
 bootstrap from BRSKI. The ANI itself does not constitute an
 Autonomic Network, but it allows the building of more or less
 autonomic networks on top of it - using either centralized, Software
 Defined Networking- (SDN-)style (see [RFC7426]) automation or
 distributed automation via Autonomic Service Agents (ASA) / Autonomic
 Functions (AF) - or a mixture of both. See
 [I-D.ietf-anima-reference-model] for more information.

1.1. Applicability and Scope

 Please see the following Terminology section (Section 2) for
 explanations of terms used in this section.

 The design of the ACP as defined in this document is considered to be
 applicable to all types of "professionally managed" networks: Service
 Provider, Local Area Network (LAN), Metro(politan networks), Wide
 Area Network (WAN), Enterprise Information Technology (IT) and
 ->"Operational Technology" () (OT) networks. The ACP can operate
 equally on layer 3 equipment and on layer 2 equipment such as bridges
 (see Section 7). The hop-by-hop authentication and confidentiality
 mechanism used by the ACP is defined to be negotiable, therefore it
 can be extended to environments with different protocol preferences.
 The minimum implementation requirements in this document attempt to
 achieve maximum interoperability by requiring support for multiple
 options depending on the type of device: IPsec, see [RFC4301], and
 datagram Transport Layer Security version 1.2 (DTLS), see [RFC6347]).

 The implementation footprint of the ACP consists of Public Key
 Infrastructure (PKI) code for the ACP certificate, the GRASP
 protocol, UDP, TCP and TLS (for security and reliability of GRASP),
 the ACP secure channel protocol used (such as IPsec or DTLS), and an
 instance of IPv6 packet forwarding and routing via the Routing
 Protocol for Low-power and Lossy Networks (RPL), see [RFC6550], that
 is separate from routing and forwarding for the Data-Plane (user
 traffic).

 The ACP uses only IPv6 to avoid complexity of dual-stack ACP
 operations (IPv6/IPv4). Nevertheless, it can without any changes be
 integrated into even otherwise IPv4-only network devices. The Data-
 Plane itself would not need to change, it could continue to be IPv4
 only. For such IPv4 only devices, the IPv6 protocol itself would be
 additional implementation footprint only used for the ACP.

 The protocol choices of the ACP are primarily based on wide use and
 support in networks and devices, well understood security properties
 and required scalability. The ACP design is an attempt to produce
 the lowest risk combination of existing technologies and protocols to
 build a widely applicable operational network management solution:

 RPL was chosen because it requires a smaller routing table footprint
 in large networks compared to other routing protocols with an
 autonomically configured single area. The deployment experience of
 large scale Internet of Things (IoT) networks serves as the basis for
 wide deployment experience with RPL. The profile chosen for RPL in
 the ACP does not leverage any RPL specific forwarding plane features
 (IPv6 extension headers), making its implementation a pure control
 plane software requirement.

 GRASP is the only completely novel protocol used in the ACP, and this
 choice was necessary because there is no existing suitable protocol
 to provide the necessary functions to the ACP, so GRASP was developed
 to fill that gap.

 The ACP design can be applicable to (cpu, memory) constrained devices
 and (bitrate, reliability) constrained networks, but this document
 does not attempt to define the most constrained type of devices or
 networks to which the ACP is applicable. RPL and DTLS for ACP secure
 channels are two protocol choices already making ACP more applicable
 to constrained environments. Support for constrained devices in this
 specification is opportunistic, but not complete, because the
 reliable transport for GRASP (see Section 6.8.2) only specifies TCP/
 TLS). See Appendix A.9 for discussions about how future standards or
 proprietary extensions/variations of the ACP could better meet
 different expectations from those on which the current design is
 based including supporting constrained devices better.

2. Acronyms and Terminology (Informative)

 [RFC Editor: WG/IETF/IESG review of the terms below asked for
 references between these terms when they refer to each other. The
 only option I could fin RFC/XML to point to a hanging text acronym
 definition that also displays the actual term is the format="title"
 version, which leads to references such as '->"ACP domain
 certificate" ()'. I found no reasonable way to eliminate the
 trailing '()' generated by this type of cross references. Can you
 please take care of removing these artefacts during editing (after
 conversion to nroff ?). I also created a ticket to ask for an
 xml2rfc enhancement to avoid this in the future:
 https://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/347.

 [RFC Editor: Question: Is it possible to change the first occurrences
 of [RFCxxxx] references to "rfcxxx title" [RFCxxxx]? the XML2RFC
 format does not seem to offer such a format, but I did not want to
 duplicate 50 first references - one reference for title mentioning
 and one for RFC number.]

 In the rest of the document we will refer to systems using the ACP as
 "nodes". Typically such a node is a physical (network equipment)
 device, but it can equally be some virtualized system. Therefore, we
 do not refer to them as devices unless the context specifically calls
 for a physical system.

 This document introduces or uses the following terms (sorted
 alphabetically). Terms introduced are explained on first use, so
 this list is for reference only.

ACP: "Autonomic Control Plane". The Autonomic Function as defined
 in this document. It provides secure zero‑touch (automated)
 transitive (network wide) IPv6 connectivity for all nodes in the
 same ACP domain as well as a GRASP instance running across this
 ACP IPv6 connectivity. The ACP is primarily meant to be used as a
 component of the ANI to enable Autonomic Networks but it can
 equally be used in simple ANI networks (with no other Autonomic
 Functions) or completely by itself.

ACP address: An IPv6 address assigned to the ACP node. It is stored
 in the domain information field of the ‑>"ACP domain certificate"
 ().

ACP address range/set: The ACP address may imply a range or set of
 addresses that the node can assign for different purposes. This
 address range/set is derived by the node from the format of the
 ACP address called the "addressing sub‑scheme".

ACP connect interface: An interface on an ACP node providing access
 to the ACP for non ACP capable nodes without using an ACP secure
 channel. See Section 8.1.1.

ACP domain: The ACP domain is the set of nodes with ‑>"ACP domain
 certificates" that allow them to authenticate each other as
 members of the ACP domain. See also Section 6.1.2.

ACP (ANI/AN) Domain Certificate: A provisioned [RFC5280] certificate
 (LDevID) carrying the domain information field which is used by
 the ACP to learn its address in the ACP and to derive and
 cryptographically assert its membership in the ACP domain.

domain information (field): An rfc822Name information element (e.g.,
 field) in the domain certificate in which the ACP relevant
 information is encoded: the domain name and the ACP address.

ACP Loopback interface: The Loopback interface in the ACP Virtual
 Routing and Forwarding (VRF) that has the ACP address assigned to
 it.

ACP network: The ACP network constitutes all the nodes that have
 access to the ACP. It is the set of active and transitively
 connected nodes of an ACP domain plus all nodes that get access to
 the ACP of that domain via ACP edge nodes.

ACP (ULA) prefix(es): The /48 IPv6 address prefixes used across the
 ACP. In the normal/simple case, the ACP has one ULA prefix, see
 Section 6.10. The ACP routing table may include multiple ULA
 prefixes if the "rsub" option is used to create addresses from
 more than one ULA prefix. See Section 6.1.1. The ACP may also
 include non‑ULA prefixes if those are configured on ACP connect
 interfaces. See Section 8.1.1.

ACP secure channel: A cryptographically authenticated and encrypted
 data connection established between (normally) adjacent ACP nodes
 to carry traffic of the ACP VRF secure and isolated from Data‑
 Plane traffic in‑band over the same link/path as the Data‑Plane.

ACP secure channel protocol: The protocol used to build an ACP
 secure channel, e.g., Internet Key Exchange Protocol version 2
 (IKEv2) with IPsec or Datagram Transport Layer Security (DTLS).

ACP virtual interface: An interface in the ACP VRF mapped to one or
 more ACP secure channels. See Section 6.12.5.

 AN "Autonomic Network": A network according to

 [I-D.ietf-anima-reference-model]. Its main components are ANI,
 Autonomic Functions and Intent.

(AN) Domain Name: An FQDN (Fully Qualified Domain Name) in the
 domain information field of the Domain Certificate. See
 Section 6.1.1.

ANI (nodes/network): "Autonomic Network Infrastructure". The ANI is
 the infrastructure to enable Autonomic Networks. It includes ACP,

 BRSKI and GRASP. Every Autonomic Network includes the ANI, but
 not every ANI network needs to include autonomic functions beyond
 the ANI (nor Intent). An ANI network without further autonomic
 functions can for example support secure zero-touch (automated)
 bootstrap and stable connectivity for SDN networks - see
 [RFC8368].

ANIMA: "Autonomic Networking Integrated Model and Approach". ACP,
 BRSKI and GRASP are products of the IETF ANIMA working group.

ASA: "Autonomic Service Agent". Autonomic software modules running
 on an ANI device. The components making up the ANI (BRSKI, ACP,
 GRASP) are also described as ASAs.

Autonomic Function: A function/service in an Autonomic Network (AN)
 composed of one or more ASA across one or more ANI nodes.

BRSKI: "Bootstrapping Remote Secure Key Infrastructures"
 ([I‑D.ietf‑anima‑bootstrapping‑keyinfra]. A protocol extending
 EST to enable secure zero‑touch bootstrap in conjunction with ACP.
 ANI nodes use ACP, BRSKI and GRASP.

Data‑Plane: The counterpoint to the ACP VRF in an ACP node: all
 routing and forwarding in the node other than the ACP VRF. In a
 simple ACP or ANI node, the Data‑Plane is typically provisioned by
 means other than autonomically, for example manually (including
 across the ACP) or via SDN controllers. In a fully Autonomic
 Network node, the Data‑Plane is managed autonomically via
 Autonomic Functions and Intent. Note that other (non‑ANIMA) RFCs
 use the Data‑Plane to refer to what is better called the
 forwarding plane. This is not the way the term is used in this
 document!

device: A physical system, or physical node.

Enrollment: The process where a node presents identification (for
 example through keying material such as the private key of an
 IDevID) to a network and acquires a network specific identity and
 trust anchor such as an LDevID.

EST: "Enrollment over Secure Transport" ([RFC7030]). IETF standard‑
 track protocol for enrollment of a node with an LDevID. BRSKI is
 based on EST.

GRASP: "Generic Autonomic Signaling Protocol". An extensible
 signaling protocol required by the ACP for ACP neighbor discovery.

 The ACP also provides the "security and transport substrate" for
 the "ACP instance of GRASP". This instance of GRASP runs across
 the ACP secure channels to support BRSKI and other NOC/OAM or
 Autonomic Functions. See [I-D.ietf-anima-grasp].

IDevID: An "Initial Device IDentity" X.509 certificate installed by
 the vendor on new equipment. Contains information that
 establishes the identity of the node in the context of its vendor/
 manufacturer such as device model/type and serial number. See
 [AR8021]. IDevID cannot be used for the ACP because they are not
 provisioned by the owner of the network, so they can not directly
 indicate an ACP domain they belong to.

in‑band (management): The type of management used predominantly in
 IP based networks, not leveraging an ‑>"out‑of‑band network" ().
 In in‑band management, access to the managed equipment depends on
 the configuration of this equipment itself: interface, addressing,
 forwarding, routing, policy, security, management. This
 dependency makes in‑band management fragile because the
 configuration actions performed may break in‑band management
 connectivity. Breakage can not only be unintentional, it can
 simply be an unavoidable side effect of being unable to create
 configuration schemes where in‑band management connectivity
 configuration is unaffected by Data‑Plane configuration. See also
 ‑>"(virtual) out‑of‑band network" ().

Intent: Policy language of an autonomic network according to
 [I‑D.ietf‑anima‑reference‑model].

Loopback interface: The conventional name for an internal IP
 interface to which addresses may be assigned, but which transmits
 no external traffic.

LDevID: A "Local Device IDentity" is an X.509 certificate installed
 during "enrollment". The Domain Certificate used by the ACP is an
 LDevID. See [AR8021].

MIC: "Manufacturer Installed Certificate". Another word not used in
 this document to describe an IDevID.

native interface: Interfaces existing on a node without
 configuration of the already running node. On physical nodes
 these are usually physical interfaces. On virtual nodes their
 equivalent.

node: A system, e.g., supporting the ACP according to this document.
 Can be virtual or physical. Physical nodes are called devices.

Node‑ID: The identifier of an ACP node inside that ACP. It is the
 last 64 (see Section 6.10.3) or 78‑bits (see Section 6.10.5) of
 the ACP address.

Operational Technology (OT): "https://en.wikipedia.org/wiki/
 Operational_Technology" [1]: "The hardware and software dedicated
 to detecting or causing changes in physical processes through
 direct monitoring and/or control of physical devices such as
 valves, pumps, etc.". OT networks are today in most cases well
 separated from Information Technology (IT) networks.

(virtual) out‑of‑band network: An out‑of‑band network is a secondary
 network used to manage a primary network. The equipment of the
 primary network is connected to the out‑of‑band network via
 dedicated management ports on the primary network equipment.
 Serial (console) management ports were historically most common,
 higher end network equipment now also has ethernet ports dedicated
 only for management. An out‑of‑band network provides management
 access to the primary network independent of the configuration
 state of the primary network. One of the goals of the ACP is to
 provide this benefit of out‑of‑band networks virtually on the
 primary network equipment. The ACP VRF acts as a virtual out of
 band network device providing configuration independent management
 access. The ACP secure channels are the virtual links of the ACP
 virtual out‑of‑band network, meant to be operating independent of
 the configuration of the primary network. See also ‑>"in‑band
 (management)" ().

RPL: "IPv6 Routing Protocol for Low‑Power and Lossy Networks". The
 routing protocol used in the ACP. See [RFC6550].

MASA (service): "Manufacturer Authorized Signing Authority". A
 vendor/manufacturer or delegated cloud service on the Internet
 used as part of the BRSKI protocol.

(ACP/ANI/BRSKI) Registrar: An ACP registrar is an entity (software
 and/or person) that is orchestrating the enrollment of ACP nodes
 with the ACP domain certificate. ANI nodes use BRSKI, so ANI
 registrars are also called BRSKI registrars. For non‑ANI ACP
 nodes, the registrar mechanisms are undefined by this document.
 See Section 6.10.7. Renewal and other maintenance (such as
 revocation) of ACP domain certificates may be performed by other
 entities than registrars. EST must be supported for ACP domain
 certificate renewal (see Section 6.1.4). BRSKI is an extension of
 EST, so ANI/BRSKI registrars can easily support ACP domain
 certificate renewal in addition to initial enrollment.

sUDI: "secured Unique Device Identifier". Another term not used in
 this document to refer to an IDevID.

UDI: "Unique Device Identifier". In the context of this document
 unsecured identity information of a node typically consisting of
 at least device model/type and serial number, often in a vendor
 specific format. See sUDI and LDevID.

 ULA: (Global ID prefix) A "Unique Local Address" (ULA) is an IPv6

 address in the block fc00::/7, defined in [RFC4193]. It is the
 approximate IPv6 counterpart of the IPv4 private address
 ([RFC1918]). The ULA Global ID prefix are the first 48-bits of a
 ULA address. In this document it is abbreviated as "ULA prefix".

(ACP) VRF: The ACP is modeled in this document as a "Virtual Routing
 and Forwarding" instance (VRF). This means that it is based on a
 "virtual router" consisting of a separate IPv6 forwarding table to
 which the ACP virtual interfaces are attached and an associated
 IPv6 routing table separate from the Data‑Plane. Unlike the VRFs
 on MPLS/VPN‑PE ([RFC4364]) or LISP XTR ([RFC6830]), the ACP VRF
 does not have any special "core facing" functionality or routing/
 mapping protocols shared across multiple VRFs. In vendor products
 a VRF such as the ACP‑VRF may also be referred to as a so called
 VRF‑lite.

(ACP) Zone: An ACP zone is a set of ACP nodes using the same zone
 field value in their ACP address according to Section 6.10.3.
 Zones are a mechanism to support structured addressing of ACP
 addresses within the same /48‑bit ULA prefix.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119],[RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Use Cases for an Autonomic Control Plane (Informative)

3.1. An Infrastructure for Autonomic Functions

 Autonomic Functions need a stable infrastructure to run on, and all
 autonomic functions should use the same infrastructure to minimize
 the complexity of the network. In this way, there is only need for a
 single discovery mechanism, a single security mechanism, and single
 instances of other processes that distributed functions require.

3.2. Secure Bootstrap over a not configured Network

 Today, bootstrapping a new node typically requires all nodes between
 a controlling node such as an SDN controller ("Software Defined
 Networking", see [RFC7426]) and the new node to be completely and
 correctly addressed, configured and secured. Bootstrapping and
 configuration of a network happens in rings around the controller -
 configuring each ring of devices before the next one can be
 bootstrapped. Without console access (for example through an out-of-
 band network) it is not possible today to make devices securely
 reachable before having configured the entire network leading up to
 them.

 With the ACP, secure bootstrap of new devices and whole new networks
 can happen without requiring any configuration of unconfigured
 devices along the path: As long as all devices along the path support
 ACP and a zero-touch bootstrap mechanism such as BRSKI, the ACP
 across a whole network of unconfigured devices can be brought up
 without operator/provisioning intervention. The ACP also provides
 additional security for any bootstrap mechanism, because it can
 provide encrypted discovery (via ACP GRASP) of registrars or other
 bootstrap servers by bootstrap proxies connecting to nodes that are
 to be bootstrapped and the ACP encryption hides the identities of the
 communicating entities (pledge and registrar), making it more
 difficult to learn which network node might be attackable. The ACP
 domain certificate can also be used to end-to-end encrypt the
 bootstrap communication between such proxies and server. Note that
 bootstrapping here includes not only the first step that can be
 provided by BRSKI (secure keys), but also later stages where
 configuration is bootstrapped.

3.3. Data-Plane Independent Permanent Reachability

 Today, most critical control plane protocols and network management
 protocols are using the Data-Plane of the network. This leads to
 often undesirable dependencies between control and management plane
 on one side and the Data-Plane on the other: Only if the forwarding
 and control plane of the Data-Plane are configured correctly, will
 the Data-Plane and the management plane work as expected.

 Data-Plane connectivity can be affected by errors and faults, for
 example misconfigurations that make AAA (Authentication,
 Authorization and Accounting) servers unreachable or can lock an
 administrator out of a device; routing or addressing issues can make
 a device unreachable; shutting down interfaces over which a current
 management session is running can lock an admin irreversibly out of
 the device. Traditionally only out-of-band access can help recover
 from such issues (such as serial console or ethernet management
 port).

 Data-Plane dependencies also affect applications in a Network
 Operations Center (NOC) such as SDN controller applications: Certain
 network changes are today hard to implement, because the change
 itself may affect reachability of the devices. Examples are address
 or mask changes, routing changes, or security policies. Today such
 changes require precise hop-by-hop planning.

 Note that specific control plane functions for the Data-Plane often
 want to depend on forwarding of their packets via the Data-Plane:
 Aliveness and routing protocol signaling packets across the Data-
 Plane to verify reachability across the Data-Plane, using IPv4
 signaling packets for IPv4 routing vs. IPv6 signaling packets for
 IPv6 routing.

 Assuming appropriate implementation (see Section 6.12.2 for more
 details), the ACP provides reachability that is independent of the
 Data-Plane. This allows the control plane and management plane to
 operate more robustly:

 o For management plane protocols, the ACP provides the functionality
 of a Virtual out-of-band (VooB) channel, by providing connectivity
 to all nodes regardless of their Data-Plane configuration, routing
 and forwarding tables.

 o For control plane protocols, the ACP allows their operation even
 when the Data-Plane is temporarily faulty, or during transitional
 events, such as routing changes, which may affect the control
 plane at least temporarily. This is specifically important for
 autonomic service agents, which could affect Data-Plane
 connectivity.

 The document "Using Autonomic Control Plane for Stable Connectivity
 of Network OAM" [RFC8368] explains this use case for the ACP in
 significantly more detail and explains how the ACP can be used in
 practical network operations.

4. Requirements (Informative)

 The following requirements were identified for the design of the ACP
 based on the above use-cases (Section 3). These requirements are
 informative. The ACP as specified in the normative parts of this
 document is meeting or exceeding these use-case requirements:

ACP1: The ACP should provide robust connectivity: As far as
 possible, it should be independent of configured addressing,

 configuration and routing. Requirements 2 and 3 build on this
 requirement, but also have value on their own.

ACP2: The ACP must have a separate address space from the Data‑
 Plane. Reason: traceability, debug‑ability, separation from
 Data‑Plane, infrastructure security (filtering based on known
 address space).

ACP3: The ACP must use autonomically managed address space. Reason:
 easy bootstrap and setup ("autonomic"); robustness (admin
 cannot break network easily). This document suggests using
 ULA addressing for this purpose ("Unique Local Address", see
 [RFC4193]).

ACP4: The ACP must be generic, that is it must be usable by all the
 functions and protocols of the ANI. Clients of the ACP must
 not be tied to a particular application or transport protocol.

ACP5: The ACP must provide security: Messages coming through the ACP
 must be authenticated to be from a trusted node, and should
 (very strong should) be encrypted.

 Explanation for ACP4: In a fully autonomic network (AN), newly
 written ASA could potentially all communicate exclusively via GRASP
 with each other, and if that was assumed to be the only requirement
 against the ACP, it would not need to provide IPv6 layer connectivity
 between nodes, but only GRASP connectivity. Nevertheless, because
 ACP also intends to support non-AN networks, it is crucial to support
 IPv6 layer connectivity across the ACP to support any transport and
 application layer protocols.

 The ACP operates hop-by-hop, because this interaction can be built on
 IPv6 link local addressing, which is autonomic, and has no dependency
 on configuration (requirement 1). It may be necessary to have ACP
 connectivity across non-ACP nodes, for example to link ACP nodes over
 the general Internet. This is possible, but introduces a dependency
 against stable/resilient routing over the non-ACP hops (see
 Section 8.2).

5. Overview (Informative)

 The Autonomic Control Plane is constructed in the following way (for
 details, see Section 6):

 1. An ACP node creates a Virtual Routing and Forwarding (VRF)
 instance, or a similar virtual context.

 2. It determines, following a policy, a candidate peer list. This
 is the list of nodes to which it should establish an Autonomic
 Control Plane. Default policy is: To all link-layer adjacent
 nodes supporting ACP.

 3. For each node in the candidate peer list, it authenticates that
 node (according to Section 6.1.2) and negotiates a mutually
 acceptable channel type.

 4. For each node in the candidate peer list, it then establishes a
 secure tunnel of the negotiated type. The resulting tunnels are
 then placed into the previously set up VRF. This creates an
 overlay network with hop-by-hop tunnels.

 5. Inside the ACP VRF, each node assigns its ULA IPv6 address to a
 Loopback interface assigned to the ACP VRF.

 6. Each node runs a lightweight routing protocol, to announce
 reachability of the virtual addresses inside the ACP (see
 Section 6.12.5).

 Note:

 o Non-autonomic NMS ("Network Management Systems") or SDN
 controllers have to be explicitly configured for connection into
 the ACP.

 o Connecting over non-ACP Layer-3 clouds requires explicit
 configuration. See Section 8.2.

 o None of the above operations (except explicit configured ones) are
 reflected in the configuration of the node.

 The following figure illustrates the ACP.

 ACP node 1 ACP node 2

secure . . secure . . secure
channel: +‑‑‑‑‑‑‑‑‑‑‑+ : channel : +‑‑‑‑‑‑‑‑‑‑‑+ : channel
..‑‑‑‑‑‑‑‑| ACP VRF |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| ACP VRF |‑‑‑‑‑‑‑‑‑..
 : / \ / \ <‑‑routing‑‑> / \ / \ :
 : \ / \ / \ / \ / :
..‑‑‑‑‑‑‑‑| Loopback |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| Loopback |‑‑‑‑‑‑‑‑‑..
 : | interface | : : | interface | :
 : +‑‑‑‑‑‑‑‑‑‑‑+ : : +‑‑‑‑‑‑‑‑‑‑‑+ :
 : : : :
 : Data‑Plane :...............: Data‑Plane :
 : : link : :
 :.................: :.................:

 Figure 1: ACP VRF and secure channels

 The resulting overlay network is normally based exclusively on hop-
 by-hop tunnels. This is because addressing used on links is IPv6
 link local addressing, which does not require any prior set-up. In
 this way the ACP can be built even if there is no configuration on
 the node, or if the Data-Plane has issues such as addressing or
 routing problems.

6. Self-Creation of an Autonomic Control Plane (ACP) (Normative)

 This section describes the components and steps to set up an
 Autonomic Control Plane (ACP), and highlights the key properties
 which make it "indestructible" against many inadvertent changes to
 the Data-Plane, for example caused by misconfigurations.

 An ACP node can be a router, switch, controller, NMS host, or any
 other IP capable node. Initially, it must have it's ACP domain
 certificate, as well as an (empty) ACP Adjacency Table (described in
 Section 6.2). It then can start to discover ACP neighbors and build
 the ACP. This is described step by step in the following sections:

6.1. ACP Domain, Certificate and Network

 The ACP relies on group security. An ACP domain is a group of nodes
 that trust each other to participate in ACP operations. To establish
 trust, each ACP member requires keying material: An ACP node MUST
 have a certificate (LDevID) and a Trust Anchor (TA) consisting of a
 certificate (chain) used to sign the LDevID of all ACP domain
 members. The LDevID is used to cryptographically authenticate the
 membership of its owner node in the ACP domain to other ACP domain
 members, the TA is used to authenticate the ACP domain membership of
 other nodes (see Section 6.1.2).

 The LDevID is called the ACP domain certificate, the TA is the
 Certificate Authority (CA) of the ACP domain.

The ACP does not mandate specific mechanisms by which this keying
material is provisioned into the ACP node, it only requires the
Domain information field as specified in Section 6.1.1 in its domain
certificate as well as those of candidate ACP peers. See
Appendix A.2 for more information about enrollment or provisioning
options.

 This document uses the term ACP in many places where the Autonomic
 Networking reference documents [RFC7575] and
 [I-D.ietf-anima-reference-model] use the word autonomic. This is
 done because those reference documents consider (only) fully
 autonomic networks and nodes, but support of ACP does not require
 support for other components of autonomic networks. Therefore the
 word autonomic might be misleading to operators interested in only
 the ACP.

 [RFC7575]
 defines the term "Autonomic Domain" as a collection of
 autonomic nodes. ACP nodes do not need to be fully autonomic, but
 when they are, then the ACP domain is an autonomic domain. Likewise,
 [I-D.ietf-anima-reference-model] defines the term "Domain
 Certificate" as the certificate used in an autonomic domain. The ACP
 domain certificate is that domain certificate when ACP nodes are
 (fully) autonomic nodes. Finally, this document uses the term ACP
 network to refer to the network created by active ACP nodes in an ACP
 domain. The ACP network itself can extend beyond ACP nodes through
 the mechanisms described in Section 8.1.

 The ACP domain certificate SHOULD be used for any authentication
 between nodes with ACP domain certificates (ACP nodes and NOC nodes)
 where the required condition is ACP domain membership, such as ACP
 node to NOC/OAM end-to-end security and ASA to ASA end-to-end
 security. Section 6.1.2 defines this "ACP domain membership check".
 The uses of this check that are standardized in this document are for
 the establishment of ACP secure channels (Section 6.6) and for ACP
 GRASP (Section 6.8.2).

6.1.1. Certificate ACP Domain Information Field

 Information about the domain MUST be encoded in the domain
 certificate in a subjectAltName / rfc822Name field according to the
 following ABNF definition ([RFC5234]):

 [RFC Editor: Please substitute SELF in all occurrences of rfcSELF in
 this document with the RFC number assigned to this document and
 remove this comment line]

domain‑information = local‑part "@" acp‑domain‑name
local‑part = key ["." local‑info]
key = "rfcSELF"
local‑info = [acp‑address] ["+" rsub extensions]
acp‑address = 32hex‑dig | 0
hex‑dig = DIGIT / "a" / "b" / "c" / "d" / "e" / "f"
rsub = [<subdomain>] ; <subdomain> as of RFC1034, section 3.5
routing‑subdomain = [rsub "."] acp‑domain‑name
acp‑domain‑name = ; <domain> ; as of RFC 1034, section 3.5
extensions = *("+" extension)
extension = ; future standard definition.
 ; Must fit RFC5322 simple dot‑atom format.

Example:
domain‑information = rfcSELF+fd89b714f3db00000200000064000000
 +area51.research@acp.example.com
acp‑domain‑name = acp.example.com
routing‑subdomain = area51.research.acp.example.com

 Figure 2: ACP Domain Information Field ABNF

 Nodes complying with this specification MUST be able to receive their
 ACP address through the domain certificate, in which case their own
 ACP domain certificate MUST have the 32hex-dig "acp-address" field.
 Nodes complying with this specification MUST also be able to
 authenticate nodes as ACP domain members / ACP secure channel peers
 when they have an empty or 0-value acp-address field. See
 Section 6.1.2.

 "acp-domain-name" is used to indicate the ACP Domain across which all
 ACP nodes trust each other and are willing to build ACP channels to
 each other. See Section 6.1.2. Acp-domain-name SHOULD be the FQDN
 of a DNS domain owned by the operator assigning the certificate.
 This is a simple method to ensure that the domain is globally unique
 and collision of ACP addresses would therefore only happen due to ULA
 hash collisions (see Section 6.10.2). If the operator does not own
 any FQDN, it should choose a string (in FQDN format) that it intends
 to be equally unique.

 "routing-subdomain" is the autonomic subdomain composed of "rsub" and
 "acp-domain-name". "rsub" is optional. When not present, "routing-
 subdomain" is the same as "acp-domain-name". "routing-subdomain"
 determines the /48 ULA prefix for ACP addresses. "rsub" therefore
 allows to use multiple /48 ULA prefixes in an ACP domain. See
 Appendix A.7 for example use-cases.

 The optional "extensions" field is used for future standardized
 extensions to this specification. It MUST be ignored if present and
 not understood.

 Formatting notes:

 o "rsub" needs to be in the "local-part": If the format just had
 routing-subdomain as the domain part of the domain-information,
 rsub and acp-domain-name could not be separated from each other.
 It also makes acp-domain-name a valid e-mail target across all
 routing-subdomains.

 o "acp-address" cannot use standard IPv6 address formats because it
 must match the simple dot-atom format of [RFC5322]. The character
 ":" is not allowed in that format.

 o If "acp-address" is empty, and "rsub" is empty too, the "local-
 part" will have the format "rfcSELF++extension(s)". The two plus
 characters are necessary so the node can unambiguously parse that
 both "acp-address" and "rsub" are empty.

 o The maximum size of "domain-information" is 254 characters and the
 maximum size of node-info is 64 characters according to [RFC5280]
 that is referring to [RFC2821] (superseded by [RFC5321]).

 The subjectAltName / rfc822Name encoding of the ACP domain name and
 ACP address is used for the following reasons:

 o It should be possible to share the LDevID with other uses beside
 the ACP. Therefore, the information element required for the ACP
 should be encoded so that it minimizes the possibility of creating
 incompatibilities with such other uses.

 o The information for the ACP should not cause incompatibilities
 with any pre-existing ASN.1 software. This eliminates the
 introduction of a novel information element because that could
 require extensions to such pre-existing ASN.1 parsers.

 o subjectAltName / rfc822Name is a pre-existing element that must be
 supported by all existing ASN.1 parsers for LDevID.

 o The element required for the ACP should not be misinterpreted by
 any other uses of the LDevID. If the element used for the ACP is
 interpreted by other uses, the impact should be benign.

 o The element should not require additional ASN.1 en/decoding,
 because it is unclear if all, especially embedded devices

 certificate libraries would support extensible ASN.1
 functionality.

 o Using an IP address format encoding could result in non-benign
 misinterpretation of the domain information field; other uses
 unaware of the ACP could try to do something with the ACP address
 that would fail to work correctly. For example, the address could
 be interpreted to be an address of the node which does not belong
 to the ACP VRF.

 o At minimum, both the AN domain name and the non-domain name
 derived part of the ACP address need to be encoded in one or more
 appropriate fields of the certificate, so there are not many
 alternatives with pre-existing fields where the only possible
 conflicts would likely be beneficial.

 o rfc822Name encoding is very flexible. It allows to encode all the
 different fields of information required for the ACP.

o The format of the rfc822Name is chosen so that an operator can set
 up a mailbox called rfcSELF@<domain> that would receive emails
 sent towards the rfc822Name of any node inside a domain. This is
 possible because in many modern mail systems, components behind a
 "+" character are considered part of a single mailbox. In other
 words, it is not necessary to set up a separate mailbox for every
 ACP node, but only one for the whole domain.

 o In result, if any unexpected use of the ACP addressing information
 in a certificate happens, it is benign and detectable: it would be
 mail to that mailbox.

 See section 4.2.1.6 of [RFC5280] for details on the subjectAltName
 field.

6.1.2. ACP domain membership check

 The following points constitute the ACP domain membership check of a
 candidate peer certificate, independent of the protocol used:

1: The peer certificate is valid (lifetime).

2: The peer has proved ownership of the private key associated with
 the certificate's public key.

3: The peer's certificate passes certificate path validation as
 defined in [RFC5280] against one of the Trust Anchors associated
 with the ACP nodes ACP domain certificate (see Section 6.1.3
 below).

4: If the node certificate indicates a Certificate Revocation List
 (CRL) Distribution Point (CDP) ([RFC5280], section 4.2.1.13) or
 Online Certificate Status Protocol (OCSP) responder ([RFC5280],
 section 4.2.2.1), then the peer's certificate must be valid
 according to those criteria: An OCSP check for the peer's
 certificate across the ACP must succeed or the peer certificate
 must not be listed in the CRL retrieved from the CDP. This rule
 has to be skipped for ACP secure channel peer authentication when
 the node has no ACP or non‑ACP connectivity to retrieve current
 CRL or access an OCSP responder (see below).

5: The peer's certificate has a syntactically valid ACP domain
 information field (encoded as subjectAltName / rfc822Name) and the
 acp‑domain‑name in that peer's domain information field is the
 same as in this ACP node's certificate (lowercase normalized).

 When an ACP node learns later via OCSP/CRL that an ACP peers
 certificate for which rule 4 had to be skipped during ACP secure
 channel establishment is invalid, then the ACP secure channel to that
 peer SHOULD be closed even if this peer is the only connectivity to
 access CRL/OCSP. The ACP secure channel connection MUST be retried
 periodically to support the case that the neighbor aquires a new,
 valid certificate.

 Only when checking a candidate peer's certificate for the purpose of
 establishing an ACP secure channel, one additional check is
 performed:

6: The candidate peer certificate's ACP domain information field
 has a non‑empty acp‑address field (either 32hex‑dig or 0,
 according to Figure 2).

 Rule 6 for the establishment of ACP secure channels ensures that they
 will only be built between nodes which indicate through the acp-
 address in their ACP domain certificate the ability and permission by
 the Registrar to participate in ACP secure-channels.

 Nodes with an empty acp-address field can only use their ACP domain
 certificate for non-ACP-secure channel authentication purposes.

 The special value 0 in an ACP certificates acp-address field is used
 for nodes that can and should determine their ACP address through
 other mechanisms than learning it through the acp-address field in
 their ACP domain certificate. These ACP nodes are permitted to
 establish ACP secure channels. Mechanisms for those nodes to
 determine their ACP address are outside the scope of this
 specification.

 Formally, the ACP domain membership check includes both the
 authentication of the peers certificate (steps 1...4) and a check
 authorizing this node and the peer to establish an ACP connection
 and/or any other secure connection across ACP or data-plane end to
 end. Step 5 authorizes to build any non-ACP secure connection
 between members of the same ACP domain, step 5 and 6 are required to
 build an ACP secure channel. For brevity, the remainder of this
 document refers to this process only as authentication instead of as
 authentication and authorization.

6.1.3. Trust Points and Trust Anchors

 ACP nodes need Trust Point (TP) certificates to perform certificate
 path validation as required by Section 6.1.2, rule 3. Trust Point(s)
 must be provisioned to an ACP node (together with its ACP domain
 certificate) by an ACP Registrar during initial enrolment of a
 candidate ACP node. ACP nodes MUST also support renewal of TPs via
 EST as described below in Section 6.1.4.

 Trust Point is the term used in this document for a certificate
 authority (CA) and its associated set of certificates. Multiple
 certificates are required for a CA to deal with CA certificate
 renewals as explained in Section 4.4 of CMP ([RFC4210]).

 A certificate path is a chain of certificates starting at a self-
 signed certificate of a so called root-CA or Trust Anchor, followed
 by zero or more intermediate Trust Point or sub-CA certificates and
 ending with an ACP certificate. Certificate path validation
 authenticates that the ACP certificate is signed by a Trust Anchor,
 directly or indirectly via one or more intermediate Trust Points.

 Note that different ACP nodes may have different Trust Points and
 even different Trust Anchors in their certificate path, as long as
 the set of Trust Points for all ACP node includes the same set of
 Trust Anchors (usually 1), and each ACP nodes set of Trust Anchors
 includes the intermediate Trust Points for its own ACP domain
 certificate. The protocols through which ACP domain membership check
 rules 1-4 are performed therefore need to support the exchange not
 only of the ACP nodes certificates, but also their intermediate Trust
 Points.

 ACP nodes MUST support for the ACP domain membership check the
 certificate path validation with 0 or 1 intermediate Trust Points.
 They SHOULD support 2 intermediate Trust Points and two Trust Anchors
 (to permit migration to different root-CAs).

 Trust Points for ACP domain certificates must be trusted to sign
 certificates with valid ACP domain information fields only for
 trusted ACP registrars of that domain. This can be achieved by using
 Trust Anchors private to the owner of the ACP domain or potentially
 through appropriate contractual agreements between the involved
 parties. Public CA without such obligations and guarantees can not
 be used.

 A single owner can operate multiple independent ACP domains from the
 same set of private trust anchors (CAs) when the ACP Registrars are
 trusted not to permit certificates with incorrect ACP information
 fields to be signed. Such as ACP information with a wrong acp-domain
 field. In this case, CAs can be completely unaware of ACP specifics,
 so that it should be possible to use any existing CA software. When
 ACP Registrars are not to be trusted, the correctness of the ACP
 domain information field for the candidate ACP node has to be
 verified by the CA signing the ACP domain certificate.

6.1.4. Certificate and Trust Point Maintenance

 ACP nodes MUST support renewal of their Certificate and Trust Points
 (TP) via EST ("Enrollment over Secure Transport", see [RFC7030]) and
 MAY support other mechanisms. An ACP network MUST have at least one
 ACP node supporting EST server functionality across the ACP so that
 EST renewal is useable.

 ACP nodes SHOULD be able to remember the EST server from which they
 last renewed their ACP domain certificate and SHOULD provide the
 ability for this remembered EST server to also be set by the ACP
 Registrar (see Section 6.10.7) that initially enrolled the ACP device
 with its ACP domain certificate. When BRSKI (see
 [I-D.ietf-anima-bootstrapping-keyinfra]) is used, the ACP address of
 the BRSKI registrar from the BRSKI TLS connection SHOULD be
 remembered and used for the next renewal via EST if that registrar
 also announces itself as an EST server via GRASP (see next section)
 on its ACP address.

6.1.4.1. GRASP objective for EST server

 ACP nodes that are EST servers MUST announce their service via GRASP
 in the ACP through M_FLOOD messages. See [I-D.ietf-anima-grasp],
 section 2.8.11 for the definition of this message type:

 Example:

[M_FLOOD, 12340815, h'fd89b714f3db0000200000064000001', 210000,
 ["SRV.est", 4, 255],
 [O_IPv6_LOCATOR,
 h'fd89b714f3db0000200000064000001', TCP, 80]
]

 Figure 3: GRASP SRV.est example

 The formal definition of the objective in Concise data definition
 language (CDDL) (see [I-D.ietf-cbor-cddl]) is as follows:

 flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

 objective = ["SRV.est", objective-flags, loop-count,

 objective-value]

objective‑flags = sync‑only ; as in GRASP spec
sync‑only = 4 ; M_FLOOD only requires synchronization
loop‑count = 255 ; recommended
objective‑value = any ; Not used (yet)

 Figure 4: GRASP SRV.est definition

 The objective name "SRV.est" indicates that the objective is an
 [RFC7030] compliant EST server because "est" is an [RFC6335]
 registered service name for [RFC7030]. Objective-value MUST be
 ignored if present. Backward compatible extensions to [RFC7030] MAY
 be indicated through objective-value. Non [RFC7030] compatible
 certificate renewal options MUST use a different objective-name.

 The M_FLOOD message MUST be sent periodically. The default SHOULD be
 60 seconds, the value SHOULD be operator configurable but SHOULD be
 not smaller than 60 seconds. The frequency of sending MUST be such
 that the aggregate amount of periodic M_FLOODs from all flooding
 sources cause only negligible traffic across the ACP. The time-to-
 live (ttl) parameter SHOULD be 3.5 times the period so that up to
 three consecutive messages can be dropped before considering an
 announcement expired. In the example above, the ttl is 210000 msec,
 3.5 times 60 seconds. When a service announcer using these
 parameters unexpectedly dies immediately after sending the M_FLOOD,
 receivers would consider it expired 210 seconds later. When a
 receiver tries to connect to this dead service before this timeout,
 it will experience a failing connection and use that as an indication
 that the service is dead and select another instance of the same
 service instead.

6.1.4.2. Renewal

 When performing renewal, the node SHOULD attempt to connect to the
 remembered EST server. If that fails, it SHOULD attempt to connect
 to an EST server learned via GRASP. The server with which
 certificate renewal succeeds SHOULD be remembered for the next
 renewal.

 Remembering the last renewal server and preferring it provides
 stickiness which can help diagnostics. It also provides some
 protection against off-path compromised ACP members announcing bogus
 information into GRASP.

 Renewal of certificates SHOULD start after less than 50% of the
 domain certificate lifetime so that network operations has ample time
 to investigate and resolve any problems that causes a node to not
 renew its domain certificate in time - and to allow prolonged periods
 of running parts of a network disconnected from any CA.

6.1.4.3. Certificate Revocation Lists (CRLs)

 The ACP node SHOULD support Certificate Revocation Lists (CRL) via
 HTTPs from one or more CRL Distribution Points (CDPs). The CDP(s)
 MUST be indicated in the Domain Certificate when used. If the CDP
 URL uses an IPv6 address (ULA address when using the addressing rules
 specified in this document), the ACP node will connect to the CDP via
 the ACP. If the CDP uses a domain name, the ACP node will connect to
 the CDP via the Data-Plane.

 It is common to use domain names for CDP(s), but there is no
 requirement for the ACP to support DNS. Any DNS lookup in the Data-
 Plane is not only a possible security issue, but it would also not
 indicate whether the resolved address is meant to be reachable across
 the ACP. Therefore, the use of an IPv6 address versus the use of a
 DNS name doubles as an indicator whether or not to reach the CDP via
 the ACP.

 A CDP can be reachable across the ACP either by running it on a node
 with ACP or by connecting its node via an ACP connect interface (see
 Section 8.1). The CDP SHOULD use an ACP domain certificate for its
 HTTPs connections. The connecting ACP node SHOULD verify that the
 CDP certificate used during the HTTPs connection has the same ACP
 address as indicated in the CDP URL of the nodes ACP domain
 certificate if the CDP URL uses an IPv6 address.

6.1.4.4. Lifetimes

 Certificate lifetime may be set to shorter lifetimes than customary
 (1 year) because certificate renewal is fully automated via ACP and
 EST. The primary limiting factor for shorter certificate lifetimes
 is load on the EST server(s) and CA. It is therefore recommended
 that ACP domain certificates are managed via a CA chain where the
 assigning CA has enough performance to manage short lived
 certificates. See also Section 10.2.4 for discussion about an
 example setup achieving this. See also [I-D.ietf-acme-star].

 When certificate lifetimes are sufficiently short, such as few hours,
 certificate revocation may not be necessary, allowing to simplify the
 overall certificate maintenance infrastructure.

 See Appendix A.2 for further optimizations of certificate maintenance
 when BRSKI can be used ("Bootstrapping Remote Secure Key
 Infrastructures", see [I-D.ietf-anima-bootstrapping-keyinfra]).

6.1.4.5. Re-enrollment

 An ACP node may determine that its ACP domain certificate has
 expired, for example because the ACP node was powered down or
 disconnected longer than its certificate lifetime. In this case, the
 ACP node SHOULD convert to a role of a re-enrolling candidate ACP
 node.

 In this role, the node does maintain the trust anchor and certificate
 chain associated with its ACP domain certificate exclusively for the
 purpose of re-enrollment, and attempts (or waits) to get re-enrolled
 with a new ACP certificate. The details depend on the mechanisms/
 protocols used by the ACP registrars.

 Please refer to Section 6.10.7 and
 [I-D.ietf-anima-bootstrapping-keyinfra] for explanations about ACP
 registrars and vouchers as used in the following text. When ACP is
 intended to be used without BRSKI, the details about BRSKI and
 vouchers in the following text can be skipped.

 When BRSKI is used (i.e.: on ACP nodes that are ANI nodes), the re-
 enrolling candidate ACP node would attempt to enroll like a candidate
 ACP node (BRSKI pledge), but instead of using the ACP nodes IDevID,
 it SHOULD first attempt to use its ACP domain certificate in the
 BRSKI TLS authentication. The BRSKI registrar MAY honor this
 certificate beyond its expiration date purely for the purpose of re-
 enrollment. Using the ACP node's domain certificate allows the BRSKI
 registrar to learn that nodes ACP domain information field, so that
 the BRSKI registrar can re-assign the same ACP address information to
 the ACP node in the new ACP domain certificate.

 If the BRSKI registrar denies the use of the old ACP domain
 certificate, the re-enrolling candidate ACP node MUST re-attempt re-
 enrollment using its IDevID as defined in BRSKI during the TLS
 connection setup.

 Both when the BRSKI connection is attempted with the old ACP domain
 certificate or the IDevID, the re-enrolling candidate ACP node SHOULD
 authenticate the BRSKI registrar during TLS connection setup based on
 its existing trust anchor/certificate chain information associated
 with its old ACP certificate. The re-enrolling candidate ACP node
 SHOULD only request a voucher from the BRSKI registrar when this
 authentication fails during TLS connection setup.

 When other mechanisms than BRSKI are used for ACP domain certificate
 enrollment, the principles of the re-enrolling candidate ACP node are
 the same. The re-enrolling candidate ACP node attempts to
 authenticate any ACP registrar peers during re-enrollment protocol/
 mechanisms via its existing certificate chain/trust anchor and
 provides its existing ACP domain certificate and other identification
 (such as the IDevID) as necessary to the registrar.

 Maintaining existing trust anchor information is especially important
 when enrollment mechanisms are used that unlike BRSKI do not leverage
 a voucher mechanism to authenticate the ACP registrar and where
 therefore the injection of certificate failures could otherwise make
 the ACP node easily attackable remotely.

 When using BRSKI or other protocol/mechanisms supporting vouchers,
 maintaining existing trust anchor information allows for re-
 enrollment of expired ACP certificates to be more lightweight,
 especially in environments where repeated acquisition of vouchers
 during the lifetime of ACP nodes may be operationally expensive or
 otherwise undesirable.

6.1.4.6. Failing Certificates

 An ACP domain certificate is called failing in this document, if/when
 the ACP node can determine that it was revoked (or explicitly not
 renewed), or in the absence of such explicit local diagnostics, when
 the ACP node fails to connect to other ACP nodes in the same ACP
 domain using its ACP certificate. For connection failures to
 determine the ACP domain certificate as the culprit, the peer should
 pass the domain membership check (Section 6.1.2) and other reasons
 for the connection failure can be excluded because of the connection
 error diagnostics.

 This type of failure can happen during setup/refresh of a secure ACP
 channel connections or any other use of the ACP domain certificate,
 such as for the TLS connection to an EST server for the renewal of
 the ACP domain certificate.

 Example reasons for failing certificates that the ACP node can only
 discover through connection failure are that the domain certificate
 or any of its signing certificates could have been revoked or may
 have expired, but the ACP node cannot self-diagnose this condition
 directly. Revocation information or clock synchronization may only
 be available across the ACP, but the ACP node cannot build ACP secure
 channels because ACP peers reject the ACP node's domain certificate.

ACP nodes SHOULD support the option to determines whether its ACP
certificate is failing, and when it does, put itself into the role of
a re‑enrolling candidate ACP node as explained above
(Section 6.1.4.5).

6.2. ACP Adjacency Table

 To know to which nodes to establish an ACP channel, every ACP node
 maintains an adjacency table. The adjacency table contains
 information about adjacent ACP nodes, at a minimum: Node-ID
 (identifier of the node inside the ACP, see Section 6.10.3 and
 Section 6.10.5), interface on which neighbor was discovered (by GRASP
 as explained below), link-local IPv6 address of neighbor on that
 interface, certificate (including domain information field). An ACP
 node MUST maintain this adjacency table. This table is used to
 determine to which neighbor an ACP connection is established.

 Where the next ACP node is not directly adjacent (i.e., not on a link
 connected to this node), the information in the adjacency table can
 be supplemented by configuration. For example, the Node-ID and IP
 address could be configured. See Section 8.2.

 The adjacency table MAY contain information about the validity and
 trust of the adjacent ACP node's certificate. However, subsequent
 steps MUST always start with the ACP domain membership check against
 the peer (see Section 6.1.2).

 The adjacency table contains information about adjacent ACP nodes in
 general, independently of their domain and trust status. The next
 step determines to which of those ACP nodes an ACP connection should
 be established.

6.3. Neighbor Discovery with DULL GRASP

 [RFC Editor: GRASP draft is in RFC editor queue, waiting for
 dependencies, including ACP. Please ensure that references to I-
 D.ietf-anima-grasp that include section number references (throughout
 this document) will be updated in case any last-minute changes in
 GRASP would make those section references change.

 Discovery Unsolicited Link-Local (DULL) GRASP is a limited subset of
 GRASP intended to operate across an insecure link-local scope. See
 section 2.5.2 of [I-D.ietf-anima-grasp] for its formal definition.
 The ACP uses one instance of DULL GRASP for every L2 interface of the
 ACP node to discover link level adjacent candidate ACP neighbors.
 Unless modified by policy as noted earlier (Section 5 bullet point
 2.), native interfaces (e.g., physical interfaces on physical nodes)
 SHOULD be initialized automatically to a state in which ACP discovery
 can be performed and any native interfaces with ACP neighbors can
 then be brought into the ACP even if the interface is otherwise not
 configured. Reception of packets on such otherwise not configured
 interfaces MUST be limited so that at first only IPv6 StateLess
 Address Auto Configuration (SLAAC - [RFC4862]) and DULL GRASP work
 and then only the following ACP secure channel setup packets - but
 not any other unnecessary traffic (e.g., no other link-local IPv6
 transport stack responders for example).

 Note that the use of the IPv6 link-local multicast address
 (ALL_GRASP_NEIGHBORS) implies the need to use Multicast Listener
 Discovery Version 2 (MLDv2, see [RFC3810]) to announce the desire to
 receive packets for that address. Otherwise DULL GRASP could fail to
 operate correctly in the presence of MLD snooping, non-ACP enabled L2
 switches - because those would stop forwarding DULL GRASP packets.
 Switches not supporting MLD snooping simply need to operate as pure
 L2 bridges for IPv6 multicast packets for DULL GRASP to work.

 ACP discovery SHOULD NOT be enabled by default on non-native
 interfaces. In particular, ACP discovery MUST NOT run inside the ACP
 across ACP virtual interfaces. See Section 10.3 for further, non-
 normative suggestions on how to enable/disable ACP at node and
 interface level. See Section 8.2.2 for more details about tunnels
 (typical non-native interfaces). See Section 7 for how ACP should be
 extended on devices operating (also) as L2 bridges.

 Note: If an ACP node also implements BRSKI to enroll its ACP domain
 certificate (see Appendix A.2 for a summary), then the above
 considerations also apply to GRASP discovery for BRSKI. Each DULL
 instance of GRASP set up for ACP is then also used for the discovery
 of a bootstrap proxy via BRSKI when the node does not have a domain
 certificate. Discovery of ACP neighbors happens only when the node
 does have the certificate. The node therefore never needs to
 discover both a bootstrap proxy and ACP neighbor at the same time.

 An ACP node announces itself to potential ACP peers by use of the
 "AN_ACP" objective. This is a synchronization objective intended to
 be flooded on a single link using the GRASP Flood Synchronization
 (M_FLOOD) message. In accordance with the design of the Flood
 message, a locator consisting of a specific link-local IP address, IP
 protocol number and port number will be distributed with the flooded
 objective. An example of the message is informally:

[M_FLOOD, 12340815, h'fe80000000000000c0011001FEEF0000, 210000,
 ["AN_ACP", 4, 1, "IKEv2"],
 [O_IPv6_LOCATOR,
 h'fe80000000000000c0011001FEEF0000, UDP, 15000]
 ["AN_ACP", 4, 1, "DTLS"],
 [O_IPv6_LOCATOR,
 h'fe80000000000000c0011001FEEF0000, UDP, 17000]
]

 Figure 5: GRASP AN_ACP example

 The formal CDDL definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

 objective = ["AN_ACP", objective-flags, loop-count,

 objective-value]

objective‑flags = sync‑only ; as in the GRASP specification
sync‑only = 4 ; M_FLOOD only requires synchronization
loop‑count = 1 ; limit to link‑local operation
objective‑value = method
method = "IKEv2" / "DTLS" ; or future standard methods

 Figure 6: GRASP AN_ACP definition

 The objective-flags field is set to indicate synchronization.

 The loop-count is fixed at 1 since this is a link-local operation.

 In the above example the RECOMMENDED period of sending of the
 objective is 60 seconds. The indicated ttl of 210000 msec means that
 the objective would be cached by ACP nodes even when two out of three
 messages are dropped in transit.

 The session-id is a random number used for loop prevention
 (distinguishing a message from a prior instance of the same message).
 In DULL this field is irrelevant but must still be set according to
 the GRASP specification.

 The originator MUST be the IPv6 link local address of the originating
 ACP node on the sending interface.

 The 'objective-value' parameter is a string indicating the secure
 channel protocol available at the specified or implied locator.

 The locator-option is optional and only required when the secure
 channel protocol is not offered at a well-defined port number, or if
 there is no well-defined port number.

 "IKEv2" is the abbreviation for "Internet Key Exchange protocol
 version 2". It is the main protocol used by the Internet IP security
 architecture (IPsec). We therefore use the term "IKEv2" and not
 "IPsec" in the GRASP definitions and example above. "IKEv2" has a
 well-defined port number 500, but in the above example, the candidate
 ACP neighbor is offering ACP secure channel negotiation via IKEv2 on
 port 15000 (for the sake of creating a non-standard example).

 "DTLS" indicates datagram Transport Layer Security version 1.2.
 There is no default UDP port, it must always be locally assigned by
 the node. See Section 6.7.2.

 If a locator is included, it MUST be an O_IPv6_LOCATOR, and the IPv6
 address MUST be the same as the initiator address (these are DULL
 requirements to minimize third party DoS attacks).

 The secure channel methods defined in this document use the
 objective-values of "IKEv2" and "DTLS". There is no distinction
 between IKEv2 native and GRE-IKEv2 because this is purely negotiated
 via IKEv2.

 A node that supports more than one secure channel protocol method
 needs to flood multiple versions of the "AN_ACP" objective so that
 each method can be accompanied by its own locator-option. This can
 use a single GRASP M_FLOOD message as shown in Figure 5.

 Note that a node serving both as an ACP node and BRSKI Join Proxy may
 choose to distribute the "AN_ACP" objective and the respective BRSKI
 in the same M_FLOOD message, since GRASP allows multiple objectives
 in one message. This may be impractical though if ACP and BRSKI
 operations are implemented via separate software modules / ASAs.
 The result of the discovery is the IPv6 link-local address of the
 neighbor as well as its supported secure channel protocols (and non-
 standard port they are running on). It is stored in the ACP
 Adjacency Table (see Section 6.2), which then drives the further
 building of the ACP to that neighbor.

6.4. Candidate ACP Neighbor Selection

 An ACP node must determine to which other ACP nodes in the adjacency
 table it should build an ACP connection. This is based on the
 information in the ACP Adjacency table.

 The ACP is established exclusively between nodes in the same domain.
 This includes all routing subdomains. Appendix A.7 explains how ACP
 connections across multiple routing subdomains are special.

 The result of the candidate ACP neighbor selection process is a list
 of adjacent or configured autonomic neighbors to which an ACP channel
 should be established. The next step begins that channel
 establishment.

6.5. Channel Selection

 To avoid attacks, initial discovery of candidate ACP peers cannot
 include any non-protected negotiation. To avoid re-inventing and
 validating security association mechanisms, the next step after
 discovering the address of a candidate neighbor can only be to try
 first to establish a security association with that neighbor using a
 well-known security association method.

 At this time in the lifecycle of ACP nodes, it is unclear whether it
 is feasible to even decide on a single MTI (mandatory to implement)
 security association protocol across all ACP nodes.

 From the use-cases it seems clear that not all type of ACP nodes can
 or need to connect directly to each other or are able to support or
 prefer all possible mechanisms. For example, code space limited IoT
 devices may only support DTLS because that code exists already on
 them for end-to-end security, but low-end in-ceiling L2 switches may
 only want to support Media Access Control Security (MacSec, see
 802.1AE ([MACSEC]) because that is also supported in their chips.
 Only a flexible gateway device may need to support both of these
 mechanisms and potentially more. Note that MacSec is not required by
 any profiles of the ACP in this specification but just mentioned as a
 likely next interesting secure channel protocol.

 To support extensible secure channel protocol selection without a
 single common MTI protocol, ACP nodes must try all the ACP secure
 channel protocols it supports and that are feasible because the
 candidate ACP neighbor also announced them via its AN_ACP GRASP
 parameters (these are called the "feasible" ACP secure channel
 protocols).

 To ensure that the selection of the secure channel protocols always
 succeeds in a predictable fashion without blocking, the following
 rules apply:

 o An ACP node may choose to attempt to initiate the different
 feasible ACP secure channel protocols it supports according to its
 local policies sequentially or in parallel, but it MUST support
 acting as a responder to all of them in parallel.

 o Once the first secure channel protocol succeeds, the two peers
 know each other's certificates because they must be used by all
 secure channel protocols for mutual authentication. The node with
 the lower Node-ID in the ACP address becomes Bob, the one with the
 higher Node-ID in the certificate Alice.

 o Bob becomes passive, he does not attempt to further initiate ACP
 secure channel protocols with Alice and does not consider it to be
 an error when Alice closes secure channels. Alice becomes the
 active party, continues to attempt setting up secure channel
 protocols with Bob until she arrives at the best one from her view
 that also works with Bob.

 For example, originally Bob could have been the initiator of one ACP
 secure channel protocol that Bob prefers and the security association
 succeeded. The roles of Bob and Alice are then assigned and the
 connection setup is completed. The protocol could for example be
 IPsec via IKEv2 ("IP security", see [RFC4301] and "Internet Key
 Exchange protocol version 2", see [RFC7296]. It is now up to Alice
 to decide how to proceed. Even if the IPsec connection from Bob
 succeeded, Alice might prefer another secure protocol over IPsec
 (e.g., FOOBAR), and try to set that up with Bob. If that preference
 of Alice succeeds, she would close the IPsec connection. If no
 better protocol attempt succeeds, she would keep the IPsec
 connection.

 The following sequence of steps show this example in more detail:

[1] Node 1 sends GRASP AN_ACP message to announce itself

[2] Node 2 sends GRASP AN_ACP message to announce itself

[3] Node 2 receives [1] from Node 1

[4:C1] Because of [3], Node 2 starts as initiator on its
 preferred secure channel protocol towards Node 1.
 Connection C1.

[5] Node 1 receives [2] from Node 2

[6:C2] Because of [5], Node 1 starts as initiator on its
 preferred secure channel protocol towards Node 2.
 Connection C2.

 [7:C1] Node1 and Node2 have authenticated each others

 certificate on connection C1 as valid ACP peers.

[8:C1] Node 1 certificate has lower ACP Node‑ID than Node2,
 therefore Node 1 considers itself Bob and Node 2 Alice
 on connection C1. Connection setup C1 is completed.

[9] Node 1 (Bob)) refrains from attempting any further secure
 channel connections to Node 2 (Alice) as learned from [2]
 because it knows from [8:C1] that it is Bob relative
 to Node 1.

 [10:C2] Node1 and Node2 have authenticated each others

 certificate on connection C2 (like [7:C1]).

[11:C2] Node 2 certificate has lower ACP Node‑ID than Node2,
 therefore Node 1 considers itself Bob and Node 2 Alice
 on connection C1, but they also identify that C2 is to the
 same mutual peer as their C1, so this has no further impact.

 [12:C2] Node 1 (Alice) closes C1. Because of [8:C1], Node 2 (Bob)

 expected this.

[13] Node 1 (Alice) and Node 2 (Bob) start data transfer across
 C2, which makes it become a secure channel for the ACP.

 Figure 7: Secure Channel sequence of steps

 All this negotiation is in the context of an "L2 interface". Alice
 and Bob will build ACP connections to each other on every "L2
 interface" that they both connect to. An autonomic node must not
 assume that neighbors with the same L2 or link-local IPv6 addresses
 on different L2 interfaces are the same node. This can only be
 determined after examining the certificate after a successful
 security association attempt.

6.6. Candidate ACP Neighbor verification

 Independent of the security association protocol chosen, candidate
 ACP neighbors need to be authenticated based on their domain
 certificate. This implies that any secure channel protocol MUST
 support certificate based authentication that can support the ACP
 domain membership check as defined in Section 6.1.2. If it fails,
 the connection attempt is aborted and an error logged. Attempts to
 reconnect MUST be throttled. The RECOMMENDED default is exponential
 base 2 backoff with a minimum delay of 10 seconds and a maximum delay
 of 640 seconds.

6.7. Security Association protocols

 The following sections define the security association protocols that
 we consider to be important and feasible to specify in this document:

6.7.1. ACP via IKEv2

 An ACP node announces its ability to support IKEv2 as the ACP secure
 channel protocol in GRASP as "IKEv2".

6.7.1.1. Native IPsec

 To run ACP via IPsec natively, no further IANA assignments/
 definitions are required. An ACP node that is supporting native
 IPsec MUST use IPsec security setup via IKEv2, tunnel mode, local and
 peer link-local IPv6 addresses used for encapsulation. It MUST then
 support ESP with AES-256-GCM ([RFC4106]) for encryption and SHA256
 hash and MUST NOT permit weaker crypto options. Key establishment
 MUST support ECDHE with P-256.

 In terms of IKEv2, this means the initiator will offer to support
 IPsec tunnel mode with next protocol equal to 41 (IPv6).

 IPsec tunnel mode is required because the ACP will route/forward
 packets received from any other ACP node across the ACP secure
 channels, and not only its own generated ACP packets. With IPsec
 transport mode, it would only be possible to send packets originated
 by the ACP node itself.

 ESP is used because ACP mandates the use of encryption for ACP secure
 channels.

6.7.1.2. IPsec with GRE encapsulation

 In network devices it is often more common to implement high
 performance virtual interfaces on top of GRE encapsulation than on
 top of a "native" IPsec association (without any other encapsulation
 than those defined by IPsec). On those devices it may be beneficial
 to run the ACP secure channel on top of GRE protected by the IPsec
 association.

 To run ACP via GRE/IPsec, no further IANA assignments/definitions are
 required. An ACP node that is supporting ACP via GRE/IPsec MUST then
 support IPsec security setup via IKEv2, IPsec transport mode, local
 and peer link-local IPv6 addresses used for encapsulation, ESP with
 AES256 encryption and SHA256 hash.

 When GRE is used, transport mode is sufficient because the routed ACP
 packets are not "tunneled" by IPsec but rather by GRE: IPsec only has
 to deal with the GRE/IP packet which always uses the local and peer
 link-local IPv6 addresses and is therefore applicable to transport
 mode.

 ESP is used because ACP mandates the use of encryption for ACP secure
 channels.

 In terms of IKEv2 negotiation, this means the initiator must offer to
 support IPsec transport mode with next protocol equal to GRE (47)
 followed by the offer for native IPsec as described above (because
 that option is mandatory to support).

 If IKEv2 initiator and responder support GRE, it will be selected.
 The version of GRE to be used must be determined according to
 [RFC7676].

6.7.2. ACP via DTLS

 We define the use of ACP via DTLS in the assumption that it is likely
 the first transport encryption code basis supported in some classes
 of constrained devices.

 To run ACP via UDP and DTLS v1.2 [RFC6347] a locally assigned UDP
 port is used that is announced as a parameter in the GRASP AN_ACP
 objective to candidate neighbors.

 All ACP nodes supporting DTLS as a secure channel protocol MUST
 adhere to the DTLS implementation recommendations and security
 considerations of [RFC7525] except with respect to the DTLS version.
 ACP nodes supporting DTLS MUST implement only DTLS 1.2 or later. For
 example, implementing DTLS-1.3 ([I-D.ietf-tls-dtls13]) is also an
 option.

 There is no additional session setup or other security association
 besides this simple DTLS setup. As soon as the DTLS session is
 functional, the ACP peers will exchange ACP IPv6 packets as the
 payload of the DTLS transport connection. Any DTLS defined security
 association mechanisms such as re-keying are used as they would be
 for any transport application relying solely on DTLS.

6.7.3. ACP Secure Channel Requirements

 As explained in the beginning of Section 6.5, there is no single
 secure channel mechanism mandated for all ACP nodes. Instead, this
 section defines two ACP profiles (baseline and constrained) for ACP
 nodes that do introduce such requirements.

 A baseline ACP node MUST support IPsec natively and MAY support IPsec
 via GRE. A constrained ACP node that cannot support IPsec MUST
 support DTLS. An ACP node connecting an area of constrained ACP
 nodes with an area of baseline ACP nodes MUST therefore support IPsec
 and DTLS and supports therefore the baseline and constrained profile.

 Explanation: Not all type of ACP nodes can or need to connect
 directly to each other or are able to support or prefer all possible
 secure channel mechanisms. For example, code space limited IoT
 devices may only support DTLS because that code exists already on
 them for end-to-end security, but high-end core routers may not want
 to support DTLS because they can perform IPsec in accelerated
 hardware but would need to support DTLS in an underpowered CPU
 forwarding path shared with critical control plane operations. This
 is not a deployment issue for a single ACP across these type of nodes
 as long as there are also appropriate gateway ACP nodes that support
 sufficiently many secure channel mechanisms to allow interconnecting
 areas of ACP nodes with a more constrained set of secure channel
 protocols. On the edge between IoT areas and high-end core networks,
 general-purpose routers that act as those gateways and that can
 support a variety of secure channel protocols is the norm already.

 ACP nodes need to specify in documentation the set of secure ACP
 mechanisms they support and should declare which profile they support
 according to above requirements.

 An ACP secure channel MUST immediately be terminated when the
 lifetime of any certificate in the chain used to authenticate the
 neighbor expires or becomes revoked. Note that this is not standard
 behavior in secure channel protocols such as IPsec because the
 certificate authentication only influences the setup of the secure
 channel in these protocols.

6.8. GRASP in the ACP

6.8.1. GRASP as a core service of the ACP

 The ACP MUST run an instance of GRASP inside of it. It is a key part
 of the ACP services. The function in GRASP that makes it fundamental
 as a service of the ACP is the ability to provide ACP wide service
 discovery (using objectives in GRASP).

 ACP provides IP unicast routing via the RPL routing protocol (see
 Section 6.11).

 The ACP does not use IP multicast routing nor does it provide generic
 IP multicast services (the handling of GRASP link-local multicast
 messages is explained in Section 6.8.2). Instead, the ACP provides
 service discovery via the objective discovery/announcement and
 negotiation mechanisms of the ACP GRASP instance (services are a form
 of objectives). These mechanisms use hop-by-hop reliable flooding of
 GRASP messages for both service discovery (GRASP M_DISCOVERY
 messages) and service announcement (GRASP M_FLOOD messages).

 See Appendix A.5 for discussion about this design choice of the ACP.

6.8.2. ACP as the Security and Transport substrate for GRASP

 In the terminology of GRASP ([I-D.ietf-anima-grasp]), the ACP is the
 security and transport substrate for the GRASP instance run inside
 the ACP ("ACP GRASP").

 This means that the ACP is responsible for ensuring that this
 instance of GRASP is only sending messages across the ACP GRASP
 virtual interfaces. Whenever the ACP adds or deletes such an
 interface because of new ACP secure channels or loss thereof, the ACP
 needs to indicate this to the ACP instance of GRASP. The ACP exists
 also in the absence of any active ACP neighbors. It is created when
 the node has a domain certificate, and continues to exist even if all
 of its neighbors cease operation.

 In this case ASAs using GRASP running on the same node would still
 need to be able to discover each other's objectives. When the ACP
 does not exist, ASAs leveraging the ACP instance of GRASP via APIs
 MUST still be able to operate, and MUST be able to understand that
 there is no ACP and that therefore the ACP instance of GRASP cannot
 operate.

 The way ACP acts as the security and transport substrate for GRASP is
 visualized in the following picture:

..............................ACP..............................
. .
. /‑GRASP‑flooding‑\ ACP GRASP instance .
. / \ A
. GRASP GRASP GRASP C
. link‑local unicast link‑local P
. multicast messages multicast .
. messages | messages .
. | | | .
...
. v v v ACP security and transport .
. | | | substrate for GRASP .
. | | | .
. | ACP GRASP | ‑ ACP GRASP A
. | Loopback | Loopback interface C
. | interface | ‑ ACP‑cert auth P
. | TLS | .
. ACP GRASP | ACP GRASP ‑ ACP GRASP virtual .
. subnet1 | subnet2 virtual interfaces .
. TCP | TCP .
. | | | .
...
. | | | ^^^ Users of ACP (GRASP/ASA) .
. | | | ACP interfaces/addressing .
. | | | .
. | | | A
. | ACP‑Loopback Interf.| <‑ ACP Loopback interface C
. | ACP‑address | ‑ address (global ULA) P
. subnet1 | subnet2 <‑ ACP virtual interfaces .
. link‑local | link‑local ‑ link‑local addresses .
...
. | | | ACP VRF .
. | RPL‑routing | virtual routing and forwarding .
. | /IP‑Forwarding\ | A
. | / \ | C
. ACP IPv6 packets ACP IPv6 packets P
. |/ \| .
. IPsec/DTLS IPsec/DTLS ‑ ACP‑cert auth .
...
 | | Data‑Plane
 | |
 | | ‑ ACP secure channel
 link‑local link‑local ‑ encapsulation addresses
 subnet1 subnet2 ‑ Data‑Plane interfaces
 | |
 ACP‑Nbr1 ACP‑Nbr2

 Figure 8: ACP as security and transport substrate for GRASP

 GRASP unicast messages inside the ACP always use the ACP address.
 Link-local addresses from the ACP VRF must not be used inside
 objectives. GRASP unicast messages inside the ACP are transported
 via TLS 1.2 ([RFC5246]) connections with AES256 encryption and
 SHA256. Mutual authentication uses the ACP domain membership check
 defined in (Section 6.1.2).

 GRASP link-local multicast messages are targeted for a specific ACP
 virtual interface (as defined Section 6.12.5) but are sent by the ACP
 into an ACP GRASP virtual interface that is constructed from the TCP
 connection(s) to the IPv6 link-local neighbor address(es) on the
 underlying ACP virtual interface. If the ACP GRASP virtual interface
 has two or more neighbors, the GRASP link-local multicast messages
 are replicated to all neighbor TCP connections.

 TCP and TLS connections for GRASP in the ACP use the IANA assigned
 TCP port for GRASP (7107). Effectively the transport stack is
 expected to be TLS for connections from/to the ACP address (e.g.,
 global scope address(es)) and TCP for connections from/to link-local
 addresses on the ACP virtual interfaces. The latter ones are only
 used for flooding of GRASP messages.

6.8.2.1. Discussion

 TCP encapsulation for GRASP M_DISCOVERY and M_FLOOD link local
 messages is used because these messages are flooded across
 potentially many hops to all ACP nodes and a single link with even
 temporary packet loss issues (e.g., WiFi/Powerline link) can reduce
 the probability for loss free transmission so much that applications
 would want to increase the frequency with which they send these
 messages. Such shorter periodic retransmission of datagrams would
 result in more traffic and processing overhead in the ACP than the
 hop-by-hop reliable retransmission mechanism by TCP and duplicate
 elimination by GRASP.

 TLS is mandated for GRASP non-link-local unicast because the ACP
 secure channel mandatory authentication and encryption protects only
 against attacks from the outside but not against attacks from the
 inside: Compromised ACP members that have (not yet) been detected and
 removed (e.g., via domain certificate revocation / expiry).

 If GRASP peer connections would just use TCP, compromised ACP members
 could simply eavesdrop passively on GRASP peer connections for whom
 they are on-path ("Man In The Middle" - MITM). Or intercept and
 modify them. With TLS, it is not possible to completely eliminate
 problems with compromised ACP members, but attacks are a lot more
 complex:

 Eavesdropping/spoofing by a compromised ACP node is still possible
 because in the model of the ACP and GRASP, the provider and consumer
 of an objective have initially no unique information (such as an
 identity) about the other side which would allow them to distinguish
 a benevolent from a compromised peer. The compromised ACP node would
 simply announce the objective as well, potentially filter the
 original objective in GRASP when it is a MITM and act as an
 application level proxy. This of course requires that the
 compromised ACP node understand the semantics of the GRASP
 negotiation to an extent that allows it to proxy it without being
 detected, but in an ACP environment this is quite likely public
 knowledge or even standardized.

 The GRASP TLS connections are run the same as any other ACP traffic
 through the ACP secure channels. This leads to double
 authentication/encryption, which has the following benefits:

 o Secure channel methods such as IPsec may provide protection
 against additional attacks, for example reset-attacks.

 o The secure channel method may leverage hardware acceleration and
 there may be little or no gain in eliminating it.

 o There is no different security model for ACP GRASP from other ACP
 traffic. Instead, there is just another layer of protection
 against certain attacks from the inside which is important due to
 the role of GRASP in the ACP.

6.9. Context Separation

 The ACP is in a separate context from the normal Data-Plane of the
 node. This context includes the ACP channels' IPv6 forwarding and
 routing as well as any required higher layer ACP functions.

 In classical network system, a dedicated so called Virtual routing
 and forwarding instance (VRF) is one logical implementation option
 for the ACP. If possible by the systems software architecture,
 separation options that minimize shared components are preferred,
 such as a logical container or virtual machine instance. The context
 for the ACP needs to be established automatically during bootstrap of
 a node. As much as possible it should be protected from being
 modified unintentionally by ("Data-Plane") configuration.

 Context separation improves security, because the ACP is not
 reachable from the Data-Plane routing or forwarding table(s). Also,
 configuration errors from the Data-Plane setup do not affect the ACP.

6.10. Addressing inside the ACP

 The channels explained above typically only establish communication
 between two adjacent nodes. In order for communication to happen
 across multiple hops, the autonomic control plane requires ACP
 network wide valid addresses and routing. Each ACP node must create
 a Loopback interface with an ACP network wide unique address inside
 the ACP context (as explained in in Section 6.9). This address may
 be used also in other virtual contexts.

 With the algorithm introduced here, all ACP nodes in the same routing
 subdomain have the same /48 ULA prefix. Conversely, ULA global IDs
 from different domains are unlikely to clash, such that two ACP
 networks can be merged, as long as the policy allows that merge. See
 also Section 9.1 for a discussion on merging domains.

 Links inside the ACP only use link-local IPv6 addressing, such that
 each nodes ACP only requires one routable virtual address.

6.10.1. Fundamental Concepts of Autonomic Addressing

 o Usage: Autonomic addresses are exclusively used for self-
 management functions inside a trusted domain. They are not used
 for user traffic. Communications with entities outside the
 trusted domain use another address space, for example normally
 managed routable address space (called "Data-Plane" in this
 document).

 o Separation: Autonomic address space is used separately from user
 address space and other address realms. This supports the
 robustness requirement.

 o Loopback-only: Only ACP Loopback interfaces (and potentially those
 configured for "ACP connect", see Section 8.1) carry routable
 address(es); all other interfaces (called ACP virtual interfaces)
 only use IPv6 link local addresses. The usage of IPv6 link local
 addressing is discussed in [RFC7404].

 o Use-ULA: For Loopback interfaces of ACP nodes, we use Unique Local
 Addresses (ULA), as defined in [RFC4193] with L=1 (as defined in
 section 3.1 of [RFC4193]). Note that the random hash for ACP
 Loopback addresses uses the definition in Section 6.10.2 and not
 the one of [RFC4193] section 3.2.2.

 o No external connectivity: They do not provide access to the
 Internet. If a node requires further reaching connectivity, it
 should use another, traditionally managed address scheme in
 parallel.

 o Addresses in the ACP are permanent, and do not support temporary
 addresses as defined in [RFC4941].

 o Addresses in the ACP are not considered sensitive on privacy
 grounds because ACP nodes are not expected to be end-user host.
 All ACP nodes are in one (potentially federated) administrative
 domain. They are assumed to be to be candidate hosts of ACP
 traffic amongst each other or transit thereof. There are no
 transit nodes less privileged to know about the identity of other
 hosts in the ACP. Therefore, ACP addresses do not need to be
 pseudo-random as discussed in [RFC7721]. Because they are not
 propagated to untrusted (non ACP) nodes and stay within a domain
 (of trust), we also consider them not to be subject to scanning
 attacks.

 The ACP is based exclusively on IPv6 addressing, for a variety of
 reasons:

 o Simplicity, reliability and scale: If other network layer
 protocols were supported, each would have to have its own set of
 security associations, routing table and process, etc.

 o Autonomic functions do not require IPv4: Autonomic functions and
 autonomic service agents are new concepts. They can be
 exclusively built on IPv6 from day one. There is no need for
 backward compatibility.

 o OAM protocols do not require IPv4: The ACP may carry OAM
 protocols. All relevant protocols (SNMP, TFTP, SSH, SCP, Radius,
 Diameter, ...) are available in IPv6. See also [RFC8368] for how
 ACP could be made to interoperate with IPv4 only OAM.

6.10.2. The ACP Addressing Base Scheme

 The Base ULA addressing scheme for ACP nodes has the following
 format:

 8 40 2 78
+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|fd| hash(routing‑subdomain) | Type | (sub‑scheme) |
+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 9: ACP Addressing Base Scheme

 The first 48-bits follow the ULA scheme, as defined in [RFC4193], to
 which a type field is added:

 o "fd" identifies a locally defined ULA address.

 o The 40-bits ULA "global ID" (term from [RFC4193]) for ACP
 addresses carried in the domain information field of domain
 certificates are the first 40-bits of the SHA256 hash of the
 routing subdomain from the same domain information field. In the
 example of Section 6.1.1, the routing subdomain is
 "area51.research.acp.example.com" and the 40-bits ULA "global ID"
 89b714f3db.

 o When creating a new routing-subdomain for an existing autonomic
 network, it MUST be ensured, that rsub is selected so the
 resulting hash of the routing-subdomain does not collide with the
 hash of any pre-existing routing-subdomains of the autonomic
 network. This ensures that ACP addresses created by registrars
 for different routing subdomains do not collide with each others.

 o To allow for extensibility, the fact that the ULA "global ID" is a
 hash of the routing subdomain SHOULD NOT be assumed by any ACP
 node during normal operations. The hash function is only executed
 during the creation of the certificate. If BRSKI is used then the
 BRSKI registrar will create the domain information field in
 response to the EST Certificate Signing Request (CSR) Attribute
 Request message by the pledge.

 o Establishing connectivity between different ACP (different acp-
 domain-name) is outside the scope of this specification. If it is
 being done through future extensions, then the rsub of all
 routing-subdomains across those autonomic networks need to be
 selected so their hashes do not collide. For example a large
 cooperation with its own private Trust Anchor may want to create
 different autonomic networks that initially should not be able to
 connect but where the option to do so should be kept open. When
 taking this future possibility into account, it is easy to always
 select rsub so that no collisions happen.

 o Type: This field allows different address sub-schemes. This
 addresses the "upgradability" requirement. Assignment of types
 for this field will be maintained by IANA.

 The sub-scheme may imply a range or set of addresses assigned to the
 node, this is called the ACP address range/set and explained in each
 sub-scheme.

 Please refer to Section 6.10.7 and Appendix A.1 for further
 explanations why the following Sub-Addressing schemes are used and
 why multiple are necessary.

6.10.3. ACP Zone Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 00b (zero)
 in the base scheme and 0 in the Z bit.

 64 64
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| (base scheme) | Z | Zone‑ID || Node‑ID |
| | | || Registrar‑ID | Node‑Number| V |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
 50 1 13 48 15 1

 Figure 10: ACP Zone Addressing Sub-Scheme

 The fields are defined as follows:

 o Zone-ID: If set to all zero bits: The Node-ID bits are used as an
 identifier (as opposed to a locator). This results in a non-
 hierarchical, flat addressing scheme. Any other value indicates a
 zone. See Section 6.10.3.1 on how this field is used in detail.

 o Z: MUST be 0.

 o Node-ID: A unique value for each node.

 The 64-bit Node-ID is derived and composed as follows:

 o Registrar-ID (48-bit): A number unique inside the domain that
 identifies the ACP registrar which assigned the Node-ID to the
 node. A MAC address of the ACP registrar can be used for this
 purpose.

 o Node-Number: A number which is unique for a given ACP registrar,
 to identify the node. This can be a sequentially assigned number.

 o V (1-bit): Virtualization bit: 0: Indicates the ACP itself ("ACP
 node base system); 1: Indicates the optional "host" context on the
 ACP node (see below).

 In the ACP Zone Addressing Sub-Scheme, the ACP address in the
 certificate has Zone-ID and V fields as all zero bits. The ACP
 address set includes addresses with any Zone-ID value and any V
 value.

 The "Node-ID" itself is unique in a domain (i.e., the Zone-ID is not
 required for uniqueness). Therefore, a node can be addressed either
 as part of a flat hierarchy (Zone-ID = 0), or with an aggregation
 scheme (any other Zone-ID). An address with Zone-ID = 0 is an
 identifier, with a Zone-ID !=0 it is a locator. See Section 6.10.3.1
 for more details.

 The Virtual bit in this sub-scheme allows the easy addition of the
 ACP as a component to existing systems without causing problems in
 the port number space between the services in the ACP and the
 existing system. V:0 is the ACP router (autonomic node base system),
 V:1 is the host with pre-existing transport endpoints on it that
 could collide with the transport endpoints used by the ACP router.
 The ACP host could for example have a p2p virtual interface with the
 V:0 address as its router into the ACP. Depending on the software
 design of ASAs, which is outside the scope of this specification,
 they may use the V:0 or V:1 address.

 The location of the V bit(s) at the end of the address allows the
 announcement of a single prefix for each ACP node. For example, in a
 network with 20,000 ACP nodes, this avoid 20,000 additional routes in
 the routing table.

6.10.3.1. Usage of the Zone-ID Field

 The Zone-ID allows for the introduction of route prefixes in the
 addressing scheme.

 Zone-ID = 0 is the default addressing scheme in an ACP domain. Every
 ACP node with a Zone Addressing Sub-Scheme address MUST respond to
 its ACP address with Zone-ID = 0. Used on its own this leads to a
 non-hierarchical address scheme, which is suitable for networks up to
 a certain size. Zone-ID = 0 addresses act as identifiers for the
 nodes, and aggregation of these address in the ACP routing table is
 not possible.

 If aggregation is required, the 13-bit Zone-ID value allows for up to
 8191 zones. The allocation of Zone-ID's may either happen
 automatically through a to-be-defined algorithm; or it could be
 configured and maintained explicitly.

 If a node learns (see Appendix A.10.1) that it is part of a zone, it
 MUST also respond to its ACP address with that Zone-ID. In this case
 the ACP Loopback is configured with two ACP addresses: One for Zone-
 ID = 0 and one for the assigned Zone-ID. This method allows for a
 smooth transition between a flat addressing scheme and a hierarchical
 one.

 A node knowing it is in a zone MUST use that Zone-ID != 0 address in
 GRASP locator fields. This eliminates the use of the identifier
 address (Zone-ID = 0) in forwarding and the need for network wide
 reachability of those non-aggregable identifier addresses. Zone-ID
 != 0 addresses are assumed to be aggregable in routing/forwarding
 based on how they are allocated in the ACP topology.

 Note: The Zone-ID is one method to introduce structure or hierarchy
 into the ACP. Another way is the use of the routing subdomain field
 in the ACP that leads to multiple /48 Global IDs within an ACP
 domain.

 Note: Zones and Zone-ID as defined here are not related to [RFC4007]
 zones or zone_id. ACP zone addresses are not scoped (reachable only
 from within an RFC4007 zone) but reachable across the whole ACP. An
 RFC4007 zone_id is a zone index that has only local significance on a
 node, whereas an ACP Zone-ID is an identifier for an ACP zone that is
 unique across that ACP.

6.10.4. ACP Manual Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 00b (zero)
 in the base scheme and 1 in the Z bit.

 64 64
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| (base scheme) | Z | Subnet‑ID|| Interface Identifier |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 50 1 13

 Figure 11: ACP Manual Addressing Sub-Scheme

 The fields are defined as follows:

 o Subnet-ID: Configured subnet identifier.

 o Z: MUST be 1.

 o Interface Identifier.

 This sub-scheme is meant for "manual" allocation to subnets where the
 other addressing schemes cannot be used. The primary use case is for
 assignment to ACP connect subnets (see Section 8.1.1).

 "Manual" means that allocations of the Subnet-ID need to be done
 today with pre-existing, non-autonomic mechanisms. Every subnet that
 uses this addressing sub-scheme needs to use a unique Subnet-ID
 (unless some anycast setup is done).

 The Z bit field was added to distinguish Zone addressing and manual
 addressing sub-schemes without requiring one more bit in the base
 scheme and therefore allowing for the Vlong scheme (described below)
 to have one more bit available.

 Manual addressing sub-scheme addresses SHOULD NOT be used in ACP
 domain certificates. Any node capable to build ACP secure channels
 and permitted by Registrar policy to participate in building ACP
 secure channels SHOULD receive an ACP address (prefix) from one of
 the other ACP addressing sub-schemes. Nodes not capable (or
 permitted) to participate in ACP secure channels can connect to the
 ACP via ACP connect interfaces of ACP edge nodes (see Section 8.1),
 without setting up an ACP secure channel. Their ACP domain
 certificate MUST include an empty acp-address to indicate that their
 ACP domain certificate is only usable for non- ACP secure channel
 authentication, such as end-to-end transport connections across the
 ACP or Data-Plane.

 Address management of ACP connect subnets is done using traditional
 assignment methods and existing IPv6 protocols. See Section 8.1.3
 for details.

6.10.5. ACP Vlong Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 01b (one) in
 the base scheme.

 50 78
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| (base scheme) || Node‑ID |
| || Registrar‑ID | Node‑Number| V |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
 50 46 24/16 8/16

 Figure 12: ACP Vlong Addressing Sub-Scheme

 This addressing scheme foregoes the Zone-ID field to allow for
 larger, flatter routed networks (e.g., as in IoT) with 8421376 Node-
 Numbers (2^23+2^15). It also allows for up to 2^16 (i.e. 65536)
 different virtualized addresses within a node, which could be used to
 address individual software components in an ACP node.

 The fields are the same as in the Zone-ID sub-scheme with the
 following refinements:

 o V: Virtualization field: 8 or 16 bit. Values 0 and 1 are assigned
 in the same way as in the Zone-ID sub-scheme, the other values are
 for further use by the node.

 o Registrar-ID: To maximize Node-Number and V, the Registrar-ID is
 reduced to 46-bits. This still permits the use of the MAC address
 of an ACP registrar by removing the V and U bits from the 48-bits
 of a MAC address (those two bits are never unique, so they cannot
 be used to distinguish MAC addresses).

 o If the first bit of the "Node-Number" is "1", then the Node-Number
 is 16-bit long and the V field is 16-bit long. Otherwise the
 Node-Number is 24-bit long and the V field is 8-bit long.

 "0" bit Node-Numbers are intended to be used for "general purpose"
 ACP nodes that would potentially have a limited number (< 256) of
 clients (ASA/Autonomic Functions or legacy services) of the ACP that
 require separate V(irtual) addresses. "1" bit Node-Numbers are
 intended for ACP nodes that are ACP edge nodes (see Section 8.1.1) or
 that have a large number of clients requiring separate V(irtual)
 addresses. For example large SDN controllers with container modular
 software architecture (see Section 8.1.2).

 In the Vlong addressing sub-scheme, the ACP address in the
 certificate has all V field bits as zero. The ACP address set for
 the node includes any V value.

6.10.6. Other ACP Addressing Sub-Schemes

 Before further addressing sub-schemes are defined, experience with
 the schemes defined here should be collected. The schemes defined in
 this document have been devised to allow hopefully sufficiently
 flexible setup of ACPs for a variety of situation. These reasons
 also lead to the fairly liberal use of address space: The Zone
 Addressing Sub-Scheme is intended to enable optimized routing in
 large networks by reserving bits for Zone-ID's. The Vlong addressing
 sub-scheme enables the allocation of 8/16-bit of addresses inside
 individual ACP nodes. Both address spaces allow distributed,
 uncoordinated allocation of node addresses by reserving bits for the
 registrar-ID field in the address.

 IANA is asked need to assign a new "type" for each new addressing
 sub-scheme. With the current allocations, only 2 more schemes are
 possible, so the last addressing scheme MUST provide further
 extensions (e.g., by reserving bits from it for further extensions).

6.10.7. ACP Registrars

 ACP registrars are responsible to enroll candidate ACP nodes with ACP
 domain certificates and associated trust point(s). They are also
 responsible that an ACP domain information field is included in the
 ACP domain certificate carrying the ACP domain name and the ACP nodes
 ACP address prefix. This address prefix is intended to persist
 unchanged through the lifetime of the ACP node.

 Because of the ACP addressing sub-schemes, an ACP domain can have
 multiple distributed ACP registrars that do not need to coordinate
 for address assignment. ACP registrars can also be sub-CAs, in which
 case they can also assign ACP domain certificates without
 dependencies against a (shared) root-CA (except during renewals of
 their own certificates).

 ACP registrars are PKI registration authorities (RA) enhanced with
 the handling of the ACP domain certificate specific fields. They
 request certificates for ACP nodes from a Certificate Authority
 through any appropriate mechanism (out of scope in this document, but
 required to be BRSKI for ANI registrars). Only nodes that are
 trusted to be compliant with the requirements against registrar
 described in this section must be given the necessary credentials to
 perform this RA function, such as credentials for the BRSKI
 connection to the CA for ANI registrars.

6.10.7.1. Use of BRSKI or other Mechanism/Protocols

 Any protocols or mechanisms may be used as ACP registrars, as long as
 the resulting ACP certificate and trust anchors allow to perform the
 ACP domain membership described in Section 6.1.2 with other ACP
 domain members, and meet the ACP addressing requirements for its ACP
 domain information field as described further below in this section.

 An ACP registrar could be a person deciding whether to enroll a
 candidate ACP node and then orchestrating the enrollment of the ACP
 certificate and associated trust anchor, using command line or web
 based commands on the candidate ACP node and trust anchor to generate
 and sign the ACP domain certificate and configure certificate and
 trust anchors onto the node.

 The only currently defined protocol for ACP registrars is BRSKI
 ([I-D.ietf-anima-bootstrapping-keyinfra]). When BRSKI is used, the
 ACP nodes are called ANI nodes, and the ACP registrars are called
 BRSKI or ANI registrars. The BRSKI specification does not define the
 handling of the ACP domain information field because the rules do not
 depend on BRSKI but apply equally to any protocols/mechanisms an ACP
 registrar may use.

6.10.7.2. Unique Address/Prefix allocation

 ACP registrars MUST NOT allocate ACP address prefixes to ACP nodes
 via the ACP domain information field that would collide with the ACP
 address prefixes of other ACP nodes in the same ACP domain. This
 includes both prefixes allocated by the same ACP registrar to
 different ACP nodes as well as prefixes allocated by other ACP
 registrars for the same ACP domain.

 For this purpose, an ACP registrar MUST have one or more unique
 46-bit identifiers called Registrar-IDs used to allocate ACP address
 prefixes. The lower 46-bits of a EUI-48 MAC addresses are globally
 unique 46 bit identifiers, so ACP registrars with known unique EUI-48
 MAC addresses can use these as Registrar-IDs. Registrar-IDs do not
 need to be globally unique but only unique across the set of ACP
 registrars for an ACP domain, so other means to assign unique
 Registrar-IDs to ACP registrars can be used, such as configuration on
 the ACP registrars.

 When the candidate ACP device (called Pledge in BRSKI) is to be
 enrolled into an ACP domain, the ACP registrar needs to allocate a
 unique ACP address to the node and ensure that the ACP certificate
 gets a domain information field (Section 6.1.1) with the appropriate
 information - ACP domain-name, ACP-address, and so on. If the ACP
 registrar uses BRSKI, it signals the ACP domain information field to
 the Pledge via the EST /csraddrs command (see
 [I-D.ietf-anima-bootstrapping-keyinfra], section 5.8.2 - "EST CSR
 Attributes").

 [RFC Editor: please update reference to section 5.8.2 accordingly
 with latest BRSKI draft at time of publishing, or RFC]

6.10.7.3. Addressing Sub-Scheme Policies

 The ACP registrar selects for the candidate ACP node a unique address
 prefix from an appropriate ACP addressing sub-scheme, either a zone
 addressing sub-scheme prefix (see Section 6.10.3), or a Vlong
 addressing sub-scheme prefix (see Section 6.10.5). The assigned ACP
 address prefix encoded in the domain information field of the ACP
 domain certificate indicates to the ACP node its ACP address
 information. The sub-addressing scheme indicates the prefix length:
 /127 for zone address sub-scheme, /120 or /112 for Vlong address sub-
 scheme. The first address of the prefix is the ACP address, all
 other addresses in the prefix are for other uses by the ACP node as
 described in the zone and Vlong addressing sub scheme sections. The
 ACP address prefix itself is then signaled by the ACP node into the
 ACP routing protocol (see Section 6.11) to establish IPv6
 reachability across the ACP.

 The choice of addressing sub-scheme and prefix-length in the Vlong
 address sub-scheme is subject to ACP registrar policy. It could be
 an ACP domain wide policy, or a per ACP node or per ACP node type
 policy. For example, in BRSKI, the ACP registrar is aware of the
 IDevID of the candidate ACP node, which contains a serialNnumber that
 is typically indicating the nodes vendor and device type and can be
 used to drive a policy selecting an appropriate addressing sub-scheme
 for the (class of) node(s).

 ACP registrars SHOULD default to allocate ACP zone sub-address scheme
 addresses with Subnet-ID 0. Allocation and use of zone sub-addresses
 with Subnet-ID != 0 is outside the scope of this specification
 because it would need to go along with rules for extending ACP
 routing to multiple zones, which is outside the scope of this
 specification.

 ACP registrars that can use the IDevID of a candidate ACP device
 SHOULD be able to choose the zone vs. Vlong sub-address scheme for
 ACP nodes based on the serialNumber of the IDevID, for example by the
 PID (Product Identifier) part which identifies the product type, or
 the complete serialNumber.

 In a simple allocation scheme, an ACP registrar remembers
 persistently across reboots its currently used Registrar-ID and for
 each addressing scheme (zone with Subnet-ID 0, Vlong with /112, Vlong
 with /120), the next Node-Number available for allocation and
 increases it during successful enrollment to an ACP node. In this
 simple allocation scheme, the ACP registrar would not recycle ACP
 address prefixes from no longer used ACP nodes.

6.10.7.4. Address/Prefix Persistence

 When an ACP domain certificate is renewed or rekeyed via EST or other
 mechanisms, the ACP address/prefix in the ACP domain information
 field MUST be maintained unless security issues or violations of the
 unique address assignment requirements exist or are suspected by the
 ACP registrar.

 ACP address information SHOULD be maintained even when the renewing/
 rekeying ACP registrar is not the same as the one that enrolled the
 prior ACP certificate. See Section 10.2.4 for an example.

 ACP address information SHOULD also be maintained even after an ACP
 certificate did expire or failed. See Section 6.1.4.5 and
 Section 6.1.4.6.

6.10.7.5. Further Details

 Section 10.2 discusses further informative details of ACP registrars:
 What interactions registrars need, what parameters they require,
 certificate renewal and limitations, use of sub-CAs on registrars and
 centralized policy control.

6.11. Routing in the ACP

 Once ULA address are set up all autonomic entities should run a
 routing protocol within the autonomic control plane context. This
 routing protocol distributes the ULA created in the previous section
 for reachability. The use of the autonomic control plane specific
 context eliminates the probable clash with Data-Plane routing tables
 and also secures the ACP from interference from the configuration
 mismatch or incorrect routing updates.

 The establishment of the routing plane and its parameters are
 automatic and strictly within the confines of the autonomic control
 plane. Therefore, no explicit configuration is required.

 All routing updates are automatically secured in transit as the
 channels of the ACP are encrypted, and this routing runs only inside
 the ACP.

 The routing protocol inside the ACP is RPL ([RFC6550]). See
 Appendix A.4 for more details on the choice of RPL.

 RPL adjacencies are set up across all ACP channels in the same domain
 including all its routing subdomains. See Appendix A.7 for more
 details.

6.11.1. RPL Profile

 The following is a description of the RPL profile that ACP nodes need
 to support by default. The format of this section is derived from
 draft-ietf-roll-applicability-template.

6.11.1.1. Overview

 The choosen RPL profile is one that expects a fairly reliable network
 with reasonably fast links so that RPL convergence will be triggered
 immediately upon recognition of link failure/recovery.

 The profile is also designed to not require any RPL Data-Plane
 artifacts (such as defined in [RFC6553]). This is largely driven by
 the desire to avoid introducing the required Hop-by-Hop headers into
 the ACP forwarding plane, especially to support devices with silicon
 forwarding planes that cannot support insertion/removal of these
 headers in silicon or hop-by-hop forwarding based on them. Note:
 Insertion/removal of headers by a (potentially silicon based) ACP
 node would be be necessary when senders/receivers of ACP packets are
 legacy NOC devices connected via ACP connect (see Section 8.1.1 to
 the ACP. Their connectivity can be handled in RPL as non-RPL-aware
 leafs (or "Internet") according to the Data-Plane architecture
 explained in [I-D.ietf-roll-useofrplinfo].

 To avoid Data-Plane artefacts, the profile uses a simple destination
 prefix based routing/forwarding table. To achieve this, the profiles
 uses only one RPL instanceID. This single instanceID can contain
 only one Destination Oriented Directed Acyclic Graph (DODAG), and the
 routing/forwarding table can therefore only calculate a single class
 of service ("best effort towards the primary NOC/root") and cannot
 create optimized routing paths to accomplish latency or energy goals
 between any two nodes.

 Consider a network that has multiple NOCs in different locations.
 Only one NOC will become the DODAG root. Traffic to and from other
 NOCs has to be sent through the DODAG (shortest path tree) rooted in
 the primary NOC. Depending on topology, this can be an annoyance
 from a latency point of view or from minimizing network path
 resources, but this is deemed to be acceptable given how ACP traffic
 is "only" network management/control traffic.

 Using a single instanceID/DODAG does not introduce a single point of
 failure, as the DODAG will reconfigure itself when it detects data-
 plane forwarding failures including choosing a different root when
 the primary one fails. See Appendix A.10.4 for more details.

 The benefit of this profile, especially compared to other IGPs is
 that it does not calculate routes for node reachable through the same
 interface as the DODAG root. This RPL profile can therefore scale to
 much larger number of ACP nodes in the same amount of compute and
 memory than other routing protocols. Especially on nodes that are
 leafs of the topology or those close to those leafs.

 The lack of RPL Packet Information (RPI, the IPv6 header for RPL
 defined by [RFC6553]), means that the Data-Plane will have no rank
 value that can be used to detect loops. As a result, traffic may
 loop until the time-to-live (TTL) of the packet reaches zero. This
 is the same behavior as that of other IGPs that do not have the Data-
 Plane options of RPL.

 Since links in the ACP are assumed to be mostly reliable (or have
 link layer protection against loss) and because there is no stretch
 according to Section 6.11.1.7, loops caused by RPL routing packet
 loss should be exceedingly rare.

 There are a variety of mechanisms possible in RPL to further avoid
 temporary loops: DODAG Information Objects (DIOs) SHOULD be sent
 2...3 times to inform children when losing the last parent. The
 technique in [RFC6550] section 8.2.2.6. (Detaching) SHOULD be
 favored over that in section 8.2.2.5., (Poisoning) because it allows
 local connectivity. Nodes SHOULD select more than one parent, at
 least 3 if possible, and send Destination Advertisement Objects
 (DAO)s to all of them in parallel.

 Additionally, failed ACP tunnels can be quickly discovered the secure
 channel protocol mechanisms such as IKEv2 Dead Peer Detection. This
 can function as a replacement for a Low-power and Lossy Networks'
 (LLN's) Expected Transmission Count (ETX) feature that is not used in
 this profile. A failure of an ACP tunnel should imediately signal
 the RPL control plane to pick a different parent.

6.11.1.2. RPL Instances

 Single RPL instance. Default RPLInstanceID = 0.

6.11.1.3. Storing vs. Non-Storing Mode

 RPL Mode of Operations (MOP): MUST support mode 2 - "Storing Mode of
 Operations with no multicast support". Implementations MAY support
 mode 3 ("... with multicast support" as that is a superset of mode
 2). Note: Root indicates mode in DIO flow.

6.11.1.4. DAO Policy

 Proactive, aggressive DAO state maintenance:

 o Use K-flag in unsolicited DAO indicating change from previous
 information (to require DAO-ACK).

 o Retry such DAO DAO-RETRIES(3) times with DAO- ACK_TIME_OUT(256ms)
 in between.

6.11.1.5. Path Metric

 Hopcount.

6.11.1.6. Objective Function

 Objective Function (OF): Use OF0 [RFC6552]. No use of metric
 containers.

 rank_factor: Derived from link speed: <= 100Mbps:
 LOW_SPEED_FACTOR(5), else HIGH_SPEED_FACTOR(1)

6.11.1.7. DODAG Repair

 Global Repair: we assume stable links and ranks (metrics), so no need
 to periodically rebuild DODAG. DODAG version only incremented under
 catastrophic events (e.g., administrative action).

 Local Repair: As soon as link breakage is detected, send No-Path DAO
 for all the targets that were reachable only via this link. As soon
 as link repair is detected, validate if this link provides you a
 better parent. If so, compute your new rank, and send new DIO that
 advertises your new rank. Then send a DAO with a new path sequence
 about yourself.

 stretch_rank: none provided ("not stretched").

 Data Path Validation: Not used.

 Trickle: Not used.

6.11.1.8. Multicast

 Not used yet but possible because of the selected mode of operations.

6.11.1.9. Security

 [RFC6550] security not used, substituted by ACP security.

 Because the ACP links already include provisions for confidentiality
 and integrity protection, their usage at the RPL layer would be
 redundant, and so RPL security is not used.

6.11.1.10. P2P communications

 Not used.

6.11.1.11. IPv6 address configuration

 Every ACP node (RPL node) announces an IPv6 prefix covering the
 address(es) used in the ACP node. The prefix length depends on the
 chosen addressing sub-scheme of the ACP address provisioned into the
 certificate of the ACP node, e.g., /127 for Zone Addressing Sub-
 Scheme or /112 or /120 for Vlong addressing sub-scheme. See
 Section 6.10 for more details.

 Every ACP node MUST install a black hole (aka null) route for
 whatever ACP address space that it advertises (i.e.: the /96 or
 /127). This is avoid routing loops for addresses that an ACP node
 has not (yet) used.

6.11.1.12. Administrative parameters

 Administrative Preference ([RFC6550], 3.2.6 - to become root):
 Indicated in DODAGPreference field of DIO message.

 o Explicit configured "root": 0b100

 o ACP registrar (Default): 0b011

 o ACP-connect (non-registrar): 0b010

 o Default: 0b001.

6.11.1.13. RPL Data-Plane artifacts

 RPI (RPL Packet Information [RFC6553]): Not used as there is only a
 single instance, and data path validation is not being used.

 SRH (RPL Source Routing - RFC6552): Not used. Storing mode is being
 used.

6.11.1.14. Unknown Destinations

 Because RPL minimizes the size of the routing and forwarding table,
 prefixes reachable through the same interface as the RPL root are not
 known on every ACP node. Therefore traffic to unknown destination
 addresses can only be discovered at the RPL root. The RPL root
 SHOULD have attach safe mechanisms to operationally discover and log
 such packets.

6.12. General ACP Considerations

 Since channels are by default established between adjacent neighbors,
 the resulting overlay network does hop-by-hop encryption. Each node
 decrypts incoming traffic from the ACP, and encrypts outgoing traffic
 to its neighbors in the ACP. Routing is discussed in Section 6.11.

6.12.1. Performance

 There are no performance requirements against ACP implementations
 defined in this document because the performance requirements depend
 on the intended use case. It is expected that full autonomic node
 with a wide range of ASA can require high forwarding plane
 performance in the ACP, for example for telemetry. Implementations
 of ACP to solely support traditional/SDN style use cases can benefit
 from ACP at lower performance, especially if the ACP is used only for
 critical operations, e.g., when the Data-Plane is not available. The
 design of the ACP as specified in this document is intended to
 support a wide range of performance options: It is intended to allow
 software-only implementations at potentially low performance, but can
 also support high performance options. See [RFC8368] for more
 details.

6.12.2. Addressing of Secure Channels

 In order to be independent of the Data-Plane (routing and addressing)
 the GRASP discovered (autonomic) ACP secure channels use IPv6 link
 local addresses between adjacent neighbors. Note: Section 8.2
 specifies extensions in which secure channels are configured tunnels
 operating over the Data-Plane, so those secure channels cannot be
 independent of the Data-Plane.

 To avoid that Data-Plane configuration can impact the operations of
 the IPv6 (link-local) interface/address used for ACP channels,
 appropriate implementation considerations are required. If the IPv6
 interface/link-local address is shared with the Data-Plane it needs
 to be impossible to unconfigure/disable it through configuration.
 Instead of sharing the IPv6 interface/link-local address, a separate
 (virtual) interface with a separate IPv6 link-local address can be
 used. For example, the ACP interface could be run over a separate
 MAC address of an underlying L2 (Ethernet) interface. For more
 details and options, see Appendix A.10.2.

 Note that other (non-ideal) implementation choices may introduce
 additional undesired dependencies against the Data-Plane. For
 example shared code and configuration of the secure channel protocols
 (IPsec / DTLS).

6.12.3. MTU

 The MTU for ACP secure channels must be derived locally from the
 underlying link MTU minus the secure channel encapsulation overhead.

 ACP secure Channel protocols do not need to perform MTU discovery
 because they are built across L2 adjacencies - the MTU on both sides
 connecting to the L2 connection are assumed to be consistent.
 Extensions to ACP where the ACP is for example tunneled need to
 consider how to guarantee MTU consistency. This is an issue of
 tunnels, not an issue of running the ACP across a tunnel. Transport
 stacks running across ACP can perform normal PMTUD (Path MTU
 Discovery). Because the ACP is meant to be prioritize reliability
 over performance, they MAY opt to only expect IPv6 minimum MTU (1280)
 to avoid running into PMTUD implementation bugs or underlying link
 MTU mismatch problems.

6.12.4. Multiple links between nodes

 If two nodes are connected via several links, the ACP SHOULD be
 established across every link, but it is possible to establish the
 ACP only on a sub-set of links. Having an ACP channel on every link
 has a number of advantages, for example it allows for a faster
 failover in case of link failure, and it reflects the physical
 topology more closely. Using a subset of links (for example, a
 single link), reduces resource consumption on the node, because state
 needs to be kept per ACP channel. The negotiation scheme explained
 in Section 6.5 allows Alice (the node with the higher ACP address) to
 drop all but the desired ACP channels to Bob - and Bob will not re-
 try to build these secure channels from his side unless Alice shows
 up with a previously unknown GRASP announcement (e.g., on a different
 link or with a different address announced in GRASP).

6.12.5. ACP interfaces

 The ACP VRF has conceptually two type of interfaces: The "ACP
 Loopback interface(s)" to which the ACP ULA address(es) are assigned
 and the "ACP virtual interfaces" that are mapped to the ACP secure
 channels.

 The term "Loopback interface" was introduced initially to refer to an
 internal interface on a node that would allow IP traffic between
 transport endpoints on the node in the absence or failure of any or
 all external interfaces, see [RFC4291] section 2.5.3.

 Even though Loopback interfaces were originally designed to hold only
 Loopback addresses not reachable from outside the node, these
 interfaces are also commonly used today to hold addresses reachable
 from the outside. They are meant to be reachable independent of any
 external interface being operational, and therefore to be more
 resilient. These addresses on Loopback interfaces can be thought of
 as "node addresses" instead of "interface addresses", and that is
 what ACP address(es) are. This construct makes it therefore possible
 to address ACP nodes with a well-defined set of addresses independent
 of the number of external interfaces.

 For these reason, the ACP (ULA) address(es) are assigned to Loopback
 interface(s).

 Any type of ACP secure channels to another ACP node can be mapped to
 ACP virtual interfaces in following ways. This is independent of the
 chosen secure channel protocol (IPsec, DTLS or other future protocol
 - standards or non-standards):

 ACP point-to-point virtual interface:

 Each ACP secure channel is mapped into a separate point-to-point ACP
 virtual interface. If a physical subnet has more than two ACP
 capable nodes (in the same domain), this implementation approach will
 lead to a full mesh of ACP virtual interfaces between them.

 ACP multi-access virtual interface:

 In a more advanced implementation approach, the ACP will construct a
 single multi-access ACP virtual interface for all ACP secure channels
 to ACP capable nodes reachable across the same underlying (physical)
 subnet. IPv6 link-local multicast packets sent into an ACP multi-
 access virtual interface are replicated to every ACP secure channel
 mapped into the ACP multicast-access virtual interface. IPv6 unicast
 packets sent into an ACP multi-access virtual interface are sent to
 the ACP secure channel that belongs to the ACP neighbor that is the
 next-hop in the ACP forwarding table entry used to reach the packets
 destination address.

 There is no requirement for all ACP nodes on the same multi-access
 subnet to use the same type of ACP virtual interface. This is purely
 a node local decision.

 ACP nodes MUST perform standard IPv6 operations across ACP virtual
 interfaces including SLAAC (Stateless Address Auto-Configuration) -
 [RFC4862]) to assign their IPv6 link local address on the ACP virtual
 interface and ND (Neighbor Discovery - [RFC4861]) to discover which
 IPv6 link-local neighbor address belongs to which ACP secure channel
 mapped to the ACP virtual interface. This is independent of whether
 the ACP virtual interface is point-to-point or multi-access.

 "Optimistic Duplicate Address Detection (DAD)" according to [RFC4429]
 is RECOMMENDED because the likelihood for duplicates between ACP
 nodes is highly improbable as long as the address can be formed from
 a globally unique local assigned identifier (e.g., EUI-48/EUI-64, see
 below).

 ACP nodes MAY reduce the amount of link-local IPv6 multicast packets
 from ND by learning the IPv6 link-local neighbor address to ACP
 secure channel mapping from other messages such as the source address
 of IPv6 link-local multicast RPL messages - and therefore forego the
 need to send Neighbor Solicitation messages.

 The ACP virtual interface IPv6 link local address can be derived from
 any appropriate local mechanism such as node local EUI-48 or EUI-64
 ("EUI" stands for "Extended Unique Identifier"). It MUST NOT depend
 on something that is attackable from the Data-Plane such as the IPv6
 link-local address of the underlying physical interface, which can be
 attacked by SLAAC, or parameters of the secure channel encapsulation
 header that may not be protected by the secure channel mechanism.

 The link-layer address of an ACP virtual interface is the address
 used for the underlying interface across which the secure tunnels are
 built, typically Ethernet addresses. Because unicast IPv6 packets
 sent to an ACP virtual interface are not sent to a link-layer
 destination address but rather an ACP secure channel, the link-layer
 address fields SHOULD be ignored on reception and instead the ACP
 secure channel from which the message was received should be
 remembered.

 Multi-access ACP virtual interfaces are preferable implementations
 when the underlying interface is a (broadcast) multi-access subnet
 because they do reflect the presence of the underlying multi-access
 subnet into the virtual interfaces of the ACP. This makes it for
 example simpler to build services with topology awareness inside the
 ACP VRF in the same way as they could have been built running
 natively on the multi-access interfaces.

 Consider also the impact of point-to-point vs. multi-access virtual
 interface on the efficiency of flooding via link local multicasted
 messages:

 Assume a LAN with three ACP neighbors, Alice, Bob and Carol. Alice's
 ACP GRASP wants to send a link-local GRASP multicast message to Bob
 and Carol. If Alice's ACP emulates the LAN as one point-to-point
 virtual interface to Bob and one to Carol, The sending applications
 itself will send two copies, if Alice's ACP emulates a LAN, GRASP
 will send one packet and the ACP will replicate it. The result is
 the same. The difference happens when Bob and Carol receive their
 packet. If they use ACP point-to-point virtual interfaces, their
 GRASP instance would forward the packet from Alice to each other as
 part of the GRASP flooding procedure. These packets are unnecessary
 and would be discarded by GRASP on receipt as duplicates (by use of
 the GRASP Session ID). If Bob and Carol's ACP would emulate a multi-
 access virtual interface, then this would not happen, because GRASPs
 flooding procedure does not replicate back packets to the interface
 that they were received from.

 Note that link-local GRASP multicast messages are not sent directly
 as IPv6 link-local multicast UDP messages into ACP virtual
 interfaces, but instead into ACP GRASP virtual interfaces, that are
 layered on top of ACP virtual interfaces to add TCP reliability to
 link-local multicast GRASP messages. Nevertheless, these ACP GRASP
 virtual interfaces perform the same replication of message and,
 therefore, result in the same impact on flooding. See Section 6.8.2
 for more details.

 RPL does support operations and correct routing table construction
 across non-broadcast multi-access (NBMA) subnets. This is common
 when using many radio technologies. When such NBMA subnets are used,
 they MUST NOT be represented as ACP multi-access virtual interfaces
 because the replication of IPv6 link-local multicast messages will
 not reach all NBMA subnet neighbors. In result, GRASP message
 flooding would fail. Instead, each ACP secure channel across such an
 interface MUST be represented as a ACP point-to-point virtual
 interface. See also Appendix A.10.4.

 Care must also be taken when creating multi-access ACP virtual
 interfaces across ACP secure channels between ACP nodes in different
 domains or routing subdomains. The policies to be negotiated may be
 described as peer-to-peer policies in which case it is easier to
 create ACP point-to-point virtual interfaces for these secure
 channels.

7. ACP support on L2 switches/ports (Normative)

7.1. Why (Benefits of ACP on L2 switches)

ANrtr1 ‑‑‑‑‑‑ ANswitch1 ‑‑‑ ANswitch2 ‑‑‑‑‑‑‑ ANrtr2
 .../ \ \ ...
ANrtrM ‑‑‑‑‑‑ \ ‑‑‑‑‑‑‑ ANrtrN
 ANswitchM ...

 Figure 13: Topology with L2 ACP switches

 Consider a large L2 LAN with ANrtr1...ANrtrN connected via some
 topology of L2 switches. Examples include large enterprise campus
 networks with an L2 core, IoT networks or broadband aggregation
 networks which often have even a multi-level L2 switched topology.

 If the discovery protocol used for the ACP is operating at the subnet
 level, every ACP router will see all other ACP routers on the LAN as
 neighbors and a full mesh of ACP channels will be built. If some or
 all of the AN switches are autonomic with the same discovery
 protocol, then the full mesh would include those switches as well.
 A full mesh of ACP connections can create fundamental scale
 challenges. The number of security associations of the secure
 channel protocols will likely not scale arbitrarily, especially when
 they leverage platform accelerated encryption/decryption. Likewise,
 any other ACP operations (such as routing) needs to scale to the
 number of direct ACP neighbors. An ACP router with just 4 physical
 interfaces might be deployed into a LAN with hundreds of neighbors
 connected via switches. Introducing such a new unpredictable scaling
 factor requirement makes it harder to support the ACP on arbitrary
 platforms and in arbitrary deployments.

 Predictable scaling requirements for ACP neighbors can most easily be
 achieved if in topologies such as these, ACP capable L2 switches can
 ensure that discovery messages terminate on them so that neighboring
 ACP routers and switches will only find the physically connected ACP
 L2 switches as their candidate ACP neighbors. With such a discovery
 mechanism in place, the ACP and its security associations will only
 need to scale to the number of physical interfaces instead of a
 potentially much larger number of "LAN-connected" neighbors. And the
 ACP topology will follow directly the physical topology, something
 which can then also be leveraged in management operations or by ASAs.

 In the example above, consider ANswitch1 and ANswitchM are ACP
 capable, and ANswitch2 is not ACP capable. The desired ACP topology
 is that ANrtr1 and ANrtrM only have an ACP connection to ANswitch1,
 and that ANswitch1, ANrtr2, ANrtrN have a full mesh of ACP connection
 amongst each other. ANswitch1 also has an ACP connection with
 ANswitchM and ANswitchM has ACP connections to anything else behind
 it.

7.2. How (per L2 port DULL GRASP)

 To support ACP on L2 switches or L2 switched ports of an L3 device,
 it is necessary to make those L2 ports look like L3 interfaces for
 the ACP implementation. This primarily involves the creation of a
 separate DULL GRASP instance/domain on every such L2 port. Because
 GRASP has a dedicated link-local IPv6 multicast address
 (ALL_GRASP_NEIGHBORS), it is sufficient that all packets for this
 address are being extracted at the port level and passed to that DULL
 GRASP instance. Likewise the IPv6 link-local multicast packets sent
 by that DULL GRASP instance need to be sent only towards the L2 port
 for this DULL GRASP instance.

 If the device with L2 ports is supporting per L2 port ACP DULL GRASP
 as well as MLD snooping ([RFC4541]), then MLD snooping must be
 changed to never forward packets for ALL_GRASP_NEIGHBORS because that
 would cause the problem that per L2 port ACP DULL GRASP is meant to
 overcome (forwarding DULL GRASP packets across L2 ports).

 The rest of ACP operations can operate in the same way as in L3
 devices: Assume for example that the device is an L3/L2 hybrid device
 where L3 interfaces are assigned to VLANs and each VLAN has
 potentially multiple ports. DULL GRASP is run as described
 individually on each L2 port. When it discovers a candidate ACP
 neighbor, it passes its IPv6 link-local address and supported secure
 channel protocols to the ACP secure channel negotiation that can be
 bound to the L3 (VLAN) interface. It will simply use link-local IPv6
 multicast packets to the candidate ACP neighbor. Once a secure
 channel is established to such a neighbor, the virtual interface to
 which this secure channel is mapped should then actually be the L2
 port and not the L3 interface to best map the actual physical
 topology into the ACP virtual interfaces. See Section 6.12.5 for
 more details about how to map secure channels into ACP virtual
 interfaces. Note that a single L2 port can still have multiple ACP
 neighbors if it connect for example to multiple ACP neighbors via a
 non-ACP enabled switch. The per L2 port ACP virtual interface can
 therefore still be a multi-access virtual LAN.

 For example, in the above picture, ANswitch1 would run separate DULL
 GRASP instances on its ports to ANrtr1, ANswitch2 and ANswitchI, even
 though all those three ports may be in the data plane in the same
 (V)LAN and perform L2 switching between these ports, ANswitch1 would
 perform ACP L3 routing between them.

 The description in the previous paragraph was specifically meant to
 illustrate that on hybrid L3/L2 devices that are common in
 enterprise, IoT and broadband aggregation, there is only the GRASP
 packet extraction (by Ethernet address) and GRASP link-local
 multicast per L2-port packet injection that has to consider L2 ports
 at the hardware forwarding level. The remaining operations are
 purely ACP control plane and setup of secure channels across the L3
 interface. This hopefully makes support for per-L2 port ACP on those
 hybrid devices easy.

 This L2/L3 optimized approach is subject to "address stealing", e.g.,
 where a device on one port uses addresses of a device on another
 port. This is a generic issue in L2 LANs and switches often already
 have some form of "port security" to prohibit this. They rely on NDP
 or DHCP learning of which port/MAC-address and IPv6 address belong
 together and block duplicates. This type of function needs to be
 enabled to prohibit DoS attacks. Likewise the GRASP DULL instance
 needs to ensure that the IPv6 address in the locator-option matches
 the source IPv6 address of the DULL GRASP packet.

 In devices without such a mix of L2 port/interfaces and L3 interfaces
 (to terminate any transport layer connections), implementation
 details will differ. Logically most simply every L2 port is
 considered and used as a separate L3 subnet for all ACP operations.
 The fact that the ACP only requires IPv6 link-local unicast and
 multicast should make support for it on any type of L2 devices as
 simple as possible.

 A generic issue with ACP in L2 switched networks is the interaction
 with the Spanning Tree Protocol. Without further L2 enhancements,
 the ACP would run only across the active STP topology and the ACP
 would be interrupted and re-converge with STP changes. Ideally, ACP
 peering should be built also across ports that are blocked in STP so
 that the ACP does not depend on STP and can continue to run
 unaffected across STP topology changes, where re-convergence can be
 quite slow. The above described simple implementation options are
 not sufficient to achieve this.

8. Support for Non-ACP Components (Normative)

8.1. ACP Connect

8.1.1. Non-ACP Controller / NMS system

 The Autonomic Control Plane can be used by management systems, such
 as controllers or network management system (NMS) hosts (henceforth
 called simply "NMS hosts"), to connect to devices (or other type of
 nodes) through it. For this, an NMS host must have access to the
 ACP. The ACP is a self-protecting overlay network, which allows by
 default access only to trusted, autonomic systems. Therefore, a
 traditional, non-ACP NMS system does not have access to the ACP by
 default, such as any other external node.

 If the NMS host is not autonomic, i.e., it does not support autonomic
 negotiation of the ACP, then it can be brought into the ACP by
 explicit configuration. To support connections to adjacent non-ACP
 nodes, an ACP node must support "ACP connect" (sometimes also called
 "autonomic connect"):

 "ACP connect" is an interface level configured workaround for
 connection of trusted non-ACP nodes to the ACP. The ACP node on
 which ACP connect is configured is called an "ACP edge node". With
 ACP connect, the ACP is accessible from those non-ACP nodes (such as
 NOC systems) on such an interface without those non-ACP nodes having
 to support any ACP discovery or ACP channel setup. This is also
 called "native" access to the ACP because to those (NOC) systems the
 interface looks like a normal network interface (without any
 encryption/novel-signaling).

 Data‑Plane "native" (no ACP)
 .
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ . +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ACP | |ACP Edge Node | . | |
| Node | | | v | |
| |‑‑‑‑‑‑‑|...[ACP VRF]....+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |+
	^	.		NOC Device	
	.	.[Data‑Plane]..+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	"NMS hosts"		
	.	[]	. ^		
+‑‑‑‑‑‑‑‑+ . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ . . +‑‑‑‑‑‑‑‑‑‑‑‑‑+|
 . . . +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 . . .
 Data‑Plane "native" . ACP "native" (unencrypted)
 + ACP auto‑negotiated . "ACP connect subnet"
 and encrypted .
 ACP connect interface
 e.g., "VRF ACP native" (config)

 Figure 14: ACP connect

 ACP connect has security consequences: All systems and processes
 connected via ACP connect have access to all ACP nodes on the entire
 ACP, without further authentication. Thus, the ACP connect interface
 and (NOC) systems connected to it must be physically controlled/
 secured. For this reason the mechanisms described here do explicitly
 not include options to allow for a non-ACP router to be connected
 across an ACP connect interface and addresses behind such a router
 routed inside the ACP.

 An ACP connect interface provides exclusively access to only the ACP.
 This is likely insufficient for many NMS hosts. Instead, they would
 require a second "Data-Plane" interface outside the ACP for
 connections between the NMS host and administrators, or Internet
 based services, or for direct access to the Data-Plane. The document
 "Using Autonomic Control Plane for Stable Connectivity of Network
 OAM" [RFC8368] explains in more detail how the ACP can be integrated
 in a mixed NOC environment.

 An ACP connect interface SHOULD use an IPv6 address/prefix from the
 ACP Manual Addressing Sub-Scheme (Section 6.10.4), letting the
 operator configure for example only the Subnet-ID and having the node
 automatically assign the remaining part of the prefix/address. It
 SHOULD NOT use a prefix that is also routed outside the ACP so that
 the addresses clearly indicate whether it is used inside the ACP or
 not.

 The prefix of ACP connect subnets MUST be distributed by the ACP edge
 node into the ACP routing protocol (RPL). The NMS hosts MUST connect
 to prefixes in the ACP routing table via its ACP connect interface.
 In the simple case where the ACP uses only one ULA prefix and all ACP
 connect subnets have prefixes covered by that ULA prefix, NMS hosts
 can rely on [RFC6724] to determine longest match prefix routes
 towards its different interfaces, ACP and data-plane. With RFC6724,
 The NMS host will select the ACP connect interface for all addresses
 in the ACP because any ACP destination address is longest matched by
 the address on the ACP connect interface. If the NMS hosts ACP
 connect interface uses another prefix or if the ACP uses multiple ULA
 prefixes, then the NMS hosts require (static) routes towards the ACP
 interface for these prefixes.

 When an ACP Edge node receives a packet from an ACP connect
 interface, it MUST only forward it intot he ACP if it has an IPv6
 source address from that interface. This is sometimes called "RPF
 filtering". This MAY be changed through administrative measures.

 To limit the security impact of ACP connect, nodes supporting it
 SHOULD implement a security mechanism to allow configuration/use of
 ACP connect interfaces only on nodes explicitly targeted to be
 deployed with it (those in physically secure locations such as a
 NOC). For example, the registrar could disable the ability to enable
 ACP connect on devices during enrollment and that property could only
 be changed through re-enrollment. See also Appendix A.10.5.

8.1.2. Software Components

 The ACP connect mechanism be only be used to connect physically
 external systems (NMS hosts) to the ACP but also other applications,
 containers or virtual machines. In fact, one possible way to
 eliminate the security issue of the external ACP connect interface is
 to collocate an ACP edge node and an NMS host by making one a virtual
 machine or container inside the other; and therefore converting the
 unprotected external ACP subnet into an internal virtual subnet in a
 single device. This would ultimately result in a fully ACP enabled
 NMS host with minimum impact to the NMS hosts software architecture.
 This approach is not limited to NMS hosts but could equally be
 applied to devices consisting of one or more VNF (virtual network
 functions): An internal virtual subnet connecting out-of-band
 management interfaces of the VNFs to an ACP edge router VNF.

 The core requirement is that the software components need to have a
 network stack that permits access to the ACP and optionally also the
 Data-Plane. Like in the physical setup for NMS hosts this can be
 realized via two internal virtual subnets. One that is connecting to
 the ACP (which could be a container or virtual machine by itself),
 and one (or more) connecting into the Data-Plane.

 This "internal" use of ACP connect approach should not considered to
 be a "workaround" because in this case it is possible to build a
 correct security model: It is not necessary to rely on unprovable
 external physical security mechanisms as in the case of external NMS
 hosts. Instead, the orchestration of the ACP, the virtual subnets
 and the software components can be done by trusted software that
 could be considered to be part of the ANI (or even an extended ACP).
 This software component is responsible for ensuring that only trusted
 software components will get access to that virtual subnet and that
 only even more trusted software components will get access to both
 the ACP virtual subnet and the Data-Plane (because those ACP users
 could leak traffic between ACP and Data-Plane). This trust could be
 established for example through cryptographic means such as signed
 software packages.

8.1.3. Auto Configuration

 ACP edge nodes, NMS hosts and software components that as described
 in the previous section are meant to be composed via virtual
 interfaces SHOULD support on the ACP connect subnet StateLess Address
 Autoconfiguration (SLAAC - [RFC4862]) and route auto configuration
 according to [RFC4191].

 The ACP edge node acts as the router on the ACP connect subnet,
 providing the (auto-)configured prefix for the ACP connect subnet to
 NMS hosts and/or software components. The ACP edge node uses route
 prefix option of RFC4191 to announce the default route (::/) with a
 lifetime of 0 and aggregated prefixes for routes in the ACP routing
 table with normal lifetimes. This will ensure that the ACP edge node
 does not become a default router, but that the NMS hosts and software
 components will route the prefixes used in the ACP to the ACP edge
 node.

 Aggregated prefix means that the ACP edge node needs to only announce
 the /48 ULA prefixes used in the ACP but none of the actual /64
 (Manual Addressing Sub-Scheme), /127 (ACP Zone Addressing Sub-
 Scheme), /112 or /120 (Vlong Addressing Sub-Scheme) routes of actual
 ACP nodes. If ACP interfaces are configured with non ULA prefixes,
 then those prefixes cannot be aggregated without further configured
 policy on the ACP edge node. This explains the above recommendation
 to use ACP ULA prefix covered prefixes for ACP connect interfaces:
 They allow for a shorter list of prefixes to be signaled via RFC4191
 to NMS hosts and software components.

 The ACP edge nodes that have a Vlong ACP address MAY allocate a
 subset of their /112 or /120 address prefix to ACP connect
 interface(s) to eliminate the need to non-autonomically configure/
 provision the address prefixes for such ACP connect interfaces.

8.1.4. Combined ACP/Data-Plane Interface (VRF Select)

 Combined ACP and Data‑Plane interface
 .
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ACP | |ACP Edge No | . | NMS Host(s) |
| Node | | | . | / Software |
| | | [ACP]. | . | |+
		.[VRF] .[VRF]	v	"ACP address"	
+‑‑‑‑‑‑‑+. .[Select].+‑‑‑‑‑‑‑‑+ "Date Plane					
	^	.[Data].		Address(es)"	
	.	[Plane]			
	.	[]	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
+‑‑‑‑‑‑‑‑+ . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 .
 Data‑Plane "native" and + ACP auto‑negotiated/encrypted

 Figure 15: VRF select

 Using two physical and/or virtual subnets (and therefore interfaces)
 into NMS Hosts (as per Section 8.1.1) or Software (as per
 Section 8.1.2) may be seen as additional complexity, for example with
 legacy NMS Hosts that support only one IP interface.

 To provide a single subnet into both ACP and Data-Plane, the ACP Edge
 node needs to de-multiplex packets from NMS hosts into ACP VRF and
 Data-Plane. This is sometimes called "VRF select". If the ACP VRF
 has no overlapping IPv6 addresses with the Data-Plane (it should have
 no overlapping addresses), then this function can use the IPv6
 Destination address. The problem is Source Address Selection on the
 NMS Host(s) according to RFC6724.

 Consider the simple case: The ACP uses only one ULA prefix, the ACP
 IPv6 prefix for the Combined ACP and Data-Plane interface is covered
 by that ULA prefix. The ACP edge node announces both the ACP IPv6
 prefix and one (or more) prefixes for the Data-Plane. Without
 further policy configurations on the NMS Host(s), it may select its
 ACP address as a source address for Data-Plane ULA destinations
 because of Rule 8 of RFC6724. The ACP edge node can pass on the
 packet to the Data-Plane, but the ACP source address should not be
 used for Data-Plane traffic, and return traffic may fail.

 If the ACP carries multiple ULA prefixes or non-ULA ACP connect
 prefixes, then the correct source address selection becomes even more
 problematic.

 With separate ACP connect and Data-Plane subnets and RFC4191 prefix
 announcements that are to be routed across the ACP connect interface,
 RFC6724 source address selection Rule 5 (use address of outgoing
 interface) will be used, so that above problems do not occur, even in
 more complex cases of multiple ULA and non-ULA prefixes in the ACP
 routing table.

 To achieve the same behavior with a Combined ACP and Data-Plane
 interface, the ACP Edge Node needs to behave as two separate routers
 on the interface: One link-local IPv6 address/router for its ACP
 reachability, and one link-local IPv6 address/router for its Data-
 Plane reachability. The Router Advertisements for both are as
 described above (Section 8.1.3): For the ACP, the ACP prefix is
 announced together with RFC4191 option for the prefixes routed across
 the ACP and lifetime=0 to disqualify this next-hop as a default
 router. For the Data-Plane, the Data-Plane prefix(es) are announced
 together with whatever dafault router parameters are used for the
 Data-Plane.

 In result, RFC6724 source address selection Rule 5.5 may result in
 the same correct source address selection behavior of NMS hosts
 without further configuration on it as the separate ACP connect and
 Data-Plane interfaces. As described in the text for Rule 5.5, this
 is only a MAY, because IPv6 hosts are not required to track next-hop
 information. If an NMS Host does not do this, then separate ACP
 connect and Data-Plane interfaces are the preferable method of
 attachment. Hosts implementing [RFC8028] should (instead of may)
 implement [RFC6724] Rule 5.5, so it is preferred for hosts to support
 [RFC8028].

 ACP edge nodes MAY support the Combined ACP and Data-Plane interface.

8.1.5. Use of GRASP

 GRASP can and should be possible to use across ACP connect
 interfaces, especially in the architectural correct solution when it
 is used as a mechanism to connect Software (e.g., ASA or legacy NMS
 applications) to the ACP. Given how the ACP is the security and
 transport substrate for GRASP, the trustworthiness of nodes/software
 allowed to participate in the ACP GRASP domain is one of the main
 reasons why the ACP section describes no solution with non-ACP
 routers participating in the ACP routing table.

 ACP connect interfaces can be dealt with in the GRASP ACP domain the
 same as any other ACP interface assuming that any physical ACP
 connect interface is physically protected from attacks and that the
 connected Software or NMS Hosts are equally trusted as that on other
 ACP nodes. ACP edge nodes SHOULD have options to filter GRASP
 messages in and out of ACP connect interfaces (permit/deny) and MAY
 have more fine-grained filtering (e.g., based on IPv6 address of
 originator or objective).

 When using "Combined ACP and Data-Plane Interfaces", care must be
 taken that only GRASP messages intended for the ACP GRASP domain
 received from Software or NMS Hosts are forwarded by ACP edge nodes.
 Currently there is no definition for a GRASP security and transport
 substrate beside the ACP, so there is no definition how such
 Software/NMS Host could participate in two separate GRASP Domains
 across the same subnet (ACP and Data-Plane domains). At current it
 is assumed that all GRASP packets on a Combined ACP and Data-Plane
 interface belong to the GRASP ACP Domain. They must all use the ACP
 IPv6 addresses of the Software/NMS Hosts. The link-local IPv6
 addresses of Software/NMS Hosts (used for GRASP M_DISCOVERY and
 M_FLOOD messages) are also assumed to belong to the ACP address
 space.

8.2. ACP through Non-ACP L3 Clouds (Remote ACP neighbors)

 Not all nodes in a network may support the ACP. If non-ACP Layer-2
 devices are between ACP nodes, the ACP will work across it since it
 is IP based. However, the autonomic discovery of ACP neighbors via
 DULL GRASP is only intended to work across L2 connections, so it is
 not sufficient to autonomically create ACP connections across non-ACP
 Layer-3 devices.

8.2.1. Configured Remote ACP neighbor

 On the ACP node, remote ACP neighbors are configured explicitly. The
 parameters of such a "connection" are described in the following
 ABNF.

connection = [method , local‑addr, remote‑addr, ?pmtu]
method = ["IKEv2" , ?port]
method //= ["DTLS", port]
local‑addr = [address , ?vrf]
remote‑addr = [address]
address = ("any" | ipv4‑address | ipv6‑address)
vrf = tstr ; Name of a VRF on this node with local‑address

 Figure 16: Parameters for remote ACP neighbors

 Explicit configuration of a remote-peer according to this ABNF
 provides all the information to build a secure channel without
 requiring a tunnel to that peer and running DULL GRASP inside of it.

 The configuration includes the parameters otherwise signaled via DULL
 GRASP: local address, remote (peer) locator and method. The
 differences over DULL GRASP local neighbor discovery and secure
 channel creation are as follows:

 o The local and remote address can be IPv4 or IPv6 and are typically
 global scope addresses.

 o The VRF across which the connection is built (and in which local-
 addr exists) can to be specified. If vrf is not specified, it is
 the default VRF on the node. In DULL GRASP the VRF is implied by
 the interface across which DULL GRASP operates.

 o If local address is "any", the local address used when initiating
 a secure channel connection is decided by source address selection
 ([RFC6724] for IPv6). As a responder, the connection listens on
 all addresses of the node in the selected VRF.

 o Configuration of port is only required for methods where no
 defaults exist (e.g., "DTLS").

 o If remote address is "any", the connection is only a responder.
 It is a "hub" that can be used by multiple remote peers to connect
 simultaneously - without having to know or configure their
 addresses. Example: Hub site for remote "spoke" sites reachable
 over the Internet.

 o Pmtu should be configurable to overcome issues/limitations of Path
 MTU Discovery (PMTUD).

 o IKEv2/IPsec to remote peers should support the optional NAT
 Traversal (NAT-T) procedures.

8.2.2. Tunneled Remote ACP Neighbor

 An IPinIP, GRE or other form of pre-existing tunnel is configured
 between two remote ACP peers and the virtual interfaces representing
 the tunnel are configured for "ACP enable". This will enable IPv6
 link local addresses and DULL on this tunnel. In result, the tunnel
 is used for normal "L2 adjacent" candidate ACP neighbor discovery
 with DULL and secure channel setup procedures described in this
 document.

 Tunneled Remote ACP Neighbor requires two encapsulations: the
 configured tunnel and the secure channel inside of that tunnel. This
 makes it in general less desirable than Configured Remote ACP
 Neighbor. Benefits of tunnels are that it may be easier to implement
 because there is no change to the ACP functionality - just running it
 over a virtual (tunnel) interface instead of only native interfaces.
 The tunnel itself may also provide PMTUD while the secure channel
 method may not. Or the tunnel mechanism is permitted/possible
 through some firewall while the secure channel method may not.

8.2.3. Summary

 Configured/Tunneled Remote ACP neighbors are less "indestructible"
 than L2 adjacent ACP neighbors based on link local addressing, since
 they depend on more correct Data-Plane operations, such as routing
 and global addressing.

 Nevertheless, these options may be crucial to incrementally deploy
 the ACP, especially if it is meant to connect islands across the
 Internet. Implementations SHOULD support at least Tunneled Remote
 ACP Neighbors via GRE tunnels - which is likely the most common
 router-to-router tunneling protocol in use today.

9. Benefits (Informative)

9.1. Self-Healing Properties

 The ACP is self-healing:

 o New neighbors will automatically join the ACP after successful
 validation and will become reachable using their unique ULA
 address across the ACP.

 o When any changes happen in the topology, the routing protocol used
 in the ACP will automatically adapt to the changes and will
 continue to provide reachability to all nodes.

 o The ACP tracks the validity of peer certificates and tears down
 ACP secure channels when a peer certificate has expired. When
 short-lived certificates with lifetimes in the order of OCSP/CRL
 refresh times are used, then this allows for removal of invalid
 peers (whose certificate was not renewed) at similar speeds as
 when using OCSP/CRL. The same benefit can be achieved when using
 CRL/OCSP, periodically refreshing the revocation information and
 also tearing down ACP secure channels when the peers (long-lived)
 certificate is revoked. There is no requirement against ACP
 implementations to require this enhancement though to keep the
 mandatory implementations simpler.

 The ACP can also sustain network partitions and mergers. Practically
 all ACP operations are link local, where a network partition has no
 impact. Nodes authenticate each other using the domain certificates
 to establish the ACP locally. Addressing inside the ACP remains
 unchanged, and the routing protocol inside both parts of the ACP will
 lead to two working (although partitioned) ACPs.

 There are few central dependencies: A certificate revocation list
 (CRL) may not be available during a network partition; a suitable
 policy to not immediately disconnect neighbors when no CRL is
 available can address this issue. Also, an ACP registrar or
 Certificate Authority might not be available during a partition.
 This may delay renewal of certificates that are to expire in the
 future, and it may prevent the enrollment of new nodes during the
 partition.

 Highly resilient ACP designs can be built by using ACP registrars
 with embedded sub-CA, as outlined in Section 10.2.4. As long as a
 partition is left with one or more of such ACP registrars, it can
 continue to enroll new candidate ACP nodes as long as the ACP
 registrars sub-CA certificate does not expire. Because the ACP
 addressing relies on unique Registrar-IDs, a later re-merge of
 partitions will also not cause problems with ACP addresses assigned
 during partitioning.

 After a network partition, a re-merge will just establish the
 previous status, certificates can be renewed, the CRL is available,
 and new nodes can be enrolled everywhere. Since all nodes use the
 same trust anchor(s), a re-merge will be smooth.

 Merging two networks with different trust anchors requires the ACP
 nodes to trust the union of Trust Anchors. As long as the routing-
 subdomain hashes are different, the addressing will not overlap,
 except for the low probability of a 40-bit hash collision in SHA256
 (see Section 6.10). Note that the complete mechanisms to merge
 networks is out of scope of this specification.

 It is also highly desirable for implementation of the ACP to be able
 to run it over interfaces that are administratively down. If this is
 not feasible, then it might instead be possible to request explicit
 operator override upon administrative actions that would
 administratively bring down an interface across which the ACP is
 running. Especially if bringing down the ACP is known to disconnect
 the operator from the node. For example any such down administrative
 action could perform a dependency check to see if the transport
 connection across which this action is performed is affected by the
 down action (with default RPL routing used, packet forwarding will be
 symmetric, so this is actually possible to check).

9.2. Self-Protection Properties

9.2.1. From the outside

 As explained in Section 6, the ACP is based on secure channels built
 between nodes that have mutually authenticated each other with their
 domain certificates. The channels themselves are protected using
 standard encryption technologies such as DTLS or IPsec which provide
 additional authentication during channel establishment, data
 integrity and data confidentiality protection of data inside the ACP
 and in addition, provide replay protection.

 An attacker will not be able to join the ACP unless having a valid
 domain certificate, also packet injection and sniffing traffic will
 not be possible due to the security provided by the encryption
 protocol.

 The ACP also serves as protection (through authentication and
 encryption) for protocols relevant to OAM that may not have secured
 protocol stack options or where implementation or deployment of those
 options fail on some vendor/product/customer limitations. This
 includes protocols such as SNMP ([RFC3411]), NTP ([RFC5905]), PTP
 ([IEEE-1588-2008]), DNS ([RFC1886]), DHCPv6 ([RFC3315]), syslog
 ([RFC3164]), Radius ([RFC2865]), Diameter ([RFC6733]), TACACS
 ([RFC1492]), IPFIX ([RFC7011]), Netflow ([RFC3954]) - just to name a
 few. Protection via the ACP secure hop-by-hop channels for these
 protocols is meant to be only a stopgap though: The ultimate goal is
 for these and other protocols to use end-to-end encryption utilizing
 the domain certificate and rely on the ACP secure channels primarily
 for zero-touch reliable connectivity, but not primarily for security.

 The remaining attack vector would be to attack the underlying ACP
 protocols themselves, either via directed attacks or by denial-of-
 service attacks. However, as the ACP is built using link-local IPv6
 addresses, remote attacks from the data-plane are impossible as long
 as the data-plane has no facilities to remotely sent IPv6 link-local
 packets. The only exception are ACP connected interfaces which
 require higher physical protection. The ULA addresses are only
 reachable inside the ACP context, therefore, unreachable from the
 Data-Plane. Also, the ACP protocols should be implemented to be
 attack resistant and not consume unnecessary resources even while
 under attack.

9.2.2. From the inside

 The security model of the ACP is based on trusting all members of the
 group of nodes that receive an ACP domain certificate for the same
 domain. Attacks from the inside by a compromised group member are
 therefore the biggest challenge.

 Group members must be protected against attackers so that there is no
 easy way to compromise them, or use them as a proxy for attacking
 other devices across the ACP. For example, management plane
 functions (transport ports) should only be reachable from the ACP but
 not the Data-Plane. Especially for those management plane functions
 that have no good protection by themselves because they do not have
 secure end-to-end transport and to whom ACP does not only provides
 automatic reliable connectivity but also protection against attacks.
 Protection across all potential attack vectors is typically easier to
 do in devices whose software is designed from the ground up with
 security in mind than with legacy software based systems where the
 ACP is added on as another feature.

 As explained above, traffic across the ACP SHOULD still be end-to-end
 encrypted whenever possible. This includes traffic such as GRASP,
 EST and BRSKI inside the ACP. This minimizes man in the middle
 attacks by compromised ACP group members. Such attackers cannot
 eavesdrop or modify communications, they can just filter them (which
 is unavoidable by any means).

 See Appendix A.10.8 for further considerations how to avoid and deal
 with compromised nodes.

9.3. The Administrator View

 An ACP is self-forming, self-managing and self-protecting, therefore
 has minimal dependencies on the administrator of the network.
 Specifically, since it is (intended to be) independent of
 configuration, there is no scope for configuration errors on the ACP
 itself. The administrator may have the option to enable or disable
 the entire approach, but detailed configuration is not possible.
 This means that the ACP must not be reflected in the running
 configuration of nodes, except a possible on/off switch (and even
 that is undesirable).

 While configuration is not possible, an administrator must have full
 visibility of the ACP and all its parameters, to be able to do
 trouble-shooting. Therefore, an ACP must support all show and debug
 options, as for any other network function. Specifically, a network
 management system or controller must be able to discover the ACP, and
 monitor its health. This visibility of ACP operations must clearly
 be separated from visibility of Data-Plane so automated systems will
 never have to deal with ACP aspect unless they explicitly desire to
 do so.

 Since an ACP is self-protecting, a node not supporting the ACP, or
 without a valid domain certificate cannot connect to it. This means
 that by default a traditional controller or network management system
 cannot connect to an ACP. See Section 8.1.1 for more details on how
 to connect an NMS host into the ACP.

10. ACP Operations (Informative)

 The following sections document important operational aspects of the
 ACP. They are not normative because they do not impact the
 interoperability between components of the ACP, but they include
 recommendations/requirements for the internal operational model
 beneficial or necessary to achieve the desired use-case benefits of
 the ACP (see Section 3).

 o Section 10.1 describes recommended operator diagnostics
 capabilities of ACP nodes. The have been derived from diagnostic
 of a commercially available ACP implementation.

 o Section 10.2 describes high level how an ACP registrar needs to
 work, what its configuration parameters are and specific issues
 impacting the choices of deployment design due to renewal and
 revocation issues. It describes a model where ACP Registrars have
 their own sub-CA to provide the most distributed deployment option
 for ACP Registrars, and it describes considerations for
 centralized policy control of ACP Registrar operations.

 o Section 10.3 describes suggested ACP node behavior and operational
 interfaces (configuration options) to manage the ACP in so-called
 greenfield devices (previously unconfigured) and brownfield
 devices (preconfigured).

 The recommendations and suggestions of this chapter were derived from
 operational experience gained with a commercially available pre-
 standard ACP implementation.

10.1. ACP (and BRSKI) Diagnostics

 Even though ACP and ANI in general are taking out many manual
 configuration mistakes through their automation, it is important to
 provide good diagnostics for them.

 The basic diagnostics is support of (yang) data models representing
 the complete (auto-)configuration and operational state of all
 components: BRSKI, GRASP, ACP and the infrastructure used by them:
 TLS/DTLS, IPsec, certificates, trust anchors, time, VRF and so on.
 While necessary, this is not sufficient:

 Simply representing the state of components does not allow operators
 to quickly take action - unless they do understand how to interpret
 the data, and that can mean a requirement for deep understanding of
 all components and how they interact in the ACP/ANI.

 Diagnostic supports should help to quickly answer the questions
 operators are expected to ask, such as "is the ACP working
 correctly?", or "why is there no ACP connection to a known
 neighboring node?"

 In current network management approaches, the logic to answer these
 questions is most often built as centralized diagnostics software
 that leverages the above mentioned data models. While this approach
 is feasible for components utilizing the ANI, it is not sufficient to
 diagnose the ANI itself:

 o Developing the logic to identify common issues requires
 operational experience with the components of the ANI. Letting
 each management system define its own analysis is inefficient.

 o When the ANI is not operating correctly, it may not be possible to
 run diagnostics from remote because of missing connectivity. The
 ANI should therefore have diagnostic capabilities available
 locally on the nodes themselves.

 o Certain operations are difficult or impossible to monitor in real-
 time, such as initial bootstrap issues in a network location where
 no capabilities exist to attach local diagnostics. Therefore it
 is important to also define means of capturing (logging)
 diagnostics locally for later retrieval. Ideally, these captures
 are also non-volatile so that they can survive extended power-off
 conditions - for example when a device that fails to be brought up
 zero-touch is being sent back for diagnostics at a more
 appropriate location.

 The most simple form of diagnostics answering questions such as the
 above is to represent the relevant information sequentially in
 dependency order, so that the first non-expected/non-operational item
 is the most likely root cause. Or just log/highlight that item. For
 example:

 Q: Is ACP operational to accept neighbor connections:

 o Check if any potentially necessary configuration to make ACP/ANI
 operational are correct (see Section 10.3 for a discussion of such
 commands).

 o Does the system time look reasonable, or could it be the default
 system time after clock chip battery failure (certificate checks
 depend on reasonable notion of time).

 o Does the node have keying material - domain certificate, trust
 anchors.

 o If no keying material and ANI is supported/enabled, check the
 state of BRSKI (not detailed in this example).

 o Check the validity of the domain certificate:

 * Does the certificate authenticate against the trust anchor?

 * Has it been revoked?

 * Was the last scheduled attempt to retrieve a CRL successful
 (e.g., do we know that our CRL information is up to date).

 * Is the certificate valid: validity start time in the past,
 expiration time in the future?

 * Does the certificate have a correctly formatted ACP domain
 information field?

 o Was the ACP VRF successfully created?

 o Is ACP enabled on one or more interfaces that are up and running?

 If all this looks good, the ACP should be running locally "fine" -
 but we did not check any ACP neighbor relationships.

 Question: why does the node not create a working ACP connection to a
 neighbor on an interface?

 o Is the interface physically up? Does it have an IPv6 link-local
 address?

 o Is it enabled for ACP?

 o Do we successfully send DULL GRASP messages to the interface (link
 layer errors)?

 o Do we receive DULL GRASP messages on the interface? If not, some
 intervening L2 equipment performing bad MLD snooping could have
 caused problems. Provide e.g., diagnostics of the MLD querier
 IPv6 and MAC address.

 o Do we see the ACP objective in any DULL GRASP message from that
 interface? Diagnose the supported secure channel methods.

 o Do we know the MAC address of the neighbor with the ACP objective?
 If not, diagnose SLAAC/ND state.

 o When did we last attempt to build an ACP secure channel to the
 neighbor?

 o If it failed, why:

 * Did the neighbor close the connection on us or did we close the
 connection on it because the domain certificate membership
 failed?

 * If the neighbor closed the connection on us, provide any error
 diagnostics from the secure channel protocol.

 * If we failed the attempt, display our local reason:

 + There was no common secure channel protocol supported by the
 two neighbors (this could not happen on nodes supporting
 this specification because it mandates common support for
 IPsec).

 + The ACP domain certificate membership check (Section 6.1.2)
 fails:

 - The neighbors certificate does not have the required
 trust anchor. Provide diagnostics which trust anchor it
 has (can identify whom the device belongs to).

 - The neighbors certificate does not have the same domain
 (or no domain at all). Diagnose domain-name and
 potentially other cert info.

 - The neighbors certificate has been revoked or could not
 be authenticated by OCSP.

 - The neighbors certificate has expired - or is not yet
 valid.

 * Any other connection issues in e.g., IKEv2 / IPsec, DTLS?.

 Question: Is the ACP operating correctly across its secure channels?

 o Are there one or more active ACP neighbors with secure channels?

 o Is the RPL routing protocol for the ACP running?

 o Is there a default route to the root in the ACP routing table?

 o Is there for each direct ACP neighbor not reachable over the ACP
 virtual interface to the root a route in the ACP routing table?

 o Is ACP GRASP running?

 o Is at least one SRV.est objective cached (to support certificate
 renewal)?

 o Is there at least one BRSKI registrar objective cached (in case
 BRSKI is supported)

 o Is BRSKI proxy operating normally on all interfaces where ACP is
 operating?

 o ...

 These lists are not necessarily complete, but illustrate the
 principle and show that there are variety of issues ranging from
 normal operational causes (a neighbor in another ACP domain) over
 problems in the credentials management (certificate lifetimes),
 explicit security actions (revocation) or unexpected connectivity
 issues (intervening L2 equipment).

 The items so far are illustrating how the ANI operations can be
 diagnosed with passive observation of the operational state of its
 components including historic/cached/counted events. This is not
 necessary sufficient to provide good enough diagnostics overall:

 The components of ACP and BRSKI are designed with security in mind
 but they do not attempt to provide diagnostics for building the
 network itself. Consider two examples:

 1. BRSKI does not allow for a neighboring device to identify the
 pledges certificate (IDevID). Only the selected BRSKI registrar
 can do this, but it may be difficult to disseminate information
 about undesired pledges from those BRSKI registrars to locations/
 nodes where information about those pledges is desired.

 2. The Link Layer Discovery Protocol (LLDP, [LLDP]) disseminates
 information about nodes to their immediate neighbors, such as
 node model/type/software and interface name/number of the
 connection. This information is often helpful or even necessary
 in network diagnostics. It can equally considered to be too
 insecure to make this information available unprotected to all
 possible neighbors.

 An "interested adjacent party" can always determine the IDevID of a
 BRSKI pledge by behaving like a BRSKI proxy/registrar. Therefore the
 IDevID of a BRSKI pledge is not meant to be protected - it just has
 to be queried and is not signaled unsolicited (as it would be in
 LLDP) so that other observers on the same subnet can determine who is
 an "interested adjacent party".

10.2. ACP Registrars

 As described in Section 6.10.7, the ACP addressing mechanism is
 designed to enable lightweight, distributed and uncoordinated ACP
 registrars that are providing ACP address prefixes to candidate ACP
 nodes by enrolling them with an ACP domain certificate into an ACP
 domain via any appropriate mechanism/protocol, automated or not.

 This section discusses informatively more details and options for ACP
 registrars.

10.2.1. Registrar interactions

 This section summarizes and discusses the interactions with other
 entities required by an ACP registrar.

 In a simple instance of an ACP network, no central NOC component
 beside a trust anchor (root CA) is required. One or more
 uncoordinated acting ACP registrar can be set up, performing the
 following interactions:

 To orchestrate enrolling a candidate ACP node autonomically, the ACP
 registrar can rely on the ACP and use Proxies to reach the candidate
 ACP node, therefore allowing minimum pre-existing (auto-)configured
 network services on the candidate ACP node. BRSKI defines the BRSKI
 proxy, a design that can be adopted for various protocols that
 Pledges/candidate ACP nodes could want to use, for example BRSKI over
 CoAP (Constrained Application Protocol), or proxying of Netconf.

 To reach a trust anchor unaware of the ACP, the ACP registrar would
 use the Data-Plane. ACP and Data-Plane in an ACP registrar could
 (and by default should be) completely isolated from each other at the
 network level. Only applications such as the ACP registrar would
 need the ability for their transport stacks to access both.

 In non-autonomic enrollment options, the Data-Plane between a ACP
 registrar and the candidate ACP node needs to be configured first.
 This includes the ACP registrar and the candidate ACP node. Then any
 appropriate set of protocols can be used between ACP registrar and
 candidate ACP node to discover the other side, and then connect and
 enroll (configure) the candidate ACP node with an ACP domain
 certificate. Netconf ZeroTouch ([I-D.ietf-netconf-zerotouch]) is an
 example protocol that could be used for this. BRSKI using optional
 discovery mechanisms is equally a possibility for candidate ACP nodes
 attempting to be enrolled across non-ACP networks, such as the
 Internet.

 When candidate ACP nodes have secure bootstrap, such as BRSKI
 Pledges, they will not trust to be configured/enrolled across the
 network, unless being presented with a voucher (see [RFC8366])
 authorizing the network to take possession of the node. An ACP
 registrar will then need a method to retrieve such a voucher, either
 offline, or online from a MASA (Manufacturer Authorized Signing
 Authority). BRSKI and Netconf ZeroTouch are two protocols that
 include capabilities to present the voucher to the candidate ACP
 node.

 An ACP registrar could operate EST for ACP certificate renewal and/or
 act as a CRL Distribution point. A node performing these services
 does not need to support performing (initial) enrollment, but it does
 require the same above described connectivity as an ACP registrar:
 via the ACP to ACP nodes and via the Data-Plane to the trust anchor
 and other sources of CRL information.

10.2.2. Registrar Parameter

 The interactions of an ACP registrar outlined Section 6.10.7 and
 Section 10.2.1 above depend on the following parameters:

 A URL to the trust anchor (root CA) and credentials so that the
 ACP registrar can let the trust anchor sign candidate ACP member
 certificates.

 The ACP domain-name.

 The Registrar-ID to use. This could default to a MAC address of
 the ACP registrar.

 For recovery, the next-useable Node-IDs for zone (Zone-ID=0) sub-
 addressing scheme, for Vlong /112 and for Vlong /1120 sub-
 addressing scheme. These IDs would only need to be provisioned
 after recovering from a crash. Some other mechanism would be
 required to remember these IDs in a backup location or to recover
 them from the set of currently known ACP nodes.

 Policies if candidate ACP nodes should receive a domain
 certificate or not, for example based on the devices LDevID as in
 BRSKI. The ACP registrar may have a whitelist or blacklist of
 devices serialNumbers from their LDevID.

 Policies what type of address prefix to assign to a candidate ACP
 devices, based on likely the same information.

 For BRSKI or other mechanisms using vouchers: Parameters to
 determine how to retrieve vouchers for specific type of secure
 bootstrap candidate ACP nodes (such as MASA URLs), unless this
 information is automatically learned such as from the IDevID of
 candidate ACP nodes (as defined in BRSKI).

10.2.3. Certificate renewal and limitations

 When an ACP node renews/rekeys its certificate, it may end up doing
 so via a different registrar (e.g., EST server) than the one it
 originally received its ACP domain certificate from, for example
 because that original ACP registrar is gone. The ACP registrar
 through which the renewal/rekeying is performed would by default
 trust the ACP domain information from the ACP nodes current ACP
 domain certificate and maintain this information so that the ACP node
 maintains its ACP address prefix. In EST renewal/rekeying, the ACP
 nodes current ACP domain certificate is signaled during the TLS
 handshake.

 This simple scenario has two limitations:

 1. The ACP registrars cannot directly assign certificates to nodes
 and therefore needs an "online" connection to the trust anchor
 (root CA).

 2. Recovery from a compromised ACP registrar is difficult. When an
 ACP registrar is compromised, it can insert for example
 conflicting ACP domain information and create thereby an attack
 against other ACP nodes through the ACP routing protocol.

 Even when such a malicious ACP registrar is detected, resolving the
 problem may be difficult because it would require identifying all the
 wrong ACP domain certificates assigned via the ACP registrar after it
 was compromised. And without additional centralized tracking of
 assigned certificates there is no way to do this.

10.2.4. ACP Registrars with sub-CA

 In situations, where either of the above two limitations are an
 issue, ACP registrars could also be sub-CAs. This removes the need
 for connectivity to a root-CA whenever an ACP node is enrolled, and
 reduces the need for connectivity of such an ACP registrar to a root-
 CA to only those times when it needs to renew its own certificate.
 The ACP registrar would also now use its own (sub-CA) certificate to
 enroll and sign the ACP nodes certificates, and therefore it is only
 necessary to revoke a compromised ACP registrars sub-CA certificate.
 Alternatively one can let it expire and not renew it, when the
 certificate of the sub-CA is appropriately short-lived.

 As the ACP domain membership check verifies a peer ACP node's ACP
 domain certificate trust chain, it will also verify the signing
 certificate which is the compromised/revoked sub-CA certificate.
 Therefore ACP domain membership for an ACP node enrolled from a
 compromised and discovered ACP registrar will fail.

 ACP nodes enrolled by a compromised ACP registrar would automatically
 fail to establish ACP channels and ACP domain certificate renewal via
 EST and therefore revert to their role as a candidate ACP members and
 attempt to get a new ACP domain certificate from an ACP registrar -
 for example, via BRSKI. In result, ACP registrars that have an
 associated sub-CA makes isolating and resolving issues with
 compromised registrars easier.

 Note that ACP registrars with sub-CA functionality also can control
 the lifetime of ACP domain certificates easier and therefore also be
 used as a tool to introduce short lived certificates and not rely on
 CRL, whereas the certificates for the sub-CAs themselves could be
 longer lived and subject to CRL.

10.2.5. Centralized Policy Control

 When using multiple, uncoordinated ACP registrars, several advanced
 operations are potentially more complex than with a single, resilient
 policy control backend, for example including but not limited to:

 Which candidate ACP node is permitted or not permitted into an ACP
 domain. This may not be a decision to be taken upfront, so that a
 per-serialNumber policy can be loaded into ever ACP registrar.
 Instead, it may better be decided in real-time including
 potentially a human decision in a NOC.

 Tracking of all enrolled ACP nodes and their certificate
 information. For example in support of revoking individual ACP
 nodes certificates.

 More flexible policies what type of address prefix or even what
 specific address prefix to assign to a candidate ACP node.

 These and other operations could be introduced more easily by
 introducing a centralized Policy Management System (PMS) and
 modifying ACP registrar behavior so that it queries the PMS for any
 policy decision occurring during the candidate ACP node enrollment
 process and/or the ACP node certificate renewal process. For
 example, which ACP address prefix to assign. Likewise the ACP
 registrar would report any relevant state change information to the
 PMS as well, for example when a certificate was successfully enrolled
 onto a candidate ACP node.

10.3. Enabling and disabling ACP/ANI

 Both ACP and BRSKI require interfaces to be operational enough to
 support sending/receiving their packets. In node types where
 interfaces are by default (e.g., without operator configuration)
 enabled, such as most L2 switches, this would be less of a change in
 behavior than in most L3 devices (e.g.: routers), where interfaces
 are by default disabled. In almost all network devices it is common
 though for configuration to change interfaces to a physically
 disabled state and that would break the ACP.

 In this section, we discuss a suggested operational model to enable/
 disable interfaces and nodes for ACP/ANI in a way that minimizes the
 risk of operator action to break the ACP in this way, and that also
 minimizes operator surprise when ACP/ANI becomes supported in node
 software.

10.3.1. Filtering for non-ACP/ANI packets

 Whenever this document refers to enabling an interface for ACP (or
 BRSKI), it only requires to permit the interface to send/receive
 packets necessary to operate ACP (or BRSKI) - but not any other Data-
 Plane packets. Unless the Data-Plane is explicitly configured/
 enabled, all packets not required for ACP/BRSKI should be filtered on
 input and output:

 Both BRSKI and ACP require link-local only IPv6 operations on
 interfaces and DULL GRASP. IPv6 link-local operations means the
 minimum signaling to auto-assign an IPv6 link-local address and talk
 to neighbors via their link-local address: SLAAC (Stateless Address
 Auto-Configuration - [RFC4862]) and ND (Neighbor Discovery -
 [RFC4861]). When the device is a BRSKI pledge, it may also require
 TCP/TLS connections to BRSKI proxies on the interface. When the
 device has keying material, and the ACP is running, it requires DULL
 GRASP packets and packets necessary for the secure-channel mechanism
 it supports, e.g., IKEv2 and IPsec ESP packets or DTLS packets to the
 IPv6 link-local address of an ACP neighbor on the interface. It also
 requires TCP/TLS packets for its BRSKI proxy functionality, if it
 does support BRSKI.

10.3.2. Admin Down State

 Interfaces on most network equipment have at least two states: "up"
 and "down". These may have product specific names. "down" for
 example could be called "shutdown" and "up" could be called "no
 shutdown". The "down" state disables all interface operations down
 to the physical level. The "up" state enables the interface enough
 for all possible L2/L3 services to operate on top of it and it may
 also auto-enable some subset of them. More commonly, the operations
 of various L2/L3 services is controlled via additional node-wide or
 interface level options, but they all become only active when the
 interface is not "down". Therefore an easy way to ensure that all
 L2/L3 operations on an interface are inactive is to put the interface
 into "down" state. The fact that this also physically shuts down the
 interface is in many cases just a side effect, but it may be
 important in other cases (see below, Section 10.3.2.2).

 To provide ACP/ANI resilience against operators configuring
 interfaces to "down" state, this document recommends to separate the
 "down" state of interfaces into an "admin down" state where the
 physical layer is kept running and ACP/ANI can use the interface and
 a "physical down" state. Any existing "down" configurations would
 map to "admin down". In "admin down", any existing L2/L3 services of
 the Data-Plane should see no difference to "physical down" state. To
 ensure that no Data-Plane packets could be sent/received, packet
 filtering could be established automatically as described above in
 Section 10.3.1.

 As necessary (see discussion below) new configuration options could
 be introduced to issue "physical down". The options should be
 provided with additional checks to minimize the risk of issuing them
 in a way that breaks the ACP without automatic restoration. For
 example they could be denied to be issued from a control connection
 (netconf/ssh) that goes across the interface itself ("do not
 disconnect yourself"). Or they could be performed only temporary and
 only be made permanent with additional later reconfirmation.

 In the following sub-sections important aspects to the introduction
 of "admin down" state are discussed.

10.3.2.1. Security

 Interfaces are physically brought down (or left in default down
 state) as a form of security. "Admin down" state as described above
 provides also a high level of security because it only permits ACP/
 ANI operations which are both well secured. Ultimately, it is
 subject to security review for the deployment whether "admin down" is
 a feasible replacement for "physical down".

 The need to trust the security of ACP/ANI operations needs to be
 weighed against the operational benefits of permitting this: Consider
 the typical example of a CPE (customer premises equipment) with no
 on-site network expert. User ports are in physical down state unless
 explicitly configured not to be. In a misconfiguration situation,
 the uplink connection is incorrectly plugged into such as user port.
 The device is disconnected from the network and therefore no
 diagnostics from the network side is possible anymore.
 Alternatively, all ports default to "admin down". The ACP (but not
 the Data-Plane) would still automatically form. Diagnostics from the
 network side is possible and operator reaction could include to
 either make this port the operational uplink port or to instruct re-
 cabling. Security wise, only ACP/ANI could be attacked, all other
 functions are filtered on interfaces in "admin down" state.

10.3.2.2. Fast state propagation and Diagnostics

 "Physical down" state propagates on many interface types (e.g.,
 Ethernet) to the other side. This can trigger fast L2/L3 protocol
 reaction on the other side and "admin down" would not have the same
 (fast) result.

 Bringing interfaces to "physical down" state is to the best of our
 knowledge always a result of operator action, but today, never the
 result of (autonomic) L2/L3 services running on the nodes. Therefore
 one option is to change the operator action to not rely on link-state
 propagation anymore. This may not be possible when both sides are
 under different operator control, but in that case it is unlikely
 that the ACP is running across the link and actually putting the
 interface into "physical down" state may still be a good option.

 Ideally, fast physical state propagation is replaced by fast software
 driven state propagation. For example a DULL GRASP "admin-state"
 objective could be used to auto configure a Bidirectional Forwarding
 Protocol (BFD, [RFC5880]) session between the two sides of the link
 that would be used to propagate the "up" vs. admin down state.

 Triggering physical down state may also be used as a mean of
 diagnosing cabling in the absence of easier methods. It is more
 complex than automated neighbor diagnostics because it requires
 coordinated remote access to both (likely) sides of a link to
 determine whether up/down toggling will cause the same reaction on
 the remote side.

 See Section 10.1 for a discussion about how LLDP and/or diagnostics
 via GRASP could be used to provide neighbor diagnostics, and
 therefore hopefully eliminating the need for "physical down" for
 neighbor diagnostics - as long as both neighbors support ACP/ANI.

10.3.2.3. Low Level Link Diagnostics

 "Physical down" is performed to diagnose low-level interface behavior
 when higher layer services (e.g., IPv6) are not working. Especially
 Ethernet links are subject to a wide variety of possible wrong
 configuration/cablings if they do not support automatic selection of
 variable parameters such as speed (10/100/1000 Mbps), crossover
 (Auto-MDIX) and connector (fiber, copper - when interfaces have
 multiple but can only enable one at a time). The need for low level
 link diagnostic can therefore be minimized by using fully auto
 configuring links.

 In addition to "Physical down", low level diagnostics of Ethernet or
 other interfaces also involve the creation of other states on
 interfaces, such as physical Loopback (internal and/or external) or
 bringing down all packet transmissions for reflection/cable-length
 measurements. Any of these options would disrupt ACP as well.

 In cases where such low-level diagnostics of an operational link is
 desired but where the link could be a single point of failure for the
 ACP, ASA on both nodes of the link could perform a negotiated
 diagnostics that automatically terminates in a predetermined manner
 without dependence on external input ensuring the link will become
 operational again.

10.3.2.4. Power Consumption Issues

 Power consumption of "physical down" interfaces, may be significantly
 lower than those in "admin down" state, for example on long-range
 fiber interfaces. Bringing up interfaces, for example to probe
 reachability, may also consume additional power. This can make these
 type of interfaces inappropriate to operate purely for the ACP when
 they are not currently needed for the Data-Plane.

10.3.3. Interface level ACP/ANI enable

 The interface level configuration option "ACP enable" enables ACP
 operations on an interface, starting with ACP neighbor discovery via
 DULL GRAP. The interface level configuration option "ANI enable" on
 nodes supporting BRSKI and ACP starts with BRSKI pledge operations
 when there is no domain certificate on the node. On ACP/BRSKI nodes,
 "ACP enable" may not need to be supported, but only "ANI enable".
 Unless overridden by global configuration options (see later), "ACP/
 ANI enable" will result in "down" state on an interface to behave as
 "admin down".

10.3.4. Which interfaces to auto-enable?

 (Section 6.3) requires that "ACP enable" is automatically set on
 native interfaces, but not on non-native interfaces (reminder: a
 native interface is one that exists without operator configuration
 action such as physical interfaces in physical devices).

 Ideally, ACP enable is set automatically on all interfaces that
 provide access to additional connectivity that allows to reach more
 nodes of the ACP domain. The best set of interfaces necessary to
 achieve this is not possible to determine automatically. Native
 interfaces are the best automatic approximation.

 Consider an ACP domain of ACP nodes transitively connected via native
 interfaces. A Data-Plane tunnel between two of these nodes that are
 non-adjacent is created and "ACP enable" is set for that tunnel. ACP
 RPL sees this tunnel as just as a single hop. Routes in the ACP
 would use this hop as an attractive path element to connect regions
 adjacent to the tunnel nodes. In result, the actual hop-by-hop paths
 used by traffic in the ACP can become worse. In addition, correct
 forwarding in the ACP now depends on correct Data-Plane forwarding
 config including QoS, filtering and other security on the Data-Plane
 path across which this tunnel runs. This is the main issue why "ACP/
 ANI enable" should not be set automatically on non-native interfaces.

 If the tunnel would connect two previously disjoint ACP regions, then
 it likely would be useful for the ACP. A Data-Plane tunnel could
 also run across nodes without ACP and provide additional connectivity
 for an already connected ACP network. The benefit of this additional
 ACP redundancy has to be weighed against the problems of relying on
 the Data-Plane. If a tunnel connects two separate ACP regions: how
 many tunnels should be created to connect these ACP regions reliably
 enough? Between which nodes? These are all standard tunneled
 network design questions not specific to the ACP, and there are no
 generic fully automated answers.

 Instead of automatically setting "ACP enable" on these type of
 interfaces, the decision needs to be based on the use purpose of the
 non-native interface and "ACP enable" needs to be set in conjunction
 with the mechanism through which the non-native interface is created/
 configured.

 In addition to explicit setting of "ACP/ANI enable", non-native
 interfaces also need to support configuration of the ACP RPL cost of
 the link - to avoid the problems of attracting too much traffic to
 the link as described above.

 Even native interfaces may not be able to automatically perform BRSKI
 or ACP because they may require additional operator input to become
 operational. Example include DSL interfaces requiring PPPoE
 credentials or mobile interfaces requiring credentials from a SIM
 card. Whatever mechanism is used to provide the necessary config to
 the device to enable the interface can also be expanded to decide on
 whether or not to set "ACP/ANI enable".

 The goal of automatically setting "ACP/ANI enable" on interfaces
 (native or not) is to eliminate unnecessary "touches" to the node to
 make its operation as much as possible "zero-touch" with respect to
 ACP/ANI. If there are "unavoidable touches" such a creating/
 configuring a non-native interface or provisioning credentials for a
 native interface, then "ACP/ANI enable" should be added as an option
 to that "touch". If a wrong "touch" is easily fixed (not creating
 another high-cost touch), then the default should be not to enable
 ANI/ACP, and if it is potentially expensive or slow to fix (e.g.,
 parameters on SIM card shipped to remote location), then the default
 should be to enable ACP/ANI.

10.3.5. Node Level ACP/ANI enable

 A node level command "ACP/ANI enable [up-if-only]" enables ACP or ANI
 on the node (ANI = ACP + BRSKI). Without this command set, any
 interface level "ACP/ANI enable" is ignored. Once set, ACP/ANI will
 operate interface where "ACP/ANI enable" is set. Setting of
 interface level "ACP/ANI enable" is either automatic (default) or
 explicit through operator action as described in the previous
 section.

 If the option "up-if-only" is selected, the behavior of "down"
 interfaces is unchanged, and ACP/ANI will only operate on interfaces
 where "ACP/ANI enable" is set and that are "up". When it is not set,
 then "down" state of interfaces with "ACP/ANI enable" is modified to
 behave as "admin down".

10.3.5.1. Brownfield nodes

 A "brownfield" node is one that already has a configured Data-Plane.

 Executing global "ACP/ANI enable [up-if-only]" on each node is the
 only command necessary to create an ACP across a network of
 brownfield nodes once all the nodes have a domain certificate. When
 BRSKI is used ("ANI enable"), provisioning of the certificates only
 requires set-up of a single BRSKI registrar node which could also
 implement a CA for the network. This is the most simple way to
 introduce ACP/ANI into existing (== brownfield) networks.

 The need to explicitly enable ACP/ANI is especially important in
 brownfield nodes because otherwise software updates may introduce
 support for ACP/ANI: Automatic enablement of ACP/ANI in networks
 where the operator does not only not want ACP/ANI but where the
 operator likely never even heard of it could be quite irritating to
 the operator. Especially when "down" behavior is changed to "admin
 down".

 Automatically setting "ANI enable" on brownfield nodes where the
 operator is unaware of it could also be a critical security issue
 depending on the vouchers used by BRKSI on these nodes. An attacker
 could claim to be the owner of these devices and create an ACP that
 the attacker has access/control over. In networks where the operator
 explicitly wants to enable the ANI this could not happen, because he
 would create a BRSKI registrar that would discover attack attempts.
 Nodes requiring "ownership vouchers" would not be subject to that
 attack. See [I-D.ietf-anima-bootstrapping-keyinfra] for more
 details. Note that a global "ACP enable" alone is not subject to
 these type of attacks, because it always depends on some other
 mechanism first to provision domain certificates into the device.

10.3.5.2. Greenfield nodes

 A "greenfield" node is one that did not have any prior configuration.

 For greenfield nodes, only "ANI enable" is relevant. If another
 mechanism than BRSKI is used to (zero-touch) bootstrap a node, then
 it is up to that mechanism to provision domain certificates and to
 set global "ACP enable" as desired.

 Nodes supporting full ANI functionality set "ANI enable"
 automatically when they decide that they are greenfield, e.g., that
 they are powering on from factory condition. They will then put all
 native interfaces into "admin down" state and start to perform BRSKI
 pledge functionality - and once a domain certificate is enrolled they
 automatically enable ACP.

 Attempts for BRSKI pledge operations in greenfield state should
 terminate automatically when another method of configuring the node
 is used. Methods that indicate some form of physical possession of
 the device such as configuration via the serial console port could
 lead to immediate termination of BRSKI, while other parallel auto
 configuration methods subject to remote attacks might lead to BRSKI
 termination only after they were successful. Details of this may
 vary widely over different type of nodes. When BRSKI pledge
 operation terminates, this will automatically unset "ANI enable" and
 should terminate any temporarily needed state on the device to
 perform BRSKI - DULL GRASP, BRSKI pledge and any IPv6 configuration
 on interfaces.

10.3.6. Undoing ANI/ACP enable

 Disabling ANI/ACP by undoing "ACP/ANI enable" is a risk for the
 reliable operations of the ACP if it can be executed by mistake or
 unauthorized. This behavior could be influenced through some
 additional property in the certificate (e.g., in the domain
 information extension field) subject to future work: In an ANI
 deployment intended for convenience, disabling it could be allowed
 without further constraints. In an ANI deployment considered to be
 critical more checks would be required. One very controlled option
 would be to not permit these commands unless the domain certificate
 has been revoked or is denied renewal. Configuring this option would
 be a parameter on the BRSKI registrar(s). As long as the node did
 not receive a domain certificate, undoing "ANI/ACP enable" should not
 have any additional constraints.

10.3.7. Summary

 Node-wide "ACP/ANI enable [up-if-only]" commands enable the operation
 of ACP/ANI. This is only auto-enabled on ANI greenfield devices,
 otherwise it must be configured explicitly.

 If the option "up-if-only" is not selected, interfaces enabled for
 ACP/ANI interpret "down" state as "admin down" and not "physical
 down". In "admin-down" all non-ACP/ANI packets are filtered, but the
 physical layer is kept running to permit ACP/ANI to operate.

 (New) commands that result in physical interruption ("physical down",
 "loopback") of ACP/ANI enabled interfaces should be built to protect
 continuance or reestablishment of ACP as much as possible.

 Interface level "ACP/ANI enable" control per-interface operations.
 It is enabled by default on native interfaces and has to be
 configured explicitly on other interfaces.

 Disabling "ACP/ANI enable" global and per-interface should have
 additional checks to minimize undesired breakage of ACP. The degree
 of control could be a domain wide parameter in the domain
 certificates.

10.4. Configuration and the ACP (summary)

 There is no desirable configuration for the ACP. Instead, all
 parameters that need to be configured in support of the ACP are
 limitations of the solution, but they are only needed in cases where
 not all components are made autonomic. Whereever this is necessary,
 it will rely on pre-existing mechanisms for configuration such as CLI
 or YANG ([RFC7950]) data models.

 The most important examples of such configuration include:

 o When ACP nodes do not support an autonomic way to receive an ACP
 domain certificate, for example BRSKI, then such certificate needs
 to be configured via some pre-existing mechanisms outside the
 scope of this specification. Today, router have typically a
 variety of mechanisms to do this.

 o Certificate maintenance requires PKI functions. Discovery of
 these functions across the ACP is automated (see Section 6.1.4),
 but their configuration is is not.

 o When non-ACP capable nodes need to be connected to the ACP, the
 connecting ACP node needs to be configuration to support this
 according to Section 8.1.

 o When devices are not autonomically bootstrapped, explicit
 configuration to enable the ACP needs to be applied. See
 Section 10.3.

 o When the ACP needs to be extended across interfacess other than
 L2, the ACP as defined in this document can not autodiscover
 candidate neighbors automatically. Remove neighbors need to be
 configured, see Section 8.2.

 Once the ACP is operating, any further configuration for the data-
 lane can be configured more reliably across the ACP itself because
 the ACP provides addressing and connectivity (routing) independent of
 the data-plane itself. For this, the configuration methods simply
 need to also allow to operate across the ACP VRF - netconf, ssh or
 any other method.

 The ACP also provides additional security through its hop-by-hop
 encryption for any such configuration operations: Some legacy
 configuration methods (SNMP, TFTP, HTTP) may not use end-to-end
 encryption, and most of the end-to-end secured configuration methods
 still allow for easy passive observation along the path about
 configuration taking place (transport flows, port numbers, IP
 addresses).

 The ACP can and should equally be used as the transport to configure
 any of the aforemention non-automic components of the ACP, but in
 that case, the same caution needs to be exercised as with data-plane
 configuration without ACP: Misconfiguration may cause the configuring
 entity to be disconnected from the node it configures - for example
 when incorrectly unconfiguring a remote ACP neighbor through which
 the configured ACP node is reached.

11. Security Considerations

 After seeding an ACP by configuring at least one ACP registrar with
 routing-subdomain and a CA, an ACP is self-protecting and there is no
 need to apply configuration to make it secure (typically the ACP
 Registrar doubles as EST server for certificate renewal). Its
 security therefore does not depend on configuration. This does not
 include workarounds for non-autonomic components as explained in
 Section 8. See Section 9.2 for details of how the ACP protects
 itself against attacks from the outside and to a more limited degree
 from the inside as well.

 However, the security of the ACP depends on a number of other
 factors:

 o The usage of domain certificates depends on a valid supporting PKI
 infrastructure. If the chain of trust of this PKI infrastructure
 is compromised, the security of the ACP is also compromised. This
 is typically under the control of the network administrator.

 o Every ACP registrar is criticial infrastructure that needs to be
 hardened against attacks similar to a CA. A malicious registrar
 can enroll enemy plegdes to an ACP network or break ACP routing by
 duplicate ACP address assignment to pledges via their ACP domain
 certificates.

 o Security can be compromised by implementation errors (bugs), as in
 all products.

 There is no prevention of source-address spoofing inside the ACP.
 This implies that if an attacker gains access to the ACP, it can
 spoof all addresses inside the ACP and fake messages from any other
 node.

 The ACP It is designed to enable automation of current network
 management and future autonomic peer-to-peer/distributed network
 automation. Any ACP member can send ACP IPv6 packet to other ACP
 members and announce via ACP GRASP services to all ACP members
 without depenency against centralized components.

 The ACP relies on peer-to-peer authentication and authorization using
 ACP certificates. This security model is necessary to enable the
 autonomic ad-hoc any-to-any connectivity between ACP nodes. It
 provides infrastructure protection through hop by hop authentication
 and encryption - without relying on third parties. For any services
 where this complete autonomic peer-to-peer group security model is
 appropriate, the ACP domain certificate can also be used unchanged.
 For example for any type of data-plane routing protocol security.

 This ACP security model is designed primarily to protect against
 attack from the outside, but not against attacks from the inside. To
 protect against spoofing attacks from compromised on-path ACP nodes,
 end-to-end encryption inside the ACP is used by new ACP signaling:
 GRASP across the ACP using TLS. The same is expected from any non-
 legacy services/protocols using the ACP. Because no group-keys are
 used, there is no risk for impacted nodes to access end-to-end
 encrypted traffic from other ACP nodes.

 Attacks from impacted ACP nodes against the ACP are more difficult
 than against the data-plane because of the autoconfiguration of the
 ACP and the absence of configuration options that could be abused
 that allow to change/break ACP behavior. This is excluding
 configuration for workaround in support of non-autonomic components.

 Mitigation against compromised ACP members is possible through
 standard automated certificate management mechanisms including
 revocation and non-renewal of short-lived cdrtificates. In this
 version of the specification, there are no further optimization of
 these mechanisms defined for the ACP (but see Appendix A.10.8).

 Higher layer service built using ACP domain certificates should not
 solely rely on undifferentiated group security when another model is
 more appropriate/more secure. For example central network
 configuration relies on a security model where only few especially
 trusted nodes are allowed to configure the data-plane of network
 nodes (CLIL, Netconf). This can be done through ACP domain
 certificates by differentiating them and introduce roles. See
 Appendix A.10.5.

 Fundamentally, security depends on avoiding operator and network
 operations automation mistakes, implementation and architecture.
 Autonomic approaches such as the ACP largely eliminate operator
 mistakes and make it easier to recover from network operations
 mistakes. Implementation and architectural mistakes are still
 possible, as in all networking technologies.

 Many details of ACP are designed with security in mind and discussed
 elsewhere in the document:

 IPv6 addresses used by nodes in the ACP are covered as part of the
 node's domain certificate as described in Section 6.1.1. This allows
 even verification of ownership of a peers IPv6 address when using a
 connection authenticated with the domain certificate.

 The ACP acts as a security (and transport) substrate for GRASP inside
 the ACP such that GRASP is not only protected by attacks from the
 outside, but also by attacks from compromised inside attackers - by
 relying not only on hop-by-hop security of ACP secure channels, but
 adding end-to-end security for those GRASP messages. See
 Section 6.8.2.

 ACP provides for secure, resilient zero-touch discovery of EST
 servers for certificate renewal. See Section 6.1.4.

 ACP provides extensible, auto-configuring hop-by-hop protection of
 the ACP infrastructure via the negotiation of hop-by-hop secure
 channel protocols. See Section 6.5 and Appendix A.6.

 The ACP is designed to minimize attacks from the outside by
 minimizing its dependency against any non-ACP (Data-Plane)
 operations/configuration on a node. See also Section 6.12.2.

 In combination with BRSKI, ACP enables a resilient, fully zero-touch
 network solution for short-lived certificates that can be renewed or
 re-enrolled even after unintentional expiry (e.g., because of
 interrupted connectivity). See Appendix A.2.

 Because ACP secure channels can be long lived, but certificates used
 may be short lived, secure channels, for example built via IPsec need
 to be terminated when peer certificates expire. See Section 6.7.3.

 The ACP is designed to minimize attacks from the outside by
 minimizing its dependency against any non-ACP (Data-Plane)
 operations/configuration on a node. See also Section 6.12.2.

12. IANA Considerations

 This document defines the "Autonomic Control Plane".

 The IANA is requested to register the value "AN_ACP" (without quotes)
 to the GRASP Objectives Names Table in the GRASP Parameter Registry.
 The specification for this value is this document, Section 6.3.

 The IANA is requested to register the value "SRV.est" (without
 quotes) to the GRASP Objectives Names Table in the GRASP Parameter
 Registry. The specification for this value is this document,
 Section 6.1.4.

 Explanation: This document chooses the initially strange looking
 format "SRV.<service-name>" because these objective names would be in
 line with potential future simplification of the GRASP objective
 registry. Today, every name in the GRASP objective registry needs to
 be explicitly allocated with IANA. In the future, this type of
 objective names could considered to be automatically registered in
 that registry for the same service for which <service-name> is
 registered according to [RFC6335]. This explanation is solely
 informational and has no impact on the requested registration.

 The IANA is requested to create an ACP Parameter Registry with
 currently one registry table - the "ACP Address Type" table.

 "ACP Address Type" Table. The value in this table are numeric values
 0...3 paired with a name (string). Future values MUST be assigned
 using the Standards Action policy defined by [RFC8126]. The
 following initial values are assigned by this document:

0: ACP Zone Addressing Sub‑Scheme (ACP RFC Figure 10) / ACP Manual
Addressing Sub‑Scheme (ACP RFC Section 6.10.4)
1: ACP Vlong Addressing Sub‑Scheme (ACP RFC Section 6.10.5)

13. Acknowledgements

 This work originated from an Autonomic Networking project at Cisco
 Systems, which started in early 2010. Many people contributed to
 this project and the idea of the Autonomic Control Plane, amongst
 which (in alphabetical order): Ignas Bagdonas, Parag Bhide, Balaji
 BL, Alex Clemm, Yves Hertoghs, Bruno Klauser, Max Pritikin, Michael
 Richardson, Ravi Kumar Vadapalli.

 Special thanks to Brian Carpenter, Elwyn Davies, Joel Halpern and
 Sheng Jiang for their thorough reviews and to Pascal Thubert and
 Michael Richardson to provide the details for the recommendations of
 the use of RPL in the ACP.

 Further input, review or suggestions were received from: Rene Struik,
 Brian Carpenter, Benoit Claise, William Atwood and Yongkang Zhang.

14. Change log [RFC Editor: Please remove]

14.1. Initial version

 First version of this document: draft-behringer-autonomic-control-
 plane

14.2. draft-behringer-anima-autonomic-control-plane-00

 Initial version of the anima document; only minor edits.

14.3. draft-behringer-anima-autonomic-control-plane-01

 o Clarified that the ACP should be based on, and support only IPv6.

 o Clarified in intro that ACP is for both, between devices, as well
 as for access from a central entity, such as an NMS.

 o Added a section on how to connect an NMS system.

 o Clarified the hop-by-hop crypto nature of the ACP.

 o Added several references to GDNP as a candidate protocol.

 o Added a discussion on network split and merge. Although, this
 should probably go into the certificate management story longer
 term.

14.4. draft-behringer-anima-autonomic-control-plane-02

 Addresses (numerous) comments from Brian Carpenter. See mailing list
 for details. The most important changes are:

 o Introduced a new section "overview", to ease the understanding of
 the approach.

 o Merged the previous "problem statement" and "use case" sections
 into a mostly re-written "use cases" section, since they were
 overlapping.

 o Clarified the relationship with draft-ietf-anima-stable-
 connectivity

14.5. draft-behringer-anima-autonomic-control-plane-03

 o Took out requirement for IPv6 --> that's in the reference doc.

 o Added requirement section.

 o Changed focus: more focus on autonomic functions, not only virtual
 out-of-band. This goes a bit throughout the document, starting
 with a changed abstract and intro.

14.6. draft-ietf-anima-autonomic-control-plane-00

 No changes; re-submitted as WG document.

14.7. draft-ietf-anima-autonomic-control-plane-01

 o Added some paragraphs in addressing section on "why IPv6 only", to
 reflect the discussion on the list.

 o Moved the Data-Plane ACP out of the main document, into an
 appendix. The focus is now the virtually separated ACP, since it
 has significant advantages, and isn't much harder to do.

 o Changed the self-creation algorithm: Part of the initial steps go
 into the reference document. This document now assumes an
 adjacency table, and domain certificate. How those get onto the
 device is outside scope for this document.

 o Created a new section 6 "workarounds for non-autonomic nodes", and
 put the previous controller section (5.9) into this new section.
 Now, section 5 is "autonomic only", and section 6 explains what to
 do with non-autonomic stuff. Much cleaner now.

 o Added an appendix explaining the choice of RPL as a routing
 protocol.

 o Formalized the creation process a bit more. Now, we create a
 "candidate peer list" from the adjacency table, and form the ACP
 with those candidates. Also it explains now better that policy
 (Intent) can influence the peer selection. (section 4 and 5)

 o Introduce a section for the capability negotiation protocol
 (section 7). This needs to be worked out in more detail. This
 will likely be based on GRASP.

 o Introduce a new parameter: ACP tunnel type. And defines it in the
 IANA considerations section. Suggest GRE protected with IPSec
 transport mode as the default tunnel type.

 o Updated links, lots of small edits.

14.8. draft-ietf-anima-autonomic-control-plane-02

 o Added explicitly text for the ACP channel negotiation.

 o Merged draft-behringer-anima-autonomic-addressing-02 into this
 document, as suggested by WG chairs.

14.9. draft-ietf-anima-autonomic-control-plane-03

 o Changed Neighbor discovery protocol from GRASP to mDNS. Bootstrap
 protocol team decided to go with mDNS to discover bootstrap proxy,
 and ACP should be consistent with this. Reasons to go with mDNS
 in bootstrap were a) Bootstrap should be reuseable also outside of
 full anima solutions and introduce as few as possible new
 elements. mDNS was considered well-known and very-likely even pre-
 existing in low-end devices (IoT). b) Using GRASP both for the
 insecure neighbor discovery and secure ACP operatations raises the
 risk of introducing security issues through implementation issues/
 non-isolation between those two instances of GRASP.

 o Shortened the section on GRASP instances, because with mDNS being
 used for discovery, there is no insecure GRASP session any longer,
 simplifying the GRASP considerations.

 o Added certificate requirements for ANIMA in section 5.1.1,
 specifically how the ANIMA information is encoded in
 subjectAltName.

 o Deleted the appendix on "ACP without separation", as originally
 planned, and the paragraph in the main text referring to it.

 o Deleted one sub-addressing scheme, focusing on a single scheme
 now.

 o Included information on how ANIMA information must be encoded in
 the domain certificate in section "preconditions".

 o Editorial changes, updated draft references, etc.

14.10. draft-ietf-anima-autonomic-control-plane-04

 Changed discovery of ACP neighbor back from mDNS to GRASP after
 revisiting the L2 problem. Described problem in discovery section
 itself to justify. Added text to explain how ACP discovery relates
 to BRSKY (bootstrap) discovery and pointed to Michael Richardsons
 draft detailing it. Removed appendix section that contained the
 original explanations why GRASP would be useful (current text is
 meant to be better).

14.11. draft-ietf-anima-autonomic-control-plane-05

 o Section 5.3 (candidate ACP neighbor selection): Add that Intent
 can override only AFTER an initial default ACP establishment.

 o Section 6.10.1 (addressing): State that addresses in the ACP are
 permanent, and do not support temporary addresses as defined in
 RFC4941.

 o Modified Section 6.3 to point to the GRASP objective defined in
 draft-carpenter-anima-ani-objectives. (and added that reference)

 o Section 6.10.2: changed from MD5 for calculating the first 40-bits
 to SHA256; reason is MD5 should not be used any more.

 o Added address sub-scheme to the IANA section.

 o Made the routing section more prescriptive.

 o Clarified in Section 8.1.1 the ACP Connect port, and defined that
 term "ACP Connect".

 o Section 8.2: Added some thoughts (from mcr) on how traversing a L3
 cloud could be automated.

 o Added a CRL check in Section 6.7.

 o Added a note on the possibility of source-address spoofing into
 the security considerations section.

 o Other editoral changes, including those proposed by Michael
 Richardson on 30 Nov 2016 (see ANIMA list).

14.12. draft-ietf-anima-autonomic-control-plane-06

 o Added proposed RPL profile.

 o detailed DTLS profile - DTLS with any additional negotiation/
 signaling channel.

 o Fixed up text for ACP/GRE encap. Removed text claiming its
 incompatible with non-GRE IPsec and detailed it.

 o Added text to suggest admin down interfaces should still run ACP.

14.13. draft-ietf-anima-autonomic-control-plane-07

 o Changed author association.

 o Improved ACP connect setion (after confusion about term came up in
 the stable connectivity draft review). Added picture, defined
 complete terminology.

 o Moved ACP channel negotiation from normative section to appendix
 because it can in the timeline of this document not be fully
 specified to be implementable. Aka: work for future document.
 That work would also need to include analysing IKEv2 and describin
 the difference of a proposed GRASP/TLS solution to it.

 o Removed IANA request to allocate registry for GRASP/TLS. This
 would come with future draft (see above).

 o Gave the name "ACP domain information field" to the field in the
 certificate carrying the ACP address and domain name.

 o Changed the rules for mutual authentication of certificates to
 rely on the domain in the ACP information field of the certificate
 instead of the OU in the certificate. Also renewed the text
 pointing out that the ACP information field in the certificate is
 meant to be in a form that it does not disturb other uses of the
 certificate. As long as the ACP expected to rely on a common OU
 across all certificates in a domain, this was not really true:
 Other uses of the certificates might require different OUs for
 different areas/type of devices. With the rules in this draft
 version, the ACP authentication does not rely on any other fields
 in the certificate.

 o Added an extension field to the ACP information field so that in
 the future additional fields like a subdomain could be inserted.
 An example using such a subdomain field was added to the pre-
 existing text suggesting sub-domains. This approach is necessary
 so that there can be a single (main) domain in the ACP information
 field, because that is used for mutual authentication of the
 certificate. Also clarified that only the register(s) SHOULD/MUST
 use that the ACP address was generated from the domain name - so
 that we can easier extend change this in extensions.

 o Took the text for the GRASP discovery of ACP neighbors from Brians
 grasp-ani-objectives draft. Alas, that draft was behind the
 latest GRASP draft, so i had to overhaul. The mayor change is to
 describe in the ACP draft the whole format of the M_FLOOD message
 (and not only the actual objective). This should make it a lot
 easier to read (without having to go back and forth to the GRASP

 RFC/draft). It was also necessary because the locator in the
 M_FLOOD messages has an important role and its not coded inside
 the objective. The specification of how to format the M_FLOOD
 message shuold now be complete, the text may be some duplicate
 with the DULL specificateion in GRASP, but no contradiction.

 o One of the main outcomes of reworking the GRASP section was the
 notion that GRASP announces both the candidate peers IPv6 link
 local address but also the support ACP security protocol including
 the port it is running on. In the past we shied away from using
 this information because it is not secured, but i think the
 additional attack vectors possible by using this information are
 negligible: If an attacker on an L2 subnet can fake another
 devices GRASP message then it can already provide a similar amount
 of attack by purely faking the link-local address.

 o Removed the section on discovery and BRSKI. This can be revived
 in the BRSKI document, but it seems mood given how we did remove
 mDNS from the latest BRSKI document (aka: this section discussed
 discrepancies between GRASP and mDNS discovery which should not
 exist anymore with latest BRSKI.

 o Tried to resolve the EDNOTE about CRL vs. OCSP by pointing out we
 do not specify which one is to be used but that the ACP should be
 used to reach the URL included in the certificate to get to the
 CRL storage or OCSP server.

 o Changed ACP via IPsec to ACP via IKEv2 and restructured the
 sections to make IPsec native and IPsec via GRE subsections.

 o No need for any assigned DTLS port if ACP is run across DTLS
 because it is signaled via GRASP.

14.14. draft-ietf-anima-autonomic-control-plane-08

 Modified mentioning of BRSKI to make it consistent with current
 (07/2017) target for BRSKI: MASA and IDevID are mandatory. Devices
 with only insecure UDI would need a security reduced variant of
 BRSKI. Also added mentioning of Netconf Zero-Touch. Made BRSKI non-
 normative for ACP because wrt. ACP it is just one option how the
 domain certificate can be provisioned. Instead, BRSKI is mandatory
 when a device implements ANI which is ACP+BRSKI.

 Enhanced text for ACP across tunnels to describe two options: one
 across configured tunnels (GRE, IPinIP etc) a more efficient one via
 directed DULL.

 Moved decription of BRSKI to appendix to emphasize that BRSKI is not
 a (normative) dependency of GRASP, enhanced text to indicate other
 options how Domain Certificates can be provisioned.

 Added terminology section.

 Separated references into normative and non-normative.

 Enhanced section about ACP via "tunnels". Defined an option to run
 ACP secure channel without an outer tunnel, discussed PMTU, benefits
 of tunneling, potential of using this with BRSKI, made ACP via GREP a
 SHOULD requirement.

 Moved appendix sections up before IANA section because there where
 concerns about appendices to be too far on the bottom to be read.
 Added (Informative) / (Normative) to section titles to clarify which
 sections are informative and which are normative

 Moved explanation of ACP with L2 from precondition to separate
 section before workarounds, made it instructive enough to explain how
 to implement ACP on L2 ports for L3/L2 switches and made this part of
 normative requirement (L2/L3 switches SHOULD support this).

 Rewrote section "GRASP in the ACP" to define GRASP in ACP as
 mandatory (and why), and define the ACP as security and transport
 substrate to GRASP in ACP. And how it works.

 Enhanced "self-protection" properties section: protect legacy
 management protocols. Security in ACP is for protection from outside
 and those legacy protocols. Otherwise need end-to-end encryption
 also inside ACP, e.g., with domain certificate.

 Enhanced initial domain certificate section to include requirements
 for maintenance (renewal/revocation) of certificates. Added
 explanation to BRSKI informative section how to handle very short
 lived certificates (renewal via BRSKI with expired cert).

 Modified the encoding of the ACP address to better fit RFC822 simple
 local-parts (":" as required by RFC5952 are not permitted in simple
 dot-atoms according to RFC5322. Removed reference to RFC5952 as its
 now not needed anymore.

 Introduced a sub-domain field in the ACP information in the
 certificate to allow defining such subdomains with depending on
 future Intent definitions. It also makes it clear what the "main
 domain" is. Scheme is called "routing subdomain" to have a unique
 name.

 Added V8 (now called Vlong) addressing sub-scheme according to
 suggestion from mcr in his mail from 30 Nov 2016
 (https://mailarchive.ietf.org/arch/msg/anima/
 nZpEphrTqDCBdzsKMpaIn2gsIzI). Also modified the explanation of the
 single V bit in the first sub-scheme now renamed to Zone sub-scheme
 to distinguish it.

14.15. draft-ietf-anima-autonomic-control-plane-09

 Added reference to RFC4191 and explained how it should be used on ACP
 edge routers to allow auto configuration of routing by NMS hosts.
 This came after review of stable connectivity draft where ACP connect
 is being referred to.

 V8 addressing Sub-Scheme was modified to allow not only /8 device-
 local address space but also /16. This was in response to the
 possible need to have maybe as much as 2^12 local addresses for
 future encaps in BRSKI like IPinIP. It also would allow fully
 autonomic address assignment for ACP connect interfaces from this
 local address space (on an ACP edge device), subject to approval of
 the implied update to rfc4291/rfc4193 (IID length). Changed name to
 Vlong addressing sub-scheme.

 Added text in response to Brian Carpenters review of draft-ietf-
 anima-stable-connectivity-04.

 o The stable connectivity draft was vaguely describing ACP connect
 behavior that is better standardized in this ACP draft.

 o Added new ACP "Manual" addressing sub-scheme with /64 subnets for
 use with ACP connect interfaces. Being covered by the ACP ULA
 prefix, these subnets do not require additional routing entries
 for NMS hosts. They also are fully 64-bit IID length compliant
 and therefore not subject to 4191bis considerations. And they
 avoid that operators manually assign prefixes from the ACP ULA
 prefixes that might later be assigned autonomically.

 o ACP connect auto-configuration: Defined that ACP edge devices, NMS
 hosts should use RFC4191 to automatically learn ACP prefixes.
 This is especially necessary when the ACP uses multiple ULA
 prefixes (via e.g., the rsub domain certificate option), or if ACP
 connect sub-interfaces use manually configured prefixes NOT
 covered by the ACP ULA prefixes.

 o Explained how rfc6724 is (only) sufficient when the NMS host has a
 separate ACP connect and Data-Plane interface. But not when there
 is a single interface.

 o Added a separate subsection to talk about "software" instead of
 "NMS hosts" connecting to the ACP via the "ACP connect" method.
 The reason is to point out that the "ACP connect" method is not
 only a workaround (for NMS hosts), but an actual desirable long
 term architectural component to modularly build software (e.g.,
 ASA or OAM for VNF) into ACP devices.

 o Added a section to define how to run ACP connect across the same
 interface as the Data-Plane. This turns out to be quite
 challenging because we only want to rely on existing standards for
 the network stack in the NMS host/software and only define what
 features the ACP edge device needs.

 o Added section about use of GRASP over ACP connect.

 o Added text to indicate packet processing/filtering for security:
 filter incorrect packets arriving on ACP connect interfaces,
 diagnose on RPL root packets to incorrect destination address (not
 in ACP connect section, but because of it).

 o Reaffirm security goal of ACP: Do not permit non-ACP routers into
 ACP routing domain.

 Made this ACP document be an update to RFC4291 and RFC4193. At the
 core, some of the ACP addressing sub-schemes do effectively not use
 64-bit IIDs as required by RFC4191 and debated in rfc4191bis. During
 6man in Prague, it was suggested that all documents that do not do
 this should be classified as such updates. Add a rather long section
 that summarizes the relevant parts of ACP addressing and usage and.
 Aka: This section is meant to be the primary review section for
 readers interested in these changes (e.g., 6man WG.).

 Added changes from Michael Richardsons review https://github.com/
 anima-wg/autonomic-control-plane/pull/3/commits, textual and:

 o ACP discovery inside ACP is bad *doh*!.

 o Better CA trust and revocation sentences.

 o More details about RPL behavior in ACP.

 o black hole route to avoid loops in RPL.

 Added requirement to terminate ACP channels upon cert expiry/
 revocation.

 Added fixes from 08-mcr-review-reply.txt (on github):

 o AN Domain Names are FQDNs.

 o Fixed bit length of schemes, numerical writing of bits (00b/01b).

 o Lets use US american english.

14.16. draft-ietf-anima-autonomic-control-plane-10

 Used the term routing subdomain more consistently where previously
 only subdomain was used. Clarified use of routing subdomain in
 creation of ULA "global ID" addressing prefix.

 6.7.1.* Changed native IPsec encapsulation to tunnel mode
 (necessary), explained why. Added notion that ESP is used, added
 explanations why tunnel/transport mode in native vs. GRE cases.

 6.10.3/6.10.5 Added term "ACP address range/set" to be able to better
 explain how the address in the ACP certificate is actually the base
 address (lowest address) of a range/set that is available to the
 device.

 6.10.4 Added note that manual address sub-scheme addresses must not
 be used within domain certificates (only for explicit configuration).

 6.12.5 Refined explanation of how ACP virtual interfaces work (p2p
 and multipoint). Did seek for pre-existing RFCs that explain how to
 build a multi-access interface on top of a full mesh of p2p
 connections (6man WG, anima WG mailing lists), but could not find any
 prior work that had a succinct explanation. So wrote up an
 explanation here. Added hopefully all necessary and sufficient
 details how to map ACP unicast packets to ACP secure channel, how to
 deal with ND packet details. Added verbiage for ACP not to assign
 the virtual interface link-local address from the underlying
 interface. Added note that GRAP link-local messages are treated
 specially but logically the same. Added paragraph about NBMA
 interfaces.

 remaining changes from Brian Carpenters review. See Github file
 draft-ietf-anima-autonomic-control-plane/08-carpenter-review-reply.tx
 for more details:

 Added multiple new RFC references for terms/technologies used.

 Fixed verbage in several places.

 2. (terminology) Added 802.1AR as reference.

 2. Fixed up definition of ULA.

 6.1.1 Changed definition of ACP information in cert into ABNF format.
 Added warning about maximum size of ACP address field due to domain-
 name limitations.

 6.2 Mentioned API requirement between ACP and clients leveraging
 adjacency table.

 6.3 Fixed TTL in GRASP example: msec, not hop-count!.

 6.8.2 MAYOR: expanded security/transport substrate text:

 Introduced term ACP GRASP virtual interface to explain how GRASP
 link-local multicast messages are encapsulated and replicated to
 neighbors. Explain how ACP knows when to use TLS vs. TCP (TCP only
 for link-local address (sockets). Introduced "ladder" picture to
 visualize stack.

 6.8.2.1 Expanded discussion/explanation of security model. TLS for
 GRASP unicast connections across ACP is double encryption (plus
 underlying ACP secure channel), but highly necessary to avoid very
 simple man-in-the-middle attacks by compromised ACP members on-path.
 Ultimately, this is done to ensure that any apps using GRASP can get
 full end-to-end secrecy for information sent across GRASP. But for
 publically known ASA services, even this will not provide 100%
 security (this is discussed). Also why double encryption is the
 better/easier solution than trying to optimize this.

 6.10.1 Added discussion about pseudo-random addressing, scanning-
 attacks (not an issue for ACP).

 6.12.2 New performance requirements section added.

 6.10.1 Added notion to first experiment with existing addressing
 schemes before defining new ones - we should be flexible enough.

 6.3/7.2 clarified the interactions between MLD and DULL GRASP and
 specified what needs to be done (e.g., in 2 switches doing ACP per L2
 port).

 12. Added explanations and cross-references to various security
 aspects of ACP discussed elsewhere in the document.

 13. Added IANA requirements.

 Added RFC2119 boilerplate.

14.17. draft-ietf-anima-autonomic-control-plane-11

 Same text as -10 Unfortunately when uploading -10 .xml/.txt to
 datatracker, a wrong version of .txt got uploaded, only the .xml was
 correct. This impacts the -10 html version on datatracker and the
 PDF versions as well. Because rfcdiff also compares the .txt
 version, this -11 version was created so that one can compare changes
 from -09 and changes to the next version (-12).

14.18. draft-ietf-anima-autonomic-control-plane-12

 Sheng Jiangs extensive review. Thanks! See Github file draft-ietf-
 anima-autonomic-control-plane/09-sheng-review-reply.txt for more
 details. Many of the larger changes listed below where inspired by
 the review.

 Removed the claim that the document is updating RFC4291,RFC4193 and
 the section detailing it. Done on suggestion of Michael Richardson -
 just try to describe use of addressing in a way that would not
 suggest a need claim update to architecture.

 Terminology cleanup:

 o Replaced "device" with "node" in text. Kept "device" only when
 referring to "physical node". Added definitions for those words.
 Includes changes of derived terms, especially in addressing:
 "Node-ID" and "Node-Number" in the addressing details.

 o Replaced term "autonomic FOOBAR" with "acp FOOBAR" as wherever
 appropriate: "autonomic" would imply that the node would need to
 support more than the ACP, but that is not correct in most of the
 cases. Wanted to make sure that implementers know they only need
 to support/implement ACP - unless stated otherwise. Includes
 "AN->ACP node", "AN->ACP adjacency table" and so on.

 1 Added explanation in the introduction about relationship between
 ACP, BRSKI, ANI and Autonomic Networks.

 6.1.1 Improved terminology and features of the certificate
 information field. Now called domain information field instead of
 ACP information field. The acp-address field in the domain
 information field is now optional, enabling easier introduction of
 various future options.

 6.1.2 Moved ACP domain membership check from section 6.6 to (ACP
 secure channels setup) here because it is not only used for ACP
 secure channel setup.

 6.1.3 Fix text about certificate renewal after discussion with Max
 Pritikin/Michael Richardson/Brian Carpenter:

 o Version 10 erroneously assumed that the certificate itself could
 store a URL for renewal, but that is only possible for CRL URLs.
 Text now only refers to "remembered EST server" without implying
 that this is stored in the certificate.

 o Objective for RFC7030/EST domain certificate renewal was changed
 to "SRV.est" See also IANA section for explanation.

 o Removed detail of distance based service selection. This can be
 better done in future work because it would require a lot more
 detail for a good DNS-SD compatible approach.

 o Removed detail about trying to create more security by using ACP
 address from certificate of peer. After rethinking, this does not
 seem to buy additional security.

 6.10 Added reference to 6.12.5 in initial use of "loopback interface"
 in section 6.10 in result of email discussion michaelR/michaelB.

 10.2 Introduced informational section (diagnostics) because of
 operational experience - ACP/ANI undeployable without at least
 diagnostics like this.

 10.3 Introduced informational section (enabling/disabling) ACP.
 Important to discuss this for security reasons (e.g., why to never
 auto-enable ANI on brownfield devices), for implementers and to
 answer ongoing questions during WG meetings about how to deal with
 shutdown interface.

 10.8 Added informational section discussing possible future
 variations of the ACP for potential adopters that cannot directly use
 the complete solution described in this document unmodified.

14.19. draft-ietf-anima-autonomic-control-plane-13

 Swap author list (with permission).

 6.1.1. Eliminate blank lines in definition by making it a picture
 (reformatting only).

 6.10.3.1 New paragraph: Explained how nodes using Zone-ID != 0 need
 to use Zone-ID != 0 in GRASP so that we can avoid routing/forwarding
 of Zone-ID = 0 prefixes.

 Rest of feedback from review of -12, see
 https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/master/draft-ietf-anima-autonomic-control-plane/12-feedback-
 reply.txt

 Review from Brian Carpenter:

 various: Autonomous -> autonomic(ally) in all remaining occurrences.

 various: changed "manual (configured)" to "explicitly (configured)"
 to not exclude the option of (SDN controller) automatic configuration
 (no humans involved).

 1. Fixed reference to section 9.

 2. Added definition of loopback interface == internal interface.
 After discus on WG mailing lists, including 6man.

 6.1.2 Defined CDP/OCSP and pointed to RFC5280 for them.

 6.1.3 Removed "EST-TLS", no objective value needed or beneficial,
 added explanation paragraph why.

 6.2 Added to adjacency table the interface that a neighbor is
 discovered on.

 6.3 Simplified CDDL syntax: Only one method per AN_ACP objective
 (because of locators). Example with two objectives in GRASP message.

 6.8.1 Added note about link-local GRASP multicast message to avoid
 confusion.

 8.1.4 Added RFC8028 as recommended on hosts to better support VRF-
 select with ACP.

 8.2.1 Rewrote and Simplified CDDL for configured remote peer and
 explanations. Removed pattern option for remote peer. Not important
 enough to be mandated.

 Review thread started by William Atwood:

 2. Refined definition of VRF (vs. MPLS/VPN, LISP, VRF-LITE).

 2. Refined definition of ACP (ACP includes ACP GRASP instance).

 2. Added explanation for "zones" to terminology section and into
 Zone Addressing Sub Scheme section, relating it to RFC4007 zones
 (from Brian Carpenter).

 4. Fixed text for ACP4 requirement (Clients of the ACP must not be
 tied to specific protocol.).

 5. Fixed step 4. with proposed text.

 6.1.1 Included suggested explanation for rsub semantics.

 6.1.3 must->MUST for at least one EST server in ACP network to
 autonomically renew certs.

 6.7.2 normative: AND MUST NOT (permit weaker crypto options.

 6.7.1.1 also included text denying weaker IPsec profile options.

 6.8.2 Fixed description how to build ACP GRASP virtual interfaces.
 Added text that ACP continues to exist in absence of ACP neighbors.

 various: Make sure all "zone" words are used consistently.

 6.10.2/various: fixed 40-bit RFC4193 ULA prefix in all examples to
 89b714f3db (thanks MichaelR).

 6.10.1 Removed comment about assigned ULA addressing. Decision not
 to use it now ancient history of WG decision making process, not
 worth nothing anymore in the RFC.

 Review from Yongkang Zhang:

 6.10.5 Fixed length of Node-Numbers in ACP Vlong Addressing Sub-
 Scheme.

14.20. draft-ietf-anima-autonomic-control-plane-14

 Disclaimer: All new text introduced by this revision provides only
 additional explanations/ details based on received reviews and
 analysis by the authors. No changes to behavior already specified in
 prior revisions.

 Joel Halpern, review part 3:

 Define/explain "ACP registrar" in reply to Joel Halpern review part
 3, resolving primarily 2 documentation issues::

 1. Unclear how much ACP depends on BRSKI. ACP document was
 referring unqualified to registrars and Registrar-ID in the
 addressing section without explaining what a registrar is,
 leading to the assumption it must be a BRSKI Registrar.

 2. Unclear how the ACP addresses in ACP domain certificates are
 assigned because the BRSKI document does not defines this, but
 refers to this ACP document.

 Wrt. 1: ACP does NOT depend on BRSKI registrars, instead ANY
 appropriate automated or manual mechanism can be used to enroll ACP
 nodes with ACP domain certificates. This revision calls defines such
 mechanisms the "ACP registrar" and defines requirements. this is
 non-normative, because it does not define specific mechanisms that
 need to be support. In ANI devices, ACP Registrars are BRSKI
 Registrars. In non-ANI ACP networks, the registrar may simply be a
 person using CLI/web-interfaces to provision domain certificates and
 set the ACP address correctly in the ACP domain certificate.

 Wrt. 2.: The BRSKI document does rightfully not define how the ACP
 address assignment and creation of the ACP domain information field
 has to work because this is independent of BRSKI and needs to follow
 the same rules whatever protocol/mechanisms are used to implement an
 ACP Registrar. Another set of protocols that could be used instead
 of BRSKI is Netconf/Netconf-Call-Home, but such an alternative ACP
 Registrar solution would need to be specified in its own document.

 Additional text/sections had to be added to detail important
 conditions so that automatic certificate maintenance for ACP nodes
 (with BRSKI or other mechanisms) can be done in a way that as good as
 possible maintains ACP address information of ACP nodes across the
 nodes lifetime because that ACP address is intended as an identifier
 of the ACP node.

 Summary of sections added:

 o 6.1.3.5/6.1.3.6 (normative): re-enrollment of ACP nodes after
 certificate expiry/failure in a way that allows to maintain as
 much as possible ACP address information.

 o 6.10.7 (normative): defines "ACP Registrar" including requirements
 and how it can perform ACP address assignment.

 o 10.3 (informative): details / examples about registrars to help
 implementers and operators understand easier how they operate, and
 provide suggestion of models that a likely very useful (sub-CA
 and/or centralized policy management).

 o 10.4 (informative): Explains the need for the multiple address
 sub-spaces defined in response to discuss with Joel.

 Other changes:

 Updated references (RFC8366, RFC8368).

 Introduced sub-section headings for 6.1.3 (certificate maintenance)
 because section became too long with newly added sub-sections. Also
 some small text fixups/remove of duplicate text.

 Gen-ART review, Elwyn Davies:

 [RFC Editor: how can i raise the issue of problematic cross
 references of terms in the terminology section - rendering is
 problematic.].

 4. added explanation for ACP4 (finally).

 6.1.1 Simplified text in bullet list explaining rfc822 encoding.

 6.1.3 refined second paragraph defining remembering of previous EST
 server and explaining how to do this with BRSKI.

 9.1 Added paragraph outlining the benefit of the sub-CA Registrar
 option for supporting partitioned networks.

 Roughly 100 more nits/minor fixes throughout the document. See:
 https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/master/draft-ietf-anima-autonomic-control-plane/13-elwynd-
 reply.txt

 Joel Halpern, review part 2:

 6.1.1: added note about "+ +" format in address field when acp-
 address and rsub are empty.

 6.5.10 - clarified text about V bit in Vlong addressing scheme.

 6.10.3/6.10.4 - moved the Z bit field up front (directly after base
 scheme) and indicated more explicitly Z is part of selecting of the
 sub-addressing scheme.

 Refined text about reaching CRL Distribution Point, explain why
 address as indicator to use ACP.

 Note from Brian Carpenter: RFC Editor note for section reference into
 GRASP.

 IOT directorate review from Pascal Thubert:

 Various Nits/typos.

 TBD: Punted wish for mentioning RFC reference titles to RFC editor
 for now.

 1. Added section 1.1 - applicability, discussing protocol choices
 re. applicability to constrained devices (or not). Added notion of
 TCP/TLS via CoAP/DTLS to section 10.4 in support of this.

 2. Added in-band / out-of-band into terminology.

 5. Referenced section 8.2 for remote ACP channel configuration.

 6.3 made M_FLOOD periods RECOMMENDED (less guesswork)

 6.7.x Clarified conditional nature of MUST for the profile details of
 IPsec parameters (aka: only 6.7.3 defines actual MUST for nodes,
 prior notions only define the requirements for IPsec profiles IF
 IPsec is supported.

 6.8.1 Moved discussion about IP multicast, IGP, RPL for GRASP into a
 new subsection in the informative part (section 10) to tighten up
 text in normative part.

 6.10.1 added another reference to stable-connectivity for interop
 with IPv4 management.

 6.10.1 removed mentioning of ULA-Random, term was used in email
 discus of ULA with L=1, but term actually not defined in rfc4193, so
 mentioning it is just confusing/redundant. Also added note about the
 random hash being defined in this document, not using SHA1 from
 rfc4193.

 6.11.1.1 added suggested text about mechanisms to further reduce
 opportunities for loop during reconvergence (active signaling options
 from RFC6550).

 6.11.1.3 made mode 2 MUST and mode 2 MAY (RPL MOP - mode of
 operations). Removes ambiguity.

 6.12.5 Added recommendation for RFC4429 (optimistic DAD).

 Nits from Benjamin Kaduk: dTLS -> DTLS:

 Review from Joel Halpern:

 1. swapped order of "purposes" for ACP to match order in section 3.

 1. Added notion about manageability of ACP gong beyond RFC7575
 (before discussion of stable connectivity).

 2. Changed definition of Intent to be same as reference model
 (policy language instead of API).

 6.1.1 changed BNF specification so that a local-part without acp-
 address (for future extensions) would not be rfcSELF.+rsub but
 simpler rfcSELF+rsub. Added explanation why rsub is in local-part.

 Tried to eliminate unnecessary references to VRF to minimize
 assumption how system is designed.

 6.1.3 Explained how to make CDP reachable via ACP.

 6.7.2 Made it clearer that constrained devices MUST support DTLS if
 they cannot support IPsec.

 6.8.2.1 clarified first paragraph (TCP retransmissions lightweight).

 6.11.1 fixed up RPL profile text - to remove "VRF". Text was also
 buggy. mentioned control plane, but it's a forwarding/silicon issue
 to have these header.

 6.12.5 Clarified how link-local ACP channel address can be derived,
 and how not.

 8.2.1 Fixed up text to distinguish between configuration and model
 describing parameters of the configuration (spec only provides
 parameter model).

 Various Nits.

14.21. draft-ietf-anima-autonomic-control-plane-15

 Only reshuffling and formatting changes, but wanted to allow
 reviewers later to easily compare -13 with -14, and these changes in
 -15 mess that up too much.

 increased TOC depth to 4.

 Separated and reordered section 10 into an operational and a
 background and futures section. The background and futures could
 also become appendices if the layout of appendices in RFC format
 wasn't so horrible that you really only want to avoid using them (all
 the way after a lot of text like references that stop most readers
 from proceeding any further).

14.22. draft-ietf-anima-autonomic-control-plane-16

 Mirja Kuehlewind:

 Tightened requirements for ACP related GRASP objective timers.

 Better text to introduce/explains baseline and constrained ACP
 profiles.

 IANA guideline: MUST only accept extensible last allocation for
 address sub-scheme.

 Moved section 11 into appendix.

 Warren Kumari:

 Removed "global routing table", replaced with "Data-Plane routing
 (and forwarding) tables.

 added text to indicate how routing protocols do like to have data-
 plane dependencies.

 Changed power consumption section re. admin-down state. Power needed
 to bring up such interfaces make t inappropriate to probe. Need to
 think more about best suggests -> beyond scope.

 Replaced "console" with out-of-band... (console/management ethernet).

 Various nits.

 Joel Halpern:

 Fixed up domain information field ABNF to eliminate confusion that
 rsub is not an FQDN but only a prefix to routing-subdomain.

 Corrected certcheck to separate out cert verification into lifetime
 validity and proof of ownership of private key.

 Fixed pagination for "ACP as security and transport substrate for
 GRASP" picture.

14.23. draft-ietf-anima-autonomic-control-plane-17

 Review Alissa Cooper:

 Main discuss point fixed by untangling two specific node type cases:

 NOC nodes have ACP domain cert without acp-address field. Are ACP
 domain members, but cannot build ACP secure channels (just end-to-end
 or nay other authentications.

 ACP nodes may have other methods to assign ACP address than getting
 it through the cert. This is indicated through new value 0 for acp-
 address in certificate.

 Accordingly modified texts in ABNF/explanation and Cert-Check
 section.

 Other:

 Better separation of normative text and considerations for "future"
 work:

 - Marked missing chapters as Informative. Reworded requirements
 section to indicate its informative nature, changed requirements to
 MUST/_SHOULD_ to indicate these are not RFC2119 requirements but
 that this requirements section is really just in place of a separate
 solutions requirements document (that ANIMA was not allowed to
 produce).

 - removed ca. 20 instances of "futures" in normative part of
 document.

 - moved important instances of "futures" into new section A.10 (last
 section of appendix). These serve as reminder of work discussed
 during WG but not able to finish specifying it.

 Eliminated perception that "rsub" (routing subdomain) is only
 beneficial with future work. Example in A.7.

 Added RFC-editor note re formatting of references to terms defined in
 terminology section.

 Using now correct RFC 8174 boilerplate.

 Clarified semantic and use of manual ACP sub-scheme. Not used in
 certificates, only assigned via traditional methods. Use for ACP-
 connect subnets or the like.

 Corrected text about Data-Plane dependencies of ACP. Appropriate
 implementations can be fully data-plane independent (without more
 spec work) if not sharing link-local address with Data-Plane. 6.12.2
 text updated to discuss those (MAC address), A.10.2 discusses options
 that would require new standards work.

 Moved all text about Intent into A.8 to clearly mark it as futures.

 Changed suggestion of future insecure ACP option to future "end-to-
 end-security-only" option.

 Various textual fixes.

 Gen-ART review by Elwyn Davies:

 Some fixes also mentioned by Alissa.

 Added reference for OT.

 Fixed notion that secure channel is not only a security association.

 >20 good textual fixes. Thanks!

 Other:

 Added picture requested by Pascal Thubert about Dual-NOC (A.10.4).

 Moved RFC-editor request for better first RFC reference closer to the
 top of the document.

 Fixed typo /126 -> 127 for prefix length with zone address scheme.

 Overlooked early SecDir review from frank.xialiang@huawei.com:

 most issues fixed through other review in -16. Added reference to
 self-protection section 9.2 into security considerations section.

14.24. draft-ietf-anima-autonomic-control-plane-18

 Too many word/grammar mistakes in -17.

14.25. draft-ietf-anima-autonomic-control-plane-19

 Review Eric Rescola:

 6.1.2 - clarified that we do certificate path validation against
 potentially multiple trust anchors.

 6.1.3 - Added more comprehensive explanation of Trust Points via new
 section 6.1.3.

 6.5 - added figure with sequential steps of ACP channel establishment
 and Alice and Bob finding their role in the setup.

 6.7.x - detailled crypto profiles: AES-256-GCM, ECDHE.

 6.7.2 - Referring to RFC7525 as the required crypto profile for DTLS
 (taking text from RFC8310 as previously discussed with Eric).

 6.7.3 - Added explanation that ACP needs no single MTI secure channel
 protocol with example.

 6.10.2 - Added requirement that rsub must be choosen so that they
 don't create SHA256 collisions. Added explanation how the same could
 be done for different ACP networks with same trust anchors but that
 this outside the scope of this specification.

 6.7.10 - Explains security expectations against ACP registrars: Must
 be trusted and then given credentials to act as PKI RA to help
 pledges to enroll with an ACP certificate.

 9.1 - Added explanations about merging ACP domains requiring both
 domains to trust union of Trust Anchors and need to avod ULA hash
 collisions.

 11 - Added that ACP registrars are critical infrastructure requiring
 hardening like CA, mentioning attack impact examples.

 11 - Mentioning that ACP requires initial setup of CA and registrar.

 11 - long rewrite/extension of group security model and its
 implication shared with review from Ben (below).

 Many nits fixed.

 Review Benjamin Kaduk:

 Fixed various nits.

 Changed style of MUST/SHOULD in Requirements section to all lower
 case to avoid any RFC2119 confusion.

 1. clarified support for constrained devices/DTLS: Opportunistic.

 1. Clarified ACPs use of two variants of GRASP DULL for neighbor
 discovery and ACP grasp for service discovery/clients.

 3.2 - amended text explaining what additional security ACP provides
 for bootstrap protocols.

 6.1.1 - Added note about ASN.1 encoding in the justification for use
 of rfc822address.

 6.1.2 - Added details how to handle ACP connection when node via
 which OCSP/CRL-server is reached fails certificate verification.

 12. Rewrote explanation why objective names requested for ACP use
 SRV.name.

 10.4 - added summary section about ACP and configuration.

 Review Eric Rescorla:

 6.1.2 - changed peer certificate verification to be certificate path
 verification, added lowercase normalizaion comparison to domain name
 check.

 6.1.2 - explained how domain membership check is authentication and
 authorization.

 6.1.4.1 - Fixed "objective value" to "objective name".

 6.1.4.3 - check IPv6 address of CDP against CDP ACP certificate IPv6
 address only if URL uses IPv6 address.

 6.10.1 - added more justification why there is no need for privacy
 protection of ACP addresses.

 6.11.1.1 - thorough fixup of sentences/structure of this RPL overview
 section to make it more logical and easier to digest. Also added a
 paragraph about the second key benefit of this profile (scalability).

 6.11.1.9 - Added explanation about not using RPL security from
 Benjamin.

 8.1.1 - Fixed up text for address assignment of ACP connect
 interfaces. Only recommending manual addressing scheme.

 9.1 - changed self-healing benefit text to describe immediate channel
 reset for short-lived certificates and describing how the same with
 CRL/OCSP is optional.

 11. - added note about immediate termination of secure channels after
 certificate expiry as this is uncommon today.

 11. - rewrote section of security model, attacks and mitigation of
 compromised ACP members.

 A.24 - clarified the process in which expired certificates are used
 for certificate renewal to avvoid higher overhead of -re-enrolment.
 A.4 - removed mentioning of RPL trickle because not used by ACP RPL
 profile.

 A.10.8 - added section discussing how to minimize risk of compromised
 nodes, recovering them or kicking them out.

14.26. Open Issues in -19

 Need to find good reference for TLS profile for ACP GRASP TLS
 connections.

 TBD: Add DTLS choice to GRASP secure channel.

15. References

15.1. Normative References

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-07 (work in progress), February 2019.

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC3810]
 Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC4106]
 Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <https://www.rfc-editor.org/info/rfc4106>.

 [RFC4191]
 Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4193]
 Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC4291]
 Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4301]
 Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4861]
 Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862]
 Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6550]
 Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC6552]
 Thubert, P., Ed., "Objective Function Zero for the Routing
 Protocol for Low-Power and Lossy Networks (RPL)",
 RFC 6552, DOI 10.17487/RFC6552, March 2012,
 <https://www.rfc-editor.org/info/rfc6552>.

 [RFC6553]
 Hui, J. and JP. Vasseur, "The Routing Protocol for Low-
 Power and Lossy Networks (RPL) Option for Carrying RPL
 Information in Data-Plane Datagrams", RFC 6553,
 DOI 10.17487/RFC6553, March 2012,
 <https://www.rfc-editor.org/info/rfc6553>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7296]
 Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7676]
 Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
 for Generic Routing Encapsulation (GRE)", RFC 7676,
 DOI 10.17487/RFC7676, October 2015,
 <https://www.rfc-editor.org/info/rfc7676>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [AR8021]
 Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [I-D.eckert-anima-noc-autoconfig]

 Eckert, T., "Autoconfiguration of NOC services in ACP
 networks via GRASP", draft-eckert-anima-noc-autoconfig-00
 (work in progress), July 2018.

 [I-D.ietf-acme-star]

 Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
 Fossati, "Support for Short-Term, Automatically-Renewed
 (STAR) Certificates in Automated Certificate Management
 Environment (ACME)", draft-ietf-acme-star-05 (work in
 progress), March 2019.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-18 (work in progress), January 2019.

 [I-D.ietf-anima-prefix-management]

 Jiang, S., Du, Z., Carpenter, B., and Q. Sun, "Autonomic
 IPv6 Edge Prefix Management in Large-scale Networks",
 draft-ietf-anima-prefix-management-07 (work in progress),
 December 2017.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-netconf-zerotouch]

 Watsen, K., Abrahamsson, M., and I. Farrer, "Secure Zero
 Touch Provisioning (SZTP)", draft-ietf-netconf-
 zerotouch-29 (work in progress), January 2019.

 [I-D.ietf-roll-applicability-template]

 Richardson, M., "ROLL Applicability Statement Template",
 draft-ietf-roll-applicability-template-09 (work in
 progress), May 2016.

 [I-D.ietf-roll-useofrplinfo]

 Robles, I., Richardson, M., and P. Thubert, "Using RPL
 Option Type, Routing Header for Source Routes and IPv6-in-
 IPv6 encapsulation in the RPL Data Plane", draft-ietf-
 roll-useofrplinfo-24 (work in progress), January 2019.

 [I-D.ietf-tls-dtls13]

 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-30 (work in progress),
 November 2018.

 [IEEE-1588-2008]

 IEEE, "IEEE Standard for a Precision Clock Synchronization
 Protocol for Networked Measurement and Control Systems",
 December 2008, <http://standards.ieee.org/findstds/
 standard/1588-2008.html>.

 [IEEE-802.1X]

 Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Port-Based Network Access
 Control", February 2010,
 <http://standards.ieee.org/findstds/
 standard/802.1X-2010.html>.

 [LLDP]
 Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Station and Media Access
 Control Connectivity Discovery", June 2016,
 <https://standards.ieee.org/findstds/
 standard/802.1AB-2016.html>.

 [MACSEC]
 Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Media Access Control (MAC)
 Security", June 2006,
 <https://standards.ieee.org/findstds/
 standard/802.1AE-2006.html>.

 [RFC1112]
 Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, DOI 10.17487/RFC1112, August 1989,
 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC1492]
 Finseth, C., "An Access Control Protocol, Sometimes Called
 TACACS", RFC 1492, DOI 10.17487/RFC1492, July 1993,
 <https://www.rfc-editor.org/info/rfc1492>.

 [RFC1886]
 Thomson, S. and C. Huitema, "DNS Extensions to support IP
 version 6", RFC 1886, DOI 10.17487/RFC1886, December 1995,
 <https://www.rfc-editor.org/info/rfc1886>.

 [RFC1918]
 Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2315]
 Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
 <https://www.rfc-editor.org/info/rfc2315>.

 [RFC2821]
 Klensin, J., Ed., "Simple Mail Transfer Protocol",
 RFC 2821, DOI 10.17487/RFC2821, April 2001,
 <https://www.rfc-editor.org/info/rfc2821>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC3164]
 Lonvick, C., "The BSD Syslog Protocol", RFC 3164,
 DOI 10.17487/RFC3164, August 2001,
 <https://www.rfc-editor.org/info/rfc3164>.

 [RFC3315]
 Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <https://www.rfc-editor.org/info/rfc3411>.

 [RFC3954]
 Claise, B., Ed., "Cisco Systems NetFlow Services Export
 Version 9", RFC 3954, DOI 10.17487/RFC3954, October 2004,
 <https://www.rfc-editor.org/info/rfc3954>.

 [RFC4007]
 Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 DOI 10.17487/RFC4007, March 2005,
 <https://www.rfc-editor.org/info/rfc4007>.

 [RFC4210]
 Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210,
 DOI 10.17487/RFC4210, September 2005,
 <https://www.rfc-editor.org/info/rfc4210>.

 [RFC4364]
 Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC4429]
 Moore, N., "Optimistic Duplicate Address Detection (DAD)
 for IPv6", RFC 4429, DOI 10.17487/RFC4429, April 2006,
 <https://www.rfc-editor.org/info/rfc4429>.

 [RFC4541]
 Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <https://www.rfc-editor.org/info/rfc4541>.

 [RFC4604]
 Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, DOI 10.17487/RFC4604,
 August 2006, <https://www.rfc-editor.org/info/rfc4604>.

 [RFC4607]
 Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC4610]
 Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
 Independent Multicast (PIM)", RFC 4610,
 DOI 10.17487/RFC4610, August 2006,
 <https://www.rfc-editor.org/info/rfc4610>.

 [RFC4941]
 Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC5321]
 Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5790]
 Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Version 2 (MLDv2) Protocols", RFC 5790,
 DOI 10.17487/RFC5790, February 2010,
 <https://www.rfc-editor.org/info/rfc5790>.

 [RFC5880]
 Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
 <https://www.rfc-editor.org/info/rfc5880>.

 [RFC5905]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6724]
 Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC6762]
 Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6830]
 Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830,
 DOI 10.17487/RFC6830, January 2013,
 <https://www.rfc-editor.org/info/rfc6830>.

 [RFC7011]
 Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7404]
 Behringer, M. and E. Vyncke, "Using Only Link-Local
 Addressing inside an IPv6 Network", RFC 7404,
 DOI 10.17487/RFC7404, November 2014,
 <https://www.rfc-editor.org/info/rfc7404>.

 [RFC7426]
 Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
 Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
 Defined Networking (SDN): Layers and Architecture
 Terminology", RFC 7426, DOI 10.17487/RFC7426, January
 2015, <https://www.rfc-editor.org/info/rfc7426>.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7576]
 Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <https://www.rfc-editor.org/info/rfc7576>.

 [RFC7721]
 Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC7761]
 Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
 Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
 Multicast - Sparse Mode (PIM-SM): Protocol Specification
 (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
 2016, <https://www.rfc-editor.org/info/rfc7761>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8028]
 Baker, F. and B. Carpenter, "First-Hop Router Selection by
 Hosts in a Multi-Prefix Network", RFC 8028,
 DOI 10.17487/RFC8028, November 2016,
 <https://www.rfc-editor.org/info/rfc8028>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8368]
 Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

15.3. URIs

 [1] https://en.wikipedia.org/wiki/Operational_Technology

 [2] https://en.wikipedia.org/wiki/Single-root_input/

 output_virtualization

Appendix A. Background and Futures (Informative)

 The following sections discuss additional background information
 about aspects of the normative parts of this document or associated
 mechanisms such as BRSKI (such as why specific choices were made by
 the ACP) and they provide discussion about possible future variations
 of the ACP.

A.1. ACP Address Space Schemes

 This document defines the Zone, Vlong and Manual sub address schemes
 primarily to support address prefix assignment via distributed,
 potentially uncoordinated ACP registrars as defined in
 Section 6.10.7. This costs 48/46-bit identifier so that these ACP
 registrar can assign non-conflicting address prefixes. This design
 does not leave enough bits to simultaneously support a large number
 of nodes (Node-ID) plus a large prefix of local addresses for every
 node plus a large enough set of bits to identify a routing Zone. In
 result, Zone, Vlong 8/16 attempt to support all features, but in via
 separate prefixes.

 In networks that always expect to rely on a centralized PMS as
 described above (Section 10.2.5), the 48/46-bits for the Registrar-ID
 could be saved. Such variations of the ACP addressing mechanisms
 could be introduced through future work in different ways. If the
 prefix rfcSELF in the ACP information field was changed, incompatible
 ACP variations could be created where every design aspect of the ACP
 could be changed. Including all addressing choices. If instead a
 new addressing sub-type would be defined, it could be a backward
 compatible extension of this ACP specification. Information such as
 the size of a zone-prefix and the length of the prefix assigned to
 the ACP node itself could be encoded via the extension field of the
 ACP domain information.

 Note that an explicitly defined "Manual" addressing sub-scheme is
 always beneficial to provide an easy way for ACP nodes to prohibit
 incorrect manual configuration of any non-"Manual" ACP address spaces
 and therefore ensure that "Manual" operations will never impact
 correct routing for any non-"Manual" ACP addresses assigned via ACP
 domain certificates.

A.2. BRSKI Bootstrap (ANI)

 [I-D.ietf-anima-bootstrapping-keyinfra] (BRSKI) describes how nodes
 with an IDevID certificate can securely and zero-touch enroll with a
 domain certificate (LDevID) to support the ACP. BRSKI also leverages
 the ACP to enable zero-touch bootstrap of new nodes across networks
 without any configuration requirements across the transit nodes
 (e.g., no DHCP/DNS forwarding/server setup). This includes otherwise
 not configured networks as described in Section 3.2. Therefore BRSKI
 in conjunction with ACP provides for a secure and zero-touch
 management solution for complete networks. Nodes supporting such an
 infrastructure (BRSKI and ACP) are called ANI nodes (Autonomic
 Networking Infrastructure), see [I-D.ietf-anima-reference-model].
 Nodes that do not support an IDevID but only an (insecure) vendor
 specific Unique Device Identifier (UDI) or nodes whose manufacturer
 does not support a MASA could use some future security reduced
 version of BRSKI.

 When BRSKI is used to provision a domain certificate (which is called
 enrollment), the BRSKI registrar (acting as an enhanced EST server)
 must include the subjectAltName / rfc822Name encoded ACP address and
 domain name to the enrolling node (called pledge) via its response to
 the pledges EST CSR Attribute request that is mandatory in BRSKI.

 The Certificate Authority in an ACP network must not change the
 subjectAltName / rfc822Name in the certificate. The ACP nodes can
 therefore find their ACP address and domain using this field in the
 domain certificate, both for themselves, as well as for other nodes.

 The use of BRSKI in conjunction with the ACP can also help to further
 simplify maintenance and renewal of domain certificates. Instead of
 relying on CRL, the lifetime of certificates can be made extremely
 small, for example in the order of hours. When a node fails to
 connect to the ACP within its certificate lifetime, it cannot connect
 to the ACP to renew its certificate across it (using just EST), but
 it can still renew its certificate as an "enrolled/expired pledge"
 via the BRSKI bootstrap proxy. This requires only that the BRSKI
 registrar honors expired domain certificates and that the pledge
 attempts to perform TLS authentication for BRSKI bootstrap using its
 expired domain certificate before falling back to attempting to use
 its IDevID for BRSKI. This mechanism could also render CRLs
 unnecessary because the BRSKI registrar in conjunction with the CA
 would not renew revoked certificates - only a "Do-not-renew" list
 would be necessary on BRSKI registrars/CA.

 In the absence of BRSKI or less secure variants thereof, provisioning
 of certificates may involve one or more touches or non-standardized
 automation. Node vendors usually support provisioning of
 certificates into nodes via PKCS#7 (see [RFC2315]) and may support
 this provisioning through vendor specific models via Netconf
 ([RFC6241]). If such nodes also support Netconf Zero-Touch
 ([I-D.ietf-netconf-zerotouch]) then this can be combined to zero-
 touch provisioning of domain certificates into nodes. Unless there
 are equivalent integration of Netconf connections across the ACP as
 there is in BRSKI, this combination would not support zero-touch
 bootstrap across a not configured network though.

A.3. ACP Neighbor discovery protocol selection

 This section discusses why GRASP DULL was chosen as the discovery
 protocol for L2 adjacent candidate ACP neighbors. The contenders
 considered where GRASP, mDNS or LLDP.

A.3.1. LLDP

 LLDP and Cisco's earlier Cisco Discovery Protocol (CDP) are example
 of L2 discovery protocols that terminate their messages on L2 ports.
 If those protocols would be chosen for ACP neighbor discovery, ACP
 neighbor discovery would therefore also terminate on L2 ports. This
 would prevent ACP construction over non-ACP capable but LLDP or CDP
 enabled L2 switches. LLDP has extensions using different MAC
 addresses and this could have been an option for ACP discovery as
 well, but the additional required IEEE standardization and definition
 of a profile for such a modified instance of LLDP seemed to be more
 work than the benefit of "reusing the existing protocol" LLDP for
 this very simple purpose.

A.3.2. mDNS and L2 support

 Multicast DNNS (mDNS) [RFC6762] with DNS Service Discovery (DNS-SD)
 Resource Records (RRs) as defined in [RFC6763] is a key contender as
 an ACP discovery protocol. because it relies on link-local IP
 multicast, it does operates at the subnet level, and is also found in
 L2 switches. The authors of this document are not aware of mDNS
 implementation that terminate their mDNS messages on L2 ports instead
 of the subnet level. If mDNS was used as the ACP discovery mechanism
 on an ACP capable (L3)/L2 switch as outlined in Section 7, then this
 would be necessary to implement. It is likely that termination of
 mDNS messages could only be applied to all mDNS messages from such a
 port, which would then make it necessary to software forward any non-
 ACP related mDNS messages to maintain prior non-ACP mDNS
 functionality. Adding support for ACP into such L2 switches with
 mDNS could therefore create regression problems for prior mDNS
 functionality on those nodes. With low performance of software
 forwarding in many L2 switches, this could also make the ACP risky to
 support on such L2 switches.

A.3.3. Why DULL GRASP

 LLDP was not considered because of the above mentioned issues. mDNS
 was not selected because of the above L2 mDNS considerations and
 because of the following additional points:

 If mDNS was not already existing in a node, it would be more work to
 implement than DULL GRASP, and if an existing implementation of mDNS
 was used, it would likely be more code space than a separate
 implementation of DULL GRASP or a shared implementation of DULL GRASP
 and GRASP in the ACP.

A.4. Choice of routing protocol (RPL)

 This section motivates why RPL - "IPv6 Routing Protocol for Low-Power
 and Lossy Networks ([RFC6550] was chosen as the default (and in this
 specification only) routing protocol for the ACP. The choice and
 above explained profile was derived from a pre-standard
 implementation of ACP that was successfully deployed in operational
 networks.

 Requirements for routing in the ACP are:

 o Self-management: The ACP must build automatically, without human
 intervention. Therefore routing protocol must also work
 completely automatically. RPL is a simple, self-managing
 protocol, which does not require zones or areas; it is also self-
 configuring, since configuration is carried as part of the
 protocol (see Section 6.7.6 of [RFC6550]).

 o Scale: The ACP builds over an entire domain, which could be a
 large enterprise or service provider network. The routing
 protocol must therefore support domains of 100,000 nodes or more,
 ideally without the need for zoning or separation into areas. RPL
 has this scale property. This is based on extensive use of
 default routing.

 o Low resource consumption: The ACP supports traditional network
 infrastructure, thus runs in addition to traditional protocols.
 The ACP, and specifically the routing protocol must have low
 resource consumption both in terms of memory and CPU requirements.
 Specifically, at edge nodes, where memory and CPU are scarce,
 consumption should be minimal. RPL builds a destination-oriented
 directed acyclic graph (DODAG), where the main resource
 consumption is at the root of the DODAG. The closer to the edge
 of the network, the less state needs to be maintained. This
 adapts nicely to the typical network design. Also, all changes
 below a common parent node are kept below that parent node.

 o Support for unstructured address space: In the Autonomic
 Networking Infrastructure, node addresses are identifiers, and may
 not be assigned in a topological way. Also, nodes may move
 topologically, without changing their address. Therefore, the
 routing protocol must support completely unstructured address
 space. RPL is specifically made for mobile ad-hoc networks, with
 no assumptions on topologically aligned addressing.

 o Modularity: To keep the initial implementation small, yet allow
 later for more complex methods, it is highly desirable that the
 routing protocol has a simple base functionality, but can import
 new functional modules if needed. RPL has this property with the
 concept of "objective function", which is a plugin to modify
 routing behavior.

 o Extensibility: Since the Autonomic Networking Infrastructure is a
 new concept, it is likely that changes in the way of operation
 will happen over time. RPL allows for new objective functions to
 be introduced later, which allow changes to the way the routing
 protocol creates the DAGs.

 o Multi-topology support: It may become necessary in the future to
 support more than one DODAG for different purposes, using
 different objective functions. RPL allow for the creation of
 several parallel DODAGs, should this be required. This could be
 used to create different topologies to reach different roots.

 o No need for path optimization: RPL does not necessarily compute
 the optimal path between any two nodes. However, the ACP does not
 require this today, since it carries mainly non-delay-sensitive
 feedback loops. It is possible that different optimization
 schemes become necessary in the future, but RPL can be expanded
 (see point "Extensibility" above).

A.5. ACP Information Distribution and multicast

 IP multicast is not used by the ACP because the ANI (Autonomic
 Networking Infrastructure) itself does not require IP multicast but
 only service announcement/discovery. Using IP multicast for that
 would have made it necessary to develop a zero-touch auto configuring
 solution for ASM (Any Source Multicast - the original form of IP
 multicast defined in [RFC1112]), which would be quite complex and
 difficult to justify. One aspect of complexity where no attempt at a
 solution has been described in IETF documents is the automatic-
 selection of routers that should be PIM Sparse Mode (PIM-SM)
 Rendezvous Points (RPs) (see [RFC7761]). The other aspects of
 complexity are the implementation of MLD ([RFC4604]), PIM-SM and
 Anycast-RP (see [RFC4610]). If those implementations already exist
 in a product, then they would be very likely tied to accelerated
 forwarding which consumes hardware resources, and that in return is
 difficult to justify as a cost of performing only service discovery.

 Some future ASA may need high performance in-network data
 replication. That is the case when the use of IP multicast is
 justified. Such an ASA can then use service discovery from ACP
 GRASP, and then they do not need ASM but only SSM (Source Specific
 Multicast, see [RFC4607]) for the IP multicast replication. SSM
 itself can simply be enabled in the Data-Plane (or even in an update
 to the ACP) without any other configuration than just enabling it on
 all nodes and only requires a simpler version of MLD (see [RFC5790]).

 LSP (Link State Protocol) based IGP routing protocols typically have
 a mechanism to flood information, and such a mechanism could be used
 to flood GRASP objectives by defining them to be information of that
 IGP. This would be a possible optimization in future variations of
 the ACP that do use an LSP routing protocol. Note though that such a
 mechanism would not work easily for GRASP M_DISCOVERY messages which
 are intelligently (constrained) flooded not across the whole ACP, but
 only up to a node where a responder is found. We do expect that many
 future services in ASA will have only few consuming ASA, and for
 those cases, M_DISCOVERY is the more efficient method than flooding
 across the whole domain.

 Because the ACP uses RPL, one desirable future extension is to use
 RPLs existing notion of loop-free distribution trees (DODAG) to make
 GRASPs flooding more efficient both for M_FLOOD and M_DISCOVERY) See
 Section 6.12.5 how this will be specifically beneficial when using
 NBMA interfaces. This is not currently specified in this document
 because it is not quite clear yet what exactly the implications are
 to make GRASP flooding depend on RPL DODAG convergence and how
 difficult it would be to let GRASP flooding access the DODAG
 information.

A.6. Extending ACP channel negotiation (via GRASP)

 The mechanism described in the normative part of this document to
 support multiple different ACP secure channel protocols without a
 single network wide MTI protocol is important to allow extending
 secure ACP channel protocols beyond what is specified in this
 document, but it will run into problem if it would be used for
 multiple protocols:

 The need to potentially have multiple of these security associations
 even temporarily run in parallel to determine which of them works
 best does not support the most lightweight implementation options.

 The simple policy of letting one side (Alice) decide what is best may
 not lead to the mutual best result.

 The two limitations can easier be solved if the solution was more
 modular and as few as possible initial secure channel negotiation
 protocols would be used, and these protocols would then take on the
 responsibility to support more flexible objectives to negotiate the
 mutually preferred ACP security channel protocol.

 IKEv2 is the IETF standard protocol to negotiate network security
 associations. It is meant to be extensible, but it is unclear
 whether it would be feasible to extend IKEv2 to support possible
 future requirements for ACP secure channel negotiation:

 Consider the simple case where the use of native IPsec vs. IPsec via
 GRE is to be negotiated and the objective is the maximum throughput.
 Both sides would indicate some agreed upon performance metric and the
 preferred encapsulation is the one with the higher performance of the
 slower side. IKEv2 does not support negotiation with this objective.

 Consider DTLS and some form of MacSec are to be added as negotiation
 options - and the performance objective should work across all IPsec,
 DTLS and MacSec options. In the case of MacSEC, the negotiation
 would also need to determine a key for the peering. It is unclear if
 it would be even appropriate to consider extending the scope of
 negotiation in IKEv2 to those cases. Even if feasible to define, it
 is unclear if implementations of IKEv2 would be eager to adopt those
 type of extension given the long cycles of security testing that
 necessarily goes along with core security protocols such as IKEv2
 implementations.

 A more modular alternative to extending IKEv2 could be to layer a
 modular negotiation mechanism on top of the multitude of existing or
 possible future secure channel protocols. For this, GRASP over TLS
 could be considered as a first ACP secure channel negotiation
 protocol. The following are initial considerations for such an
 approach. A full specification is subject to a separate document:

 To explicitly allow negotiation of the ACP channel protocol, GRASP
 over a TLS connection using the GRASP_LISTEN_PORT and the nodes and
 peers link-local IPv6 address is used. When Alice and Bob support
 GRASP negotiation, they do prefer it over any other non-explicitly
 negotiated security association protocol and should wait trying any
 non-negotiated ACP channel protocol until after it is clear that
 GRASP/TLS will not work to the peer.

 When Alice and Bob successfully establish the GRASP/TSL session, they
 will negotiate the channel mechanism to use using objectives such as
 performance and perceived quality of the security. After agreeing on
 a channel mechanism, Alice and Bob start the selected Channel
 protocol. Once the secure channel protocol is successfully running,
 the GRASP/TLS connection can be kept alive or timed out as long as
 the selected channel protocol has a secure association between Alice
 and Bob. When it terminates, it needs to be re-negotiated via GRASP/
 TLS.

 Notes:

 o Negotiation of a channel type may require IANA assignments of code
 points.

 o TLS is subject to reset attacks, which IKEv2 is not. Normally,
 ACP connections (as specified in this document) will be over link-
 local addresses so the attack surface for this one issue in TCP
 should be reduced (note that this may not be true when ACP is
 tunneled as described in Section 8.2.2.

 o GRASP packets received inside a TLS connection established for
 GRASP/TLS ACP negotiation are assigned to a separate GRASP domain
 unique to that TLS connection.

A.7. CAs, domains and routing subdomains

 There is a wide range of setting up different ACP solution by
 appropriately using CAs and the domain and rsub elements in the
 domain information field of the domain certificate. We summarize
 these options here as they have been explained in different parts of
 the document in before and discuss possible and desirable extensions:

 An ACP domain is the set of all ACP nodes using certificates from the
 same CA using the same domain field. GRASP inside the ACP is run
 across all transitively connected ACP nodes in a domain.

 The rsub element in the domain information field permits the use of
 addresses from different ULA prefixes. One use case is to create
 multiple physical networks that initially may be separated with one
 ACP domain but different routing subdomains, so that all nodes can
 mutual trust their ACP domain certificates (not depending on rsub)
 and so that they could connect later together into a contiguous ACP
 network.

 One instance of such a use case is an ACP for regions interconnected
 via a non-ACP enabled core, for example due to the absence of product
 support for ACP on the core nodes. ACP connect configurations as
 defined in this document can be used to extend and interconnect those
 ACP islands to the NOC and merge them into a single ACP when later
 that product support gap is closed.

 Note that RPL scales very well. It is not necessary to use multiple
 routing subdomains to scale ACP domains in a way it would be possible
 if other routing protocols where used. They exist only as options
 for the above mentioned reasons.

 If different ACP domains are to be created that should not allow to
 connect to each other by default, these ACP domains simply need to
 have different domain elements in the domain information field.
 These domain elements can be arbitrary, including subdomains of one
 another: Domains "example.com" and "research.example.com" are
 separate domains if both are domain elements in the domain
 information element of certificates.

 It is not necessary to have a separate CA for different ACP domains:
 an operator can use a single CA to sign certificates for multiple ACP
 domains that are not allowed to connect to each other because the
 checks for ACP adjacencies includes comparison of the domain part.

 If multiple independent networks choose the same domain name but had
 their own CA, these would not form a single ACP domain because of CA
 mismatch. Therefore there is no problem in choosing domain names
 that are potentially also used by others. Nevertheless it is highly
 recommended to use domain names that one can have high probability to
 be unique. It is recommended to use domain names that start with a
 DNS domain names owned by the assigning organization and unique
 within it. For example "acp.example.com" if you own "example.com".

A.8. Intent for the ACP

 Intent is the architecture component of autonomic networks according
 to [I-D.ietf-anima-reference-model] that allows operators to issue
 policies to the network. In a simple instance, Intent could simply
 be policies flooded across ACP GRASP and interpreted on every ACP
 node.

 One concern for future definitions of Intent solutions is the problem
 of circular dependencies when expressing Intent policies about the
 ACP itself.

 For example, Intent could indicate the desire to build an ACP across
 all domains that have a common parent domain (without relying on the
 rsub/routing-subdomain solution defined in this document). For
 example ACP nodes with domain "example.com", "access.example.com",
 "core.example.com" and "city.core.example.com" should all establish
 one single ACP.

 If each domain has its own source of Intent, then the Intent would
 simply have to allow adding the peer domains trust anchors (CA) and
 domain names to the ACP domain membership check (Section 6.1.2) so
 that nodes from those other domains are accepted as ACP peers.

 If this Intent was to be originated only from one domain, it could
 likely not be made to work because the other domains will not build
 any ACP connection amongst each other, whether they use the same or
 different CA due to the ACP domain membership check.

 If the domains use the same CA one could change the ACP setup to
 permit for the ACP to be established between two ACP nodes with
 different acp-domain-names, but only for the purpose of disseminating
 limited information, such as Intent, but not to set up full ACP
 connectivity, specifically not RPL routing and passing of arbitrary
 GRASP information. Unless the Intent policies permit this to happen
 across domain boundaries.

 This type of approach where the ACP first allows Intent to operate
 and only then sets up the rest of ACP connectivity based on Intent
 policy could also be used to enable Intent policies that would limit
 functionality across the ACP inside a domain, as long as no policy
 would disturb the distribution of Intent. For example to limit
 reachability across the ACP to certain type of nodes or locations of
 nodes.

A.9. Adopting ACP concepts for other environments

 The ACP as specified in this document is very explicit about the
 choice of options to allow interoperable implementations. The
 choices made may not be the best for all environments, but the
 concepts used by the ACP can be used to build derived solutions:

 The ACP specifies the use of ULA and deriving its prefix from the
 domain name so that no address allocation is required to deploy the
 ACP. The ACP will equally work not using ULA but any other /48 IPv6
 prefix. This prefix could simply be a configuration of the ACP
 registrars (for example when using BRSKI) to enroll the domain
 certificates - instead of the ACP registrar deriving the /48 ULA
 prefix from the AN domain name.

 Some solutions may already have an auto-addressing scheme, for
 example derived from existing unique device identifiers (e.g., MAC
 addresses). In those cases it may not be desirable to assign
 addresses to devices via the ACP address information field in the way
 described in this document. The certificate may simply serve to
 identify the ACP domain, and the address field could be empty/unused.
 The only fix required in the remaining way the ACP operate is to
 define another element in the domain certificate for the two peers to
 decide who is Alice and who is Bob during secure channel building.
 Note though that future work may leverage the acp address to
 authenticate "ownership" of the address by the device. If the
 address used by a device is derived from some pre-existing permanent
 local ID (such as MAC address), then it would be useful to store that
 address in the certificate using the format of the access address
 information field or in a similar way.

 The ACP is defined as a separate VRF because it intends to support
 well managed networks with a wide variety of configurations.
 Therefore, reliable, configuration-indestructible connectivity cannot
 be achieved from the Data-Plane itself. In solutions where all
 transit connectivity impacting functions are fully automated
 (including security), indestructible and resilient, it would be
 possible to eliminate the need for the ACP to be a separate VRF.
 Consider the most simple example system in which there is no separate
 Data-Plane, but the ACP is the Data-Plane. Add BRSKI, and it becomes
 a fully autonomic network - except that it does not support automatic
 addressing for user equipment. This gap can then be closed for
 example by adding a solution derived from
 [I-D.ietf-anima-prefix-management].

 TCP/TLS as the protocols to provide reliability and security to GRASP
 in the ACP may not be the preferred choice in constrained networks.
 For example, CoAP/DTLS (Constrained Application Protocol) may be
 preferred where they are already used, allowing to reduce the
 additional code space footprint for the ACP on those devices. Hop-
 by-hop reliability for ACP GRASP messages could be made to support
 protocols like DTLS by adding the same type of negotiation as defined
 in this document for ACP secure channel protocol negotiation. End-
 to-end GRASP connections can be made to select their transport
 protocol in future extensions of the ACP meant to better support
 constrained devices by indicating the supported transport protocols
 (e.g.: TLS/DTLS) via GRASP parameters of the GRASP objective through
 which the transport endpoint is discovered.

 The routing protocol chosen by the ACP design (RPL) does explicitly
 not optimize for shortest paths and fastest convergence. Variations
 of the ACP may want to use a different routing protocol or introduce
 more advanced RPL profiles.

 Variations such as what routing protocol to use, or whether to
 instantiate an ACP in a VRF or (as suggested above) as the actual
 Data-Plane, can be automatically chosen in implementations built to
 support multiple options by deriving them from future parameters in
 the certificate. Parameters in certificates should be limited to
 those that would not need to be changed more often than certificates
 would need to be updated anyhow; Or by ensuring that these parameters
 can be provisioned before the variation of an ACP is activated in a
 node. Using BRSKI, this could be done for example as additional
 follow-up signaling directly after the certificate enrollment, still
 leveraging the BRSKI TLS connection and therefore not introducing any
 additional connectivity requirements.

 Last but not least, secure channel protocols including their
 encapsulations are easily added to ACP solutions. ACP hop-by-hop
 network layer secure channels could also be replaced by end-to-end
 security plus other means for infrastructure protection. Any future
 network OAM should always use end-to-end security anyhow and can
 leverage the domain certificates and is therefore not dependent on
 security to be provided for by ACP secure channels.

A.10. Further options / futures

A.10.1. Auto-aggregation of routes

 Routing in the ACP according to this specification only leverages the
 standard RPL mechanism of route optimization, e.g. keeping only
 routes that are not towards the RPL root. This is known to scale to
 networks with 20,000 or more nodes. There is no auto-aggregation of
 routes for /48 ULA prefixes (when using rsub in the domain
 information field) and/or Zone-ID based prefixes.

 Automatic assignment of Zone-ID and auto-aggregation of routes could
 be achieved for example by configuring zone-boundaries, announcing
 via GRASP into the zones the zone parameters (zone-ID and /48 ULA
 prefix) and auto-aggegating routes on the zone-boundaries. Nodes
 would assign their Zone-ID and potentially even /48 prefix based on
 the GRASP announcements.

A.10.2. More options for avoiding IPv6 Data-Plane dependency

 As described in Section 6.12.2, the ACP depends on the Data-Plane to
 establish IPv6 link-local addressing on interfaces. Using a separate
 MAC address for the ACP allows to fully isolate the ACP from the
 data-plane in a way that is compatible with this specification. It
 is also an ideal option when using Single-root input/output
 virtualization (SR-IOV - see https://en.wikipedia.org/wiki/Single-
 root_input/output_virtualization [2]) in an implementation to isolate
 the ACP because different SR-IOV interfaces use different MAC
 addresses.

 When additional MAC address(es) are not available, separation of the
 ACP could be done at different demux points. The same subnet
 interface could have a separate IPv6 interface for the ACP and Data-
 Plane and therefore separate link-local addresses for both, where the
 ACP interface is non-configurable on the Data-Plane. This too would
 be compatible with this specification and not impact
 interoperability.

 An option that would require additional specification is to use a
 different Ethertype from 0x86DD (IPv6) to encapsulate IPv6 packets
 for the ACP. This would be a similar approach as used for IP
 authentication packets in [IEEE-802.1X] which use the Extensible
 Authentication Protocol over Local Area Network (EAPoL) ethertype
 (0x88A2).

 Note that in the case of ANI nodes, all the above considerations
 equally apply to the encapsulation of BRSKI packets including GRASP
 used for BRSKI.

A.10.3. ACP APIs and operational models (YANG)

 Future work should define YANG ([RFC7950]) data model and/or node
 internal APIs to monitor and manage the ACP.

 Support for the ACP Adjacency Table (Section 6.2) and ACP GRASP need
 to be included into such model/API.

A.10.4. RPL enhancements

..... USA Europe

 NOC1 NOC2
 | |
 | metric 100 |
 ACP1 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ACP2 .
 | | . WAN
 | metric 10 metric 20 | . Core
 | | .
 ACP3 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ACP4 .
 | metric 100 |
 | | .
 | | . Sites
 ACP10 ACP11 .

 Figure 17: Dual NOC

 The profile for RPL specified in this document builds only one
 spanning-tree path set to a root (NOC). In the presence of multiple
 NOCs, routing toward the non-root NOCs may be suboptimal. Figure 17
 shows an extreme example. Assuming that node ACP1 becomes the RPL
 root, traffic between ACP11 and NOC2 will pass through
 ACP4-ACP3-ACP1-ACP2 instead of ACP4-ACP2 because the RPL calculated
 DODAG/routes are shortest paths towards the RPL root.

 To overcome these limitations, extensions/modifications to the RPL
 profile can provide optimality for multiple NOCs. This requires
 utilizing Data-Plane artifact including IPinIP encap/decap on ACP
 routers and processing of IPv6 RPI headers. Alternatively, (Src,Dst)
 routing table entries could be used.

 Flooding of ACP GRASP messages can be further constrained and
 therefore optimized by flooding only via links that are part of the
 RPL DODAG.

A.10.5. Role assignments

 ACP connect is an explicit mechanism to "leak" ACP traffic explicitly
 (for example in a NOC). It is therefore also a possible security gap
 when it is easy to enable ACP connect on arbitrary compromised ACP
 nodes.

 One simple solution is to define an extension in the ACP certificates
 ACP information field indicating the permission for ACP connect to be
 configured on that ACP node. This could similarly be done to decide
 whether a node is permitted to be a registrar or not.

 Tying the permitted "roles" of an ACP node to the ACP domain
 certificate provides fairly strong protection against
 misconfiguration, but is still subject to code modifications.

 Another interesting role to assign to certificates is that of a NOC
 node. This would allow to limit certain type of connections such as
 OAM TLS connections to only NOC initiator or responders.

A.10.6. Autonomic L3 transit

 In this specification, the ACP can only establish autonomic
 connectivity across L2 hops and only explicitly configured options to
 tunnel across L3. Future work should specify mechanisms to
 automatically tunnel ACP across L3 networks. A hub&spoke option
 would allow to tunnel across the Internet to a cloud or central
 instance of the ACP, a peer-to-peer tunneling mechanism could tunnel
 ACP islands across an L3VPN infrastructure.

A.10.7. Diagnostics

 Section 10.1 describes diagnostics options that can be done without
 changing the external, interoperability affecting characteristics of
 ACP implementations.

 Even better diagnostics of ACP operations is possible with additional
 signaling extensions, such as:

 1. Consider if LLDP should be a recommended functionality for ANI
 devices to improve diagnostics, and if so, which information
 elements it should signal (insecure). Includes potentially new
 information elements.

 2. In alternative to LLDP, A DULL GRASP diagnostics objective could
 be defined to carry these information elements.

 3. The IDevID of BRSKI pledges should be included in the selected
 insecure diagnostics option.

 4. A richer set of diagnostics information should be made available
 via the secured ACP channels, using either single-hop GRASP or
 network wide "topology discovery" mechanisms.

A.10.8. Avoiding and dealing with compromised ACP nodes

 Compromised ACP nodes pose the biggest risk to the operations of the
 network. The most common type of compromise is leakage of
 credentials to manage/configure the device and the application of
 malicious configuration including the change of access credentials,
 but not the change of software. Most of todays networking equipment
 should have secure boot/software infrastructure anyhow, so attacks
 that introduce malicious software should be a lot harder.

 The most important aspect of security design against these type of
 attacks is to eliminate password based configuration access methods
 and instead rely on certificate based credentials handed out only to
 nodes where it is clear that the private keys can not leak. This
 limits unexpected propagation of credentials.

 If password based credentials to configure devices still need to be
 supported, they must not be locally configurable, but only be
 remotely provisioned or verified (through protocols like Radius or
 Diameter), and there must be no local configuration permitting to
 change these authentication mechanisms, but ideally they should be
 autoconfiguring across the ACP. See
 [I-D.eckert-anima-noc-autoconfig].

 Without physcial access to the compromised device, attackers with
 access to configuration should not be able to break the ACP
 connectivity, even when they can break or otherwise manipulate
 (spoof) the data-plane connectivity through configuration. To
 achieve this, it is necessary to avoid providing configuration
 options for the ACP, such as enabling/disabling it on interfaces.
 For example there could be an ACP configuration that locks down the
 current ACP config unless factory reseet is done.

 With such means, the valid administration has the best chances to
 maintain access to ACP nodes, discover malicious configuration though
 ongoing configuration tracking from central locations for example,
 and to react accordingly.

 The primary reaction is withdrawal/change of credentials, terminate
 malicious existing management sessions and fixing the configuration.
 Ensuring that manaement sessions using invalidated credentials are
 terminated automatically without recourse will likely require new
 work.

 Only when these steps are not feasible would it be necessary to
 revoke or expire the ACP domain certificate credentials and consider
 the node kicked off the network - until the situation can be further
 rectified, likely requiring direct physical access to the node.

 Without extensions, compromised ACP nodes can only be removed from
 the ACP at the speed of CRL/OCSP information refresh or expiry (and
 non-removal) of short lived certificates. Future extensions to the
 ACP could for example use GRASP flooding distribution of triggered
 updates of CRL/OCSP or explicit removal indication of the compromised
 nodes domain certificate.

Authors' Addresses

Toerless Eckert (editor)
Huawei USA ‑ Futurewei Technologies Inc.
2330 Central Expy
Santa Clara 95050
USA

 Email: tte+ietf@cs.fau.de

 Michael H. Behringer (editor)

 Email: michael.h.behringer@gmail.com

Steinthor Bjarnason
Arbor Networks
2727 South State Street, Suite 200
Ann Arbor MI 48104
United States

 Email: sbjarnason@arbor.net

draft-ietf-anima-bootstrapping-keyinfra-19 - S. Bjarnason Arbor Networks K. Watsen Juniper Networks March 7, 2019

draft-ietf-anima-bootstrapping-keyinfra-19 - S. Bjarnason Arbor Networks K. Wats

Index
Prev
Next
Forward 5

ANIMA WG

Internet-Draft

Intended status: Standards Track

Expires: September 8, 2019

M. Pritikin

Cisco

M. Richardson

Sandelman

M. Behringer

S. Bjarnason Arbor Networks K. Watsen Juniper Networks March 7, 2019

 Bootstrapping Remote Secure Key Infrastructures (BRSKI)

 draft-ietf-anima-bootstrapping-keyinfra-19

Abstract

 This document specifies automated bootstrapping of an Autonomic
 Control Plane. To do this a remote secure key infrastructure (BRSKI)
 is created using manufacturer installed X.509 certificate, in
 combination with a manufacturer's authorizing service, both online
 and offline. Bootstrapping a new device can occur using a routable
 address and a cloud service, or using only link-local connectivity,
 or on limited/disconnected networks. Support for lower security
 models, including devices with minimal identity, is described for
 legacy reasons but not encouraged. Bootstrapping is complete when
 the cryptographic identity of the new key infrastructure is
 successfully deployed to the device but the established secure
 connection can be used to deploy a locally issued certificate to the
 device as well.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Prior Bootstrapping Approaches

	 1.2. Terminology

	 1.3. Scope of solution
	 1.3.1. Support environment

	 1.3.2. Constrained environments

	 1.3.3. Network Access Controls

	 1.3.4. Bootstrapping is not Booting

	 1.4. Leveraging the new key infrastructure / next steps

	 1.5. Requirements for Autonomic Network Infrastructure (ANI) devices

	2. Architectural Overview
	 2.1. Behavior of a Pledge

	 2.2. Secure Imprinting using Vouchers

	 2.3. Initial Device Identifier
	 2.3.1. Identification of the Pledge

	 2.3.2. MASA URI extension

	 2.4. Protocol Flow

	 2.5. Architectural Components
	 2.5.1. Pledge

	 2.5.2. Join Proxy

	 2.5.3. Domain Registrar

	 2.5.4. Manufacturer Service

	 2.5.5. Public Key Infrastructure (PKI)

	 2.6. Certificate Time Validation
	 2.6.1. Lack of realtime clock

	 2.6.2. Infinite Lifetime of IDevID

	 2.7. Cloud Registrar

	 2.8. Determining the MASA to contact

	3. Voucher-Request artifact
	 3.1. Nonceless Voucher Requests

	 3.2. Tree Diagram

	 3.3. Examples

	 3.4. YANG Module

	4. Proxying details (Pledge - Proxy - Registrar)
	 4.1. Pledge discovery of Proxy
	 4.1.1. Proxy GRASP announcements

	 4.2. CoAP connection to Registrar

	 4.3. Proxy discovery and communication of Registrar

	5. Protocol Details (Pledge - Registrar - MASA)
	 5.1. BRSKI-EST TLS establishment details

	 5.2. Pledge Requests Voucher from the Registrar

	 5.3. Registrar Authorization of Pledge

	 5.4. BRSKI-MASA TLS establishment details

	 5.5. Registrar Requests Voucher from MASA
	 5.5.1. MASA renewal of expired vouchers

	 5.5.2. MASA verification of voucher-request signature consistency

	 5.5.3. MASA authentication of registrar (certificate)

	 5.5.4. MASA revocation checking of registrar (certificate)

	 5.5.5. MASA verification of pledge prior-signed-voucher- request

	 5.5.6. MASA pinning of registrar

	 5.5.7. MASA nonce handling

	 5.6. MASA and Registrar Voucher Response
	 5.6.1. Pledge voucher verification

	 5.6.2. Pledge authentication of provisional TLS connection

	 5.7. Pledge BRSKI Status Telemetry

	 5.8. Registrar audit log request
	 5.8.1. MASA audit log response

	 5.8.2. Registrar audit log verification

	 5.9. EST Integration for PKI bootstrapping
	 5.9.1. EST Distribution of CA Certificates

	 5.9.2. EST CSR Attributes

	 5.9.3. EST Client Certificate Request

	 5.9.4. Enrollment Status Telemetry

	 5.9.5. Multiple certificates

	 5.9.6. EST over CoAP

	6. Reduced security operational modes
	 6.1. Trust Model

	 6.2. Pledge security reductions

	 6.3. Registrar security reductions

	 6.4. MASA security reductions

	7. IANA Considerations
	 7.1. Well-known EST registration

	 7.2. PKIX Registry

	 7.3. Pledge BRSKI Status Telemetry

	 7.4. DNS Service Names

	 7.5. MUD File Extension for the MASA

	8. Applicability to the Autonomic Control Plane

	9. Privacy Considerations
	 9.1. MASA audit log

	 9.2. What BRSKI-MASA reveals to the manufacturer

	 9.3. Manufacturers and Used or Stolen Equipment

	 9.4. Manufacturers and Grey market equipment

	 9.5. Some mitigations for meddling by manufacturers

	10. Security Considerations
	 10.1. DoS against MASA

	 10.2. Freshness in Voucher-Requests

	 10.3. Trusting manufacturers

	 10.4. Manufacturer Maintainance of trust anchors

	11. Acknowledgements

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. IPv4 and non-ANI operations
	 A.1. IPv4 Link Local addresses

	 A.2. Use of DHCPv4

	Appendix B. mDNS / DNSSD proxy discovery options

	Appendix C. MUD Extension

	Appendix D. Example Vouchers
	 D.1. Keys involved
	 D.1.1. MASA key pair for voucher signatures

	 D.1.2. Manufacturer key pair for IDevID signatures

	 D.1.3. Registrar key pair

	 D.1.4. Pledge key pair

	 D.2. Example process
	 D.2.1. Pledge to Registrar

	 D.2.2. Registrar to MASA

	 D.2.3. MASA to Registrar

	Authors' Addresses

1. Introduction

 BRSKI provides a solution for secure zero-touch (automated) bootstrap
 of new (unconfigured) devices that are called pledges in this
 document.

 This document primarily provides for the needs of the ISP and
 Enterprise focused ANIMA Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane]. Other users of the BRSKI
 protocol will need to provide separate applicability statements that
 include privacy and security considerations appropriate to that
 deployment. Section Section 8 explains the details applicability for
 this the ACP usage.

 This document describes how pledges discover (or be discovered by) an
 element of the network domain to which the pledge belongs to perform
 the bootstrap. This element (device) is called the registrar.
 Before any other operation, pledge and registrar need to establish
 mutual trust:

 1. Registrar authenticating the pledge: "Who is this device? What
 is its identity?"

 2. Registrar authorizing the pledge: "Is it mine? Do I want it?
 What are the chances it has been compromised?"

 3. Pledge authenticating the registrar: "What is this registrar's
 identity?"

 4. Pledge authorizing the registrar: "Should I join it?"

 This document details protocols and messages to answer the above
 questions. It uses a TLS connection and an PKIX (X.509v3)
 certificate (an IEEE 802.1AR [IDevID] LDevID) of the pledge to answer
 points 1 and 2. It uses a new artifact called a "voucher" that the
 registrar receives from a "Manufacturer Authorized Signing Authority"
 and passes to the pledge to answer points 3 and 4.

 A proxy provides very limited connectivity between the pledge and the
 registrar.

 The syntactic details of vouchers are described in detail in
 [RFC8366]. This document details automated protocol mechanisms to
 obtain vouchers, including the definition of a 'voucher-request'
 message that is a minor extension to the voucher format (see
 Section 3) defined by [RFC8366].

 BRSKI results in the pledge storing an X.509 root certificate
 sufficient for verifying the registrar identity. In the process a
 TLS connection is established that can be directly used for
 Enrollment over Secure Transport (EST). In effect BRSKI provides an
 automated mechanism for the "Bootstrap Distribution of CA
 Certificates" described in [RFC7030] Section 4.1.1 wherein the pledge
 "MUST [...] engage a human user to authorize the CA certificate using
 out-of-band" information". With BRSKI the pledge now can automate
 this process using the voucher. Integration with a complete EST
 enrollment is optional but trivial.

 BRSKI is agile enough to support bootstrapping alternative key
 infrastructures, such as a symmetric key solutions, but no such
 system is described in this document.

1.1. Prior Bootstrapping Approaches

 To literally "pull yourself up by the bootstraps" is an impossible
 action. Similarly the secure establishment of a key infrastructure
 without external help is also an impossibility. Today it is commonly
 accepted that the initial connections between nodes are insecure,
 until key distribution is complete, or that domain-specific keying
 material (often pre-shared keys, including mechanisms like SIM cards)
 is pre-provisioned on each new device in a costly and non-scalable
 manner. Existing automated mechanisms are known as non-secured
 'Trust on First Use' (TOFU) [RFC7435], 'resurrecting duckling'
 [Stajano99theresurrecting] or 'pre-staging'.

 Another prior approach has been to try and minimize user actions
 during bootstrapping, but not eliminate all user-actions. The
 original EST protocol [RFC7030] does reduce user actions during
 bootstrap but does not provide solutions for how the following
 protocol steps can be made autonomic (not involving user actions):

 o using the Implicit Trust Anchor [RFC7030] database to authenticate
 an owner specific service (not an autonomic solution because the
 URL must be securely distributed),

 o engaging a human user to authorize the CA certificate using out-
 of-band data (not an autonomic solution because the human user is
 involved),

 o using a configured Explicit TA database (not an autonomic solution
 because the distribution of an explicit TA database is not
 autonomic),

 o and using a Certificate-Less TLS mutual authentication method (not
 an autonomic solution because the distribution of symmetric key
 material is not autonomic).

 These "touch" methods do not meet the requirements for zero-touch.

 There are "call home" technologies where the pledge first establishes
 a connection to a well known manufacturer service using a common
 client-server authentication model. After mutual authentication,
 appropriate credentials to authenticate the target domain are
 transfered to the pledge. This creates serveral problems and
 limitations:

 o the pledge requires realtime connectivity to the manufacturer
 service,

 o the domain identity is exposed to the manufacturer service (this
 is a privacy concern),

 o the manufacturer is responsible for making the authorization
 decisions (this is a liability concern),

 BRSKI addresses these issues by defining extensions to the EST
 protocol for the automated distribution of vouchers.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The following terms are defined for clarity:

domainID: The domain IDentity is the 160‑bit SHA‑1 hash of the BIT
 STRING of the subjectPublicKey of the pinned‑domain‑cert leaf,
 i.e. the Registrars' certificate. This is consistent with the
 subject key identifier (Section 4.2.1.2 [RFC5280]).

drop ship: The physical distribution of equipment containing the
 "factory default" configuration to a final destination. In zero‑
 touch scenarios there is no staging or pre‑configuration during
 drop‑ship.

imprint: The process where a device obtains the cryptographic key
 material to identify and trust future interactions with a network.
 This term is taken from Konrad Lorenz's work in biology with new
 ducklings: during a critical period, the duckling would assume
 that anything that looks like a mother duck is in fact their
 mother. An equivalent for a device is to obtain the fingerprint
 of the network's root certification authority certificate. A
 device that imprints on an attacker suffers a similar fate to a
 duckling that imprints on a hungry wolf. Securely imprinting is a
 primary focus of this document [imprinting]. The analogy to
 Lorenz's work was first noted in [Stajano99theresurrecting].

enrollment: The process where a device presents key material to a
 network and acquires a network specific identity. For example
 when a certificate signing request is presented to a certification
 authority and a certificate is obtained in response.

Pledge: The prospective device, which has an identity installed at
 the factory.

Voucher: A signed artifact from the MASA that indicates to a pledge
 the cryptographic identity of the registrar it should trust.
 There are different types of vouchers depending on how that trust
 is asserted. Multiple voucher types are defined in [RFC8366]

Domain: The set of entities that share a common local trust anchor.
 This includes the proxy, registrar, Domain Certificate Authority,
 Management components and any existing entity that is already a
 member of the domain.

Domain CA: The domain Certification Authority (CA) provides
 certification functionalities to the domain. At a minimum it
 provides certification functionalities to a registrar and manages
 the private key that defines the domain. Optionally, it certifies
 all elements.

Join Registrar (and Coordinator): A representative of the domain
 that is configured, perhaps autonomically, to decide whether a new
 device is allowed to join the domain. The administrator of the
 domain interfaces with a "join registrar (and coordinator)" to
 control this process. Typically a join registrar is "inside" its
 domain. For simplicity this document often refers to this as just
 "registrar". Within [I‑D.ietf‑anima‑reference‑model] this is
 refered to as the "join registrar autonomic service agent". Other
 communities use the abbreviation "JRC".

(Public) Key Infrastructure: The collection of systems and processes
 that sustain the activities of a public key system. The registrar
 acts as an [RFC5280] and [RFC5272] (see section 7) "Registration
 Authority".

Join Proxy: A domain entity that helps the pledge join the domain.
 A join proxy facilitates communication for devices that find
 themselves in an environment where they are not provided
 connectivity until after they are validated as members of the
 domain. For simplicity this document sometimes uses the term of
 'proxy' to indicate the join proxy. The pledge is unaware that
 they are communicating with a proxy rather than directly with a
 registrar.

Circuit Proxy: A stateful implementation of the join proxy. This is
 the assumed type of proxy.

IPIP Proxy: A stateless proxy alternative.

MASA Service: A third‑party Manufacturer Authorized Signing
 Authority (MASA) service on the global Internet. The MASA signs
 vouchers. It also provides a repository for audit log information

 of privacy protected bootstrapping events. It does not track
 ownership.

Ownership Tracker: An Ownership Tracker service on the global
 internet. The Ownership Tracker uses business processes to
 accurately track ownership of all devices shipped against domains
 that have purchased them. Although optional, this component
 allows vendors to provide additional value in cases where their
 sales and distribution channels allow for accurately tracking of
 such ownership. Ownership tracking information is indicated in
 vouchers as described in [RFC8366]

IDevID: An Initial Device Identity X.509 certificate installed by
 the vendor on new equipment.

TOFU: Trust on First Use. Used similarly to [RFC7435]. This is
 where a pledge device makes no security decisions but rather
 simply trusts the first registrar it is contacted by. This is
 also known as the "resurrecting duckling" model.

nonced: a voucher (or request) that contains a nonce (the normal
 case).

nonceless: a voucher (or request) that does not contain a nonce,
 relying upon accurate clocks for expiration, or which does not
 expire.

manufacturer: the term manufacturer is used throughout this document
 to be the entity that created the device. This is typically the
 "original equipment manufacturer" or OEM, but in more complex
 situations it could be a "value added retailer" (VAR), or possibly
 even a systems integrator. In general, it a goal of BRSKI to
 eliminate small distinctions between different sales channels.
 The reason for this is that it permits a single device, with a
 uniform firmware load, to be shipped directly to all customers.
 This eliminates costs for the manufacturer. This also reduces the
 number of products supported in the field increasing the chance
 that firmware will be more up to date.

ANI: The Autonomic Network Infrastructure as defined by
 [I‑D.ietf‑anima‑reference‑model]. This document details specific
 requirements for pledges, proxies and registrars when they are
 part of an ANI.

offline: When an architectural component cannot perform realtime
 communications with a peer, either due to network connectivity or
 because the peer is turned off, the operation is said to be
 occurring offline.

1.3. Scope of solution

1.3.1. Support environment

 This solution (BRSKI) can support large router platforms with multi-
 gigabit inter-connections, mounted in controlled access data centers.
 But this solution is not exclusive to large equipment: it is intended
 to scale to thousands of devices located in hostile environments,
 such as ISP provided CPE devices which are drop-shipped to the end
 user. The situation where an order is fulfilled from distributed
 warehouse from a common stock and shipped directly to the target
 location at the request of a domain owner is explicitly supported.
 That stock ("SKU") could be provided to a number of potential domain
 owners, and the eventual domain owner will not know a-priori which
 device will go to which location.

 The bootstrapping process can take minutes to complete depending on
 the network infrastructure and device processing speed. The network
 communication itself is not optimized for speed; for privacy reasons,
 the discovery process allows for the pledge to avoid announcing its
 presence through broadcasting.

 Nomadic or mobile devices often need to aquire credentials to access
 the network at the new location. An example of this is mobile phone
 roaming among network operators, or even between cell towers. This
 is usually called handoff. BRSKI does not provide a low-latency
 handoff which is usually a requirement in such situations. For these
 solutions BRSKI can be used to create a relationship (an LDevID) with
 the "home" domain owner. The resulting credentials are then used to
 provide credentials more appropriate for a low-latency handoff.

1.3.2. Constrained environments

 Questions have been posed as to whether this solution is suitable in
 general for Internet of Things (IoT) networks. This depends on the
 capabilities of the devices in question. The terminology of
 [RFC7228] is best used to describe the boundaries.

 The solution described in this document is aimed in general at non-
 constrained (i.e., class 2+) devices operating on a non-Challenged
 network. The entire solution as described here is not intended to be
 useable as-is by constrained devices operating on challenged networks
 (such as 802.15.4 LLNs).

 Specifically, there are protocol aspects described here that might
 result in congestion collapse or energy-exhaustion of intermediate
 battery powered routers in an LLN. Those types of networks SHOULD
 NOT use this solution. These limitations are predominately related
 to the large credential and key sizes required for device
 authentication. Defining symmetric key techniques that meet the
 operational requirements is out-of-scope but the underlying protocol
 operations (TLS handshake and signing structures) have sufficient
 algorithm agility to support such techniques when defined.

 The imprint protocol described here could, however, be used by non-
 energy constrained devices joining a non-constrained network (for
 instance, smart light bulbs are usually mains powered, and speak
 802.11). It could also be used by non-constrained devices across a
 non-energy constrained, but challenged network (such as 802.15.4).
 The certificate contents, and the process by which the four questions
 above are resolved do apply to constrained devices. It is simply the
 actual on-the-wire imprint protocol that could be inappropriate.

1.3.3. Network Access Controls

 This document presumes that network access control has either already
 occurred, is not required, or is integrated by the proxy and
 registrar in such a way that the device itself does not need to be
 aware of the details. Although the use of an X.509 Initial Device
 Identity is consistant with IEEE 802.1AR [IDevID], and allows for
 alignment with 802.1X network access control methods, its use here is
 for pledge authentication rather than network access control.
 Integrating this protocol with network access control, perhaps as an
 Extensible Authentication Protocol (EAP) method (see [RFC3748]), is
 out-of-scope.

1.3.4. Bootstrapping is not Booting

 This document describes "bootstrapping" as the protocol used to
 obtain a local trust anchor. It is expected that this trust anchor,
 along with any additional configuration information subsequently
 installed, is persisted on the device across system restarts
 ("booting"). Bootstrapping occurs only infrequently such as when a
 device is transfered to a new owner or has been reset to factory
 default settings.

1.4. Leveraging the new key infrastructure / next steps

 As a result of the protocol described herein, the bootstrapped
 devices have the Domain CA trust anchor in common. An end entity
 certificate has optionally been issued from the Domain CA. This
 makes it possible to securely deploy functionalities across the
 domain, e.g:

 o Device management.

 o Routing authentication.

 o Service discovery.

 The major beneficiary is that it possible to use the credentials
 deployed by this protocol to secure the Autonomic Control Plane (ACP)
 ([I-D.ietf-anima-autonomic-control-plane]).

1.5. Requirements for Autonomic Network Infrastructure (ANI) devices

 The BRSKI protocol can be used in a number of environments. Some of
 the options in this document is the result of requirements that are
 out of the ANI scope. This section defines the base requirements for
 ANI devices.

 For devices that intend to become part of an Autonomic Network
 Infrastructure (ANI) ([I-D.ietf-anima-reference-model]) that includes
 an Autonomic Control Plane
 ([I-D.ietf-anima-autonomic-control-plane]), the BRSKI protocol MUST
 be implemented.

 The pledge must perform discovery of the proxy as described in
 Section 4.1 using GRASP M_FLOOD announcements.

 Upon successfully validating a voucher artiface, a status telemetry
 MUST be returned. See Section 5.7.

 An ANIMA ANI pledge MUST implement the EST automation extensions
 described in Section 5.9. They supplement the [RFC7030] EST to
 better support automated devices that do not have an end user.

 The ANI Join Registrar ASA MUST support all the BRSKI and above
 listed EST operations.

 All ANI devices SHOULD support the BRSKI proxy function, using
 circuit proxies over the ACP. (See Section 4.3)

2. Architectural Overview

 The logical elements of the bootstrapping framework are described in
 this section. Figure 1 provides a simplified overview of the
 components.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑Drop Ship‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Vendor Service |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | M anufacturer| |
 | | A uthorized |Ownership|
 | | S igning |Tracker |
 | | A uthority | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
 | ^
 | | BRSKI‑
 V | MASA
+‑‑‑‑‑‑‑+ ..|...
| | . | .
| | . +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ | .
| | . | | | | | .
|Pledge | . | Join | | Domain <‑‑‑‑‑‑‑+ .
| | . | Proxy | | Registrar | .
| <‑‑‑‑‑‑‑‑>............<‑‑‑‑‑‑‑> (PKI RA) | .
| | | BRSKI‑EST | | .
| | . | | +‑‑‑‑‑+‑‑‑‑‑+ .
|IDevID | . +‑‑‑‑‑‑‑‑‑‑‑‑+ | EST RFC7030 .
| | . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+ .
| | . | Key Infrastructure | .
| | . | (e.g., PKI Certificate | .
+‑‑‑‑‑‑‑+ . | Authority) | .
 . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ .
 . .
 ..
 "Domain" components

 Figure 1

 We assume a multi-vendor network. In such an environment there could
 be a Manufacturer Service for each manufacturer that supports devices
 following this document's specification, or an integrator could
 provide a generic service authorized by multiple manufacturers. It
 is unlikely that an integrator could provide Ownership Tracking
 services for multiple manufacturers due to the required sales channel
 integrations necessary to track ownership.

 The domain is the managed network infrastructure with a Key
 Infrastructure the pledge is joining. The domain provides initial
 device connectivity sufficient for bootstrapping through a proxy.
 The domain registrar authenticates the pledge, makes authorization
 decisions, and distributes vouchers obtained from the Manufacturer
 Service. Optionally the registrar also acts as a PKI Registration
 Authority.

2.1. Behavior of a Pledge

 The pledge goes through a series of steps, which are outlined here at
 a high level.

 ‑‑‑‑‑‑‑‑‑‑‑‑
 / Factory \
 \ default /
 ‑‑‑‑‑+‑‑‑‑‑‑
 |
 +‑‑‑‑‑‑v‑‑‑‑‑‑‑+
 | (1) Discover |
+‑‑‑‑‑‑‑‑‑‑‑‑> |
| +‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| |
| +‑‑‑‑‑‑v‑‑‑‑‑‑‑+
| | (2) Identity |
^‑‑‑‑‑‑‑‑‑‑‑‑+ |
| rejected +‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| |
| +‑‑‑‑‑‑v‑‑‑‑‑‑‑+
| | (3) Request |
| | Join |
| +‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| |
| +‑‑‑‑‑‑v‑‑‑‑‑‑‑+
| | (4) Imprint |
^‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Bad MASA +‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| response | send Voucher Status Telemetry
| +‑‑‑‑‑‑v‑‑‑‑‑‑‑+
| | (5) Enroll |<‑‑‑+ (non‑error HTTP codes)
^‑‑‑‑‑‑‑‑‑‑‑‑+ |___/ (e.g. 201 'Retry‑After')
| Enroll +‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| Failure |
| ‑‑‑‑‑v‑‑‑‑‑‑
| / Enrolled \
^‑‑‑‑‑‑‑‑‑‑‑‑+ |
 Factory \‑‑‑‑‑‑‑‑‑‑‑‑/
 reset

 Figure 2: pledge state diagram

 State descriptions for the pledge are as follows:

 1. Discover a communication channel to a registrar.

 2. Identify itself. This is done by presenting an X.509 IDevID
 credential to the discovered registrar (via the proxy) in a TLS
 handshake. (The registrar credentials are only provisionally
 accepted at this time).

 3. Request to join the discovered registrar. A unique nonce is
 included ensuring that any responses can be associated with this
 particular bootstrapping attempt.

 4. Imprint on the registrar. This requires verification of the
 manufacturer service provided voucher. A voucher contains
 sufficient information for the pledge to complete authentication
 of a registrar. This document details this step in depth.

 5. Enroll. After imprint an authenticated TLS (HTTPS) connection
 exists between pledge and registrar. Enrollment over Secure
 Transport (EST) [RFC7030] is then used to obtain a domain
 certificate from a registrar.

 The pledge is now a member of, and can be managed by, the domain and
 will only repeat the discovery aspects of bootstrapping if it is
 returned to factory default settings.

 This specification details integration with EST enrollment so that
 pledges can optionally obtain a locally issued certificate, although
 any REST interface could be integrated in future work.

2.2. Secure Imprinting using Vouchers

 A voucher is a cryptographically protected artifact (a digital
 signature) to the pledge device authorizing a zero-touch imprint on
 the registrar domain.

 The format and cryptographic mechanism of vouchers is described in
 detail in [RFC8366].

 Vouchers provide a flexible mechanism to secure imprinting: the
 pledge device only imprints when a voucher can be validated. At the
 lowest security levels the MASA can indiscriminately issue vouchers
 and log claims of ownership by domains. At the highest security
 levels issuance of vouchers can be integrated with complex sales
 channel integrations that are beyond the scope of this document. The
 sales channel integration would verify actual (legal) ownership of
 the pledge by the domain. This provides the flexibility for a number
 of use cases via a single common protocol mechanism on the pledge and
 registrar devices that are to be widely deployed in the field. The
 MASA services have the flexibility to leverage either the currently
 defined claim mechanisms or to experiment with higher or lower
 security levels.

 Vouchers provide a signed but non-encrypted communication channel
 among the pledge, the MASA, and the registrar. The registrar
 maintains control over the transport and policy decisions allowing
 the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

 Pledge authentication and pledge voucher-request signing is via a
 PKIX certificate installed during the manufacturing process. This is
 the 802.1AR Initial Device Identifier (IDevID), and it provides a
 basis for authenticating the pledge during the protocol exchanges
 described here. There is no requirement for a common root PKI
 hierarchy. Each device manufacturer can generate its own root
 certificate. Specifically, the IDevID enables:

 1. Uniquely identifying the pledge by the Distinguished Name (DN)
 and subjectAltName (SAN) parameters in the IDevID. The unique
 identification of a pledge in the voucher objects are derived
 from those parameters as described below.

 2. Provides a cryptographic authentication of the pledge to the
 Registrar (see Section 5.3).

 3. Secure auto-discovery of the pledge's MASA by the registrar (see
 Section 2.8).

 4. Signing of voucher-request by the pledge's IDevID (see
 Section 3).

 5. Provides a cryptographic authentication of the pledge to the MASA
 (see Section 5.5.5).

 Section 7.2.13 of [IDevID] discusses keyUsage and extendedKeyUsage
 extensions in the IDevID certificate. Any restrictions included
 reduce the utility of the IDevID and so this specification RECOMMENDS
 that no key usage restrictions be included. Additionally, [RFC5280]
 section 4.2.1.3 does not require key usage restrictions for end
 entity certificates.

2.3.1. Identification of the Pledge

 In the context of BRSKI, pledges are uniquely identified by a
 "serial-number". This serial-number is used both in the "serial-
 number" field of voucher or voucher-requests (see Section 3) and in
 local policies on registrar or MASA (see Section 5).

 The following fields are defined in [IDevID] and [RFC5280]:

 o The subject field's DN encoding MUST include the "serialNumber"
 attribute with the device's unique serial number. (from [IDevID]
 section 7.2.8, and [RFC5280] section 4.1.2.4's list of standard
 attributes)

 o The subject-alt field's encoding MAY include a non-critical
 version of the RFC4108 defined HardwareModuleName. (from [IDevID]
 section 7.2.9) If the IDevID is stored in a Trusted Platform
 Module (TPM), then this field MAY contain the TPM identification
 rather than the device's serial number. If both fields are
 present, then the subject field takes precedence.

 and they are used as follows by the pledge to build the "serial-
 number" that is placed in the voucher-request. In order to build it,
 the fields need to be converted into a serial-number of "type
 string". The following methods are used depending on the first
 available IDevID certificate field (attempted in this order):

 1. [RFC4519] section 2.31 provides an example ("WI-3005") of the
 Distinguished Name "serialNumber" attribute. [RFC4514] indicates
 this is a printable string so no encoding is necessary.

 2. The HardwareModuleName hwSerialNum OCTET STRING. This value is
 base64 encoded to convert it to a printable string format.

 The above process to locate the serial-number MUST be performed by
 the pledge when filling out the voucher-request. Signed voucher-
 requests are always passed up to the MASA, and the connection between
 the serial-number in the voucher-request and the serial number in the
 IDevID certificate.

 As explained in Section 5.5 the Registrar MUST extract the serial-
 number again itself from the pledge's TLS certificate. It may
 consult the serial-number in the pledge-request if there are any
 possible confusion about the source of the serial-number (hwSerialNum
 vs serialNumber).

2.3.2. MASA URI extension

 This docucment defines a new PKIX non-critical certificate extension
 to carry the MASA URI. This extension is intended to be used in the
 IDevID certificate. The URI is represented as described in
 Section 7.4 of [RFC5280].

 Any Internationalized Resource Identifiers (IRIs) MUST be mapped to
 URIs as specified in Section 3.1 of [RFC3987] before they are placed
 in the certificate extension. The IRI provides the authority
 information. The BRSKI "/.well-known" tree ([RFC5785]) is described
 in Section 5.

 As explained in [RFC5280] section 7.4, a complete IRI SHOULD be in
 this extension, including the scheme, iauthority, and ipath. As a
 consideration to constrained systems, this MAY be reduced to only the
 iauthority, in which case a scheme of "https://" and ipath of
 "/.well-known/est" is to be assumed, as explained in section
 Section 5.

 The registrary can assume that only the iauthority is present in the
 extension, if there are no slash ("/") characters in the extension.

 Section 7.4 of [RFC5280] calls out various schemes that MUST be
 supported, including ldap, http and ftp. However, the registrar MUST
 use https for the BRSKI-MASA connection.

 The new extension is identified as follows:

 <CODE BEGINS>

MASAURLExtnModule‑2016 { iso(1) identified‑organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
id‑mod(0) id‑mod‑MASAURLExtn2016(TBD) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 -- EXPORTS ALL --

IMPORTS
EXTENSION
FROM PKIX‑CommonTypes‑2009
{ iso(1) identified‑organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id‑mod(0)
id‑mod‑pkixCommon‑02(57) }

id‑pe
FROM PKIX1Explicit‑2009
{ iso(1) identified‑organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id‑mod(0)
id‑mod‑pkix1‑explicit‑02(51) } ;
MASACertExtensions EXTENSION ::= { ext‑MASAURL, ... }
ext‑MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
IDENTIFIED BY id‑pe‑masa‑url }

 id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe TBD }

 MASAURLSyntax ::= IA5String

 END

 <CODE ENDS>

 The choice of id-pe is based on guidance found in Section 4.2.2 of
 [RFC5280], "These extensions may be used to direct applications to
 on-line information about the issuer or the subject". The MASA URL
 is precisely that: online information about the particular subject.

2.4. Protocol Flow

 A representative flow is shown in Figure 3:

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Pledge		Circuit		Domain		Vendor
		Join		Registrar		Service
		Proxy		(JRC)		(MASA)
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+						
		Internet				
[discover]						
<‑RFC4862 IPv6 addr						
<‑RFC3927 IPv4 addr	Appendix A	Legend				
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>		C ‑ circuit				
optional: mDNS query	Appendix B	join proxy				
RFC6763/RFC6762		P ‑ provisional				
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑		TLS connection				
GRASP M_FLOOD						
periodic broadcast						
[identity]						
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>C<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>						
TLS via the Join Proxy						
<‑‑Registrar TLS server authentication‑‑‑						
[PROVISIONAL accept of server cert]						
P‑‑‑X.509 client authentication‑‑‑‑‑‑‑‑‑‑>						
[request join]						
P‑‑‑Voucher Request(w/nonce for voucher)‑>						
P /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑						
P	[accept device?]					
P	[contact Vendor]					
P		‑‑Pledge ID‑‑‑‑‑‑‑‑>				
P		‑‑Domain ID‑‑‑‑‑‑‑‑>				
P		‑‑optional:nonce‑‑‑>				
P optional:	[extract DomainID]					
P can occur in advance	[update audit log]					
P if nonceleess						
P		<‑ voucher ‑‑‑‑‑‑‑‑‑				
P \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	w/nonce if provided					
P<‑‑‑‑‑‑voucher‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑						
[imprint]						
‑‑‑‑‑‑‑voucher status telemetry‑‑‑‑‑‑‑‑‑>						
	<‑device audit log‑‑					
[verify audit log and voucher]						
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>						
[enroll]						
Continue with RFC7030 enrollment						
using now bidirectionally authenticated						
TLS session.						
[enrolled] | |

 Figure 3

2.5. Architectural Components

2.5.1. Pledge

 The pledge is the device that is attempting to join. Until the
 pledge completes the enrollment process, it has link-local network
 connectivity only to the proxy.

2.5.2. Join Proxy

 The join proxy provides HTTPS connectivity between the pledge and the
 registrar. A circuit proxy mechanism is described in Section 4.
 Additional mechanisms, including a CoAP mechanism and a stateless
 IPIP mechanism are the subject of future work.

2.5.3. Domain Registrar

 The domain's registrar operates as the BRSKI-MASA client when
 requesting vouchers from the MASA (see Section 5.4). The registrar
 operates as the BRSKI-EST server when pledges request vouchers (see
 Section 5.1). The registrar operates as the BRSKI-EST server
 "Registration Authority" if the pledge requests an end entity
 certificate over the BRSKI-EST connection (see Section 5.9).

 The registrar uses an Implicit Trust Anchor database for
 authenticating the BRSKI-MASA TLS connection MASA certificate. The
 registrar uses a different Implicit Trust Anchor database for
 authenticating the BRSKI-EST TLS connection pledge client
 certificate. Configuration or distribution of these trust anchor
 databases is out-of-scope of this specification.

2.5.4. Manufacturer Service

 The Manufacturer Service provides two logically seperate functions:
 the Manufacturer Authorized Signing Authority (MASA) described in
 Section 5.5 and Section 5.6, and an ownership tracking/auditing
 function described in Section 5.7 and Section 5.8.

2.5.5. Public Key Infrastructure (PKI)

 The Public Key Infrastructure (PKI) administers certificates for the
 domain of concerns, providing the trust anchor(s) for it and allowing
 enrollment of pledges with domain certificates.

 The voucher provides a method for the distribution of a single PKI
 trust anchor (as the "pinned-domain-cert"). A distribution of the
 full set of current trust anchors is possible using the optional EST
 integration.

 The domain's registrar acts as an [RFC5272] Registration Authority,
 requesting certificates for pledges from the Key Infrastructure.

 The expectations of the PKI are unchanged from EST [[RFC7030]]. This
 document does not place any additional architectural requirements on
 the Public Key Infrastructure.

2.6. Certificate Time Validation

2.6.1. Lack of realtime clock

 Many devices when bootstrapping do not have knowledge of the current
 time. Mechanisms such as Network Time Protocols cannot be secured
 until bootstrapping is complete. Therefore bootstrapping is defined
 in a method that does not require knowledge of the current time. A
 pledge MAY ignore all time stamps in the voucher and in the
 certificate validity periods if it does not know the current time.

 The pledge is exposed to dates in the following five places:
 registrar certificate notBefore, registrar certificiate notAfter,
 voucher created-on, and voucher expires-on. Additionally, CMS
 signatures contain a signingTime.

 If the voucher contains a nonce then the pledge MUST confirm the
 nonce matches the original pledge voucher-request. This ensures the
 voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

 [RFC5280]
 explains that long lived pledge certificates "SHOULD be
 assigned the GeneralizedTime value of 99991231235959Z". Registrars
 MUST support such lifetimes and SHOULD support ignoring pledge
 lifetimes if they did not follow the RFC5280 recommendations.

 For example, IDevID may have incorrect lifetime of N <= 3 years,
 rendering replacement pledges from storage useless after N years
 unless registrars support ignoring such a lifetime.

2.7. Cloud Registrar

 There exist operationally open network wherein devices gain
 unauthenticated access to the internet at large. In these use cases
 the management domain for the device needs to be discovered within
 the larger internet. These are less likely within the anima scope
 but may be more important in the future.

 There are additionally some greenfield situations involving an
 entirely new installation where a device may have some kind of
 management uplink that it can use (such as via 3G network for
 instance). In such a future situation, the device might use this
 management interface to learn that it should configure itself to
 become the local registrar.

 In order to support these scenarios, the pledge MAY contact a well
 known URI of a cloud registrar if a local registrar cannot be
 discovered or if the pledge's target use cases do not include a local
 registrar.

 If the pledge uses a well known URI for contacting a cloud registrar
 an Implicit Trust Anchor database (see [RFC7030]) MUST be used to
 authenticate service as described in [RFC6125]. This is consistent
 with the human user configuration of an EST server URI in [RFC7030]
 which also depends on RFC6125.

2.8. Determining the MASA to contact

 The registrar needs to be able to contact a MASA that is trusted by
 the pledge in order to obtain vouchers. There are three mechanisms
 described:

 The device's Initial Device Identifier (IDevID) will normally contain
 the MASA URL as detailed in Section 2.3. This is the RECOMMENDED
 mechanism.

 If the registrar is integrated with [I-D.ietf-opsawg-mud] and the
 pledge IDevID contains the id-pe-mud-url then the registrar MAY
 attempt to obtain the MASA URL from the MUD file. The MUD file
 extension for the MASA URL is defined in Appendix C.

 It can be operationally difficult to ensure the necessary X.509
 extensions are in the pledge's IDevID due to the difficulty of
 aligning current pledge manufacturing with software releases and
 development. As a final fallback the registrar MAY be manually
 configured or distributed with a MASA URL for each manufacturer.
 Note that the registrar can only select the configured MASA URL based
 on the trust anchor -- so manufacturers can only leverage this
 approach if they ensure a single MASA URL works for all pledge's
 associated with each trust anchor.

3. Voucher-Request artifact

 Voucher-requests are how vouchers are requested. The semantics of
 the vouchers are described below, in the YANG model.

 A pledge forms the "pledge voucher-request" and submits it to the
 registrar.

 The registrar in turn forms the "registrar voucher-request", and
 submits it to the MASA.

 The "proximity-registrar-cert" leaf is used in the pledge voucher-
 requests. This provides a method for the pledge to assert the
 registrar's proximity.

 The "prior-signed-voucher-request" leaf is used in registrar voucher-
 requests. If present, it is the encoded (signed form) of the pledge
 voucher-request. This provides a method for the registrar to forward
 the pledge's signed request to the MASA. This completes transmission
 of the signed "proximity-registrar-cert" leaf.

 Unless otherwise signaled (outside the voucher-request artifact), the
 signing structure is as defined for vouchers, see [RFC8366].

3.1. Nonceless Voucher Requests

 A registrar MAY also retrieve nonceless vouchers by sending nonceless
 voucher-requests to the MASA in order to obtain vouchers for use when
 the registrar does not have connectivity to the MASA. No "prior-
 signed-voucher-request" leaf would be included. The registrar will
 also need to know the serial number of the pledge. This document
 does not provide a mechanism for the registrar to learn that in an
 automated fashion. Typically this will be done via scanning of bar-
 code or QR-code on packaging, or via some sales channel integration.

3.2. Tree Diagram

 The following tree diagram illustrates a high-level view of a
 voucher-request document. The voucher-request builds upon the
 voucher artifact described in [RFC8366]. The tree diagram is
 described in [RFC8340]. Each node in the diagram is fully described
 by the YANG module in Section 3.4. Please review the YANG module for
 a detailed description of the voucher-request format.

 module: ietf-voucher-request

grouping voucher‑request‑grouping
 +‑‑ voucher
 +‑‑ created‑on? yang:date‑and‑time
 +‑‑ expires‑on? yang:date‑and‑time
 +‑‑ assertion? enumeration
 +‑‑ serial‑number string
 +‑‑ idevid‑issuer? binary
 +‑‑ pinned‑domain‑cert? binary
 +‑‑ domain‑cert‑revocation‑checks? boolean
 +‑‑ nonce? binary
 +‑‑ last‑renewal‑date? yang:date‑and‑time
 +‑‑ prior‑signed‑voucher‑request? binary
 +‑‑ proximity‑registrar‑cert? binary

3.3. Examples

 This section provides voucher-request examples for illustration
 purposes. For detailed examples, see Appendix D.2. These examples
 conform to the encoding rules defined in [RFC7951].

 Example (1) The following example illustrates a pledge voucher-

 request. The assertion leaf is indicated as 'proximity'
 and the registrar's TLS server certificate is included
 in the 'proximity-registrar-cert' leaf. See
 Section 5.2.

{
 "ietf‑voucher‑request:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created‑on": "2017‑01‑01T00:00:00.000Z",
 "proximity‑registrar‑cert": "base64encodedvalue=="
 }
}

 Example (2) The following example illustrates a registrar voucher-

 request. The 'prior-signed-voucher-request' leaf is
 populated with the pledge's voucher-request (such as the
 prior example). The pledge's voucher-request, if a
 signed artifact with a CMS format signature is a binary
 object. In the JSON encoding used here it must be
 base64 encoded. The nonce, created-on and assertion is
 carried forward. The serial-number is extracted from
 the pledge's Client Certificate from the TLS connection.
 See Section 5.5.

{
 "ietf‑voucher‑request:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created‑on": "2017‑01‑01T00:00:02.000Z",
 "idevid‑issuer": "base64encodedvalue=="
 "serial‑number": "JADA123456789"
 "prior‑signed‑voucher‑request": "base64encodedvalue=="
 }
}

 Example (3) The following example illustrates a registrar voucher-

 request. The 'prior-signed-voucher-request' leaf is not
 populated with the pledge's voucher-request nor is the
 nonce leaf. This form might be used by a registrar
 requesting a voucher when the pledge can not communicate
 with the registrar (such as when it is powered down, or
 still in packaging), and therefore could not submit a
 nonce. This scenario is most useful when the registrar
 is aware that it will not be able to reach the MASA
 during deployment. See Section 5.5.

{
 "ietf‑voucher‑request:voucher": {
 "created‑on": "2017‑01‑01T00:00:02.000Z",
 "idevid‑issuer": "base64encodedvalue=="
 "serial‑number": "JADA123456789"
 }
}

 Example (4) The following example illustrates a registrar voucher-

 request. The 'prior-signed-voucher-request' leaf is not
 populated with the pledge voucher-request because the
 pledge did not sign its own request. This form might be
 used when more constrained pledges are being deployed.
 The nonce is populated from the pledge's request. See
 Section 5.5.

{
 "ietf‑voucher‑request:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created‑on": "2017‑01‑01T00:00:02.000Z",
 "idevid‑issuer": "base64encodedvalue=="
 "serial‑number": "JADA123456789"
 }
}

3.4. YANG Module

 Following is a YANG [RFC7950] module formally extending the [RFC8366]
 voucher into a voucher-request.

<CODE BEGINS> file "ietf‑voucher‑request@2018‑02‑14.yang"
module ietf‑voucher‑request {
 yang‑version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑voucher‑request";
 prefix "vch";

 import ietf‑restconf {
 prefix rc;
 description "This import statement is only present to access
 the yang‑data extension defined in RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
 }

 import ietf‑voucher {
 prefix v;
 description "This module defines the format for a voucher,
 which is produced by a pledge's manufacturer or
 delegate (MASA) to securely assign a pledge to
 an 'owner', so that the pledge may establish a secure
 conn ection to the owner's network infrastructure";

 reference "RFC YYYY: Voucher Profile for Bootstrapping Protocols";
 }

 organization

 "IETF ANIMA Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Toerless Eckert
 <mailto:tte+ietf@cs.fau.de>";

 description

 "This module defines the format for a voucher request.

It is a superset of the voucher itself.
This artifact may be optionally signed.
It provides content to the MASA for consideration
during a voucher request.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in
the module text are to be interpreted as described in RFC 2119.

Copyright (c) 2017 IETF Trust and the persons identified as
authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

revision "2018‑02‑14" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher Profile for Bootstrapping Protocols";
}

// Top‑level statement
rc:yang‑data voucher‑request‑artifact {
 uses voucher‑request‑grouping;
}

// Grouping defined for future usage
grouping voucher‑request‑grouping {
 description
 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher‑artifact‑grouping {
 refine "voucher/created‑on" {
 mandatory false;
 }

 refine "voucher/pinned‑domain‑cert" {
 mandatory false;
 }

 refine "voucher/domain-cert-revocation-checks" {

 description "The domain‑cert‑revocation‑checks field
 is not valid in a voucher request, and
 any occurance MUST be ignored";
}

refine "voucher/assertion" {
 mandatory false;
 description "Any assertion included in voucher
 requests SHOULD be ignored by the MASA.";
}

augment "voucher" {
 description
 "Adds leaf nodes appropriate for requesting vouchers.";

 leaf prior‑signed‑voucher‑request {
 type binary;
 description
 "If it is necessary to change a voucher, or re‑sign and
 forward a voucher that was previously provided along a
 protocol path, then the previously signed voucher SHOULD be
 included in this field.

 For example, a pledge might sign a voucher request
 with a proximity‑registrar‑cert, and the registrar
 then includes it in the prior‑signed‑voucher‑request field.
 This is a simple mechanism for a chain of trusted
 parties to change a voucher request, while
 maintaining the prior signature information.

 The Registrar and MASA MAY examine the prior signed
 voucher information for the
 purposes of policy decisions. For example this information
 could be useful to a MASA to determine that both pledge and
 registrar agree on proximity assertions. The MASA SHOULD
 remove all prior‑signed‑voucher‑request information when
 signing a voucher for imprinting so as to minimize the
 final voucher size.";
 }

 leaf proximity‑registrar‑cert {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by RFC 5280,
 Section 4 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU‑T X.690.

 The first certificate in the Registrar TLS server

 certificate_list sequence (see [RFC5246]) presented by
 the Registrar to the Pledge. This MUST be populated in a
 Pledge's voucher request if a proximity assertion is
 requested.";
 }
 }
 }
}

}

<CODE ENDS>

4. Proxying details (Pledge - Proxy - Registrar)

 The role of the proxy is to facilitate communications. The proxy
 forwards packets between the pledge and a registrar that has been
 provisioned to the proxy via GRASP discovery.

 This section defines a stateful proxy mechanism which is refered to
 as a "circuit" proxy.

 The proxy does not terminate the TLS handshake: it passes streams of
 bytes onward without examination. A proxy MUST NOT assume any
 specific TLS version.

 A Registrar can directly provide the proxy announcements described
 below, in which case the announced port can point directly to the
 Registrar itself. In this scenario the pledge is unaware that there
 is no proxing occuring. This is useful for Registrars servicing
 pledges on directly connected networks.

 As a result of the proxy Discovery process in Section 4.1.1, the port
 number exposed by the proxy does not need to be well known, or
 require an IANA allocation.

 During the discovery of the Registrar by the Join Proxy, the Join
 Proxy will also learn which kinds of proxy mechanisms are available.
 This will allow the Join Proxy to use the lowest impact mechanism
 which the Join Proxy and Registrar have in common.

 In order to permit the proxy functionality to be implemented on the
 maximum variety of devices the chosen mechanism SHOULD use the
 minimum amount of state on the proxy device. While many devices in
 the ANIMA target space will be rather large routers, the proxy
 function is likely to be implemented in the control plane CPU of such
 a device, with available capabilities for the proxy function similar
 to many class 2 IoT devices.

 The document [I-D.richardson-anima-state-for-joinrouter] provides a
 more extensive analysis and background of the alternative proxy
 methods.

4.1. Pledge discovery of Proxy

 The result of discovery is a logical communication with a registrar,
 through a proxy. The proxy is transparent to the pledge. The
 communication between the pledge is over IPv6 Link-Local addresses.

 To discover the proxy the pledge performs the following actions:

 1. MUST: Obtains a local address using IPv6 methods as described in
 [RFC4862] IPv6 Stateless Address AutoConfiguration. Use of
 [RFC4941] temporary addresses is encouraged. To limit pervasive
 monitoring ([RFC7258]), a new temporary address MAY use a short
 lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short).
 Pledges will generally prefer use of IPv6 Link-Local addresses,
 and discovery of proxy will be by Link-Local mechanisms. IPv4
 methods are described in Appendix A

 2. MUST: Listen for GRASP M_FLOOD ([I-D.ietf-anima-grasp])
 announcements of the objective: "AN_Proxy". See section
 Section 4.1.1 for the details of the objective. The pledge MAY
 listen concurrently for other sources of information, see
 Appendix B.

 Once a proxy is discovered the pledge communicates with a registrar
 through the proxy using the bootstrapping protocol defined in
 Section 5.

 While the GRASP M_FLOOD mechanism is passive for the pledge, the
 optional other methods (mDNS, and IPv4 methods) are active. The
 pledge SHOULD run those methods in parallel with listening to for the
 M_FLOOD. The active methods SHOULD exponentially back-off to a
 maximum of one hour to avoid overloading the network with discovery
 attempts. Detection of change of physical link status (ethernet
 carrier for instance) SHOULD reset the exponential back off.

 The pledge could discover more than one proxy on a given physical
 interface. The pledge can have a multitude of physical interfaces as
 well: a layer-2/3 ethernet switch may have hundreds of physical
 ports.

 Each possible proxy offer SHOULD be attempted up to the point where a
 voucher is received: while there are many ways in which the attempt
 may fail, it does not succeed until the voucher has been validated.
 The connection attempts via a single proxy SHOULD exponentially back-
 off to a maximum of one hour to avoid overloading the network
 infrastructure. The back-off timer for each MUST be independent of
 other connection attempts.

 Connection attempts SHOULD be run in parallel to avoid head of queue
 problems wherein an attacker running a fake proxy or registrar could
 perform protocol actions intentionally slowly. The pledge SHOULD
 continue to listen to for additional GRASP M_FLOOD messages during
 the connection attempts.

 Once a connection to a registrar is established (e.g. establishment
 of a TLS session key) there are expectations of more timely
 responses, see Section 5.2.

 Once all discovered services are attempted (assuming that none
 succeeded) the device MUST return to listening for GRASP M_FLOOD. It
 SHOULD periodically retry the manufacturer specific mechanisms. The
 pledge MAY prioritize selection order as appropriate for the
 anticipated environment.

4.1.1. Proxy GRASP announcements

 A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.
 This announcement can be within the same message as the ACP
 announcement detailed in [I-D.ietf-anima-autonomic-control-plane].
 The M_FLOOD is formatted as follows:

[M_FLOOD, 12340815, h'fe800000000000000000000000000001', 180000,
 ["AN_Proxy", 4, 1, ""],
 [O_IPv6_LOCATOR,
 h'fe800000000000000000000000000001', IPPROTO_TCP, 4443]]

 Figure 6b: Proxy Discovery

 The formal CDDL [I-D.ietf-cbor-cddl] definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

 objective = ["AN_Proxy", objective-flags, loop-count,

 objective-value]

ttl = 180000 ; 180,000 ms (3 minutes)
initiator = ACP address to contact Registrar
objective‑flags = sync‑only ; as in GRASP spec
sync‑only = 4 ; M_FLOOD only requires synchronization
loop‑count = 1 ; one hop only
objective‑value = any ; none

locator‑option = [O_IPv6_LOCATOR, ipv6‑address,
 transport‑proto, port‑number]
ipv6‑address = the v6 LL of the Proxy
transport‑proto /= IPPROTO_TCP ; note this can be any value from the
 ; IANA protocol registry, as per
 ; [GRASP] section 2.9.5.1, note 3.
port‑number = selected by Proxy

 Figure 6c: AN_Proxy CDDL

 On a small network the Registrar MAY include the GRASP M_FLOOD
 announcements to locally connected networks.

 The $transport-proto above indicates the method that the pledge-
 proxy-registrar will use. The TCP method described here is
 mandatory, and other proxy methods, such as CoAP methods not defined
 in this document are optional. Other methods MUST NOT be enabled
 unless the Join Registrar ASA indicates support for them in it's own
 announcement.

4.2. CoAP connection to Registrar

 The use of CoAP to connect from pledge to registrar is out of scope
 for this document, and is described in future work. See
 [I-D.ietf-anima-constrained-voucher].

4.3. Proxy discovery and communication of Registrar

 The registrar SHOULD announce itself so that proxies can find it and
 determine what kind of connections can be terminated.

 The registrar announces itself using ACP instance of GRASP using
 M_FLOOD messages. ANI proxies MUST support GRASP discovery of
 registrars.

 The M_FLOOD is formatted as follows:

[M_FLOOD, 12340815, h'fda379a6f6ee00000200000064000001', 180000,
 ["AN_join_registrar", 4, 255, "EST‑TLS"],
 [O_IPv6_LOCATOR,
 h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 80]]

 Figure 7a: Registrar Discovery

 The formal CDDL definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

 objective = ["AN_join_registrar", objective-flags, loop-count,

 objective-value]

initiator = ACP address to contact Registrar
objective‑flags = sync‑only ; as in GRASP spec
sync‑only = 4 ; M_FLOOD only requires synchronization
loop‑count = 255 ; mandatory maximum
objective‑value = text ; name of the (list of) of supported
 ; protocols: "EST‑TLS" for RFC7030.

 Figure 7: AN_join_registrar CDDL

 The M_FLOOD message MUST be sent periodically. The period is subject
 to network administrator policy (EST server configuration). It must
 be sufficiently low that the aggregate amount of periodic M_FLOODs
 from all EST servers causes negligible traffic across the ACP.

 Here are some examples of locators for illustrative purposes. Only
 the first one (transport-protocol = 6, TCP) is defined in this
 document and is mandatory to implement.

locator1 = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]
locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

 A protocol of 6 indicates that TCP proxying on the indicated port is
 desired.

 Registrars MUST announce the set of protocols that they support.
 They MUST support TCP traffic.

 Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

 Registrars MUST support ANI TLS circuit proxy and therefore BRSKI
 across HTTPS/TLS native across the ACP.

 In the ANI, the Autonomic Control Plane (ACP) secured instance of
 GRASP ([I-D.ietf-anima-grasp]) MUST be used for discovery of ANI
 registrar ACP addresses and ports by ANI proxies. The TCP leg of the
 proxy connection between ANI proxy and ANI registrar therefore also
 runs across the ACP.

5. Protocol Details (Pledge - Registrar - MASA)

 The pledge MUST initiate BRSKI after boot if it is unconfigured. The
 pledge MUST NOT automatically initiate BRSKI if it has been
 configured or is in the process of being configured.

 BRSKI is described as extensions to EST [RFC7030]. The goal of these
 extensions is to reduce the number of TLS connections and crypto
 operations required on the pledge. The registrar implements the
 BRSKI REST interface within the same "/.well-known" URI tree as the
 existing EST URIs as described in EST [RFC7030] section 3.2.2. The
 communication channel between the pledge and the registrar is
 referred to as "BRSKI-EST" (see Figure 1).

 The communication channel between the registrar and MASA is similarly
 described as extensions to EST within the same "/.well-known" tree.
 For clarity this channel is referred to as "BRSKI-MASA". (See
 Figure 1).

 MASA URI is "https://" iauthority "/.well-known/est".

 BRSKI uses existing CMS message formats for existing EST operations.
 BRSKI uses JSON [RFC7159] for all new operations defined here, and
 voucher formats.

 While EST section 3.2 does not insist upon use of HTTP 1.1 persistent
 connections, BRSKI-EST connections SHOULD use persistent connections.
 The intention of this guidance is to ensure the provisional TLS state
 occurs only once, and that the subsequent resolution of the provision
 state is not subject to a MITM attack during a critical phase.

 Summarized automation extensions for the BRSKI-EST flow are:

 o The pledge either attempts concurrent connections via each
 discovered proxy, or it times out quickly and tries connections in
 series, as explained at the end of Section 5.1.

 o The pledge provisionally accepts the registrar certificate during
 the TLS handshake as detailed in Section 5.1.

 o The pledge requests and validates a voucher using the new REST
 calls described below.

 o The pledge completes authentication of the server certificate as
 detailed in Section 5.6.1. This moves the BRSKI-EST TLS
 connection out of the provisional state.

 o Mandatory boostrap steps conclude with voucher status telemetry
 (see Section 5.7).

 The BRSKI-EST TLS connection can now be used for EST enrollment.

 The extensions for a registrar (equivalent to EST server) are:

 o Client authentication is automated using Initial Device Identity
 (IDevID) as per the EST certificate based client authentication.
 The subject field's DN encoding MUST include the "serialNumber"
 attribute with the device's unique serial number.

 o In the language of [RFC6125] this provides for a SERIALNUM-ID
 category of identifier that can be included in a certificate and
 therefore that can also be used for matching purposes. The
 SERIALNUM-ID whitelist is collated according to manufacturer trust
 anchor since serial numbers are not globally unique.

 o The registrar requests and validates the voucher from the MASA.

 o The registrar forwards the voucher to the pledge when requested.

 o The registrar performs log verifications in addition to local
 authorization checks before accepting optional pledge device
 enrollment requests.

5.1. BRSKI-EST TLS establishment details

 The pledge establishes the TLS connection with the registrar through
 the circuit proxy (see Section 4) but the TLS handshake is with the
 registrar. The BRSKI-EST pledge is the TLS client and the BRSKI-EST
 registrar is the TLS server. All security associations established
 are between the pledge and the registrar regardless of proxy
 operations.

 Establishment of the BRSKI-EST TLS connection is as specified in EST
 [RFC7030] section 4.1.1 "Bootstrap Distribution of CA Certificates"
 [RFC7030] wherein the client is authenticated with the IDevID
 certificate, and the EST server (the registrar) is provisionally
 authenticated with an unverified server certificate.

 The pledge maintains a security paranoia concerning the provisional
 state, and all data received, until a voucher is received and
 verified as specified in Section 5.6.1

 A Pledge that can connect to multiple registries concurrently, SHOULD
 do so. Some devices may be unable to do so for lack of threading, or
 resource issues. Concurrent connections defeat atttempts by a
 malicious proxy from causing a TCP Slowloris-like attack (see
 [slowloris]).

 A pledge that can not maintain as many connections as there are
 eligible proxies. If no connection is making process after 5 seconds
 then the pledge SHOULD drop the oldest connection and go on to a
 different proxy: the proxy that has been communicated with least
 recently. If there were no other proxies discovered, the pledge MAY
 continue to wait, as long as it is concurrently listening for new
 proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

 When the pledge bootstraps it makes a request for a voucher from a
 registrar.

 This is done with an HTTPS POST using the operation path value of
 "/.well-known/est/requestvoucher".

 The request media types are:

application/voucher‑cms+json The request is a "YANG‑defined JSON
 document that has been signed using a CMS structure" as described
 in Section 3 using the JSON encoding described in [RFC7951]. The
 pledge SHOULD sign the request using the Section 2.3 credential.

application/json The request is the "YANG‑defined JSON document" as
 described in Section 3 with the exception that it is not within a
 CMS structure. It is protected only by the TLS client
 authentication. This reduces the cryptographic requirements on
 the pledge.

 For simplicity the term 'voucher-request' is used to refer to either
 of these media types. Registrar impementations SHOULD anticipate
 future media types but of course will simply fail the request if
 those types are not yet known.

 The pledge populates the voucher-request fields as follows:

created‑on: Pledges that have a realtime clock are RECOMMENDED to
 populate this field. This provides additional information to the
 MASA.

nonce: The pledge voucher‑request MUST contain a cryptographically
 strong random or pseudo‑random number nonce. (see [RFC4086]) Doing
 so ensures Section 2.6.1 functionality. The nonce MUST NOT be
 reused for multiple bootstrapping attempts. (The registrar
 voucher‑request MAY omit the nonce as per Section 3.1)

proximity‑registrar‑cert: In a pledge voucher‑request this is the
 first certificate in the TLS server 'certificate_list' sequence
 (see [RFC5246]) presented by the registrar to the pledge. This
 MUST be populated in a pledge voucher‑request if the "proximity"
 assertion is populated.

 All other fields MAY be omitted in the pledge voucher-request.

 An example JSON payload of a pledge voucher-request is in Section 3.3
 Example 1.

 The registrar validates the client identity as described in EST
 [RFC7030] section 3.3.2. If the request is signed the registrar
 confirms that the associated 'proximity-registrar-cert' is correct.

5.3. Registrar Authorization of Pledge

 In a fully automated network all devices must be securely identified
 and authorized to join the domain.

 A Registrar accepts or declines a request to join the domain, based
 on the authenticated identity presented. Automated acceptance
 criteria include:

 o allow any device of a specific type (as determined by the X.509
 IDevID),

 o allow any device from a specific vendor (as determined by the
 X.509 IDevID),

 o allow a specific device from a vendor (as determined by the X.509
 IDevID) against a domain white list. (The mechanism for checking
 a shared white list potentially used by multiple Registrars is out
 of scope).

 If these validations fail the registrar SHOULD respond with an
 appropriate HTTP error code.

 If authorization is successful the registrar obtains a voucher from
 the MASA service (see Section 5.5) and returns that MASA signed
 voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS establishment details

 The BRSKI-MASA TLS connection is a 'normal' TLS connection
 appropriate for HTTPS REST interfaces. The registrar initiates the
 connection and uses the MASA URL obtained as described in Section 2.8
 for [RFC6125] authentication of the MASA.

 The primary method of registrar "authentication" by the MASA is
 detailed in Section 5.5. As detailed in Section 10 the MASA might
 find it necessary to request additional registrar authentication.

 The MASA and the registrars SHOULD be prepared to support TLS client
 certificate authentication and/or HTTP Basic or Digest authentication
 as described in RFC7030 for EST clients. This connection MAY also
 have no client authentication at all (Section 6.4)

 The authentication of the BRSKI-MASA connection does not affect the
 voucher-request process, as voucher-requests are already signed by
 the registrar. Instead, this authentication provides access control
 to the audit log.

 Implementors are advised that contacting the MASA is to establish a
 secured REST connection with a web service and that there are a
 number of authentication models being explored within the industry.
 Registrars are RECOMMENDED to fail gracefully and generate useful
 administrative notifications or logs in the advent of unexpected HTTP
 401 (Unauthorized) responses from the MASA.

5.5. Registrar Requests Voucher from MASA

 When a registrar receives a pledge voucher-request it in turn submits
 a registrar voucher-request to the MASA service via an HTTPS RESTful
 interface ([RFC7231]).

 This is done with an HTTP POST using the operation path value of
 "/.well-known/est/requestvoucher".

 The request media type is defined in [RFC8366] and is application/
 voucher-cms+json. It is a JSON document that has been signed using a
 CMS structure. The registrar MUST sign the registrar voucher-
 request. The entire registrar certificate chain, up to and including
 the Domain CA, MUST be included in the CMS structure.

 MASA impementations SHOULD anticipate future media types but of
 course will simply fail the request if those types are not yet known.

 The registrar populates the voucher-request fields as follows:

created‑on: Registrars are RECOMMENDED to populate this field. This
 provides additional information to the MASA.

nonce: This is the value from the pledge voucher‑request. The
 registrar voucher‑request MAY omit the nonce as per Section 3.1)

serial‑number: The serial number of the pledge the registrar would
 like a voucher for. The registrar determines this value by
 parsing the authenticated pledge IDevID certificate. See
 Section 2.3. The registrar MUST verify that the serial number
 field it parsed matches the serial number field the pledge
 provided in its voucher‑request. This provides a sanity check
 useful for detecting error conditions and logging. The registrar
 MUST NOT simply copy the serial number field from a pledge voucher
 request as that field is claimed but not certified.

idevid‑issuer: The idevid‑issuer value from the pledge certificate
 is included to ensure a statistically unique identity.

prior‑signed‑voucher‑request: If a signed pledge voucher‑request was
 received then it SHOULD be included in the registrar voucher‑
 request. (NOTE: what is included is the complete pledge voucher‑
 request, inclusive of the 'assertion', 'proximity‑registrar‑cert',
 etc wrapped by the pledge's original signature). If a signed
 voucher‑request was not recieved from the pledge then this leaf is
 omitted from the registrar voucher request.

 A nonceless registrar voucher-request MAY be submitted to the MASA.
 Doing so allows the registrar to request a voucher when the pledge is
 offline, or when the registrar anticipates not being able to connect
 to the MASA while the pledge is being deployed. Some use cases
 require the registrar to learn the appropriate IDevID SerialNumber
 field from the physical device labeling or from the sales channel
 (out-of-scope for this document).

 All other fields MAY be omitted in the registrar voucher-request.

 Example JSON payloads of registrar voucher-requests are in
 Section 3.3 Examples 2 through 4.

 The MASA verifies that the registrar voucher-request is internally
 consistent but does not necessarily authenticate the registrar
 certificate since the registrar is not known to the MASA in advance.
 The MASA performs the actions and validation checks described in the
 following sub-sections before issuing a voucher.

5.5.1. MASA renewal of expired vouchers

 As described in [RFC8366] vouchers are normally short lived to avoid
 revocation issues. If the request is for a previous (expired)
 voucher using the same registrar then the request for a renewed
 voucher SHOULD be automatically authorized. The MASA has sufficient
 information to determine this by examining the request, the registrar
 authentication, and the existing audit log. The issuance of a
 renewed voucher is logged as detailed in Section 5.6.

 To inform the MASA that existing vouchers are not to be renewed one
 can update or revoke the registrar credentials used to authorize the
 request (see Section 5.5.3 and Section 5.5.4). More flexible methods
 will likely involve sales channel integration and authorizations
 (details are out-of-scope of this document).

5.5.2. MASA verification of voucher-request signature consistency

 The MASA MUST verify that the registrar voucher-request is signed by
 a registrar. This is confirmed by verifying that the id-kp-cmcRA
 extended key usage extension field (as detailed in EST RFC7030
 section 3.6.1) exists in the certificate of the entity that signed
 the registrar voucher-request. This verification is only a
 consistency check that the unauthenticated domain CA intended the
 voucher-request signer to be a registrar. Performing this check
 provides value to the domain PKI by assuring the domain administrator
 that the MASA service will only respect claims from authorized
 Registration Authorities of the domain.

 The MASA verifies that the domain CA certificate is included in the
 CMS structure as detailed in Section 5.5.

5.5.3. MASA authentication of registrar (certificate)

 If a nonceless voucher-request is submitted the MASA MUST
 authenticate the registrar as described in either EST [RFC7030]
 section 3.2, section 3.3, or by validating the registrar's
 certificate used to sign the registrar voucher-request. Any of these
 methods reduce the risk of DDoS attacks and provide an authenticated
 identity as an input to sales channel integration and authorizations
 (details are out-of-scope of this document).

 In the nonced case, validation of the registrar MAY be omitted if the
 device policy is to accept audit-only vouchers.

5.5.4. MASA revocation checking of registrar (certificate)

 As noted in Section 5.5.3 the MASA performs registrar authentication
 in a subset of situations (e.g. nonceless voucher requests). Normal
 PKIX revocation checking is assumed during either EST client
 authentication or voucher-request signature validation. Similarly,
 as noted in Section 5.5.2, the MASA performs normal PKIX revocation
 checking during signature consistency checks (a signature by a
 registrar certificate that has been revoked is an inconsistency).

5.5.5. MASA verification of pledge prior-signed-voucher-request

 The MASA MAY verify that the registrar voucher-request includes the
 'prior-signed-voucher-request' field. If so the prior-signed-
 voucher-request MUST include a 'proximity-registrar-cert' that is
 consistent with the certificate used to sign the registrar voucher-
 request. Additionally the voucher-request serial-number leaf MUST
 match the pledge serial-number that the MASA extracts from the
 signing certificate of the prior-signed-voucher-request. The MASA is
 aware of which pledges support signing of their voucher requests and
 can use this information to confirm proximity of the pledge with the
 registrar, thus ensuring that the BRSKI-EST TLS connection has no
 man-in-the-middle.

 If these checks succeed the MASA updates the voucher and audit log
 assertion leafs with the "proximity" assertion.

5.5.6. MASA pinning of registrar

 The registrar's certificate chain is extracted from the signature
 method. The chain includes the domain CA certificate as specified in
 Section 5.5. This certificate is used to populate the "pinned-
 domain-cert" of the voucher being issued. The domainID (e.g., hash
 of the root public key) is determined from the pinned-domain-cert and
 is used to update the audit log.

5.5.7. MASA nonce handling

 The MASA does not verify the nonce itself. If the registrar voucher-
 request contains a nonce, and the prior-signed-voucher-request is
 exist, then the MASA MUST verify that the nonce is consistent.
 (Recall from above that the voucher-request might not contain a
 nonce, see Section 5.5 and Section 5.5.3).

 The MASA MUST use the nonce from the registrar voucher-request for
 the resulting voucher and audit log. The prior-signed-voucher-
 request nonce is ignored during this operation.

5.6. MASA and Registrar Voucher Response

 The MASA voucher response to the registrar is forwarded without
 changes to the pledge; therefore this section applies to both the
 MASA and the registrar. The HTTP signaling described applies to both
 the MASA and registrar responses. A registrar either caches prior
 MASA responses or dynamically requests a new voucher based on local
 policy (it does not generate or sign a voucher).

 If the voucher-request is successful, the server (MASA responding to
 registrar or registrar responding to pledge) response MUST contain an
 HTTP 200 response code. The server MUST answer with a suitable 4xx
 or 5xx HTTP [RFC2616] error code when a problem occurs. In this
 case, the response data from the MASA MUST be a plaintext human-
 readable (ASCII, English) error message containing explanatory
 information describing why the request was rejected.

 The registrar MAY respond with an HTTP 202 ("the request has been
 accepted for processing, but the processing has not been completed")
 as described in EST [RFC7030] section 4.2.3 wherein the client "MUST
 wait at least the specified 'Retry-After' time before repeating the
 same request". (see [RFC7231] section 6.6.4) The pledge is
 RECOMMENDED to provide local feedback (blinked LED etc) during this
 wait cycle if mechanisms for this are available. To prevent an
 attacker registrar from significantly delaying bootstrapping the
 pledge MUST limit the 'Retry-After' time to 60 seconds. Ideally the
 pledge would keep track of the appropriate Retry-After header values
 for any number of outstanding registrars but this would involve a
 state table on the pledge. Instead the pledge MAY ignore the exact
 Retry-After value in favor of a single hard coded value (a registrar
 that is unable to complete the transaction after the first 60 seconds
 has another chance a minute later). A pledge SHOULD only maintain a
 202 retry-state for up to 4 days, which is longer than a long
 weekend, after which time the enrollment attempt fails and the pledge
 returns to discovery state.

 In order to avoid infinite redirect loops, which a malicious
 registrar might do in order to keep the pledge from discovering the
 correct registrar, the pledge MUST NOT follow more than one
 redirection (3xx code) to another web origins. EST supports
 redirection but requires user input; this change allows the pledge to
 follow a single redirection without a user interaction.

 A 403 (Forbidden) response is appropriate if the voucher-request is
 not signed correctly, stale, or if the pledge has another outstanding
 voucher that cannot be overridden.

 A 404 (Not Found) response is appropriate when the request is for a
 device that is not known to the MASA.

 A 406 (Not Acceptable) response is appropriate if a voucher of the
 desired type or using the desired algorithms (as indicated by the
 Accept: headers, and algorithms used in the signature) cannot be
 issued such as because the MASA knows the pledge cannot process that
 type. The registrar SHOULD use this response if it determines the
 pledge is unacceptable due to inventory control, MASA audit logs, or
 any other reason.

 A 415 (Unsupported Media Type) response is approriate for a request
 that has a voucher encoding that is not understood.

 The response media type is:

application/voucher‑cms+json The response is a "YANG‑defined JSON
 document that has been signed using a CMS structure" as described
 in [RFC8366] using the JSON encoded described in [RFC7951]. The
 MASA MUST sign the response.

 The syntactic details of vouchers are described in detail in
 [RFC8366]. For example, the voucher consists of:

{
 "ietf‑voucher:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "assertion": "logging"
 "pinned‑domain‑cert": "base64encodedvalue=="
 "serial‑number": "JADA123456789"
 }
}

 The MASA populates the voucher fields as follows:

nonce: The nonce from the pledge if available. See Section 5.5.7.

assertion: The method used to verify assertion. See Section 5.5.5.

pinned‑domain‑cert: The domain CA cert. See Section 5.5.6. This
 figure is illustrative, for an example, see Appendix D.2

serial‑number: The serial‑number as provided in the voucher‑request.
 Also see Section 5.5.5.

domain‑cert‑revocation‑checks: Set as appropriate for the pledge's
 capabilities and as documented in [RFC8366]. The MASA MAY set
 this field to 'false' since setting it to 'true' would require

 that revocation information be available to the pledge and this
 document does not make normative requirements for [RFC6961] or
 equivalent integrations.

expires‑on: This is set for nonceless vouchers. The MASA ensures
 the voucher lifetime is consistent with any revocation or pinned‑
 domain‑cert consistency checks the pledge might perform. See
 section Section 2.6.1. There are three times to consider: (a) a
 configured voucher lifetime in the MASA, (b) the expiry time for
 the registrar's certificate, (c) any certificate revocation
 information (CRL) lifetime. The expires‑on field SHOULD be before
 the earliest of these three values. Typically (b) will be some
 significant time in the future, but (c) will typically be short
 (on the order of a week or less). The RECOMMENDED period for (a)
 is on the order of 20 minutes, so it will typically determine the
 lifespan of the resulting voucher. 20 minutes is sufficent time
 to reach the post‑provisional state in the pledge, at which point
 there is an established trust relationship between pledge and
 registrar. The subsequent operations can take as long as required
 from that point onwards. The lifetime of the voucher has no
 impact on the lifespan of the ownership relationship.

 Whenever a voucher is issued the MASA MUST update the audit log
 appropriately. The internal state requirements to maintain the audit
 log are out-of-scope. See Section 5.8.1 for a discussion of
 reporting the log to a registrar.

5.6.1. Pledge voucher verification

 The pledge MUST verify the voucher signature using the manufacturer
 installed trust anchor(s) associated with the manufacturer's MASA
 (this is likely included in the pledge's firmware). Management of
 the manufacter installed trust anchor(s) is out-of-scope of this
 document; this protocol does not update these trust anchor(s).

 The pledge MUST verify the serial-number field of the signed voucher
 matches the pledge's own serial-number.

 The pledge MUST verify that the voucher nonce field is accurate and
 matches the nonce the pledge submitted to this registrar, or that the
 voucher is nonceless (see Section 6.2).

 The pledge MUST be prepared to parse and fail gracefully from a
 voucher response that does not contain a 'pinned-domain-cert' field.
 The pledge MUST be prepared to ignore additional fields that it does
 not recognize.

5.6.2. Pledge authentication of provisional TLS connection

 The 'pinned-domain-cert' element of the voucher contains the domain
 CA's public key. The pledge MUST use the 'pinned-domain-cert' trust
 anchor to immediately complete authentication of the provisional TLS
 connection.

 If a registrar's credentials cannot be verified using the pinned-
 domain-cert trust anchor from the voucher then the TLS connection is
 immediately discarded and the pledge abandons attempts to bootstrap
 with this discovered registrar. The pledge SHOULD send voucher
 status telemetry (described below) before closing the TLS connection.
 The pledge MUST attempt to enroll using any other proxies it has
 found. It SHOULD return to the same proxy again after attempting
 with other proxies. Attempts should be attempted in the exponential
 backoff described earlier. Attempts SHOULD be repeated as failure
 may be the result of a temporary inconsistently (an inconsistently
 rolled registrar key, or some other mis-configuration). The
 inconsistently could also be the result an active MITM attack on the
 EST connection.

 The registrar MUST use a certificate that chains to the pinned-
 domain-cert as its TLS server certificate.

 The pledge's PKIX path validation of a registrar certificate's
 validity period information is as described in Section 2.6.1. Once
 the PKIX path validation is successful the TLS connection is no
 longer provisional.

 The pinned-domain-cert MAY be installed as an trust anchor for future
 operations such as enrollment (e.g. [RFC7030] as recommended) or
 trust anchor management or raw protocols that do not need full PKI
 based key management. It can be used to authenticate any dynamically
 discovered EST server that contain the id-kp-cmcRA extended key usage
 extension as detailed in EST RFC7030 section 3.6.1; but to reduce
 system complexity the pledge SHOULD avoid additional discovery
 operations. Instead the pledge SHOULD communicate directly with the
 registrar as the EST server. The 'pinned-domain-cert' is not a
 complete distribution of the [RFC7030] section 4.1.3 CA Certificate
 Response, which is an additional justification for the recommendation
 to proceed with EST key management operations. Once a full CA
 Certificate Response is obtained it is more authoritative for the
 domain than the limited 'pinned-domain-cert' response.

5.7. Pledge BRSKI Status Telemetry

 The domain is expected to provide indications to the system
 administrators concerning device lifecycle status. To facilitate
 this it needs telemetry information concerning the device's status.

 To indicate pledge status regarding the voucher, the pledge MUST post
 a status message.

 The posted data media type: application/json

 The client HTTP POSTs the following to the server at the EST well
 known URI "/voucher_status". The Status field indicates if the
 voucher was acceptable. If it was not acceptable the Reason string
 indicates why. In the failure case this message may be sent to an
 unauthenticated, potentially malicious registrar and therefore the
 Reason string SHOULD NOT provide information beneficial to an
 attacker. The operational benefit of this telemetry information is
 balanced against the operational costs of not recording that an
 voucher was ignored by a client the registrar expected to continue
 joining the domain.

{
 "version":"1",
 "Status":FALSE /* TRUE=Success, FALSE=Fail"
 "Reason":"Informative human readable message"
 "reason‑context": { additional JSON }
}

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error. The client ignores any response. Within the
 server logs the server SHOULD capture this telemetry information.

 The reason-context attribute is an arbitrary JSON object (literal
 value or hash of values) which provides additional information
 specific to this pledge. The contents of this field are not subject
 to standardization.

 Additional standard JSON fields in this POST MAY be added, see
 Section 7.3.

5.8. Registrar audit log request

 After receiving the pledge status telemetry Section 5.7, the
 registrar SHOULD request the MASA audit log from the MASA service.

 This is done with an HTTP GET using the operation path value of
 "/.well-known/est/requestauditlog".

 The registrar SHOULD HTTP POST the same registrar voucher-request as
 it did when requesting a voucher. It is posted to the
 /requestauditlog URI instead. The "idevid-issuer" and "serial-
 number" informs the MASA which log is requested so the appropriate
 log can be prepared for the response. Using the same media type and
 message minimizes cryptographic and message operations although it
 results in additional network traffic. The relying MASA
 implementation MAY leverage internal state to associate this request
 with the original, and by now already validated, voucher-request so
 as to avoid an extra crypto validation.

 A registrar MAY request logs at future times. If the registrar
 generates a new request then the MASA is forced to perform the
 additional cryptographic operations to verify the new request.

 A MASA that receives a request for a device that does not exist, or
 for which the requesting owner was never an owner returns an HTTP 404
 ("Not found") code.

 Rather than returning the audit log as a response to the POST (with a
 return code 200), the MASA MAY instead return a 201 ("Created")
 RESTful response ([RFC7231] section 7.1) containing a URL to the
 prepared (and easily cachable) audit response.

 In order to avoid enumeration of device audit logs, MASA that return
 URLs SHOULD take care to make the returned URL unguessable. For
 instance, rather than returning URLs containing a database number
 such as https://example.com/auditlog/1234 or the EUI of the device
 such https://example.com/auditlog/10-00-00-11-22-33, the MASA SHOULD
 return a randomly generated value (a "slug" in web parlance). The
 value is used to find the relevant database entry.

 A MASA that returns a code 200 MAY also include a Location: header
 for future reference by the registrar.

 The request media type is:

application/voucher‑cms+json The request is a "YANG‑defined JSON
 document that has been signed using a CMS structure" as described
 in Section 3 using the JSON encoded described in [RFC7951]. The
 registrar MUST sign the request. The entire registrar certificate
 chain, up to and including the Domain CA, MUST be included in the
 CMS structure.

5.8.1. MASA audit log response

 A log data file is returned consisting of all log entries associated
 with the the device selected by the IDevID presented in the request.
 The audit log may be truncated of old or repeated values as explained
 below. The returned data is in JSON format ([RFC7951]), and the
 Content-Type SHOULD be "application/json". For example:

{
 "version":"1",
 "events":[
 {
 "date":"<date/time of the entry>",
 "domainID":"<domainID extracted from voucher‑request>",
 "nonce":"<any nonce if supplied (or the exact string 'NULL')>"
 "assertion":"<the value from the voucher assertion leaf>"
 "truncated":"<the number of domainID entries truncated>"
 },
 {
 "date":"<date/time of the entry>",
 "domainID":"<anotherDomainID extracted from voucher‑request>",
 "nonce":"<any nonce if supplied (or the exact string 'NULL')>"
 "assertion":"<the value from the voucher assertion leaf>"
 }
],
 "truncation": {
 "nonced duplicates": "<total number of entries truncated>",
 "nonceless duplicates": "<total number of entries truncated>",
 "arbitrary": "<number of domainID entries removed entirely>"
 }
}

 Distribution of a large log is less than ideal. This structure can
 be optimized as follows: Nonced or Nonceless entries for the same
 domainID MAY be truncated from the log leaving only the single most
 recent nonced or nonceless entry for that domainID. In the case of
 truncation the 'event' truncation value SHOULD contain a count of the
 number of events for this domainID that were truncated. The log
 SHOULD NOT be further reduced but there could exist operational
 situation where maintaining the full log is not possible. In such
 situations the log MAY be arbitrarily truncated for length, with the
 number of removed entries indicated as 'arbitrary'.

 If the truncation count exceeds 1024 then the MASA MAY use this value
 without further incrementing it.

 A log where duplicate entries for the same domain have been truncated
 ("nonced duplicates" and/or "nonceless duplicates) could still be
 acceptable for informed decisions. A log that has had "arbitrary"
 truncations is less acceptable but manufacturer transparency is
 better than hidden truncations.

 This document specifies a simple log format as provided by the MASA
 service to the registrar. This format could be improved by
 distributed consensus technologies that integrate vouchers with
 technologies such as block-chain or hash trees or optimized logging
 approaches. Doing so is out of the scope of this document but is an
 anticipated improvement for future work. As such, the registrar
 client SHOULD anticipate new kinds of responses, and SHOULD provide
 operator controls to indicate how to process unknown responses.

5.8.2. Registrar audit log verification

 Each time the Manufacturer Authorized Signing Authority (MASA) issues
 a voucher, it places it into the audit log for that device. The
 details are described in Section 5.8. The contents of the audit log
 can express a variety of trust levels, and this section explains what
 kind of trust a registrar can derive from the entries.

 While the audit log provides a list of vouchers that were issued by
 the MASA, the vouchers are issued in response to voucher-requests,
 and it is the contents of the voucher-requests which determines how
 meaningful the audit log entries are.

 A registrar SHOULD use the log information to make an informed
 decision regarding the continued bootstrapping of the pledge. The
 exact policy is out of scope of this document as it depends on the
 security requirements within the registrar domain. Equipment that is
 purchased pre-owned can be expected to have an extensive history.
 The following dicussion is provided to help explain the value of each
 log element:

date: The date field provides the registrar an opportunity to divide
 the log around known events such as the purchase date. Depending
 on context known to the registrar or administrator evens before/
 after certain dates can have different levels of importance. For
 example for equipment that is expected to be new, and thus have no
 history, it would be a surprise to find prior entries.

domainID: If the log includes an unexpected domainID then the pledge
 could have imprinted on an unexpected domain. The registrar can
 be expected to use a variety of techniques to define "unexpected"
 ranging from white lists of prior domains to anomoly detection
 (e.g. "this device was previously bound to a different domain than
 any other device deployed"). Log entries can also be compared
 against local history logs in search of discrepancies (e.g. "this

 device was re-deployed some number of times internally but the
 external audit log shows additional re-deployments our internal
 logs are unaware of").

nonce: Nonceless entries mean the logged domainID could
 theoretically trigger a reset of the pledge and then take over
 management by using the existing nonceless voucher.

assertion: The assertion leaf in the voucher and audit log indicates
 why the MASA issued the voucher. A "verified" entry means that
 the MASA issued the associated voucher as a result of positive
 verification of ownership but this can still be problematic for
 registrar's that expected only new (not pre‑owned) pledges. A
 "logged" assertion informs the registrar that the prior vouchers
 were issued with minimal verification. A "proximity" assertion
 assures the registrar that the pledge was truly communicating with
 the prior domain and thus provides assurance that the prior domain
 really has deployed the pledge.

 A relatively simple policy is to white list known (internal or
 external) domainIDs and to require all vouchers to have a nonce and/
 or require that all nonceless vouchers be from a subset (e.g. only
 internal) domainIDs. A simple action is to revoke any locally issued
 credentials for the pledge in question or to refuse to forward the
 voucher. A registrar MAY be configured to ignore the history of the
 device but it is RECOMMENDED that this only be configured if hardware
 assisted NEA [RFC5209] is supported.

5.9. EST Integration for PKI bootstrapping

 The pledge SHOULD follow the BRSKI operations with EST enrollment
 operations including "CA Certificates Request", "CSR Attributes" and
 "Client Certificate Request" or "Server-Side Key Generation", etc.
 This is a relatively seamless integration since BRSKI REST calls
 provide an automated alternative to the manual bootstrapping method
 described in [RFC7030]. As noted above, use of HTTP 1.1 persistent
 connections simplifies the pledge state machine.

 Although EST allows clients to obtain multiple certificates by
 sending multiple CSR requests BRSKI mandates use of the CSR
 Attributes request and mandates that the registrar validate the CSR
 against the expected attributes. This implies that client requests
 will "look the same" and therefore result in a single logical
 certificate being issued even if the client were to make multiple
 requests. Registrars MAY contain more complex logic but doing so is
 out-of-scope of this specification. BRSKI does not signal any
 enhancement or restriction to this capability.

5.9.1. EST Distribution of CA Certificates

 The pledge SHOULD request the full EST Distribution of CA
 Certificates message. See RFC7030, section 4.1.

 This ensures that the pledge has the complete set of current CA
 certificates beyond the pinned-domain-cert (see Section 5.6.1 for a
 discussion of the limitations inherent in having a single certificate
 instead of a full CA Certificates response.) Although these
 limitations are acceptable during initial bootstrapping, they are not
 appropriate for ongoing PKIX end entity certificate validation.

5.9.2. EST CSR Attributes

 Automated bootstrapping occurs without local administrative
 configuration of the pledge. In some deployments it is plausible
 that the pledge generates a certificate request containing only
 identity information known to the pledge (essentially the X.509
 IDevID information) and ultimately receives a certificate containing
 domain specific identity information. Conceptually the CA has
 complete control over all fields issued in the end entity
 certificate. Realistically this is operationally difficult with the
 current status of PKI certificate authority deployments, where the
 CSR is submitted to the CA via a number of non-standard protocols.
 Even with all standardized protocols used, it could operationally be
 problematic to expect that service specific certificate fields can be
 created by a CA that is likely operated by a group that has no
 insight into different network services/protocols used. For example,
 the CA could even be outsourced.

 To alleviate these operational difficulties, the pledge MUST request
 the EST "CSR Attributes" from the EST server and the EST server needs
 to be able to reply with the attributes necessary for use of the
 certificate in its intended protocols/services. This approach allows
 for minimal CA integrations and instead the local infrastructure (EST
 server) informs the pledge of the proper fields to include in the
 generated CSR. This approach is beneficial to automated boostrapping
 in the widest number of environments.

 If the hardwareModuleName in the X.509 IDevID is populated then it
 SHOULD by default be propagated to the LDevID along with the
 hwSerialNum. The EST server SHOULD support local policy concerning
 this functionality.

 In networks using the BRSKI enrolled certificate to authenticate the
 ACP (Autonomic Control Plane), the EST attributes MUST include the
 "ACP information" field. See
 [I-D.ietf-anima-autonomic-control-plane] for more details.

 The registrar MUST also confirm that the resulting CSR is formatted
 as indicated before forwarding the request to a CA. If the registrar
 is communicating with the CA using a protocol such as full CMC, which
 provides mechanisms to override the CSR attributes, then these
 mechanisms MAY be used even if the client ignores CSR Attribute
 guidance.

5.9.3. EST Client Certificate Request

 The pledge MUST request a new client certificate. See RFC7030,
 section 4.2.

5.9.4. Enrollment Status Telemetry

 For automated bootstrapping of devices, the adminstrative elements
 providing bootstrapping also provide indications to the system
 administrators concerning device lifecycle status. This might
 include information concerning attempted bootstrapping messages seen
 by the client, MASA provides logs and status of credential
 enrollment. [RFC7030] assumes an end user and therefore does not
 include a final success indication back to the server. This is
 insufficient for automated use cases.

 To indicate successful enrollment the client SHOULD re-negotiate the
 EST TLS session using the newly obtained credentials. This occurs by
 the client initiating a new TLS ClientHello message on the existing
 TLS connection. The client MAY simply close the old TLS session and
 start a new one. The server MUST support either model.

 In the case of a FAIL, the Reason string indicates why the most
 recent enrollment failed. The SubjectKeyIdentifier field MUST be
 included if the enrollment attempt was for a keypair that is locally
 known to the client. If EST /serverkeygen was used and failed then
 the field is omitted from the status telemetry.

 In the case of a SUCCESS the Reason string is omitted. The
 SubjectKeyIdentifier is included so that the server can record the
 successful certificate distribution.

 Status media type: application/json

 The client HTTP POSTs the following to the server at the new EST well
 known URI /enrollstatus.

{
 "version":"1",
 "Status":TRUE /* TRUE=Success, FALSE=Fail"
 "Reason":"Informative human readable message"
 "reason‑context": "Additional information"
}

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error.

 Within the server logs the server MUST capture if this message was
 received over an TLS session with a matching client certificate.
 This allows for clients that wish to minimize their crypto operations
 to simply POST this response without renegotiating the TLS session -
 at the cost of the server not being able to accurately verify that
 enrollment was truly successful.

5.9.5. Multiple certificates

 Pledges that require multiple certificates could establish direct EST
 connections to the registrar.

5.9.6. EST over CoAP

 This document describes extensions to EST for the purposes of
 bootstrapping of remote key infrastructures. Bootstrapping is
 relevant for CoAP enrollment discussions as well. The defintion of
 EST and BRSKI over CoAP is not discussed within this document beyond
 ensuring proxy support for CoAP operations. Instead it is
 anticipated that a definition of CoAP mappings will occur in
 subsequent documents such as [I-D.ietf-ace-coap-est] and that CoAP
 mappings for BRSKI will be discussed either there or in future work.

6. Reduced security operational modes

 A common requirement of bootstrapping is to support less secure
 operational modes for support specific use cases. The following
 sections detail specific ways that the pledge, registrar and MASA can
 be configured to run in a less secure mode for the indicated reasons.

 This section is considered non-normative: use suggested methods MUST
 be detailed in specific profiles of BRSKI. This is the subject for
 future work.

6.1. Trust Model

 This section explains the trust relationships detailed in
 Section 2.4:

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Pledge		Join		Domain		Manufacturer
		Proxy		Registrar		Service
						(Internet)
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 10

Pledge: The pledge could be compromised and providing an attack
 vector for malware. The entity is trusted to only imprint using
 secure methods described in this document. Additional endpoint
 assessment techniques are RECOMMENDED but are out‑of‑scope of this
 document.

Join Proxy: Provides proxy functionalities but is not involved in
 security considerations.

Registrar: When interacting with a MASA a registrar makes all
 decisions. For Ownership Audit Vouchers (see [RFC8366]) the
 registrar is provided an opportunity to accept MASA decisions.

Vendor Service, MASA: This form of manufacturer service is trusted
 to accurately log all claim attempts and to provide authoritative
 log information to registrars. The MASA does not know which
 devices are associated with which domains. These claims could be
 strengthened by using cryptographic log techniques to provide
 append only, cryptographic assured, publicly auditable logs.
 Current text provides only for a trusted manufacturer.

Vendor Service, Ownership Validation: This form of manufacturer
 service is trusted to accurately know which device is owned by
 which domain.

6.2. Pledge security reductions

 The pledge can choose to accept vouchers using less secure methods.
 These methods enable offline and emergency (touch based) deployment
 use cases:

 1. The pledge MUST accept nonceless vouchers. This allows for a use
 case where the registrar can not connect to the MASA at the
 deployment time. Logging and validity periods address the
 security considerations of supporting these use cases.

 2. Many devices already support "trust on first use" for physical
 interfaces such as console ports. This document does not change
 that reality. Devices supporting this protocol MUST NOT support
 "trust on first use" on network interfaces. This is because
 "trust on first use" over network interfaces would undermine the
 logging based security protections provided by this
 specification.

 3. The pledge MAY have an operational mode where it skips voucher
 validation one time. For example if a physical button is
 depressed during the bootstrapping operation. This can be useful
 if the manufacturer service is unavailable. This behavior SHOULD
 be available via local configuration or physical presence methods
 (such as use of a serial/craft console) to ensure new entities
 can always be deployed even when autonomic methods fail. This
 allows for unsecured imprint.

 It is RECOMMENDED that "trust on first use" or any method of skipping
 voucher validation (including use of craft serial console) only be
 available if hardware assisted Network Endpoint Assessment [RFC5209]
 is supported. This recommendation ensures that domain network
 monitoring can detect innappropriate use of offline or emergency
 deployment procedures when voucher-based bootstrapping is not used.

6.3. Registrar security reductions

 A registrar can choose to accept devices using less secure methods.
 These methods are acceptable when low security models are needed, as
 the security decisions are being made by the local administrator, but
 they MUST NOT be the default behavior:

 1. A registrar MAY choose to accept all devices, or all devices of a
 particular type, at the administrator's discretion. This could
 occur when informing all registrars of unique identifiers of new
 entities might be operationally difficult.

 2. A registrar MAY choose to accept devices that claim a unique
 identity without the benefit of authenticating that claimed
 identity. This could occur when the pledge does not include an
 X.509 IDevID factory installed credential. New Entities without
 an X.509 IDevID credential MAY form the Section 5.2 request using
 the Section 5.5 format to ensure the pledge's serial number
 information is provided to the registrar (this includes the
 IDevID AuthorityKeyIdentifier value, which would be statically
 configured on the pledge.) The pledge MAY refuse to provide a
 TLS client certificate (as one is not available.) The pledge
 SHOULD support HTTP-based or certificate-less TLS authentication
 as described in EST RFC7030 section 3.3.2. A registrar MUST NOT
 accept unauthenticated New Entities unless it has been configured
 to do so by an administrator that has verified that only expected
 new entities can communicate with a registrar (presumably via a
 physically secured perimeter.)

 3. A registrar MAY submit a nonceless voucher-requests to the MASA
 service (by not including a nonce in the voucher-request.) The
 resulting vouchers can then be stored by the registrar until they
 are needed during bootstrapping operations. This is for use
 cases where the target network is protected by an air gap and
 therefore cannot contact the MASA service during pledge
 deployment.

 4. A registrar MAY ignore unrecognized nonceless log entries. This
 could occur when used equipment is purchased with a valid history
 being deployed in air gap networks that required permanent
 vouchers.

6.4. MASA security reductions

 Lower security modes chosen by the MASA service affect all device
 deployments unless bound to the specific device identities. In which
 case these modes can be provided as additional features for specific
 customers. The MASA service can choose to run in less secure modes
 by:

 1. Not enforcing that a nonce is in the voucher. This results in
 distribution of a voucher that never expires and in effect makes
 the Domain an always trusted entity to the pledge during any
 subsequent bootstrapping attempts. That this occurred is
 captured in the log information so that the registrar can make
 appropriate security decisions when a pledge joins the Domain.
 This is useful to support use cases where registrars might not be
 online during actual device deployment. Because this results in
 a long lived voucher and does not require the proof that the
 device is online, this is only accepted when the registrar is
 authenticated by the MASA and authorized to provide this
 functionality. The MASA is RECOMMENDED to use this functionality
 only in concert with an enhanced level of ownership tracking
 (out-of-scope.) If the pledge device is known to have a real-
 time-clock that is set from the factory, use of a voucher
 validity period is RECOMMENDED.

 2. Not verifying ownership before responding with a voucher. This
 is expected to be a common operational model because doing so
 relieves the manufacturer providing MASA services from having to
 track ownership during shipping and supply chain and allows for a
 very low overhead MASA service. A registrar uses the audit log
 information as a defense in depth strategy to ensure that this
 does not occur unexpectedly (for example when purchasing new
 equipment the registrar would throw an error if any audit log
 information is reported.) The MASA SHOULD verify the 'prior-
 signed-voucher-request' information for pledges that support that
 functionality. This provides a proof-of-proximity check that
 reduces the need for ownership verification.

7. IANA Considerations

 This document requires the following IANA actions:

7.1. Well-known EST registration

 This document extends the definitions of "est" (so far defined via
 RFC7030) in the "https://www.iana.org/assignments/well-known-uris/
 well-known-uris.xhtml" registry as follows:

 o add /.well-known/est/requestvoucher (see Section 5.5)

 o add /.well-known/est/requestauditlog (see Section 5.7)

7.2. PKIX Registry

 IANA is requested to register the following:

 This document requests a number for id-mod-MASAURLExtn2016(TBD) from
 the pkix(7) id-mod(0) Registry.

 This document has received an early allocation from the id-pe
 registry (SMI Security for PKIX Certificate Extension) for id-pe-
 masa-url with the value 32, resulting in an OID of
 1.3.6.1.5.5.7.1.32.

7.3. Pledge BRSKI Status Telemetry

 IANA is requested to create a new Registry entitled: "BRSKI
 Parameters", and within that Registry to create a table called:
 "Pledge BRSKI Status Telemetry Attributes". New items can be added
 using the Specification Required. The following items are to be in
 the initial registration, with this document (Section 5.7) as the
 reference:

 o version

 o Status

 o Reason

 o reason-context

7.4. DNS Service Names

 IANA is requested to register the following Service Names:

Service Name: _brski‑proxy
Transport Protocol(s): tcp
Assignee: IESG <iesg@ietf.org>.
Contact: IESG <iesg@ietf.org>
Description: The Bootstrapping Remote Secure Key
 Infrastructures Proxy
Reference: [This document]

Service Name: _brski‑registrar
Transport Protocol(s): tcp
Assignee: IESG <iesg@ietf.org>.
Contact: IESG <iesg@ietf.org>
Description: The Bootstrapping Remote Secure Key
 Infrastructures Registrar
Reference: [This document]

7.5. MUD File Extension for the MASA

 The IANA is requested to list the name "masa" in the MUD extensions
 registry defined in [I-D.ietf-opsawg-mud]. Its use is documented in
 Appendix C.

8. Applicability to the Autonomic Control Plane

 This document provides a solution to the requirements for secure
 bootstrap set out in Using an Autonomic Control Plane for Stable
 Connectivity of Network Operations, Administration, and Maintenance
 [RFC8368], A Reference Model for Autonomic Networking
 [I-D.ietf-anima-reference-model] and specifically the An Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane], section
 3.2 (Secure Bootstrap), and section 6.1 (ACP Domain, Certificate and
 Network).

 The protocol described in this document has appeal in a number of
 other non-ANIMA use cases. Such uses of the protocol will be
 deploying into other environments with different tradeoffs of
 privacy, security, reliability and autonomy from manufacturers. As
 such those use cases will need to provide their own applicability
 statements, and will need to address unique privacy and security
 considerations for the environments in which they are used.

 The autonomic control plane that this document provides bootstrap for
 is typically a medium to large Internet Service Provider
 organization, or an equivalent Enterprise that has signficant layer-3
 router connectivity. (A network consistenting of primarily layer-2
 is not excluded, but the adjacencies that the ACP will create and
 maintain will not reflect the topology until all devices participate
 in the ACP).

 As specified in the ANIMA charter, this work "..focuses on
 professionally-managed networks." Such a network has an operator and
 can do things like like install, configure and operate the Registrar
 function. The operator makes purchasing decisions and is aware of
 what manufacturers it expects to see on it's network.

 Such an operator also is capable of performing the traditional (craft
 serial-console) based bootstrap of devices. The zero-touch mechanism
 presented in this and the ACP document represents a signficiant
 efficiency: in particular it reduces the need to put senior experts
 on airplanes to configure devices in person. There is a recognition
 as the technology evolves that not every situation may work out, and
 occasionally a human still still have to visit.

 The BRSKI protocol is going into environments where there have
 already been quite a number of vendor proprietary management systems.
 Those are not expected to go away quickly, but rather to leverage the
 secure credentials that are provisioned by BRSKI. The connectivity
 requirements of said management systems are provided by the ACP.

9. Privacy Considerations

9.1. MASA audit log

 The MASA audit log includes a hash of the domainID for each Registrar
 a voucher has been issued to. This information is closely related to
 the actual domain identity, especially when paired with the anti-DDoS
 authentication information the MASA might collect. This could
 provide sufficient information for the MASA service to build a
 detailed understanding the devices that have been provisioned within
 a domain.

 There are a number of design choices that mitigate this risk. The
 domain can maintain some privacy since it has not necessarily been
 authenticated and is not authoritatively bound to the supply chain.

 Additionally the domainID captures only the unauthenticated subject
 key identifier of the domain. A privacy sensitive domain could
 theoretically generate a new domainID for each device being deployed.
 Similarly a privacy sensitive domain would likely purchase devices
 that support proximity assertions from a manufacturer that does not
 require sales channel integrations. This would result in a
 significant level of privacy while maintaining the security
 characteristics provided by Registrar based audit log inspection.

9.2. What BRSKI-MASA reveals to the manufacturer

 The so-called "call-home" mechanism that occurs as part of the BRSKI-
 MASA connection standardizes what has been deemed by some as a
 sinister mechanism for corporate oversight of individuals.
 ([livingwithIoT] and [IoTstrangeThings] for a small sample).

 As the Autonomic Control Plane (ACP) usage of BRSKI is not targetted
 at individual usage of IoT devices, but rather at the Enterprise and
 ISP creation of networks in a zero-touch fashion, the "call-home"
 represents a different kind of concern.

 It needs to be re-iterated that the BRSKI-MASA mechanism only occurs
 once during the comissioning of the device. It is well defined, and
 although encrypted with TLS, it could in theory be made auditable as
 the contents are well defined. This connection does not occur when
 the device powers on or is restarted for normal routines. It is
 conceivable that a device could be forced to go through a full
 factory reset during an exceptional firmware update situation, after
 which enrollment would have be repeated.

 The BRSKI call-home mechanism is mediated via the owner's Registrar,
 and the information that is transmitted is directly auditable by the
 device owner. This is in stark constrast to many "call-home"
 protocols where the device autonomously calls home and uses an
 undocumented protocol.

 While the contents of the signed part of the pledge voucher request
 can not be changed, they are not encrypted at the registrar. The
 ability to audit the messages by the owner of the network prevents
 exfiltration of data by a nefarious pledge. The contents of an
 unsigned voucher request are, however, completely changeable by the
 Registrar. Both are, to re-iterate, encrypted by TLS while in
 transit.

 The BRSKI-MASA exchange reveals the following information to the
 manufacturer:

 o the identity of the device being enrolled (down to the serial-
 number!).

 o an identity of the domain owner in the form of the domain trust
 anchor. However, this is not a global PKI anchored name within

 the WebPKI, so this identity could be pseudonymous. If there is
 sales channel integration, then the MASA will have authenticated
 the domain owner, either via pinned certificate, or perhaps
 another HTTP authentication method, as per Section 5.5.3.

 o the time the device is activated,

 o the IP address of the domain Owner's Registrar. For ISPs and
 Enterprises, the IP address provides very clear geolocation of the
 owner. No amount of IP address privacy extensions ([RFC4941]) can
 do anything about this, as a simple whois lookup likely identifies
 the ISP or Enterprise from the upper bits anyway. A passive
 attacker who observes the connection definitely may conclude that
 the given enterprise/ISP is a customer of the particular equipment
 vendor. The precise model that is being enrolled will remain
 private.

 The above situation is to be distinguished from a residential/
 individual person who registers a device from a manufacturer: that an
 enterprise/ISP purchases routing products is hardly worth mentioning.
 Deviations would, however, be notable.

 The situation is not improved by the enterprise/ISP using
 anonymization services such as ToR [Dingledine2004], as a TLS 1.2
 connection will reveal the ClientCertificate used, clearly
 identifying the enterprise/ISP involved. TLS 1.3 is better in this
 regard, but an active attacker can still discover the parties
 involved by performing a Man-In-The-Middle-Attack on the first
 attempt (breaking/killing it with a TCP RST), and then letting
 subsequent connection pass through.

 A manufacturer could attempt to mix the BRSKI-MASA traffic in with
 general traffic their site by hosting the MASA behind the same (set)
 of load balancers that the companies normal marketing site is hosted
 behind. This makes lots of sense from a straight capacity planning
 point of view as the same set of services (and the same set of
 Distributed Denial of Service mitigations) may be used.
 Unfortunately, as the BRSKI-MASA connections include TLS
 ClientCertificate exchanges, this may easily be observed in TLS 1.2,
 and a traffic analysis may reveal it even in TLS 1.3. This does not
 make such a plan irrelevant. There may be other organizational
 reasons to keep the marketing site (which is often subject to
 frequent redesigs, outsourcing, etc.) seperate from the MASA, which
 may need to operate reliably for decades.

9.3. Manufacturers and Used or Stolen Equipment

 As explained above, the manufacturer receives information each time
 that a device which is in factory-default mode does a zero-touch
 bootstrap, and attempts to enroll into a domain owner's registrar.

 The manufacturer is therefore in a position to decline to issue a
 voucher if it detects that the new owner is not the same as the
 previous owner.

 1. This can be seen as a feature if the equipment is believed to
 have been stolen. If the legitimate owner notifies the
 manufacturer of the theft, then when the new owner brings the
 device up, if they use the zero-touch mechanism, the new
 (illegitimate) owner reveals their location and identity.

 2. In the case of Used equipment, the initial owner could inform the
 manufacturer of the sale, or the manufacturer may just permit
 resales unless told otherwise. In which case, the transfer of
 ownership simply occurs.

 3. A manufacturer could however decide not to issue a new voucher in
 response to a transfer of ownership. This is essentially the
 same as the stolen case, with the manufacturer having decided
 that the sale was not legitimate.

 4. There is a fourth case, if the manufacturer is providing
 protection against stolen devices. The manufacturer then has a
 responsability to protect the legitimate owner against fraudulent
 claims that the the equipment was stolen. Such a claim would
 cause the manufacturer to refuse to issue a new voucher. Should
 the device go through a deep factory reset (for instance,
 replacement of a damaged main board component, the device would
 not bootstrap.

 5. Finally, there is a fifth case: the manufacturer has decided to
 end-of-line the device, or the owner has not paid a yearly
 support amount, and the manufacturer refuses to issue new
 vouchers at that point. This last case is not new to the
 industry: many license systems are already deployed that have
 significantly worse effect.

 This section has outlined five situations in which a manufacturer
 could use the voucher system to enforce what are clearly license
 terms. A manufacturer that attempted to enforce license terms via
 vouchers would find it rather ineffective as the terms would only be
 enforced when the device is enrolled, and this is not (to repeat), a
 daily or even monthly occurrance.

9.4. Manufacturers and Grey market equipment

 Manufacturers of devices often sell different products into different
 regional markets. Which product is available in which market can be
 driven by price differentials, support issues (some markets may
 require manuals and tech-support to be done in the local language),
 government export regulation (such as whether strong crypto is
 permitted to be exported, or permitted to be used in a particular
 market). When an domain owner obtains a device from a different
 market (they can be new) and transfers it to a different location,
 this is called a Grey Market.

 A manufacturer could decide not to issue a voucher to an enterprise/
 ISP based upon their location. There are a number of ways which this
 could be determined: from the geolocation of the registrar, from
 sales channel knowledge about the customer, and what products are
 (un-)available in that market. If the device has a GPS the
 coordinates of the device could even be placed into an extension of
 the voucher.

 The above actions are not illegal, and not new. Many manufacturers
 have shipped crypto-weak (exportable) versions of firmware as the
 default on equipment for decades. The first task of an enterprise/
 ISP has always been to login to a manufacturer system, show one's
 "entitlement" (country informatin, proof that support payments have
 been made), and receive either a new updated firmware, or a license
 key that will activate the correct firmware.

 BRSKI permits the above process to automated (in an autonomic
 fashion), and therefore perhaps encourages this kind of
 differentiation by reducing the cost of doing it.

 An issue that manufacturers will need to deal with in the above
 automated process is when a device is shipped to one country with one
 set of rules (or laws or entitlements), but the domain registry is in
 another one. Which rules apply is something will have to be worked
 out: the manufacturer could come to believe they are dealing with
 Grey market equipment, when it is simply dealing with a global
 enterprise.

9.5. Some mitigations for meddling by manufacturers

 The most obvious mitigation is not to buy the product. Pick
 manufacturers that are up-front about their policies, who do not
 change them gratutiously.

 A manufacturer could provide a mechanism to manage the trust anchors
 and built-in certificates (IDevID) as an extension. This is a
 substantial amount of work, and may be an area for future
 standardization work.

 Replacement of the voucher validation anchors (usually pointing to
 the original manufacturer's MASA) with those of the new owner permits
 the new owner to issue vouchers to subsequent owners. This would be
 done by having the selling (old) owner to run a MASA.

 In order to automatically find the new MASA, the mechanism describe
 in this document is to look for the MASA URL extension in the IDevID.
 A new owner could override this in their Registrar, or the
 manufacturer could provide a mechanism to update or replace the
 IDevID prior to sale.

 Once the voucher trust anchor and the IDevID is replaced, then the
 device will no longer trust the manufacturer in any way. When a new
 owner performs a bootstrap, the device will point to a MASA that has
 been chosen, and will validate vouchers from this new entity.

 The BRSKI protocol depends upon a trust anchor on the device and an
 identity on the device. Management of these these entities
 facilitiates a few new operatonal modes without making any changes to
 the BRSKI protocol. Those modes include: offline modes where the
 domain owner operates an internal MASA for all devices, resell modes
 where the first domain owner becomes the MASA for the next (resold-
 to) domain owner, and services where an aggregator acquires a large
 variety of devices, and then acts as a pseudonymized MASA for a
 variety of devices from a variety of manufacturers.

 Some manufacturers may wish to consider replacement of the IDevID as
 an indication that the device's warantee is terminated. For others,
 the privacy requiments of some deployments might consider this a
 standard operating practice.

 As discussed at the end of Section 5.8.1, new work could be done to
 use a distributed consensus technology for the audit log. This would
 permit the audit log to continue to be useful, even when there is a
 chain of MASA due to changes of ownership.

10. Security Considerations

 This document details a protocol for bootstrapping that balances
 operational concerns against security concerns. As detailed in the
 introduction, and touched on again in Section 6, the protocol allows
 for reduced security modes. These attempt to deliver additional
 control to the local administrator and owner in cases where less
 security provides operational benefits. This section goes into more
 detail about a variety of specific considerations.

 To facilitate logging and administrative oversight, in addition to
 triggering Registration verification of MASA logs, the pledge reports
 on voucher parsing status to the registrar. In the case of a
 failure, this information is informative to a potentially malicious
 registrar. This is mandated anyway because of the operational
 benefits of an informed administrator in cases where the failure is
 indicative of a problem. The registrar is RECOMMENDED to verify MASA
 logs if voucher status telemetry is not received.

 To facilitate truely limited clients EST RFC7030 section 3.3.2
 requirements that the client MUST support a client authentication
 model have been reduced in Section 6 to a statement that the
 registrar "MAY" choose to accept devices that fail cryptographic
 authentication. This reflects current (poor) practices in shipping
 devices without a cryptographic identity that are NOT RECOMMENDED.

 During the provisional period of the connection the pledge MUST treat
 all HTTP header and content data as untrusted data. HTTP libraries
 are regularly exposed to non-secured HTTP traffic: mature libraries
 should not have any problems.

 Pledges might chose to engage in protocol operations with multiple
 discovered registrars in parallel. As noted above they will only do
 so with distinct nonce values, but the end result could be multiple
 vouchers issued from the MASA if all registrars attempt to claim the
 device. This is not a failure and the pledge choses whichever
 voucher to accept based on internal logic. The registrars verifying
 log information will see multiple entries and take this into account
 for their analytics purposes.

10.1. DoS against MASA

 There are uses cases where the MASA could be unavailable or
 uncooperative to the Registrar. They include active DoS attacks,
 planned and unplanned network partitions, changes to MASA policy, or
 other instances where MASA policy rejects a claim. These introduce
 an operational risk to the Registrar owner in that MASA behavior
 might limit the ability to bootstrap a pledge device. For example
 this might be an issue during disaster recovery. This risk can be
 mitigated by Registrars that request and maintain long term copies of
 "nonceless" vouchers. In that way they are guaranteed to be able to
 bootstrap their devices.

 The issuance of nonceless vouchers themselves creates a security
 concern. If the Registrar of a previous domain can intercept
 protocol communications then it can use a previously issued nonceless
 voucher to establish management control of a pledge device even after
 having sold it. This risk is mitigated by recording the issuance of
 such vouchers in the MASA audit log that is verified by the
 subsequent Registrar and by Pledges only bootstrapping when in a
 factory default state. This reflects a balance between enabling MASA
 independence during future bootstrapping and the security of
 bootstrapping itself. Registrar control over requesting and auditing
 nonceless vouchers allows device owners to choose an appropriate
 balance.

 The MASA is exposed to DoS attacks wherein attackers claim an
 unbounded number of devices. Ensuring a registrar is representative
 of a valid manufacturer customer, even without validating ownership
 of specific pledge devices, helps to mitigate this. Pledge
 signatures on the pledge voucher-request, as forwarded by the
 registrar in the prior-signed-voucher-request field of the registrar
 voucher-request, significantly reduce this risk by ensuring the MASA
 can confirm proximity between the pledge and the registrar making the
 request. This mechanism is optional to allow for constrained
 devices. Supply chain integration ("know your customer") is an
 additional step that MASA providers and device vendors can explore.

10.2. Freshness in Voucher-Requests

 A concern has been raised that the pledge voucher-request should
 contain some content (a nonce) provided by the registrar and/or MASA
 in order for those actors to verify that the pledge voucher-request
 is fresh.

 There are a number of operational problems with getting a nonce from
 the MASA to the pledge. It is somewhat easier to collect a random
 value from the registrar, but as the registrar is not yet vouched
 for, such a registrar nonce has little value. There are privacy and
 logistical challenges to addressing these operational issues, so if
 such a thing were to be considered, it would have to provide some
 clear value. This section examines the impacts of not having a fresh
 pledge voucher-request.

 Because the registrar authenticates the pledge, a full Man-in-the-
 Middle attack is not possible, despite the provisional TLS
 authentication by the pledge (see Section 5.) Instead we examine the
 case of a fake registrar (Rm) that communicates with the pledge in
 parallel or in close time proximity with the intended registrar.
 (This scenario is intentionally supported as described in
 Section 4.1.)

 The fake registrar (Rm) can obtain a voucher signed by the MASA
 either directly or through arbitrary intermediaries. Assuming that
 the MASA accepts the registrar voucher-request (either because Rm is
 collaborating with a legitimate registrar according to supply chain
 information, or because the MASA is in audit-log only mode), then a
 voucher linking the pledge to the registrar Rm is issued.

 Such a voucher, when passed back to the pledge, would link the pledge
 to registrar Rm, and would permit the pledge to end the provisional
 state. It now trusts Rm and, if it has any security vulnerabilities
 leveragable by an Rm with full administrative control, can be assumed
 to be a threat against the intended registrar.

 This flow is mitigated by the intended registrar verifying the audit
 logs available from the MASA as described in Section 5.8. Rm might
 chose to collect a voucher-request but wait until after the intended
 registrar completes the authorization process before submitting it.
 This pledge voucher-request would be 'stale' in that it has a nonce
 that no longer matches the internal state of the pledge. In order to
 successfully use any resulting voucher the Rm would need to remove
 the stale nonce or anticipate the pledge's future nonce state.
 Reducing the possibility of this is why the pledge is mandated to
 generate a strong random or pseudo-random number nonce.

 Additionally, in order to successfully use the resulting voucher the
 Rm would have to attack the pledge and return it to a bootstrapping
 enabled state. This would require wiping the pledge of current
 configuration and triggering a re-bootstrapping of the pledge. This
 is no more likely than simply taking control of the pledge directly
 but if this is a consideration the target network is RECOMMENDED to
 take the following steps:

 o Ongoing network monitoring for unexpected bootstrapping attempts
 by pledges.

 o Retreival and examination of MASA log information upon the
 occurance of any such unexpected events. Rm will be listed in the
 logs along with nonce information for analysis.

10.3. Trusting manufacturers

 The BRSKI extensions to EST permit a new pledge to be completely
 configured with domain specific trust anchors. The link from built-
 in manufacturer-provided trust anchors to domain-specific trust
 anchors is mediated by the signed voucher artifact.

 If the manufacturer's IDevID signing key is not properly validated,
 then there is a risk that the network will accept a pledge that
 should not be a member of the network. As the address of the
 manufacturer's MASA is provided in the IDevID using the extension
 from Section 2.3, the malicious pledge will have no problem
 collaborating with it's MASA to produce a completely valid voucher.
 BRSKI does not, however, fundamentally change the trust model from
 domain owner to manufacturer. Assuming that the pledge used its
 IDevID with RFC7030 EST and BRSKI, the domain (registrar) still needs
 to trust the manufacturer.

 Establishing this trust between domain and manufacturer is outside
 the scope of BRSKI. There are a number of mechanisms that can
 adopted including:

 o Manually configuring each manufacturer's trust anchor.

 o A Trust-On-First-Use (TOFU) mechanism. A human would be queried
 upon seeing a manufacturer's trust anchor for the first time, and
 then the trust anchor would be installed to the trusted store.
 There are risks with this; even if the key to name is validated
 using something like the WebPKI, there remains the possibility
 that the name is a look alike: e.g, c1sco.com, ..

 o scanning the trust anchor from a QR code that came with the
 packaging (this is really a manual TOFU mechanism)

 o some sales integration process where trust anchors are provided as
 part of the sales process, probably included in a digital packing
 "slip", or a sales invoice.

 o consortium membership, where all manufacturers of a particular
 device category (e.g, a light bulb, or a cable-modem) are signed
 by an certificate authority specifically for this. This is done
 by CableLabs today. It is used for authentication and
 authorization as part of TR-79: [docsisroot] and [TR069].

 The existing WebPKI provides a reasonable anchor between manufacturer
 name and public key. It authenticates the key. It does not provide
 a reasonable authorization for the manufacturer, so it is not
 directly useable on it's own.

10.4. Manufacturer Maintainance of trust anchors

 BRSKI depends upon the manufacturer building in trust anchors to the
 pledge device. The voucher artifact which is signed by the MASA will
 be validated by the pledge using that anchor. This implies that the
 manufacturer needs to maintain access to a signing key that the
 pledge can validate.

 The manufacturer will need to maintain the ability to make signatures
 that can be validated for the lifetime that the device could be
 onboarded. Whether this onboarding lifetime is less than the device
 lifetime depends upon how the device is used. An inventory of
 devices kept in a warehouse as spares might not be onboarded for many
 decades.

 There are good cryptographic hygiene reasons why a manufacturer would
 not want to maintain access to a private key for many decades. A
 manufacturer in that situation can leverage a long-term certificate
 authority anchor, built-in to the pledge, and then a certificate
 chain may be incorporated using the normal CMS certificate set. This
 may increase the size of the voucher artifacts, but that is not a
 significant issues in non-constrained environements.

 There are a few other operational variations that manufacturers could
 consider. For instance, there is no reason that every device need
 have the same set of trust anchors pre-installed. Devices built in
 different factories, or on different days, or any other consideration
 could have different trust anchors built in, and the record of which
 batch the device is in would be recorded in the asset database. The
 manufacturer would then know which anchor to sign an artifact
 against.

 Aside from the concern about long-term access to private keys, a
 major limiting factor for the shelf-life of many devices will be the
 age of the cryptographic algorithms included. A device produced in
 2019 will have hardware and software capable of validating algorithms
 common in 2019, and will have no defense against attacks (both
 quantum and von-neuman brute force attacks) which have not yet been
 invented. This concern is orthogonal to the concern about access to
 private keys, but this concern likely dominates and limits the
 lifespan of a device in a warehouse. If any update to firmware to
 support new cryptographic mechanism were possible (while the device
 was in a warehouse), updates to trust anchors would also be done at
 the same time.

11. Acknowledgements

 We would like to thank the various reviewers for their input, in
 particular William Atwood, Brian Carpenter, Toerless Eckert, Fuyu
 Eleven, Eliot Lear, Sergey Kasatkin, Anoop Kumar, Markus Stenberg,
 Peter van der Stok, and Thomas Werner

 Significant reviews were done by Jari Arko, Christian Huitema and
 Russ Housley.

12. References

12.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [IDevID]
 "IEEE 802.1AR Secure Device Identifier", December 2009,
 <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC3927]
 Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <https://www.rfc-editor.org/info/rfc3927>.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4519]
 Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519,
 DOI 10.17487/RFC4519, June 2006,
 <https://www.rfc-editor.org/info/rfc4519>.

 [RFC4862]
 Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC4941]
 Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5272]
 Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/info/rfc5272>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5386]
 Williams, N. and M. Richardson, "Better-Than-Nothing
 Security: An Unauthenticated Mode of IPsec", RFC 5386,
 DOI 10.17487/RFC5386, November 2008,
 <https://www.rfc-editor.org/info/rfc5386>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5660]
 Williams, N., "IPsec Channels: Connection Latching",
 RFC 5660, DOI 10.17487/RFC5660, October 2009,
 <https://www.rfc-editor.org/info/rfc5660>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6762]
 Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7159]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8368]
 Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

12.2. Informative References

 [Dingledine2004]

 Dingledine, R., Mathewson, N., and P. Syverson, "Tor: the
 second-generation onion router", 2004,
 <https://spec.torproject.org/tor-spec>.

 [docsisroot]

 "CableLabs Digital Certificate Issuance Service", February
 2018, <https://www.cablelabs.com/resources/
 digital-certificate-issuance-service/>.

 [I-D.ietf-ace-coap-est]

 Stok, P., Kampanakis, P., Richardson, M., and S. Raza,
 "EST over secure CoAP (EST-coaps)", draft-ietf-ace-coap-
 est-09 (work in progress), February 2019.

 [I-D.ietf-anima-constrained-voucher]

 Richardson, M., Stok, P., and P. Kampanakis, "Constrained
 Voucher Artifacts for Bootstrapping Protocols", draft-
 ietf-anima-constrained-voucher-02 (work in progress),
 September 2018.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-anima-stable-connectivity]

 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-07 (work in progress), February 2019.

 [I-D.ietf-netconf-zerotouch]

 Watsen, K., Abrahamsson, M., and I. Farrer, "Secure Zero
 Touch Provisioning (SZTP)", draft-ietf-netconf-
 zerotouch-29 (work in progress), January 2019.

 [I-D.ietf-opsawg-mud]

 Lear, E., Droms, R., and D. Romascanu, "Manufacturer Usage
 Description Specification", draft-ietf-opsawg-mud-25 (work
 in progress), June 2018.

 [I-D.richardson-anima-state-for-joinrouter]

 Richardson, M., "Considerations for stateful vs stateless
 join router in ANIMA bootstrap", draft-richardson-anima-
 state-for-joinrouter-02 (work in progress), January 2018.

 [imprinting]

 "Wikipedia article: Imprinting", July 2015,
 <https://en.wikipedia.org/wiki/Imprinting_(psychology)>.

 [IoTstrangeThings]

 "IoT of toys stranger than fiction: Cybersecurity and data
 privacy update (accessed 2018-12-02)", March 2017,
 <https://www.welivesecurity.com/2017/03/03/
 internet-of-things-security-privacy-iot-update/>.

 [livingwithIoT]

 "What is it actually like to live in a house filled with
 IoT devices? (accessed 2018-12-02)", February 2018,
 <https://www.siliconrepublic.com/machines/
 iot-smart-devices-reality>.

 [RFC2473]
 Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2663]
 Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations",
 RFC 2663, DOI 10.17487/RFC2663, August 1999,
 <https://www.rfc-editor.org/info/rfc2663>.

 [RFC5785]
 Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6960]
 Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6961]
 Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/info/rfc6961>.

 [RFC7217]
 Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC7228]
 Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7258]
 Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7435]
 Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [slowloris]

 "Slowloris (computer security)", February 2019,
 <https://en.wikipedia.org/wiki/
 Slowloris_(computer_security)/>.

 [Stajano99theresurrecting]

 Stajano, F. and R. Anderson, "The resurrecting duckling:
 security issues for ad-hoc wireless networks", 1999,
 <https://www.cl.cam.ac.uk/~fms27/
 papers/1999-StajanoAnd-duckling.pdf>.

 [TR069]
 "TR-69: CPE WAN Management Protocol", February 2018,
 <https://www.broadband-forum.org/standards-and-software/
 technical-specifications/tr-069-files-tools>.

Appendix A. IPv4 and non-ANI operations

 The secification of BRSKI in Section 4 intentionally only covers the
 mechanisms for an IPv6 pledge using Link-Local addresses. This
 section describes non-normative extensions that can be used in other
 environments.

A.1. IPv4 Link Local addresses

 Instead of an IPv6 link-local address, an IPv4 address may be
 generated using [RFC3927] Dynamic Configuration of IPv4 Link-Local
 Addresses.

 In the case that an IPv4 Link-Local address is formed, then the
 bootstrap process would continue as in the IPv6 case by looking for a
 (circuit) proxy.

A.2. Use of DHCPv4

 The Plege MAY obtain an IP address via DHCP [RFC2131]. The DHCP
 provided parameters for the Domain Name System can be used to perform
 DNS operations if all local discovery attempts fail.

Appendix B. mDNS / DNSSD proxy discovery options

 Pledge discovery of the proxy (Section 4.1) MAY be performed with
 DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762] to
 discover the proxy at "_brski-proxy._tcp.local.".

 Proxy discovery of the registrar (Section 4.3) MAY be performed with
 DNS-based Service Discovery over Multicast DNS to discover registrars
 by searching for the service "_brski-registrar._tcp.local.".

 To prevent unaccceptable levels of network traffic, when using mDNS,
 the congestion avoidance mechanisms specified in [RFC6762] section 7
 MUST be followed. The pledge SHOULD listen for an unsolicited
 broadcast response as described in [RFC6762]. This allows devices to
 avoid announcing their presence via mDNS broadcasts and instead
 silently join a network by watching for periodic unsolicited
 broadcast responses.

 Discovery of registrar MAY also be performed with DNS-based service
 discovery by searching for the service "_brski-
 registrar._tcp.example.com". In this case the domain "example.com"
 is discovered as described in [RFC6763] section 11 (Appendix A.2
 suggests the use of DHCP parameters).

 If no local proxy or registrar service is located using the GRASP
 mechanisms or the above mentioned DNS-based Service Discovery methods
 the pledge MAY contact a well known manufacturer provided
 bootstrapping server by performing a DNS lookup using a well known
 URI such as "brski-registrar.manufacturer.example.com". The details
 of the URI are manufacturer specific. Manufacturers that leverage
 this method on the pledge are responsible for providing the registrar
 service. Also see Section 2.7.

 The current DNS services returned during each query are maintained
 until bootstrapping is completed. If bootstrapping fails and the
 pledge returns to the Discovery state, it picks up where it left off
 and continues attempting bootstrapping. For example, if the first
 Multicast DNS _bootstrapks._tcp.local response doesn't work then the
 second and third responses are tried. If these fail the pledge moves
 on to normal DNS-based Service Discovery.

Appendix C. MUD Extension

 The following extension augments the MUD model to include a single
 node, as described in [I-D.ietf-opsawg-mud] section 3.6, using the
 following sample module that has the following tree structure:

module: ietf‑mud‑brski‑masa
augment /ietf‑mud:mud:
+‑‑rw masa‑server? inet:uri

 The model is defined as follows:

<CODE BEGINS> file "ietf‑mud‑extension@2018‑02‑14.yang"
module ietf‑mud‑brski‑masa {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑mud‑brski‑masa";
 prefix ietf‑mud‑brski‑masa;
 import ietf‑mud {
 prefix ietf‑mud;
 }
 import ietf‑inet‑types {
 prefix inet;
 }

 organization
 "IETF ANIMA (Autonomic Networking Integrated Model and
 Approach) Working Group";
 contact
 "WG Web: http://tools.ietf.org/wg/anima/
 WG List: anima@ietf.org
 ";
 description
 "BRSKI extension to a MUD file to indicate the
 MASA URL.";

 revision 2018‑02‑14 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Manufacturer Usage Description
 Specification";
 }

 augment "/ietf‑mud:mud" {
 description
 "BRSKI extension to a MUD file to indicate the
 MASA URL.";
 leaf masa‑server {
 type inet:uri;
 description
 "This value is the URI of the MASA server";
 }
 }
}
<CODE ENDS>

 The MUD extensions string "masa" is defined, and MUST be included in
 the extensions array of the mud container of a MUD file when this
 extension is used.

Appendix D. Example Vouchers

 Three entities are involved in a voucher: the MASA issues (signs) it,
 the registrar's public key is mentioned in the voucher, and the
 pledge validates it. In order to provide reproduceable examples the
 public and private keys for an example MASA and registrar are first
 listed.

D.1. Keys involved

 The Manufacturer has a Certificate Authority that signs the pledge's
 IDevID. In addition the Manufacturer's signing authority (the MASA)
 signs the vouchers, and that certificate must distributed to the
 devices at manufacturing time so that vouchers can be validated.

D.1.1. MASA key pair for voucher signatures

 This private key signs vouchers:

‑‑‑‑‑BEGIN EC PRIVATE KEY‑‑‑‑‑
MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
‑‑‑‑‑END EC PRIVATE KEY‑‑‑‑‑

 This public key validates vouchers:

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

D.1.2. Manufacturer key pair for IDevID signatures

 This private key signs IDevID certificates:

‑‑‑‑‑BEGIN EC PRIVATE KEY‑‑‑‑‑
MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
‑‑‑‑‑END EC PRIVATE KEY‑‑‑‑‑

 This public key validates IDevID certificates:

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

D.1.3. Registrar key pair

 The registrar key (or chain) is the representative of the domain
 owner. This key signs registrar voucher-requests:

‑‑‑‑‑BEGIN EC PRIVATE KEY‑‑‑‑‑
MHcCAQEEIF+obiToYYYeMifPsZvrjWJ0yFsCJwIFhpokmT/TULmXoAoGCCqGSM49
AwEHoUQDQgAENWQOzcNMUjP0NrtfeBc0DJLWfeMGgCFdIv6FUz4DifM1ujMBec/g
6W/P6boTmyTGdFOh/8HwKUerL5bpneK8sg==
‑‑‑‑‑END EC PRIVATE KEY‑‑‑‑‑

 The public key is indicated in a pledge voucher-request to show
 proximity.

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIBrjCCATOgAwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQBGRYC
Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVuc3RydW5n
IEZvdW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAxMTI0NVowQzES
MBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRIw
EAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQ1ZA7N
w0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6MwF5z+Dpb8/puhObJMZ0U6H/
wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAAMAoGCCqGSM49BAMDA2kAMGYCMQC3
/iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY2jkDx062nuNifVKtyaara3F30AIkKSEC
MQDi29efbTLbdtDk3tecY/rD7V77XaJ6nYCmdDCR54TrSFNLgxvt1lyFM+0fYpYR
c3o=
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

 The registrar public certificate as decoded by openssl's x509
 utility. Note that the registrar certificate is marked with the
 cmcRA extension.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: ecdsa‑with‑SHA384
 Issuer: DC=ca, DC=sandelman, CN=Unstrung Fountain CA
 Validity
 Not Before: Sep 5 01:12:45 2017 GMT
 Not After : Sep 5 01:12:45 2019 GMT
 Subject: DC=ca, DC=sandelman, CN=localhost
 Subject Public Key Info:
 Public Key Algorithm: id‑ecPublicKey
 Public‑Key: (256 bit)
 pub:
 04:35:64:0e:cd:c3:4c:52:33:f4:36:bb:5f:7
8:17:
 34:0c:92:d6:7d:e3:06:80:21:5d:22:fe:85:5
3:3e:
 03:89:f3:35:ba:33:01:79:cf:e0:e9:6f:cf:e
9:ba:
 13:9b:24:c6:74:53:a1:ff:c1:f0:29:47:ab:2
f:96:
 e9:9d:e2:bc:b2
 ASN1 OID: prime256v1
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Signature Algorithm: ecdsa‑with‑SHA384
 30:66:02:31:00:b7:fe:24:d0:27:77:af:61:87:20:6d:78:
5b:
 9b:3a:e9:eb:8b:77:40:2e:aa:8c:87:98:da:39:03:c7:4e:
b6:
 9e:e3:62:7d:52:ad:c9:a6:ab:6b:71:77:d0:02:24:29:21:
02:
 31:00:e2:db:d7:9f:6d:32:db:76:d0:e4:de:d7:9c:63:fa:
c3:
 ed:5e:fb:5d:a2:7a:9d:80:a6:74:30:91:e7:84:eb:48:53:
4b:
 83:1b:ed:d6:5c:85:33:ed:1f:62:96:11:73:7a

D.1.4. Pledge key pair

 The pledge has an IDevID key pair built in at manufacturing time:

‑‑‑‑‑BEGIN EC PRIVATE KEY‑‑‑‑‑
MHcCAQEEIL+ue8PQcN+M7LFBGPsompYwobI/rsoHnTb2a+0hO+8joAoGCCqGSM49
AwEHoUQDQgAEumBVaDlX87WyME8CJToyt9NWy6sYw0DTbjjJIn79pgr7ALa//Y8p
r70WpK1SIaiUeeFw7e+lCzTp1Z+wJu14Bg==
‑‑‑‑‑END EC PRIVATE KEY‑‑‑‑‑

 The public key is used by the registrar to find the MASA. The MASA
 URL is in an extension described in Section 2.3. RFC-EDITOR: Note
 that these certificates are using a Private Enterprise Number for the
 not-yet-assigned by IANA MASA URL, and need to be replaced before
 AUTH48.

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIICMjCCAbegAwIBAgIBDDAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
IEhpZ2h3YXkgQ0EwIBcNMTcxMDEyMTM1MjUyWhgPMjk5OTEyMzEwMDAwMDBaMEsx
EjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEa
MBgGA1UEAwwRMDAtRDAtRTUtRjItMDAtMDIwWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAARJp5i0dU1aUnR2u8wMRwgkNupNbNM7m1n0mj+0KJZjcPIqID+trPjTSobt
uIdpRPfGZ8hU/nIUveqwyoYI8BPbo4GHMIGEMB0GA1UdDgQWBBQdMRZhthFQmzz6
E7YVXzkL7XZDKjAJBgNVHRMEAjAAMCsGA1UdEQQkMCKgIAYJKwYBBAGC7lIBoBMM
ETAwLUQwLUU1LUYyLTAwLTAyMCsGCSsGAQQBgu5SAgQeDBxodHRwczovL2hpZ2h3
YXkuc2FuZGVsbWFuLmNhMAoGCCqGSM49BAMCA2kAMGYCMQDhJ1N+eanW1U/e5qoM
SGvUvWHR7uic8cJbh7vXy580nBs8bpNn60k/+IzvEUetMzICMQCr1uxvdYeKq7mb
RXCR4ZCJsw67fJ7jyXZbCUSir+3wBT2+lWggzPDRgYB5ABb7sAw=
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

 The pledge public certificate as decoded by openssl's x509 utility so
 that the extensions can be seen. A second custom Extension is
 included to provided to contain the EUI48/EUI64 that the pledge will
 configure.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 12 (0xc)
 Signature Algorithm: ecdsa‑with‑SHA256
 Issuer: DC=ca, DC=sandelman, CN=Unstrung Highway CA
 Validity
 Not Before: Oct 12 13:52:52 2017 GMT
 Not After : Dec 31 00:00:00 2999 GMT
 Subject: DC=ca, DC=sandelman, CN=00‑D0‑E5‑F2‑00‑02
 Subject Public Key Info:
 Public Key Algorithm: id‑ecPublicKey
 Public‑Key: (256 bit)
 pub:
 04:49:a7:98:b4:75:4d:5a:52:74:76:bb:cc:0
c:47:
 08:24:36:ea:4d:6c:d3:3b:9b:59:f4:9a:3f:b
4:28:
 96:63:70:f2:2a:20:3f:ad:ac:f8:d3:4a:86:e
d:b8:
 87:69:44:f7:c6:67:c8:54:fe:72:14:bd:ea:b
0:ca:
 86:08:f0:13:db
 ASN1 OID: prime256v1
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 1D:31:16:61:B6:11:50:9B:3C:FA:13:B6:15:5F:39
:0B:ED:76:43:2A
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Alternative Name:
 othername:<unsupported>
 1.3.6.1.4.1.46930.2:
 ..https://highway.sandelman.ca
 Signature Algorithm: ecdsa‑with‑SHA256
 30:66:02:31:00:e1:27:53:7e:79:a9:d6:d5:4f:de:e6:aa:
0c:
 48:6b:d4:bd:61:d1:ee:e8:9c:f1:c2:5b:87:bb:d7:cb:9f:
34:
 9c:1b:3c:6e:93:67:eb:49:3f:f8:8c:ef:11:47:ad:33:32:
02:
 31:00:ab:d6:ec:6f:75:87:8a:ab:b9:9b:45:70:91:e1:90:
89:
 b3:0e:bb:7c:9e:e3:c9:76:5b:09:44:a2:af:ed:f0:05:3d:
be:
 95:68:20:cc:f0:d1:81:80:79:00:16:fb:b0:0c

D.2. Example process

 RFC-EDITOR: these examples will need to be replaced with CMS versions
 once IANA has assigned the eContentType in [RFC8366].

D.2.1. Pledge to Registrar

 As described in Section 5.2, the pledge will sign a pledge voucher-
 request containing the registrar's public key in the proximity-
 registrar-cert field. The base64 has been wrapped at 60 characters
 for presentation reasons.
 MIIHHAYJKoZIhvcNAQcCoIIHDTCCBwkCAQExDzANBglghkgBZQMEAgEFADCC
 Aw4GCSqGSIb3DQEHAaCCAv8EggL7eyJpZXRmLXZvdWNoZXItcmVxdWVzdDp2
 b3VjaGVyIjp7ImFzc2VydGlvbiI6InByb3hpbWl0eSIsImNyZWF0ZWQtb24i
 OiIyMDE3LTA5LTAxIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAw
 LTAyIiwibm9uY2UiOiJEc3M5OXNCcjNwTk1PQUNlLUxZWTd3IiwicHJveGlt
 aXR5LXJlZ2lzdHJhci1jZXJ0IjoiTUlJQnJqQ0NBVE9nQXdJQkFnSUJBekFL
 QmdncWhrak9QUVFEQXpCT01SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhH
 VEFYQmdvSmtpYUprL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhIVEFiQmdOVkJB
 TU1GRlZ1YzNSeWRXNW5JRVp2ZFc1MFlXbHVJRU5CTUI0WERURTNNRGt3TlRB
 eE1USTBOVm9YRFRFNU1Ea3dOVEF4TVRJME5Wb3dRekVTTUJBR0NnbVNKb21U
 OGl4a0FSa1dBbU5oTVJrd0Z3WUtDWkltaVpQeUxHUUJHUllKYzJGdVpHVnNi
 V0Z1TVJJd0VBWURWUVFEREFsc2IyTmhiR2h2YzNRd1dUQVRCZ2NxaGtqT1BR
 SUJCZ2dxaGtqT1BRTUJCd05DQUFRMVpBN053MHhTTS9RMnUxOTRGelFNa3Ra
 OTR3YUFJVjBpL29WVFBnT0o4elc2TXdGNXorRHBiOC9wdWhPYkpNWjBVNkgv
 d2ZBcFI2c3ZsdW1kNHJ5eW93MHdDekFKQmdOVkhSTUVBakFBTUFvR0NDcUdT
 TTQ5QkFNREEya0FNR1lDTVFDMy9pVFFKM2V2WVljZ2JYaGJtenJwNjR0M1FD
 NnFqSWVZMmprRHgwNjJudU5pZlZLdHlhYXJhM0YzMEFJa0tTRUNNUURpMjll
 ZmJUTGJkdERrM3RlY1kvckQ3Vjc3WGFKNm5ZQ21kRENSNTRUclNGTkxneHZ0
 MWx5Rk0rMGZZcFlSYzNvPSJ9faCCAjYwggIyMIIBt6ADAgECAgEMMAoGCCqG
 SM49BAMCME0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkW
 CXNhbmRlbG1hbjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQTAgFw0x
 NzEwMTIxMzUyNTJaGA8yOTk5MTIzMTAwMDAwMFowSzESMBAGCgmSJomT8ixk
 ARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRowGAYDVQQDDBEw
 MC1EMC1FNS1GMi0wMC0wMjBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABEmn
 mLR1TVpSdHa7zAxHCCQ26k1s0zubWfSaP7QolmNw8iogP62s+NNKhu24h2lE
 98ZnyFT+chS96rDKhgjwE9ujgYcwgYQwHQYDVR0OBBYEFB0xFmG2EVCbPPoT
 thVfOQvtdkMqMAkGA1UdEwQCMAAwKwYDVR0RBCQwIqAgBgkrBgEEAYLuUgGg
 EwwRMDAtRDAtRTUtRjItMDAtMDIwKwYJKwYBBAGC7lICBB4MHGh0dHBzOi8v
 aGlnaHdheS5zYW5kZWxtYW4uY2EwCgYIKoZIzj0EAwIDaQAwZgIxAOEnU355
 qdbVT97mqgxIa9S9YdHu6JzxwluHu9fLnzScGzxuk2frST/4jO8RR60zMgIx
 AKvW7G91h4qruZtFcJHhkImzDrt8nuPJdlsJRKKv7fAFPb6VaCDM8NGBgHkA
 FvuwDDGCAaUwggGhAgEBMFIwTTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYK
 CZImiZPyLGQBGRYJc2FuZGVsbWFuMRwwGgYDVQQDDBNVbnN0cnVuZyBIaWdo
 d2F5IENBAgEMMA0GCWCGSAFlAwQCAQUAoIHkMBgGCSqGSIb3DQEJAzELBgkq
 hkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MTAxMjE3NTQzMFowLwYJKoZI
 hvcNAQkEMSIEIP59cuKVAPkKOOlQIaIV/W1AsWKbmVmBd9wFSuD5yLafMHkG
 CSqGSIb3DQEJDzFsMGowCwYJYIZIAWUDBAEqMAsGCWCGSAFlAwQBFjALBglg
 hkgBZQMEAQIwCgYIKoZIhvcNAwcwDgYIKoZIhvcNAwICAgCAMA0GCCqGSIb3
 DQMCAgFAMAcGBSsOAwIHMA0GCCqGSIb3DQMCAgEoMAoGCCqGSM49BAMCBEYw
 RAIgYUy0NTdP+xTkm/Et69eI++S/2z3dQwPKOwdL0cDCSvACIAh3jJbybMnK
 cf7DKKnsn2G/O06HeB/8imMI+hnA7CfN

 file: examples/vr_00-D0-E5-F2-00-02.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=1820 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7‑signed

Data
 15:d=1 hl=4 l=1805 cons: cont [0]
 19:d=2 hl=4 l=1801 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 15 cons: SET
 28:d=4 hl=2 l= 13 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=5 hl=2 l= 0 prim: NULL
 43:d=3 hl=4 l= 782 cons: SEQUENCE
 47:d=4 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 58:d=4 hl=4 l= 767 cons: cont [0]
 62:d=5 hl=4 l= 763 prim: OCTET STRING :{"ietf‑vouch
er‑request:voucher":{"assertion":"proximity","created‑on":"2
017‑09‑01","serial‑number":"00‑D0‑E5‑F2‑00‑02","nonce":"Dss9
9sBr3pNMOACe‑LYY7w","proximity‑registrar‑cert":"MIIBrjCCATOg
AwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAX
BgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVuc3RydW5nIEZv
dW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAxMTI0NVowQzES
MBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFu
MRIwEAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AAQ1ZA7Nw0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6MwF5z+Dpb8/p
uhObJMZ0U6H/wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAAMAoGCCqGSM49
BAMDA2kAMGYCMQC3/iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY2jkDx062nuNi
fVKtyaara3F30AIkKSECMQDi29efbTLbdtDk3tecY/rD7V77XaJ6nYCmdDCR
54TrSFNLgxvt1lyFM+0fYpYRc3o="}}
 829:d=3 hl=4 l= 566 cons: cont [0]
 833:d=4 hl=4 l= 562 cons: SEQUENCE
 837:d=5 hl=4 l= 439 cons: SEQUENCE
 841:d=6 hl=2 l= 3 cons: cont [0]
 843:d=7 hl=2 l= 1 prim: INTEGER :02
 846:d=6 hl=2 l= 1 prim: INTEGER :0C
 849:d=6 hl=2 l= 10 cons: SEQUENCE
 851:d=7 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 861:d=6 hl=2 l= 77 cons: SEQUENCE
 863:d=7 hl=2 l= 18 cons: SET
 865:d=8 hl=2 l= 16 cons: SEQUENCE
 867:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 879:d=9 hl=2 l= 2 prim: IA5STRING :ca
 883:d=7 hl=2 l= 25 cons: SET
 885:d=8 hl=2 l= 23 cons: SEQUENCE
 887:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 899:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 910:d=7 hl=2 l= 28 cons: SET
 912:d=8 hl=2 l= 26 cons: SEQUENCE
 914:d=9 hl=2 l= 3 prim: OBJECT :commonName

 919:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Hig
hway CA
 940:d=6 hl=2 l= 32 cons: SEQUENCE
 942:d=7 hl=2 l= 13 prim: UTCTIME :171012135252
Z
 957:d=7 hl=2 l= 15 prim: GENERALIZEDTIME :299912310000
00Z
 974:d=6 hl=2 l= 75 cons: SEQUENCE
 976:d=7 hl=2 l= 18 cons: SET
 978:d=8 hl=2 l= 16 cons: SEQUENCE
 980:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 992:d=9 hl=2 l= 2 prim: IA5STRING :ca
 996:d=7 hl=2 l= 25 cons: SET
 998:d=8 hl=2 l= 23 cons: SEQUENCE
 1000:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 1012:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1023:d=7 hl=2 l= 26 cons: SET
 1025:d=8 hl=2 l= 24 cons: SEQUENCE
 1027:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1032:d=9 hl=2 l= 17 prim: UTF8STRING :00‑D0‑E5‑F2‑
00‑02
 1051:d=6 hl=2 l= 89 cons: SEQUENCE
 1053:d=7 hl=2 l= 19 cons: SEQUENCE
 1055:d=8 hl=2 l= 7 prim: OBJECT :id‑ecPublicK
ey
 1064:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 1074:d=7 hl=2 l= 66 prim: BIT STRING
 1142:d=6 hl=3 l= 135 cons: cont [3]
 1145:d=7 hl=3 l= 132 cons: SEQUENCE
 1148:d=8 hl=2 l= 29 cons: SEQUENCE
 1150:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subje
ct Key Identifier
 1155:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:04
141D311661B611509B3CFA13B6155F390BED76432A
 1179:d=8 hl=2 l= 9 cons: SEQUENCE
 1181:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic
 Constraints
 1186:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:30
00
 1190:d=8 hl=2 l= 43 cons: SEQUENCE
 1192:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subje
ct Alternative Name
 1197:d=9 hl=2 l= 36 prim: OCTET STRING [HEX DUMP]:30
22A02006092B0601040182EE5201A0130C1130302D44302D45352D46322D
30302D3032
 1235:d=8 hl=2 l= 43 cons: SEQUENCE

 1237:d=9 hl=2 l= 9 prim: OBJECT :1.3.6.1.4.1.
46930.2
 1248:d=9 hl=2 l= 30 prim: OCTET STRING [HEX DUMP]:0C
1C68747470733A2F2F686967687761792E73616E64656C6D616E2E6361
 1280:d=5 hl=2 l= 10 cons: SEQUENCE
 1282:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 1292:d=5 hl=2 l= 105 prim: BIT STRING
 1399:d=3 hl=4 l= 421 cons: SET
 1403:d=4 hl=4 l= 417 cons: SEQUENCE
 1407:d=5 hl=2 l= 1 prim: INTEGER :01
 1410:d=5 hl=2 l= 82 cons: SEQUENCE
 1412:d=6 hl=2 l= 77 cons: SEQUENCE
 1414:d=7 hl=2 l= 18 cons: SET
 1416:d=8 hl=2 l= 16 cons: SEQUENCE
 1418:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 1430:d=9 hl=2 l= 2 prim: IA5STRING :ca
 1434:d=7 hl=2 l= 25 cons: SET
 1436:d=8 hl=2 l= 23 cons: SEQUENCE
 1438:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 1450:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1461:d=7 hl=2 l= 28 cons: SET
 1463:d=8 hl=2 l= 26 cons: SEQUENCE
 1465:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1470:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Hig
hway CA
 1491:d=6 hl=2 l= 1 prim: INTEGER :0C
 1494:d=5 hl=2 l= 13 cons: SEQUENCE
 1496:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1507:d=6 hl=2 l= 0 prim: NULL
 1509:d=5 hl=3 l= 228 cons: cont [0]
 1512:d=6 hl=2 l= 24 cons: SEQUENCE
 1514:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1525:d=7 hl=2 l= 11 cons: SET
 1527:d=8 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 1538:d=6 hl=2 l= 28 cons: SEQUENCE
 1540:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1551:d=7 hl=2 l= 15 cons: SET
 1553:d=8 hl=2 l= 13 prim: UTCTIME :171012175430
Z
 1568:d=6 hl=2 l= 47 cons: SEQUENCE
 1570:d=7 hl=2 l= 9 prim: OBJECT :messageDiges
t
 1581:d=7 hl=2 l= 34 cons: SET
 1583:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:FE
7D72E29500F90A38E95021A215FD6D40B1629B99598177DC054AE0F9C8B6

9F
 1617:d=6 hl=2 l= 121 cons: SEQUENCE
 1619:d=7 hl=2 l= 9 prim: OBJECT :S/MIME Capab
ilities
 1630:d=7 hl=2 l= 108 cons: SET
 1632:d=8 hl=2 l= 106 cons: SEQUENCE
 1634:d=9 hl=2 l= 11 cons: SEQUENCE
 1636:d=10 hl=2 l= 9 prim: OBJECT :aes‑256‑cbc
 1647:d=9 hl=2 l= 11 cons: SEQUENCE
 1649:d=10 hl=2 l= 9 prim: OBJECT :aes‑192‑cbc
 1660:d=9 hl=2 l= 11 cons: SEQUENCE
 1662:d=10 hl=2 l= 9 prim: OBJECT :aes‑128‑cbc
 1673:d=9 hl=2 l= 10 cons: SEQUENCE
 1675:d=10 hl=2 l= 8 prim: OBJECT :des‑ede3‑cbc
 1685:d=9 hl=2 l= 14 cons: SEQUENCE
 1687:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 1697:d=10 hl=2 l= 2 prim: INTEGER :80
 1701:d=9 hl=2 l= 13 cons: SEQUENCE
 1703:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 1713:d=10 hl=2 l= 1 prim: INTEGER :40
 1716:d=9 hl=2 l= 7 cons: SEQUENCE
 1718:d=10 hl=2 l= 5 prim: OBJECT :des‑cbc
 1725:d=9 hl=2 l= 13 cons: SEQUENCE
 1727:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 1737:d=10 hl=2 l= 1 prim: INTEGER :28
 1740:d=5 hl=2 l= 10 cons: SEQUENCE
 1742:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 1752:d=5 hl=2 l= 70 prim: OCTET STRING [HEX DUMP]:30
440220614CB435374FFB14E49BF12DEBD788FBE4BFDB3DDD4303CA3B074B
D1C0C24AF0022008778C96F26CC9CA71FEC328A9EC9F61BF3B4E87781FFC
8A6308FA19C0EC27CD

 The JSON contained in the voucher request:

 {"ietf-voucher-request:voucher":{"assertion":"proximity","cr
 eated-on":"2017-09-01","serial-number":"00-D0-E5-F2-00-02","
 nonce":"Dss99sBr3pNMOACe-LYY7w","proximity-registrar-cert":"
 MIIBrjCCATOgAwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQB
 GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVu
 c3RydW5nIEZvdW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAx
 MTI0NVowQzESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJ
 c2FuZGVsbWFuMRIwEAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggq
 hkjOPQMBBwNCAAQ1ZA7Nw0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6
 MwF5z+Dpb8/puhObJMZ0U6H/wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAA
 MAoGCCqGSM49BAMDA2kAMGYCMQC3/iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY
 2jkDx062nuNifVKtyaara3F30AIkKSECMQDi29efbTLbdtDk3tecY/rD7V77
 XaJ6nYCmdDCR54TrSFNLgxvt1lyFM+0fYpYRc3o="}}

D.2.2. Registrar to MASA

 As described in Section 5.5 the registrar will sign a registrar
 voucher-request, and will include pledge's voucher request in the
 prior-signed-voucher-request.

 MIIN2gYJKoZIhvcNAQcCoIINyzCCDccCAQExDzANBglghkgBZQMEAgEFADCC
 Ck4GCSqGSIb3DQEHAaCCCj8Eggo7eyJpZXRmLXZvdWNoZXItcmVxdWVzdDp2
 b3VjaGVyIjp7ImFzc2VydGlvbiI6InByb3hpbWl0eSIsImNyZWF0ZWQtb24i
 OiIyMDE3LTA5LTE1VDAwOjAwOjAwLjAwMFoiLCJzZXJpYWwtbnVtYmVyIjoi
 SkFEQTEyMzQ1Njc4OSIsIm5vbmNlIjoiYWJjZDEyMzQiLCJwcmlvci1zaWdu
 ZWQtdm91Y2hlci1yZXF1ZXN0IjoiTUlJSEhRWUpLb1pJaHZjTkFRY0NvSUlI
 RGpDQ0J3b0NBUUV4RHpBTkJnbGdoa2dCWlFNRUFnRUZBRENDQXc0R0NTcUdT
 SWIzRFFFSEFhQ0NBdjhFZ2dMN2V5SnBaWFJtTFhadmRXTm9aWEl0Y21WeGRX
 VnpkRHAyYjNWamFHVnlJanA3SW1GemMyVnlkR2x2YmlJNkluQnliM2hwYlds
 MGVTSXNJbU55WldGMFpXUXRiMjRpT2lJeU1ERTNMVEE1TFRBeElpd2ljMlZ5
 YVdGc0xXNTFiV0psY2lJNklqQXdMVVF3TFVVMUxVWXlMVEF3TFRBeUlpd2li
 bTl1WTJVaU9pSkVjM001T1hOQ2NqTndUazFQUVVObExVeFpXVGQzSWl3aWNI
 SnZlR2x0YVhSNUxYSmxaMmx6ZEhKaGNpMWpaWEowSWpvaVRVbEpRbkpxUTBO
 QlZFOW5RWGRKUWtGblNVSkJla0ZMUW1kbmNXaHJhazlRVVZGRVFYcENUMDFT
 U1hkRlFWbExRMXBKYldsYVVIbE1SMUZDUjFKWlExa3lSWGhIVkVGWVFtZHZT
 bXRwWVVwckwwbHpXa0ZGV2tabmJIcFpWelZyV2xkNGRGbFhOSGhJVkVGaVFt
 ZE9Wa0pCVFUxR1JsWjFZek5TZVdSWE5XNUpSVnAyWkZjMU1GbFhiSFZKUlU1
 Q1RVSTBXRVJVUlROTlJHdDNUbFJCZUUxVVNUQk9WbTlZUkZSRk5VMUVhM2RP
 VkVGNFRWUkpNRTVXYjNkUmVrVlRUVUpCUjBObmJWTktiMjFVT0dsNGEwRlNh
 MWRCYlU1b1RWSnJkMFozV1V0RFdrbHRhVnBRZVV4SFVVSkhVbGxLWXpKR2RW
 cEhWbk5pVjBaMVRWSkpkMFZCV1VSV1VWRkVSRUZzYzJJeVRtaGlSMmgyWXpO
 UmQxZFVRVlJDWjJOeGFHdHFUMUJSU1VKQ1oyZHhhR3RxVDFCUlRVSkNkMDVE
 UVVGUk1WcEJOMDUzTUhoVFRTOVJNblV4T1RSR2VsRk5hM1JhT1RSM1lVRkpW
 akJwTDI5V1ZGQm5UMG80ZWxjMlRYZEdOWG9yUkhCaU9DOXdkV2hQWWtwTldq
 QlZOa2d2ZDJaQmNGSTJjM1pzZFcxa05ISjVlVzkzTUhkRGVrRktRbWRPVmto
 U1RVVkJha0ZCVFVGdlIwTkRjVWRUVFRRNVFrRk5SRUV5YTBGTlIxbERUVkZE
 TXk5cFZGRktNMlYyV1ZsaloySllhR0p0ZW5Kd05qUjBNMUZETm5GcVNXVlpN
 bXByUkhnd05qSnVkVTVwWmxaTGRIbGhZWEpoTTBZek1FRkphMHRUUlVOTlVV
 UnBNamxsWm1KVVRHSmtkRVJyTTNSbFkxa3Zja1EzVmpjM1dHRktObTVaUTIx
 a1JFTlNOVFJVY2xOR1RreG5lSFowTVd4NVJrMHJNR1paY0ZsU1l6TnZQU0o5
 ZmFDQ0FqWXdnZ0l5TUlJQnQ2QURBZ0VDQWdFTU1Bb0dDQ3FHU000OUJBTUNN
 RTB4RWpBUUJnb0praWFKay9Jc1pBRVpGZ0pqWVRFWk1CY0dDZ21TSm9tVDhp
 eGtBUmtXQ1hOaGJtUmxiRzFoYmpFY01Cb0dBMVVFQXd3VFZXNXpkSEoxYm1j
 Z1NHbG5hSGRoZVNCRFFUQWdGdzB4TnpFd01USXhNelV5TlRKYUdBOHlPVGs1
 TVRJek1UQXdNREF3TUZvd1N6RVNNQkFHQ2dtU0pvbVQ4aXhrQVJrV0FtTmhN
 Umt3RndZS0NaSW1pWlB5TEdRQkdSWUpjMkZ1WkdWc2JXRnVNUm93R0FZRFZR
 UUREQkV3TUMxRU1DMUZOUzFHTWkwd01DMHdNakJaTUJNR0J5cUdTTTQ5QWdF
 R0NDcUdTTTQ5QXdFSEEwSUFCRW1ubUxSMVRWcFNkSGE3ekF4SENDUTI2azFz
 MHp1YldmU2FQN1FvbG1Odzhpb2dQNjJzK05OS2h1MjRoMmxFOThabnlGVCtj
 aFM5NnJES2hnandFOXVqZ1ljd2dZUXdIUVlEVlIwT0JCWUVGQjB4Rm1HMkVW
 Q2JQUG9UdGhWZk9RdnRka01xTUFrR0ExVWRFd1FDTUFBd0t3WURWUjBSQkNR
 d0lxQWdCZ2tyQmdFRUFZTHVVZ0dnRXd3Uk1EQXRSREF0UlRVdFJqSXRNREF0
 TURJd0t3WUpLd1lCQkFHQzdsSUNCQjRNSEdoMGRIQnpPaTh2YUdsbmFIZGhl
 UzV6WVc1a1pXeHRZVzR1WTJFd0NnWUlLb1pJemowRUF3SURhUUF3WmdJeEFP
 RW5VMzU1cWRiVlQ5N21xZ3hJYTlTOVlkSHU2Snp4d2x1SHU5ZkxuelNjR3p4
 dWsyZnJTVC80ak84UlI2MHpNZ0l4QUt2VzdHOTFoNHFydVp0RmNKSGhrSW16
 RHJ0OG51UEpkbHNKUktLdjdmQUZQYjZWYUNETThOR0JnSGtBRnZ1d0RER0NB
 YVl3Z2dHaUFnRUJNRkl3VFRFU01CQUdDZ21TSm9tVDhpeGtBUmtXQW1OaE1S
 a3dGd1lLQ1pJbWlaUHlMR1FCR1JZSmMyRnVaR1ZzYldGdU1Sd3dHZ1lEVlFR
 RERCTlZibk4wY25WdVp5QklhV2RvZDJGNUlFTkJBZ0VNTUEwR0NXQ0dTQUZs
 QXdRQ0FRVUFvSUhrTUJnR0NTcUdTSWIzRFFFSkF6RUxCZ2txaGtpRzl3MEJC
 d0V3SEFZSktvWklodmNOQVFrRk1ROFhEVEUzTVRBeE1qRXpOVGd5TTFvd0x3
 WUpLb1pJaHZjTkFRa0VNU0lFSVA1OWN1S1ZBUGtLT09sUUlhSVYvVzFBc1dL
 Ym1WbUJkOXdGU3VENXlMYWZNSGtHQ1NxR1NJYjNEUUVKRHpGc01Hb3dDd1lK
 WUlaSUFXVURCQUVxTUFzR0NXQ0dTQUZsQXdRQkZqQUxCZ2xnaGtnQlpRTUVB
 UUl3Q2dZSUtvWklodmNOQXdjd0RnWUlLb1pJaHZjTkF3SUNBZ0NBTUEwR0ND
 cUdTSWIzRFFNQ0FnRkFNQWNHQlNzT0F3SUhNQTBHQ0NxR1NJYjNEUU1DQWdF
 b01Bb0dDQ3FHU000OUJBTUNCRWN3UlFJZ0VNZzFkSkw3RmNkdHJWRHg4cUNh
 em9lOSsyMk56NFp3UkI5Z0FUR0w3TU1DSVFEanNzVWxaekpxcDIva0NkNFdo
 eFVoc2FDcFRGd1Bybk5ldzV3Q2tZVUY4UT09In19oIIBsjCCAa4wggEzoAMC
 AQICAQMwCgYIKoZIzj0EAwMwTjESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYK
 CZImiZPyLGQBGRYJc2FuZGVsbWFuMR0wGwYDVQQDDBRVbnN0cnVuZyBGb3Vu
 dGFpbiBDQTAeFw0xNzA5MDUwMTEyNDVaFw0xOTA5MDUwMTEyNDVaMEMxEjAQ
 BgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjES
 MBAGA1UEAwwJbG9jYWxob3N0MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
 NWQOzcNMUjP0NrtfeBc0DJLWfeMGgCFdIv6FUz4DifM1ujMBec/g6W/P6boT
 myTGdFOh/8HwKUerL5bpneK8sqMNMAswCQYDVR0TBAIwADAKBggqhkjOPQQD
 AwNpADBmAjEAt/4k0Cd3r2GHIG14W5s66euLd0AuqoyHmNo5A8dOtp7jYn1S
 rcmmq2txd9ACJCkhAjEA4tvXn20y23bQ5N7XnGP6w+1e+12iep2ApnQwkeeE
 60hTS4Mb7dZchTPtH2KWEXN6MYIBpzCCAaMCAQEwUzBOMRIwEAYKCZImiZPy
 LGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMM
 FFVuc3RydW5nIEZvdW50YWluIENBAgEDMA0GCWCGSAFlAwQCAQUAoIHkMBgG
 CSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MTAy
 NjAxMzYxOFowLwYJKoZIhvcNAQkEMSIEIEQBM73PZzPo7tE9Mj8gQvaaYeMQ
 OsxlACaW/HenAqNwMHkGCSqGSIb3DQEJDzFsMGowCwYJYIZIAWUDBAEqMAsG
 CWCGSAFlAwQBFjALBglghkgBZQMEAQIwCgYIKoZIhvcNAwcwDgYIKoZIhvcN
 AwICAgCAMA0GCCqGSIb3DQMCAgFAMAcGBSsOAwIHMA0GCCqGSIb3DQMCAgEo
 MAoGCCqGSM49BAMCBEcwRQIgDdp5uPUlMKp7GFQAD7ypAgqFv8q+KkJt6c3O
 7iVpVI8CIQCD1u8BkxipvigwvIDmWfjlYdJxcvozNjffq5j3UHg7Rg==

 file: examples/parboiled_vr_00-D0-E5-F2-00-02.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=3546 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7‑signed
Data
 15:d=1 hl=4 l=3531 cons: cont [0]
 19:d=2 hl=4 l=3527 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01

 26:d=3 hl=2 l= 15 cons: SET
 28:d=4 hl=2 l= 13 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=5 hl=2 l= 0 prim: NULL
 43:d=3 hl=4 l=2638 cons: SEQUENCE
 47:d=4 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 58:d=4 hl=4 l=2623 cons: cont [0]
 62:d=5 hl=4 l=2619 prim: OCTET STRING :{"ietf‑vouch
er‑request:voucher":{"assertion":"proximity","created‑on":"2
017‑09‑15T00:00:00.000Z","serial‑number":"JADA123456789","no
nce":"abcd1234","prior‑signed‑voucher‑request":"MIIHHQYJKoZI
hvcNAQcCoIIHDjCCBwoCAQExDzANBglghkgBZQMEAgEFADCCAw4GCSqGSIb3
DQEHAaCCAv8EggL7eyJpZXRmLXZvdWNoZXItcmVxdWVzdDp2b3VjaGVyIjp7
ImFzc2VydGlvbiI6InByb3hpbWl0eSIsImNyZWF0ZWQtb24iOiIyMDE3LTA5
LTAxIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9u
Y2UiOiJEc3M5OXNCcjNwTk1PQUNlLUxZWTd3IiwicHJveGltaXR5LXJlZ2lz
dHJhci1jZXJ0IjoiTUlJQnJqQ0NBVE9nQXdJQkFnSUJBekFLQmdncWhrak9Q
UVFEQXpCT01SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtp
YUprL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhIVEFiQmdOVkJBTU1GRlZ1YzNS
eWRXNW5JRVp2ZFc1MFlXbHVJRU5CTUI0WERURTNNRGt3TlRBeE1USTBOVm9Y
RFRFNU1Ea3dOVEF4TVRJME5Wb3dRekVTTUJBR0NnbVNKb21UOGl4a0FSa1dB
bU5oTVJrd0Z3WUtDWkltaVpQeUxHUUJHUllKYzJGdVpHVnNiV0Z1TVJJd0VB
WURWUVFEREFsc2IyTmhiR2h2YzNRd1dUQVRCZ2NxaGtqT1BRSUJCZ2dxaGtq
T1BRTUJCd05DQUFRMVpBN053MHhTTS9RMnUxOTRGelFNa3RaOTR3YUFJVjBp
L29WVFBnT0o4elc2TXdGNXorRHBiOC9wdWhPYkpNWjBVNkgvd2ZBcFI2c3Zs
dW1kNHJ5eW93MHdDekFKQmdOVkhSTUVBakFBTUFvR0NDcUdTTTQ5QkFNREEy
a0FNR1lDTVFDMy9pVFFKM2V2WVljZ2JYaGJtenJwNjR0M1FDNnFqSWVZMmpr
RHgwNjJudU5pZlZLdHlhYXJhM0YzMEFJa0tTRUNNUURpMjllZmJUTGJkdERr
M3RlY1kvckQ3Vjc3WGFKNm5ZQ21kRENSNTRUclNGTkxneHZ0MWx5Rk0rMGZZ
cFlSYzNvPSJ9faCCAjYwggIyMIIBt6ADAgECAgEMMAoGCCqGSM49BAMCME0x
EjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1h
bjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQTAgFw0xNzEwMTIxMzUy
NTJaGA8yOTk5MTIzMTAwMDAwMFowSzESMBAGCgmSJomT8ixkARkWAmNhMRkw
FwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRowGAYDVQQDDBEwMC1EMC1FNS1G
Mi0wMC0wMjBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABEmnmLR1TVpSdHa7
zAxHCCQ26k1s0zubWfSaP7QolmNw8iogP62s+NNKhu24h2lE98ZnyFT+chS9
6rDKhgjwE9ujgYcwgYQwHQYDVR0OBBYEFB0xFmG2EVCbPPoTthVfOQvtdkMq
MAkGA1UdEwQCMAAwKwYDVR0RBCQwIqAgBgkrBgEEAYLuUgGgEwwRMDAtRDAt
RTUtRjItMDAtMDIwKwYJKwYBBAGC7lICBB4MHGh0dHBzOi8vaGlnaHdheS5z
YW5kZWxtYW4uY2EwCgYIKoZIzj0EAwIDaQAwZgIxAOEnU355qdbVT97mqgxI
a9S9YdHu6JzxwluHu9fLnzScGzxuk2frST/4jO8RR60zMgIxAKvW7G91h4qr
uZtFcJHhkImzDrt8nuPJdlsJRKKv7fAFPb6VaCDM8NGBgHkAFvuwDDGCAaYw
ggGiAgEBMFIwTTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQB
GRYJc2FuZGVsbWFuMRwwGgYDVQQDDBNVbnN0cnVuZyBIaWdod2F5IENBAgEM
MA0GCWCGSAFlAwQCAQUAoIHkMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEw
HAYJKoZIhvcNAQkFMQ8XDTE3MTAxMjEzNTgyM1owLwYJKoZIhvcNAQkEMSIE
IP59cuKVAPkKOOlQIaIV/W1AsWKbmVmBd9wFSuD5yLafMHkGCSqGSIb3DQEJ
DzFsMGowCwYJYIZIAWUDBAEqMAsGCWCGSAFlAwQBFjALBglghkgBZQMEAQIw

CgYIKoZIhvcNAwcwDgYIKoZIhvcNAwICAgCAMA0GCCqGSIb3DQMCAgFAMAcG
BSsOAwIHMA0GCCqGSIb3DQMCAgEoMAoGCCqGSM49BAMCBEcwRQIgEMg1dJL7
FcdtrVDx8qCazoe9+22Nz4ZwRB9gATGL7MMCIQDjssUlZzJqp2/kCd4WhxUh
saCpTFwPrnNew5wCkYUF8Q=="}}
 2685:d=3 hl=4 l= 434 cons: cont [0]
 2689:d=4 hl=4 l= 430 cons: SEQUENCE
 2693:d=5 hl=4 l= 307 cons: SEQUENCE
 2697:d=6 hl=2 l= 3 cons: cont [0]
 2699:d=7 hl=2 l= 1 prim: INTEGER :02
 2702:d=6 hl=2 l= 1 prim: INTEGER :03
 2705:d=6 hl=2 l= 10 cons: SEQUENCE
 2707:d=7 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA384
 2717:d=6 hl=2 l= 78 cons: SEQUENCE
 2719:d=7 hl=2 l= 18 cons: SET
 2721:d=8 hl=2 l= 16 cons: SEQUENCE
 2723:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 2735:d=9 hl=2 l= 2 prim: IA5STRING :ca
 2739:d=7 hl=2 l= 25 cons: SET
 2741:d=8 hl=2 l= 23 cons: SEQUENCE
 2743:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 2755:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2766:d=7 hl=2 l= 29 cons: SET
 2768:d=8 hl=2 l= 27 cons: SEQUENCE
 2770:d=9 hl=2 l= 3 prim: OBJECT :commonName
 2775:d=9 hl=2 l= 20 prim: UTF8STRING :Unstrung Fou
ntain CA
 2797:d=6 hl=2 l= 30 cons: SEQUENCE
 2799:d=7 hl=2 l= 13 prim: UTCTIME :170905011245
Z
 2814:d=7 hl=2 l= 13 prim: UTCTIME :190905011245
Z
 2829:d=6 hl=2 l= 67 cons: SEQUENCE
 2831:d=7 hl=2 l= 18 cons: SET
 2833:d=8 hl=2 l= 16 cons: SEQUENCE
 2835:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 2847:d=9 hl=2 l= 2 prim: IA5STRING :ca
 2851:d=7 hl=2 l= 25 cons: SET
 2853:d=8 hl=2 l= 23 cons: SEQUENCE
 2855:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 2867:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2878:d=7 hl=2 l= 18 cons: SET
 2880:d=8 hl=2 l= 16 cons: SEQUENCE
 2882:d=9 hl=2 l= 3 prim: OBJECT :commonName

 2887:d=9 hl=2 l= 9 prim: UTF8STRING :localhost
 2898:d=6 hl=2 l= 89 cons: SEQUENCE
 2900:d=7 hl=2 l= 19 cons: SEQUENCE
 2902:d=8 hl=2 l= 7 prim: OBJECT :id‑ecPublicK
ey
 2911:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 2921:d=7 hl=2 l= 66 prim: BIT STRING
 2989:d=6 hl=2 l= 13 cons: cont [3]
 2991:d=7 hl=2 l= 11 cons: SEQUENCE
 2993:d=8 hl=2 l= 9 cons: SEQUENCE
 2995:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic
 Constraints
 3000:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:30
00
 3004:d=5 hl=2 l= 10 cons: SEQUENCE
 3006:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA384
 3016:d=5 hl=2 l= 105 prim: BIT STRING
 3123:d=3 hl=4 l= 423 cons: SET
 3127:d=4 hl=4 l= 419 cons: SEQUENCE
 3131:d=5 hl=2 l= 1 prim: INTEGER :01
 3134:d=5 hl=2 l= 83 cons: SEQUENCE
 3136:d=6 hl=2 l= 78 cons: SEQUENCE
 3138:d=7 hl=2 l= 18 cons: SET
 3140:d=8 hl=2 l= 16 cons: SEQUENCE
 3142:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 3154:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3158:d=7 hl=2 l= 25 cons: SET
 3160:d=8 hl=2 l= 23 cons: SEQUENCE
 3162:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 3174:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3185:d=7 hl=2 l= 29 cons: SET
 3187:d=8 hl=2 l= 27 cons: SEQUENCE
 3189:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3194:d=9 hl=2 l= 20 prim: UTF8STRING :Unstrung Fou
ntain CA
 3216:d=6 hl=2 l= 1 prim: INTEGER :03
 3219:d=5 hl=2 l= 13 cons: SEQUENCE
 3221:d=6 hl=2 l= 9 prim: OBJECT :sha256
 3232:d=6 hl=2 l= 0 prim: NULL
 3234:d=5 hl=3 l= 228 cons: cont [0]
 3237:d=6 hl=2 l= 24 cons: SEQUENCE
 3239:d=7 hl=2 l= 9 prim: OBJECT :contentType
 3250:d=7 hl=2 l= 11 cons: SET
 3252:d=8 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 3263:d=6 hl=2 l= 28 cons: SEQUENCE

 3265:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 3276:d=7 hl=2 l= 15 cons: SET
 3278:d=8 hl=2 l= 13 prim: UTCTIME :171026013618
Z
 3293:d=6 hl=2 l= 47 cons: SEQUENCE
 3295:d=7 hl=2 l= 9 prim: OBJECT :messageDiges
t
 3306:d=7 hl=2 l= 34 cons: SET
 3308:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:44
0133BDCF6733E8EED13D323F2042F69A61E3103ACC65002696FC77A702A3
70
 3342:d=6 hl=2 l= 121 cons: SEQUENCE
 3344:d=7 hl=2 l= 9 prim: OBJECT :S/MIME Capab
ilities
 3355:d=7 hl=2 l= 108 cons: SET
 3357:d=8 hl=2 l= 106 cons: SEQUENCE
 3359:d=9 hl=2 l= 11 cons: SEQUENCE
 3361:d=10 hl=2 l= 9 prim: OBJECT :aes‑256‑cbc
 3372:d=9 hl=2 l= 11 cons: SEQUENCE
 3374:d=10 hl=2 l= 9 prim: OBJECT :aes‑192‑cbc
 3385:d=9 hl=2 l= 11 cons: SEQUENCE
 3387:d=10 hl=2 l= 9 prim: OBJECT :aes‑128‑cbc
 3398:d=9 hl=2 l= 10 cons: SEQUENCE
 3400:d=10 hl=2 l= 8 prim: OBJECT :des‑ede3‑cbc
 3410:d=9 hl=2 l= 14 cons: SEQUENCE
 3412:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 3422:d=10 hl=2 l= 2 prim: INTEGER :80
 3426:d=9 hl=2 l= 13 cons: SEQUENCE
 3428:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 3438:d=10 hl=2 l= 1 prim: INTEGER :40
 3441:d=9 hl=2 l= 7 cons: SEQUENCE
 3443:d=10 hl=2 l= 5 prim: OBJECT :des‑cbc
 3450:d=9 hl=2 l= 13 cons: SEQUENCE
 3452:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 3462:d=10 hl=2 l= 1 prim: INTEGER :28
 3465:d=5 hl=2 l= 10 cons: SEQUENCE
 3467:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 3477:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:30
4502200DDA79B8F52530AA7B1854000FBCA9020A85BFCABE2A426DE9CDCE
EE2569548F02210083D6EF019318A9BE2830BC80E659F8E561D27172FA33
3637DFAB98F750783B46

D.2.3. MASA to Registrar

 The MASA will return a voucher to the registrar, to be relayed to the
 pledge.
 MIIG3AYJKoZIhvcNAQcCoIIGzTCCBskCAQExDzANBglghkgBZQMEAgEFADCC
 AxAGCSqGSIb3DQEHAaCCAwEEggL9eyJpZXRmLXZvdWNoZXI6dm91Y2hlciI6
 eyJhc3NlcnRpb24iOiJsb2dnZWQiLCJjcmVhdGVkLW9uIjoiMjAxNy0xMC0x
 MlQxMzo1NDozMS40MzktMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtRDAt
 RTUtRjItMDAtMDIiLCJub25jZSI6IkRzczk5c0JyM3BOTU9BQ2UtTFlZN3ci
 LCJwaW5uZWQtZG9tYWluLWNlcnQiOiJNSUlCcmpDQ0FUT2dBd0lCQWdJQkF6
 QUtCZ2dxaGtqT1BRUURBekJPTVJJd0VBWUtDWkltaVpQeUxHUUJHUllDWTJF
 eEdUQVhCZ29Ka2lhSmsvSXNaQUVaRmdsellXNWtaV3h0WVc0eEhUQWJCZ05W
 QkFNTUZGVnVjM1J5ZFc1bklFWnZkVzUwWVdsdUlFTkJNQjRYRFRFM01Ea3dO
 VEF4TVRJME5Wb1hEVEU1TURrd05UQXhNVEkwTlZvd1F6RVNNQkFHQ2dtU0pv
 bVQ4aXhrQVJrV0FtTmhNUmt3RndZS0NaSW1pWlB5TEdRQkdSWUpjMkZ1WkdW
 c2JXRnVNUkl3RUFZRFZRUUREQWxzYjJOaGJHaHZjM1F3V1RBVEJnY3Foa2pP
 UFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVExWkE3TncweFNNL1EydTE5NEZ6UU1r
 dFo5NHdhQUlWMGkvb1ZUUGdPSjh6VzZNd0Y1eitEcGI4L3B1aE9iSk1aMFU2
 SC93ZkFwUjZzdmx1bWQ0cnl5b3cwd0N6QUpCZ05WSFJNRUFqQUFNQW9HQ0Nx
 R1NNNDlCQU1EQTJrQU1HWUNNUUMzL2lUUUozZXZZWWNnYlhoYm16cnA2NHQz
 UUM2cWpJZVkyamtEeDA2Mm51TmlmVkt0eWFhcmEzRjMwQUlrS1NFQ01RRGky
 OWVmYlRMYmR0RGszdGVjWS9yRDdWNzdYYUo2bllDbWREQ1I1NFRyU0ZOTGd4
 dnQxbHlGTSswZllwWVJjM289In19oIIB0zCCAc8wggFWoAMCAQICAQEwCgYI
 KoZIzj0EAwIwTTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQB
 GRYJc2FuZGVsbWFuMRwwGgYDVQQDDBNVbnN0cnVuZyBIaWdod2F5IENBMB4X
 DTE3MDMyNjE2MTk0MFoXDTE5MDMyNjE2MTk0MFowRzESMBAGCgmSJomT8ixk
 ARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRYwFAYDVQQDDA1V
 bnN0cnVuZyBNQVNBMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAE2QB90W9hbyCT
 p7bPr17llt+aH8jWwh84wMzotpFmRRNQcrqyiJjXDTBRoqxp0VyFxqlgn8OS
 AoCfArjN71ebcvW3+ylJTpHo8077/uT1fvnpZD/R0PN76kwMLNlsFk8SoxAw
 DjAMBgNVHRMBAf8EAjAAMAoGCCqGSM49BAMCA2cAMGQCMBm9KMjNHaD+rd/y
 0jy+Tg7mrRMDGIe1hjviGExwvCuxMhwTpgmEXik9vhoVfwi1swIwTculDCU7
 dbbMSbCanTD1CBY/uMGYNQDiG/yaAOjO6996cC0E6x0cRM1TBn1jpGFMMYIB
 xjCCAcICAQEwUjBNMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/Is
 ZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5nIEhpZ2h3YXkgQ0EC
 AQEwDQYJYIZIAWUDBAIBBQCggeQwGAYJKoZIhvcNAQkDMQsGCSqGSIb3DQEH
 ATAcBgkqhkiG9w0BCQUxDxcNMTcxMDEyMTc1NDMxWjAvBgkqhkiG9w0BCQQx
 IgQgQXnG628cIW8MoYfB1ljDDlLlJQlxED2tnjcvkLEfix0weQYJKoZIhvcN
 AQkPMWwwajALBglghkgBZQMEASowCwYJYIZIAWUDBAEWMAsGCWCGSAFlAwQB
 AjAKBggqhkiG9w0DBzAOBggqhkiG9w0DAgICAIAwDQYIKoZIhvcNAwICAUAw
 BwYFKw4DAgcwDQYIKoZIhvcNAwICASgwCgYIKoZIzj0EAwIEZzBlAjEAhzid
 /AkNjttpSP1rflNppdHsi324Z2+TXJxueewnJ8z/2NXb+Tf3DsThv7du00Oz
 AjBjyOnmkkSKHsPR2JluA5c6wovuPEnNKP32daGGeFKGEHMkTInbrqipC881
 /5K9Q+k=

 file: examples/voucher_00-D0-E5-F2-00-02.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=1756 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7‑signed
Data

 15:d=1 hl=4 l=1741 cons: cont [0]
 19:d=2 hl=4 l=1737 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 15 cons: SET
 28:d=4 hl=2 l= 13 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=5 hl=2 l= 0 prim: NULL
 43:d=3 hl=4 l= 784 cons: SEQUENCE
 47:d=4 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 58:d=4 hl=4 l= 769 cons: cont [0]
 62:d=5 hl=4 l= 765 prim: OCTET STRING :{"ietf‑vouch
er:voucher":{"assertion":"logged","created‑on":"2017‑10‑12T1
3:54:31.439‑04:00","serial‑number":"00‑D0‑E5‑F2‑00‑02","nonc
e":"Dss99sBr3pNMOACe‑LYY7w","pinned‑domain‑cert":"MIIBrjCCAT
OgAwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQBGRYCY2ExGT
AXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVuc3RydW5nIE
ZvdW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAxMTI0NVowQz
ESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbW
FuMRIwEAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBw
NCAAQ1ZA7Nw0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6MwF5z+Dpb8
/puhObJMZ0U6H/wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAAMAoGCCqGSM
49BAMDA2kAMGYCMQC3/iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY2jkDx062nu
NifVKtyaara3F30AIkKSECMQDi29efbTLbdtDk3tecY/rD7V77XaJ6nYCmdD
CR54TrSFNLgxvt1lyFM+0fYpYRc3o="}}
 831:d=3 hl=4 l= 467 cons: cont [0]
 835:d=4 hl=4 l= 463 cons: SEQUENCE
 839:d=5 hl=4 l= 342 cons: SEQUENCE
 843:d=6 hl=2 l= 3 cons: cont [0]
 845:d=7 hl=2 l= 1 prim: INTEGER :02
 848:d=6 hl=2 l= 1 prim: INTEGER :01
 851:d=6 hl=2 l= 10 cons: SEQUENCE
 853:d=7 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 863:d=6 hl=2 l= 77 cons: SEQUENCE
 865:d=7 hl=2 l= 18 cons: SET
 867:d=8 hl=2 l= 16 cons: SEQUENCE
 869:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 881:d=9 hl=2 l= 2 prim: IA5STRING :ca
 885:d=7 hl=2 l= 25 cons: SET
 887:d=8 hl=2 l= 23 cons: SEQUENCE
 889:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 901:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 912:d=7 hl=2 l= 28 cons: SET
 914:d=8 hl=2 l= 26 cons: SEQUENCE
 916:d=9 hl=2 l= 3 prim: OBJECT :commonName
 921:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Hig

hway CA
 942:d=6 hl=2 l= 30 cons: SEQUENCE
 944:d=7 hl=2 l= 13 prim: UTCTIME :170326161940
Z
 959:d=7 hl=2 l= 13 prim: UTCTIME :190326161940
Z
 974:d=6 hl=2 l= 71 cons: SEQUENCE
 976:d=7 hl=2 l= 18 cons: SET
 978:d=8 hl=2 l= 16 cons: SEQUENCE
 980:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 992:d=9 hl=2 l= 2 prim: IA5STRING :ca
 996:d=7 hl=2 l= 25 cons: SET
 998:d=8 hl=2 l= 23 cons: SEQUENCE
 1000:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 1012:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1023:d=7 hl=2 l= 22 cons: SET
 1025:d=8 hl=2 l= 20 cons: SEQUENCE
 1027:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1032:d=9 hl=2 l= 13 prim: UTF8STRING :Unstrung MAS
A
 1047:d=6 hl=2 l= 118 cons: SEQUENCE
 1049:d=7 hl=2 l= 16 cons: SEQUENCE
 1051:d=8 hl=2 l= 7 prim: OBJECT :id‑ecPublicK
ey
 1060:d=8 hl=2 l= 5 prim: OBJECT :secp384r1
 1067:d=7 hl=2 l= 98 prim: BIT STRING
 1167:d=6 hl=2 l= 16 cons: cont [3]
 1169:d=7 hl=2 l= 14 cons: SEQUENCE
 1171:d=8 hl=2 l= 12 cons: SEQUENCE
 1173:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic
 Constraints
 1178:d=9 hl=2 l= 1 prim: BOOLEAN :255
 1181:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:30
00
 1185:d=5 hl=2 l= 10 cons: SEQUENCE
 1187:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 1197:d=5 hl=2 l= 103 prim: BIT STRING
 1302:d=3 hl=4 l= 454 cons: SET
 1306:d=4 hl=4 l= 450 cons: SEQUENCE
 1310:d=5 hl=2 l= 1 prim: INTEGER :01
 1313:d=5 hl=2 l= 82 cons: SEQUENCE
 1315:d=6 hl=2 l= 77 cons: SEQUENCE
 1317:d=7 hl=2 l= 18 cons: SET
 1319:d=8 hl=2 l= 16 cons: SEQUENCE
 1321:d=9 hl=2 l= 10 prim: OBJECT :domainCompon

ent
 1333:d=9 hl=2 l= 2 prim: IA5STRING :ca
 1337:d=7 hl=2 l= 25 cons: SET
 1339:d=8 hl=2 l= 23 cons: SEQUENCE
 1341:d=9 hl=2 l= 10 prim: OBJECT :domainCompon
ent
 1353:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1364:d=7 hl=2 l= 28 cons: SET
 1366:d=8 hl=2 l= 26 cons: SEQUENCE
 1368:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1373:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Hig
hway CA
 1394:d=6 hl=2 l= 1 prim: INTEGER :01
 1397:d=5 hl=2 l= 13 cons: SEQUENCE
 1399:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1410:d=6 hl=2 l= 0 prim: NULL
 1412:d=5 hl=3 l= 228 cons: cont [0]
 1415:d=6 hl=2 l= 24 cons: SEQUENCE
 1417:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1428:d=7 hl=2 l= 11 cons: SET
 1430:d=8 hl=2 l= 9 prim: OBJECT :pkcs7‑data
 1441:d=6 hl=2 l= 28 cons: SEQUENCE
 1443:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1454:d=7 hl=2 l= 15 cons: SET
 1456:d=8 hl=2 l= 13 prim: UTCTIME :171012175431
Z
 1471:d=6 hl=2 l= 47 cons: SEQUENCE
 1473:d=7 hl=2 l= 9 prim: OBJECT :messageDiges
t
 1484:d=7 hl=2 l= 34 cons: SET
 1486:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:41
79C6EB6F1C216F0CA187C1D658C30E52E5250971103DAD9E372F90B11F8B
1D
 1520:d=6 hl=2 l= 121 cons: SEQUENCE
 1522:d=7 hl=2 l= 9 prim: OBJECT :S/MIME Capab
ilities
 1533:d=7 hl=2 l= 108 cons: SET
 1535:d=8 hl=2 l= 106 cons: SEQUENCE
 1537:d=9 hl=2 l= 11 cons: SEQUENCE
 1539:d=10 hl=2 l= 9 prim: OBJECT :aes‑256‑cbc
 1550:d=9 hl=2 l= 11 cons: SEQUENCE
 1552:d=10 hl=2 l= 9 prim: OBJECT :aes‑192‑cbc
 1563:d=9 hl=2 l= 11 cons: SEQUENCE
 1565:d=10 hl=2 l= 9 prim: OBJECT :aes‑128‑cbc
 1576:d=9 hl=2 l= 10 cons: SEQUENCE
 1578:d=10 hl=2 l= 8 prim: OBJECT :des‑ede3‑cbc
 1588:d=9 hl=2 l= 14 cons: SEQUENCE
 1590:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc

 1600:d=10 hl=2 l= 2 prim: INTEGER :80
 1604:d=9 hl=2 l= 13 cons: SEQUENCE
 1606:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 1616:d=10 hl=2 l= 1 prim: INTEGER :40
 1619:d=9 hl=2 l= 7 cons: SEQUENCE
 1621:d=10 hl=2 l= 5 prim: OBJECT :des‑cbc
 1628:d=9 hl=2 l= 13 cons: SEQUENCE
 1630:d=10 hl=2 l= 8 prim: OBJECT :rc2‑cbc
 1640:d=10 hl=2 l= 1 prim: INTEGER :28
 1643:d=5 hl=2 l= 10 cons: SEQUENCE
 1645:d=6 hl=2 l= 8 prim: OBJECT :ecdsa‑with‑S
HA256
 1655:d=5 hl=2 l= 103 prim: OCTET STRING [HEX DUMP]:30
6502310087389DFC090D8EDB6948FD6B7E5369A5D1EC8B7DB8676F935C9C
6E79EC2727CCFFD8D5DBF937F70EC4E1BFB76ED343B3023063C8E9E69244
8A1EC3D1D8996E03973AC28BEE3C49CD28FDF675A1867852861073244C89
DBAEA8A90BCF35FF92BD43E9

Authors' Addresses

Max Pritikin
Cisco

 Email: pritikin@cisco.com

Michael C. Richardson
Sandelman Software Works

Email: mcr+ietf@sandelman.ca
URI: http://www.sandelman.ca/

 Michael H. Behringer

 Email: Michael.H.Behringer@gmail.com

Steinthor Bjarnason
Arbor Networks

 Email: sbjarnason@arbor.net

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

draft-ietf-anima-constrained-voucher-02 - Constrained Voucher Artifacts for Bootstrapping Protocols

draft-ietf-anima-constrained-voucher-02 - Constrained Voucher Artifacts for Boot

Index
Prev
Next
Forward 5

anima Working Group

Internet-Draft

Intended status: Standards Track

Expires: March 15, 2019

M. Richardson

Sandelman Software Works

P. van der Stok

vanderstok consultancy

P. Kampanakis

Cisco Systems

September 11, 2018

Constrained Voucher Artifacts for Bootstrapping Protocols

draft-ietf-anima-constrained-voucher-02

Abstract

 This document defines a strategy to securely assign a pledge to an
 owner, using an artifact signed, directly or indirectly, by the
 pledge's manufacturer. This artifact is known as a "voucher".

 This document builds upon the work in [RFC8366], encoding the
 resulting artifact in CBOR. Use with two signature technologies are
 described.

 Additionally, this document explains how constrained vouchers may be
 transported in the [I-D.ietf-ace-coap-est] protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 15, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Requirements Language

	4. Survey of Voucher Types

	5. Discovery and URI

	6. Artifacts
	 6.1. Voucher Request artifact
	 6.1.1. Tree Diagram

	 6.1.2. SID values

	 6.1.3. YANG Module

	 6.1.4. Example voucher request artifact

	 6.2. Voucher artifact
	 6.2.1. Tree Diagram

	 6.2.2. SID values

	 6.2.3. YANG Module

	 6.2.4. Example voucher artifacts

	 6.3. CMS format voucher and voucher-request artifacts
	 6.3.1. COSE signing

	7. Design Considerations

	8. Security Considerations
	 8.1. Clock Sensitivity

	 8.2. Protect Voucher PKI in HSM

	 8.3. Test Domain Certificate Validity when Signing

	9. IANA Considerations
	 9.1. Resource Type Registry

	 9.2. The IETF XML Registry

	 9.3. The YANG Module Names Registry

	 9.4. The SMI Security for S/MIME CMS Content Type Registry

	 9.5. The SID registry

	 9.6. Media-Type Registry
	 9.6.1. application/voucher-cms+cbor

	 9.6.2. application/voucher-cose+cbor

	 9.7. CoAP Content-Format Registry

	10. Acknowledgements

	11. Changelog

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. EST messages to EST-coaps
	 A.1. enrollstatus

	 A.2. voucher_status

	 A.3. requestvoucher
	 A.3.1. signed requestvoucher

	 A.3.2. unsigned requestvoucher

	 A.4. requestauditing

	Authors' Addresses

1. Introduction

 Enrollment of new nodes into constrained networks with constrained
 nodes present unique challenges.

 There are bandwidth and code space issues to contend. A solution
 such as [I-D.ietf-anima-bootstrapping-keyinfra] may be too large in
 terms of code space or bandwidth required.

 This document defines a constrained version of [RFC8366]. Rather
 than serializing the YANG definition in JSON, it is serialized into
 CBOR ([RFC7049]).

 This document follows a similar, but not identical structure as
 [RFC8366]. Some sections are left out entirely. Additional sections
 have been added concerning:

 1. Addition of voucher-request specification as defined in
 [I-D.ietf-anima-bootstrapping-keyinfra],

 2. Addition to [I-D.ietf-ace-coap-est] of voucher transport requests
 over coap.

 The CBOR definitions for this constrained voucher format are defined
 using the mechanism describe in [I-D.ietf-core-yang-cbor] using the
 SID mechanism explained in [I-D.ietf-core-sid]. As the tooling to
 convert YANG documents into an list of SID keys is still in its
 infancy, the table of SID values presented here should be considered
 normative rather than the output of the pyang tool.

 Two methods of signing the resulting CBOR object are described in
 this document:

 1. One is CMS [RFC5652].

 2. The other is COSE [RFC8152] signatures.

2. Terminology

 The following terms are defined in [RFC8366], and are used
 identically as in that document: artifact, imprint, domain, Join
 Registrar/Coordinator (JRC), Manufacturer Authorized Signing
 Authority (MASA), pledge, Trust of First Use (TOFU), and Voucher.

3. Requirements Language

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for compliant STuPiD
 implementations.

4. Survey of Voucher Types

 [RFC8366] provides for vouchers that assert proximity, that
 authenticate the registrar and that include different amounts of
 anti-replay protection.

 This document does not make any extensions to the types of vouchers.

 Time based vouchers are included in this definition, but given that
 constrained devices are extremely unlikely to know the correct time,
 their use is very unlikely. Most users of these constrained vouchers
 will be online and will use live nonces to provide anti-replay
 protection.

 [RFC8366] defined only the voucher artifact, and not the Voucher
 Request artifact, which was defined in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 This document defines both a constrained voucher and a constrained
 voucher-request. They are presented in the order voucher-request,
 followed by voucher response as this is the time order that they
 occur.

 This document defines both CMS-signed voucher requests and responses,
 and COSE signed voucher requests and responses. The use of CMS
 signatures implies the use of PKIX format certificates. The pinned-
 domain-cert present in such a voucher, is the certificate of the
 Registrar.

 The use of COSE signatures permits the use of both PKIX format
 certificates, and also raw public keys (RPK). When RPKs are used,
 the voucher produced by the MASA pins the raw public key of the
 Registrar: the pinned-domain-subject-public-key-info in such a
 voucher, is the raw public key of the Registrar. This is described
 in the YANG definition for the constrained voucher.

5. Discovery and URI

 This section describes the BRSKI extensions to EST-coaps
 [I-D.ietf-ace-coap-est] to transport the voucher between registrar,
 proxy and pledge over CoAP. The extensions are targeted to low-
 resource networks with small packets. Saving header space is
 important and the EST-coaps URI is shorter than the EST URI.

 The presence and location of (path to) the management data are
 discovered by sending a GET request to "/.well-known/core" including
 a resource type (RT) parameter with the value "ace.est" [RFC6690].
 Upon success, the return payload will contain the root resource of
 the EST resources. It is up to the implementation to choose its root
 resource; throughout this document the example root resource /est is
 used. The example below shows the discovery of the presence and
 location of voucher resources.

 REQ: GET /.well-known/core?rt=ace.est

RES: 2.05 Content
</est>; rt="ace.est"

 The EST-coaps server URIs differ from the EST URI by replacing the
 scheme https by coaps and by specifying shorter resource path names:

 coaps://www.example.com/est/short-name

 Figure 5 in section 3.2.2 of [RFC7030] enumerates the operations and
 corresponding paths which are supported by EST. Table 1 provides the
 mapping from the BRSKI extension URI path to the EST-coaps URI path.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| BRSKI | EST‑coaps |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
/requestvoucher	/rv
/voucher‑status	/vs
/enrollstatus	/es
/requestauditlog	/ra
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: BRSKI path to EST-coaps path

 /requestvoucher and /enrollstatus are needed between pledge and
 Registrar.

 When discovering the root path for the EST resources, the server MAY
 return the full resource paths and the used content types. This is
 useful when multiple content types are specified for EST-coaps
 server. For example, the following more complete response is
 possible.

 REQ: GET /.well-known/core?rt=ace.est*

RES: 2.05 Content
</est>; rt="ace.est"
</est/rv>; rt="ace.est/rv";ct=50 60 TBD2 TBD3 16
</est/vs>; rt="ace.est/vs";ct=50 60
</est/es>; rt="ace.est/es";ct=50 60
</est/ra>; rt="ace.est/ra";ct=TBD2 TBD3 16

 The first line MUST be returned in response to the GET, The following
 four lines MAY be returned to show the supported Content-Formats.
 The return of the content-types allows the client to choose the most
 appropriate one from multiple content types.

 ct=16 stands for the Content-Format "application/cose", and ct=TBD2
 stands for Content-Format "application/voucher-cms+cbor, and ct=TBD3
 stands for Content-Format "application/voucher-cose+cbor".

 Content-Formats TBD2 and TBD3 are defined in this document. The
 return of the content-formats allows the client to choose the most
 appropriate one from multiple content formats.

 The Content-Format ("application/json") 50 MAY be supported.
 Content-Formats ("application/cbor") 60, TBD2, TBD3, and 16 MUST be
 supported.

6. Artifacts

 This section describes the abstract (tree) definition as explained in
 [I-D.ietf-netmod-yang-tree-diagrams] first. This provides a high-
 level view of the contents of each artifact.

 Then the assigned SID values are presented. These have been assigned
 using the rules in [I-D.ietf-core-yang-cbor], with an allocation that
 was made via the http://comi.space service.

6.1. Voucher Request artifact

6.1.1. Tree Diagram

 The following diagram is largely a duplicate of the contents of
 [RFC8366], with the addition of proximity-registrar-subject-public-
 key-info, proximity-registrar-cert, and prior-signed-voucher-request.

 prior-signed-voucher-request is only used between the Registrar and
 the MASA. proximity-registrar-subject-public-key-info replaces
 proximity-registrar-cert for the extremely constrained cases.

 module: ietf-constrained-voucher-request

grouping voucher‑request‑constrained‑grouping
 +‑‑ voucher
 +‑‑ created‑on?
 | yang:date‑and‑time
 +‑‑ expires‑on?
 | yang:date‑and‑time
 +‑‑ assertion enumeration
 +‑‑ serial‑number string
 +‑‑ idevid‑issuer? binary
 +‑‑ pinned‑domain‑cert? binary
 +‑‑ domain‑cert‑revocation‑checks? boolean
 +‑‑ nonce? binary
 +‑‑ last‑renewal‑date?
 | yang:date‑and‑time
 +‑‑ proximity‑registrar‑subject‑public‑key‑info? binary
 +‑‑ proximity‑registrar‑cert? binary
 +‑‑ prior‑signed‑voucher‑request? binary

6.1.2. SID values

 SID Assigned to
‑‑‑‑‑‑‑‑‑ ‑‑
 1001154 data /ietf‑constrained‑voucher‑request:voucher
 1001155 data .../assertion
 1001156 data .../created‑on
 1001157 data .../domain‑cert‑revocation‑checks
 1001158 data .../expires‑on
 1001159 data .../idevid‑issuer
 1001160 data .../last‑renewal‑date
 1001161 data /ietf‑constrained‑voucher‑request:voucher/nonce
 1001162 data .../pinned‑domain‑cert
 1001163 data .../prior‑signed‑voucher‑request
 1001164 data .../proximity‑registrar‑cert
 1001165 data .../proximity‑registrar‑subject‑public‑key‑info
 1001166 data .../serial‑number

6.1.3. YANG Module

 In the constrained-voucher-request YANG module, the voucher is
 "augmented" within the "used" grouping statement such that one
 continuous set of SID values is generated for the constrained-
 voucher-request module name, all voucher attributes, and the
 constrained-voucher-request attribute. Two attributes of the voucher
 are "refined" to be optional.

<CODE BEGINS> file "ietf‑constrained‑voucher‑request@2018‑09‑01.yang"
module ietf‑constrained‑voucher‑request {
 yang‑version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-constrained-voucher-request";
 prefix "constrained";

import ietf‑restconf {
 prefix rc;
 description
 "This import statement is only present to access
 the yang‑data extension defined in RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
}

import ietf‑voucher {
 prefix "v";
}

 organization

 "IETF ANIMA Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Peter van der Stok
 <mailto: consultancy@vanderstok.org>
 Author: Panos Kampanakis
 <mailto: pkampana@cisco.com>";
description
 "This module defines the format for a voucher request,
 which is produced by a pledge to request a voucher.
 The voucher‑request is sent to the potential owner's
 Registrar, which in turn sends the voucher request to
 the manufacturer or delegate (MASA).

 A voucher is then returned to the pledge, binding the
 pledge to the owner. This is a constrained version of the
 voucher‑request present in
 draft‑ietf‑anima‑bootstrap‑keyinfra.txt.

 This version provides a very restricted subset appropriate
 for very constrained devices.
 In particular, it assumes that nonce‑ful operation is
 always required, that expiration dates are rather weak, as no
 clocks can be assumed, and that the Registrar is identified
 by a pinned Raw Public Key.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY',
 and 'OPTIONAL' in the module text are to be interpreted as
 described in RFC 2119.";

revision "2018‑09‑01" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher Profile for Constrained Devices";
}

rc:yang‑data voucher‑request‑constrained‑artifact {
 // YANG data template for a voucher.
 uses voucher‑request‑constrained‑grouping;
}

// Grouping defined for future usage
grouping voucher‑request‑constrained‑grouping {
 description

 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {

refine voucher/created‑on {
 mandatory false;
}

refine voucher/pinned‑domain‑cert {
 mandatory false;
}

 augment "voucher" {

 description "Base the constrained voucher-request upon the
 regular one";

 leaf proximity‑registrar‑subject‑public‑key‑info {
 type binary;
 description
 "The proximity‑registrar‑subject‑public‑key‑info replaces
 the proximit‑registrar‑cert in constrained uses of
 the voucher‑request.
 The proximity‑registrar‑subject‑public‑key‑info is the
 Raw Public Key of the Registrar. This field is encoded
 as specified in RFC7250, section 3.
 The ECDSA algorithm MUST be supported.
 The EdDSA algorithm as specified in
 draft‑ietf‑tls‑rfc4492bis‑17 SHOULD be supported.
 Support for the DSA algorithm is not recommended.
 Support for the RSA algorithm is a MAY.";
 }

 leaf proximity‑registrar‑cert {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by
 RFC 5280,
 Section 4 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU‑T X.690.

 The first certificate in the Registrar TLS server
 certificate_list sequence (see [RFC5246]) presented by
 the Registrar to the Pledge. This MUST be populated in a
 Pledge's voucher request if the proximity assertion is
 populated.";
 }

 leaf prior‑signed‑voucher‑request {
 type binary;
 description
 "If it is necessary to change a voucher, or re‑sign and
 forward a voucher that was previously provided along a
 protocol path, then the previously signed voucher
 SHOULD be included in this field.

 For example, a pledge might sign a proximity voucher,
 which an intermediate registrar then re‑signs to
 make its own proximity assertion. This is a simple
 mechanism for a chain of trusted parties to change a
 voucher, while maintaining the prior signature
 information.

 The pledge MUST ignore all prior voucher information
 when accepting a voucher for imprinting. Other
 parties MAY examine the prior signed voucher
 information for the purposes of policy decisions.
 For example this information could be useful to a
 MASA to determine that both pledge and registrar
 agree on proximity assertions. The MASA SHOULD
 remove all prior‑signed‑voucher‑request information when
 signing a voucher for imprinting so as to minimize the
 final voucher size.";
 }
 }
 }
 }
}
<CODE ENDS>

6.1.4. Example voucher request artifact

 Below a CBOR serialization of the constrained-voucher-request is
 shown in diagnostic CBOR notation. The enum value of the assertion
 field is calculated to be zero by following the algorithm described
 in section 9.6.4.2 of [RFC7950].

{
 1001101: {
 +2 : "2016‑10‑07T19:31:42Z", / SID = 1001103, created‑on /
 +4 : "2016‑10‑21T19:31:42Z", / SID = 1001105, expires‑on /
 +1 : 0, / SID = 1001102, assertion /
 / "verified" /
 +12: "JADA123456789", / SID = 1001113, serial‑number /
 +5 : h'01020D0F', / SID = 1001106, idevid‑issuer /
 +8 : h'01020D0F', / SID = 1001109, pinned‑domain‑cert/
 +3 : true, / SID = 1001104, domain‑cert
 ‑revocation‑checks /
 +6 : "2017‑10‑07T19:31:42Z", / SID = 1001107, last‑renewal‑date /
 +11: h'01020D0F' / SID = 1001112, proximity
 ‑registrar‑subject‑public‑key‑info /
 }
}

6.2. Voucher artifact

 The voucher's primary purpose is to securely assign a pledge to an
 owner. The voucher informs the pledge which entity it should
 consider to be its owner.

 This document defines a voucher that is a CBOR encoded instance of
 the YANG module defined in Section 5.3 that has been signed with CMS
 or with COSE.

6.2.1. Tree Diagram

 The following diagram is largely a duplicate of the contents of
 [RFC8366], with only the addition of pinned-domain-subject-public-
 key-info.

 module: ietf-constrained-voucher

grouping voucher‑constrained‑grouping
 +‑‑ voucher
 +‑‑ created‑on? yang:date‑and‑time
 +‑‑ expires‑on? yang:date‑and‑time
 +‑‑ assertion enumeration
 +‑‑ serial‑number string
 +‑‑ idevid‑issuer? binary
 +‑‑ pinned‑domain‑cert? binary
 +‑‑ domain‑cert‑revocation‑checks? boolean
 +‑‑ nonce? binary
 +‑‑ last‑renewal‑date? yang:date‑and‑time
 +‑‑ pinned‑domain‑subject‑public‑key‑info? binary

6.2.2. SID values

 SID Assigned to
‑‑‑‑‑‑‑‑‑ ‑‑
 1001104 data .../voucher
 1001105 data .../assertion
 1001106 data .../created‑on
 1001107 data .../domain‑cert‑revocation‑checks
 1001108 data .../expires‑on
 1001109 data .../idevid‑issuer
 1001110 data .../last‑renewal‑date
 1001111 data .../nonce
 1001112 data .../pinned‑domain‑cert
 1001113 data .../pinned‑domain‑subject‑public‑key‑info
 1001114 data .../serial‑number

6.2.3. YANG Module

 In the constraine-voucher YANG module, the voucher is "augmented"
 within the "used" grouping statement such that one continuous set of
 SID values is generated for the constrained-voucher module name, all
 voucher attributes, and the constrained-voucher attribute. Two
 attributes of the voucher are "refined" to be optional.

<CODE BEGINS> file "ietf‑constrained‑voucher@2018‑09‑01.yang"
module ietf‑constrained‑voucher {
 yang‑version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑constrained‑voucher";
 prefix "constrained";

 import ietf‑restconf {
 prefix rc;
 description
 "This import statement is only present to access
 the yang‑data extension defined in RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
 }

 import ietf‑voucher {
 prefix "v";
 }

 organization

 "IETF ANIMA Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Peter van der Stok
 <mailto: consultancy@vanderstok.org>
 Author: Panos Kampanakis
 <mailto: pkampana@cisco.com>";
description
 "This module defines the format for a voucher, which is produced
 by a pledge's manufacturer or delegate (MASA) to securely assign
 one or more pledges to an 'owner', so that the pledges may
 establis a secure connection to the owner's network
 infrastructure.

 This version provides a very restricted subset appropriate
 for very constrained devices.
 In particular, it assumes that nonce‑ful operation is
 always required, that expiration dates are rather weak, as no
 clocks can be assumed, and that the Registrar is identified
 by a pinned Raw Public Key.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY',
 and 'OPTIONAL' in the module text are to be interpreted as
 described in RFC 2119.";

 revision "2018‑09‑01" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher Profile for Constrained Devices";
 }

 rc:yang‑data voucher‑constrained‑artifact {
 // YANG data template for a voucher.
 uses voucher‑constrained‑grouping;
 }

 // Grouping defined for future usage
 grouping voucher‑constrained‑grouping {
 description
 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {

 refine voucher/created-on {

 mandatory false;
 }

 refine voucher/pinned‑domain‑cert {
 mandatory false;
 }

 augment "voucher" {
 description "Base the constrained voucher
 upon the regular one";
 leaf pinned‑domain‑subject‑public‑key‑info {
 type binary;
 description
 "The pinned‑domain‑subject‑public‑key‑info replaces the
 pinned‑domain‑cert in constrained uses of
 the voucher. The pinned‑domain‑subject‑public‑key‑info
 is the Raw Public Key of the Registrar.
 This field is encoded as specified in RFC7250,
 section 3.
 The ECDSA algorithm MUST be supported.
 The EdDSA algorithm as specified in
 draft‑ietf‑tls‑rfc4492bis‑17 SHOULD be supported.
 Support for the DSA algorithm is not recommended.
 Support for the RSA algorithm is a MAY.";
 }
 }
 }
 }
}
<CODE ENDS>

6.2.4. Example voucher artifacts

 Below a the CBOR serialization of the the constrained-voucher and
 constrained-voucher-request are shown in diagnostic CBOR notation.
 The enum value of the assertion field is calculated to be zero by
 following the algorithm described in section 9.6.4.2 of [RFC7950].

{
 1001051: {
 +2 : "2016‑10‑07T19:31:42Z", / SID = 1001053, created‑on /
 +4 : "2016‑10‑21T19:31:42Z", / SID = 1001055, expires‑on /
 +1 : 0, / SID = 1001052, assertion /
 / "verified" /
 +10: "JADA123456789", / SID = 1001061, serial‑number /
 +5 : h'01020D0F', / SID = 1001056, idevid‑issuer /
 +8 : h'01020D0F', / SID = 1001059, pinned‑domain‑cert/
 +3 : true, / SID = 1001054, domain‑cert
 ‑revocation‑checks/
 +6 : "2017‑10‑07T19:31:42Z", / SID = 1001057, last‑renewal‑date /
 +9 : h'01020D0F' / SID = 1001060, pinned‑domain
 ‑subject‑public‑key‑info /
 }
}

6.3. CMS format voucher and voucher-request artifacts

 The IETF evolution of PKCS#7 is CMS [RFC5652]. The CMS signed
 voucher is much like the equivalent voucher defined in [RFC8366].

 A different eContentType of TBD1 is used to indicate that the
 contents are in a different format than in [RFC8366].

 The ContentInfo structure contains a payload consisting of the CBOR
 encoded voucher. The [I-D.ietf-core-yang-cbor] use of delta encoding
 creates a canonical ordering for the keys on the wire. This
 canonical ordering is not important as there is no expectation that
 the content will be reproduced during the validation process.

 Normally the recipient is the pledge and the signer is the MASA.

 [I-D.ietf-anima-bootstrapping-keyinfra] supports both signed and
 unsigned voucher requests from the pledge to the JRC. In this
 specification, voucher-request artifact is not signed from the pledge
 to the registrar. From the JRC to the MASA, the voucher-request
 artifact MUST be signed by the domain owner key which is requesting
 ownership.

 The considerations of [RFC5652] section 5.1, concerning validating
 CMS objects which are really PKCS7 objects (cmsVersion=1) applies.

 The CMS structure SHOULD also contain all the certificates leading up
 to and including the signer's trust anchor certificate known to the
 recipient. The inclusion of the trust anchor is unusual in many
 applications, but without it third parties can not accurately audit
 the transaction.

 The CMS structure MAY also contain revocation objects for any
 intermediate certificate authorities (CAs) between the voucher-issuer
 and the trust anchor known to the recipient. However, the use of
 CRLs and other validity mechanisms is discouraged, as the pledge is
 unlikely to be able to perform online checks, and is unlikely to have
 a trusted clock source. As described below, the use of short-lived
 vouchers and/or pledge provided nonce provides a freshness guarantee.

6.3.1. COSE signing

 The COSE-Sign1 structure discussed in section 4.2 of [RFC8152]. The
 CBOR object that carries the body, the signature, and the information
 about the body and signature is called the COSE_Sign1 structure. It
 is used when only one signature is used on the body. The signature
 algorithm is ECSDA with three curves P-256, P-384, and P-512.

 Support for EdDSA is encouraged.

 Unlike with the CMS structure, the COSE-Sign1 structure does not
 provide a standard way for the signing keys to be included in the
 structure. This will not, in general, be a problem for the Pledge,
 as the key needed to verify the signature MUST be included at
 manufacturing time.

 A problem arises for the Registrar: to verify the voucher, the
 Registrar must have access to the MASA's public key. This document
 does not specify how to transfer the relevant key.

7. Design Considerations

 The design considerations for the CBOR encoding of vouchers is much
 the same as for [RFC8366].

 One key difference is that the names of the leaves in the YANG does
 not have a material effect on the size of the resulting CBOR, as the
 SID translation process assigns integers to the names.

8. Security Considerations

8.1. Clock Sensitivity

 TBD.

8.2. Protect Voucher PKI in HSM

 TBD.

8.3. Test Domain Certificate Validity when Signing

 TBD.

9. IANA Considerations

9.1. Resource Type Registry

 Additions to the sub-registry "CoAP Resource Type", within the "CoRE
 parameters" registry are specified below. These can be registered
 either in the Expert Review range (0-255) or IETF Review range
 (256-9999).

ace.rt.rv needs registration with IANA
ace.rt.vs needs registration with IANA
ace.rt.es needs registration with IANA
ace.rt.ra needs registration with IANA

9.2. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registration is
 requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑constrained‑voucher
Registrant Contact: The ANIMA WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑constrained‑voucher‑request
Registrant Contact: The ANIMA WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

9.3. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format defined in [RFC6020], the
 the following registration is requested:

name: ietf‑constrained‑voucher
namespace: urn:ietf:params:xml:ns:yang:ietf‑constrained‑voucher
prefix: vch
reference: RFC XXXX

name: ietf‑constrained‑voucher‑request
namespace: urn:ietf:params:xml:ns:yang:ietf‑constrained
 ‑voucher‑request
prefix: vch
reference: RFC XXXX

9.4. The SMI Security for S/MIME CMS Content Type Registry

 This document registers an OID in the "SMI Security for S/MIME CMS
 Content Type" registry (1.2.840.113549.1.9.16.1), with the value:

Decimal Description References
‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
TBD1 id‑ct‑animaCBORVoucher [ThisRFC]

 EDNOTE: should a separate value be used for Voucher Requests?

9.5. The SID registry

 The SID range 1001100 was allocated by comi.space to the IETF-
 CONSTRAINED-VOUCHER yang module.

 The SID range 1001150 was allocated by comi.space to the IETF-
 CONSTRAINED-VOUCHER-REQUEST yang module.

 EDNOTE: it is unclear if there is further IANA work required.

9.6. Media-Type Registry

 This section registers the 'application/voucher-cms+cbor' media type
 and the 'application/voucher-cose+cbor'in the "Media Types" registry.
 These media types are used to indicate that the content is a CBOR
 voucher either signed with a cms structure or a COSE_Sign1 structure
 [RFC8152].

9.6.1. application/voucher-cms+cbor

Type name: application
Subtype name: voucher‑cms+cbor
Required parameters: none
Optional parameters: none
Encoding considerations: CMS‑signed CBOR vouchers are CBOR
 encoded.
Security considerations: See Security Considerations, Section
Interoperability considerations: The format is designed to be
 broadly interoperable.
Published specification: THIS RFC.
Applications that use this media type: ANIMA, 6tisch, and other
 zero‑touch imprinting systems
Additional information:
 Magic number(s): None
 File extension(s): .vch
 Macintosh file type code(s): none
Person & email address to contact for further information: IETF
 ANIMA WG
Intended usage: LIMITED
Restrictions on usage: NONE
Author: ANIMA WG
Change controller: IETF
Provisional registration? (standards tree only): NO

9.6.2. application/voucher-cose+cbor

Type name: application
Subtype name: voucher‑cose+cbor
Required parameters: none
Optional parameters: cose‑type
Encoding considerations: COSE_Sign1 CBOR vouchers are COSE objects
 signed with one signer.
Security considerations: See Security Considerations, Section
Interoperability considerations: The format is designed to be
 broadly interoperable.
Published specification: THIS RFC.
Applications that use this media type: ANIMA, 6tisch, and other
 zero‑touch imprinting systems
Additional information:
 Magic number(s): None
 File extension(s): .vch
 Macintosh file type code(s): none
Person & email address to contact for further information: IETF
 ANIMA WG
Intended usage: LIMITED
Restrictions on usage: NONE
Author: ANIMA WG
Change controller: IETF
Provisional registration? (standards tree only): NO

9.7. CoAP Content-Format Registry

 Additions to the sub-registry "CoAP Content-Formats", within the
 "CoRE Parameters" registry are needed for two media types. These can
 be registered either in the Expert Review range (0-255) or IETF
 Review range (256-9999).

Media type mime type Encoding ID References
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
application/voucher‑cms+cbor ‑ ‑ CBOR TBD2 [This RFC]
application/voucher‑cose+cbor "COSE‑Sign1" CBOR TBD3 [This RFC]

10. Acknowledgements

 We are very grateful to Jim Schaad for explaining COSE and CMS
 choices.

 Michel Veillette did extensive work on pyang to extend it to support
 the SID allocation process, and this document was among the first
 users.

 We are grateful for the suggestions done by Esko Dijk.

11. Changelog

 -02

Example of requestvoucher with unsigned appllication/cbor is added
attributes of voucher "refined" to optional
CBOR serialization of vouchers improved

 -01

application/json is optional, application/cbor is compulsory
Cms and cose mediatypes are introduced

12. References

12.1. Normative References

 [I-D.ietf-ace-cbor-web-token]

 Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", draft-ietf-ace-cbor-web-token-15
 (work in progress), March 2018.

 [I-D.ietf-ace-coap-est]

 Stok, P., Kampanakis, P., Kumar, S., Richardson, M.,
 Furuhed, M., and S. Raza, "EST over secure CoAP (EST-
 coaps)", draft-ietf-ace-coap-est-05 (work in progress),
 July 2018.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-16 (work in progress), June 2018.

 [I-D.ietf-core-object-security]

 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-14 (work in
 progress), July 2018.

 [I-D.ietf-core-sid]

 Veillette, M. and A. Pelov, "YANG Schema Item iDentifier
 (SID)", draft-ietf-core-sid-04 (work in progress), June
 2018.

 [I-D.ietf-core-yang-cbor]

 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-06 (work in progress), February
 2018.

 [ieee802-1AR]

 IEEE Standard, ., "IEEE 802.1AR Secure Device Identifier",
 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7250]
 Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8152]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

12.2. Informative References

 [duckling]

 Stajano, F. and R. Anderson, "The resurrecting duckling:
 security issues for ad-hoc wireless networks", 1999,
 <https://www.cl.cam.ac.uk/~fms27/
 papers/1999-StajanoAnd-duckling.pdf>.

 [I-D.ietf-netmod-yang-tree-diagrams]

 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-
 ietf-netmod-yang-tree-diagrams-06 (work in progress),
 February 2018.

 [pledge]
 Dictionary.com, ., "Dictionary.com Unabridged", 2015,
 <http://dictionary.reference.com/browse/pledge>.

 [RFC6690]
 Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

Appendix A. EST messages to EST-coaps

 This section extends the examples from Appendix A of
 [I-D.ietf-ace-coap-est]. The CoAP headers are only worked out for
 the enrollstatus example.

A.1. enrollstatus

 A coaps enrollstatus message can be :

 GET coaps://[192.0.2.1:8085]/est/es

 The corresponding coap header fields are shown below.

Ver = 1
T = 0 (CON)
Code = 0x01 (0.01 is GET)
Options
 Option1 (Uri‑Host)
 Option Delta = 0x3 (option nr = 3)
 Option Length = 0x9
 Option Value = 192.0.2.1
 Option2 (Uri‑Port)
 Option Delta = 0x4 (option nr = 4+3=7)
 Option Length = 0x4
 Option Value = 8085
 Option3 (Uri‑Path)
 Option Delta = 0x4 (option nr = 7+4= 11)
 Option Length = 0x7
 Option Value = /est/es
Payload = [Empty]

 A 2.05 Content response with an unsigned JSON voucher (ct=50) will
 then be:

 2.05 Content (Content-Format: application/json)

 {payload}

 With CoAP fields and payload:

Ver=1
T=2 (ACK)
Code = 0x45 (2.05 Content)
Options
 Option1 (Content‑Format)
 Option Delta = 0xC (option nr 12)
 Option Length = 0x2
 Option Value = 0x32 (application/json)

 Payload =
 [EDNOTE: put here voucher payload]

A.2. voucher_status

 A coaps voucher_status message can be :

 GET coaps://[2001:db8::2:1]:61616]/est/vs

 A 2.05 Content response with a non signed CBOR voucher (ct=60) will
 then be:

2.05 Content (Content‑Format: application/cbor)
Payload =
[EDNOTE: put here voucher payload]

A.3. requestvoucher

 Two request-voucher request payloads are possible from pledge to
 Registrar, a signed one and an unsigned one, as explained in
 Section 5.2 of [I-D.ietf-anima-bootstrapping-keyinfra].

A.3.1. signed requestvoucher

 A coaps signed requestvoucher message from RA to MASA can be :

 POST coaps://[2001:db8::2:1]:61616]/est/rv

 A 2.04 Changed response returning CBOR voucher signed with a cms
 structure(ct=TBD2) will then be:

2.04 Changed (Content‑Format: application/voucher‑cms+cbor)
Payload =
[EDNOTE: put here encrypted voucher payload]

A.3.2. unsigned requestvoucher

 A coaps unsigned requestvoucher message from pledge to Registrar can
 be :

 POST coaps://[2001:db8::2:1]:61616]/est/rv

 A 2.04 Changed response returning CBOR voucher (ct=60) will then be:

2.04 Changed (Content‑Format: application/cbor)
Payload =
[EDNOTE: put here encrypted voucher payload]

A.4. requestauditing

 A coaps requestauditing message can be :

 GET coaps://[2001:db8::2:1]:61616]/est/ra

 A 2.05 Content response returning a COSE_Sign1 object (ct=TBD3) will
 then be:

2.05 Content (Content‑Format: application/voucher‑cose+cbor)
Payload =
[EDNOTE: put here COSE_Sign1 voucher payload]

Authors' Addresses

Michael Richardson
Sandelman Software Works

 Email: mcr+ietf@sandelman.ca

Peter van der Stok
vanderstok consultancy

 Email: consultancy@vanderstok.org

Panos Kampanakis
Cisco Systems

 Email: pkampana@cisco.com

draft-ietf-anima-grasp-15 - A Generic Autonomic Signaling Protocol (GRASP)

draft-ietf-anima-grasp-15 - A Generic Autonomic Signaling Protocol (GRASP)

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 8, 2018

C. Bormann

Universitaet Bremen TZI

B. Carpenter, Ed.

Univ. of Auckland

B. Liu, Ed.

Huawei Technologies Co., Ltd

July 7, 2017

A Generic Autonomic Signaling Protocol (GRASP)

draft-ietf-anima-grasp-15

Abstract

 This document specifies the GeneRic Autonomic Signaling Protocol
 (GRASP), which enables autonomic nodes and autonomic service agents
 to dynamically discover peers, to synchronize state with each other,
 and to negotiate parameter settings with each other. GRASP depends
 on an external security environment that is described elsewhere. The
 technical objectives and parameters for specific application
 scenarios are to be described in separate documents. Appendices
 briefly discuss requirements for the protocol and existing protocols
 with comparable features.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. GRASP Protocol Overview
	 2.1. Terminology

	 2.2. High Level Deployment Model

	 2.3. High Level Design

	 2.4. Quick Operating Overview

	 2.5. GRASP Protocol Basic Properties and Mechanisms
	 2.5.1. Required External Security Mechanism

	 2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP

	 2.5.3. Transport Layer Usage

	 2.5.4. Discovery Mechanism and Procedures

	 2.5.5. Negotiation Procedures

	 2.5.6. Synchronization and Flooding Procedures

	 2.6. GRASP Constants

	 2.7. Session Identifier (Session ID)

	 2.8. GRASP Messages
	 2.8.1. Message Overview

	 2.8.2. GRASP Message Format

	 2.8.3. Message Size

	 2.8.4. Discovery Message

	 2.8.5. Discovery Response Message

	 2.8.6. Request Messages

	 2.8.7. Negotiation Message

	 2.8.8. Negotiation End Message

	 2.8.9. Confirm Waiting Message

	 2.8.10. Synchronization Message

	 2.8.11. Flood Synchronization Message

	 2.8.12. Invalid Message

	 2.8.13. No Operation Message

	 2.9. GRASP Options
	 2.9.1. Format of GRASP Options

	 2.9.2. Divert Option

	 2.9.3. Accept Option

	 2.9.4. Decline Option

	 2.9.5. Locator Options

	 2.10. Objective Options
	 2.10.1. Format of Objective Options

	 2.10.2. Objective flags

	 2.10.3. General Considerations for Objective Options

	 2.10.4. Organizing of Objective Options

	 2.10.5. Experimental and Example Objective Options

	3. Implementation Status [RFC Editor: please remove]
	 3.1. BUPT C++ Implementation

	 3.2. Python Implementation

	4. Security Considerations

	5. CDDL Specification of GRASP

	6. IANA Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Open Issues [RFC Editor: This section should be empty. Please remove]

	Appendix B. Closed Issues [RFC Editor: Please remove]

	Appendix C. Change log [RFC Editor: Please remove]

	Appendix D. Example Message Formats
	 D.1. Discovery Example

	 D.2. Flood Example

	 D.3. Synchronization Example

	 D.4. Simple Negotiation Example

	 D.5. Complete Negotiation Example

	Appendix E. Requirement Analysis of Discovery, Synchronization and Negotiation
	 E.1. Requirements for Discovery

	 E.2. Requirements for Synchronization and Negotiation Capability

	 E.3. Specific Technical Requirements

	Appendix F. Capability Analysis of Current Protocols

	Authors' Addresses

1. Introduction

 The success of the Internet has made IP-based networks bigger and
 more complicated. Large-scale ISP and enterprise networks have
 become more and more problematic for human based management. Also,
 operational costs are growing quickly. Consequently, there are
 increased requirements for autonomic behavior in the networks.
 General aspects of autonomic networks are discussed in [RFC7575] and
 [RFC7576].

 One approach is to largely decentralize the logic of network
 management by migrating it into network elements. A reference model
 for autonomic networking on this basis is given in
 [I-D.ietf-anima-reference-model]. The reader should consult this
 document to understand how various autonomic components fit together.
 In order to fulfill autonomy, devices that embody Autonomic Service
 Agents (ASAs, [RFC7575]) have specific signaling requirements. In
 particular they need to discover each other, to synchronize state
 with each other, and to negotiate parameters and resources directly
 with each other. There is no limitation on the types of parameters
 and resources concerned, which can include very basic information
 needed for addressing and routing, as well as anything else that
 might be configured in a conventional non-autonomic network. The
 atomic unit of discovery, synchronization or negotiation is referred
 to as a technical objective, i.e, a configurable parameter or set of
 parameters (defined more precisely in Section 2.1).

 Negotiation is an iterative process, requiring multiple message
 exchanges forming a closed loop between the negotiating entities. In
 fact, these entities are ASAs, normally but not necessarily in
 different network devices. State synchronization, when needed, can
 be regarded as a special case of negotiation, without iteration.
 Both negotiation and synchronization must logically follow discovery.
 More details of the requirements are found in Appendix E.
 Section 2.3 describes a behavior model for a protocol intended to
 support discovery, synchronization and negotiation. The design of
 GeneRic Autonomic Signaling Protocol (GRASP) in Section 2 of this
 document is based on this behavior model. The relevant capabilities
 of various existing protocols are reviewed in Appendix F.

 The proposed discovery mechanism is oriented towards synchronization
 and negotiation objectives. It is based on a neighbor discovery
 process on the local link, but also supports diversion to peers on
 other links. There is no assumption of any particular form of
 network topology. When a device starts up with no pre-configuration,
 it has no knowledge of the topology. The protocol itself is capable
 of being used in a small and/or flat network structure such as a
 small office or home network as well as in a large professionally
 managed network. Therefore, the discovery mechanism needs to be able
 to allow a device to bootstrap itself without making any prior
 assumptions about network structure.

 Because GRASP can be used as part of a decision process among
 distributed devices or between networks, it must run in a secure and
 strongly authenticated environment.

 In realistic deployments, not all devices will support GRASP.
 Therefore, some autonomic service agents will directly manage a group
 of non-autonomic nodes, and other non-autonomic nodes will be managed
 traditionally. Such mixed scenarios are not discussed in this
 specification.

2. GRASP Protocol Overview

2.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. When these words are not in
 ALL CAPS (such as "should" or "Should"), they have their usual
 English meanings, and are not to be interpreted as [RFC2119] key
 words.

 This document uses terminology defined in [RFC7575].

 The following additional terms are used throughout this document:

 o Discovery: a process by which an ASA discovers peers according to
 a specific discovery objective. The discovery results may be
 different according to the different discovery objectives. The
 discovered peers may later be used as negotiation counterparts or
 as sources of synchronization data.

 o Negotiation: a process by which two ASAs interact iteratively to
 agree on parameter settings that best satisfy the objectives of
 both ASAs.

 o State Synchronization: a process by which ASAs interact to receive
 the current state of parameter values stored in other ASAs. This
 is a special case of negotiation in which information is sent but
 the ASAs do not request their peers to change parameter settings.
 All other definitions apply to both negotiation and
 synchronization.

 o Technical Objective (usually abbreviated as Objective): A
 technical objective is a data structure, whose main contents are a
 name and a value. The value consists of a single configurable
 parameter or a set of parameters of some kind. The exact format
 of an objective is defined in Section 2.10.1. An objective occurs
 in three contexts: Discovery, Negotiation and Synchronization.
 Normally, a given objective will not occur in negotiation and
 synchronization contexts simultaneously.

 * One ASA may support multiple independent objectives.

 * The parameter(s) in the value of a given objective apply to a
 specific service or function or action. They may in principle
 be anything that can be set to a specific logical, numerical or
 string value, or a more complex data structure, by a network

 node. Each node is expected to contain one or more ASAs which
 may each manage subsidiary non-autonomic nodes.

 * Discovery Objective: an objective in the process of discovery.
 Its value may be undefined.

 * Synchronization Objective: an objective whose specific
 technical content needs to be synchronized among two or more
 ASAs. Thus, each ASA will maintain its own copy of the
 objective.

 * Negotiation Objective: an objective whose specific technical
 content needs to be decided in coordination with another ASA.
 Again, each ASA will maintain its own copy of the objective.

 A detailed discussion of objectives, including their format, is
 found in Section 2.10.

 o Discovery Initiator: an ASA that starts discovery by sending a
 discovery message referring to a specific discovery objective.

 o Discovery Responder: a peer that either contains an ASA supporting
 the discovery objective indicated by the discovery initiator, or
 caches the locator(s) of the ASA(s) supporting the objective. It
 sends a Discovery Response, as described later.

 o Synchronization Initiator: an ASA that starts synchronization by
 sending a request message referring to a specific synchronization
 objective.

 o Synchronization Responder: a peer ASA which responds with the
 value of a synchronization objective.

 o Negotiation Initiator: an ASA that starts negotiation by sending a
 request message referring to a specific negotiation objective.

 o Negotiation Counterpart: a peer with which the Negotiation
 Initiator negotiates a specific negotiation objective.

 o GRASP Instance: This refers to an instantiation of a GRASP
 protocol engine, likely including multiple threads or processes as
 well as dynamic data structures such as a discovery cache, running
 in a given security environment on a single device.

 o GRASP Core: This refers to the code and shared data structures of
 a GRASP instance, which will communicate with individual ASAs via
 a suitable Application Programming Interface (API).

 o Interface or GRASP Interface: Unless otherwise stated, these refer
 to a network interface - which might be physical or virtual - that
 a specific instance of GRASP is currently using. A device might
 have other interfaces that are not used by GRASP and which are
 outside the scope of the autonomic network.

2.2. High Level Deployment Model

 A GRASP implementation will be part of the Autonomic Networking
 Infrastructure (ANI) in an autonomic node, which must also provide an
 appropriate security environment. In accordance with
 [I-D.ietf-anima-reference-model], this SHOULD be the Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane]. As a
 result, all autonomic nodes in the ACP are able to trust each other.
 It is expected that GRASP will access the ACP by using a typical
 socket programming interface and the ACP will make available only
 network interfaces within the autonomic network. If there is no ACP,
 the considerations described in Section 2.5.1 apply.

 There will also be one or more Autonomic Service Agents (ASAs). In
 the minimal case of a single-purpose device, these components might
 be fully integrated with GRASP and the ACP. A more common model is
 expected to be a multi-purpose device capable of containing several
 ASAs, such as a router or large switch. In this case it is expected
 that the ACP, GRASP and the ASAs will be implemented as separate
 processes, which are able to support asynchronous and simultaneous
 operations, for example by multi-threading.

 In some scenarios, a limited negotiation model might be deployed
 based on a limited trust relationship such as that between two
 administrative domains. ASAs might then exchange limited information
 and negotiate some particular configurations.

 GRASP is explicitly designed to operate within a single addressing
 realm. Its discovery and flooding mechanisms do not support
 autonomic operations that cross any form of address translator or
 upper layer proxy.

 A suitable Application Programming Interface (API) will be needed
 between GRASP and the ASAs. In some implementations, ASAs would run
 in user space with a GRASP library providing the API, and this
 library would in turn communicate via system calls with core GRASP
 functions. Details of the API are out of scope for the present
 document. For further details of possible deployment models, see
 [I-D.ietf-anima-reference-model].

 An instance of GRASP must be aware of the network interfaces it will
 use, and of the appropriate global-scope and link-local addresses.
 In the presence of the ACP, such information will be available from
 the adjacency table discussed in [I-D.ietf-anima-reference-model].
 In other cases, GRASP must determine such information for itself.
 Details depend on the device and operating system. In the rest of
 this document, the terms 'interfaces' or 'GRASP interfaces' refers
 only to the set of network interfaces that a specific instance of
 GRASP is currently using.

 Because GRASP needs to work with very high reliability, especially
 during bootstrapping and during fault conditions, it is essential
 that every implementation continues to operate in adverse conditions.
 For example, discovery failures, or any kind of socket exception at
 any time, must not cause irrecoverable failures in GRASP itself, and
 must return suitable error codes through the API so that ASAs can
 also recover.

 GRASP must not depend upon non-volatile data storage. All run time
 error conditions, and events such as address renumbering, network
 interface failures, and CPU sleep/wake cycles, must be handled in
 such a way that GRASP will still operate correctly and securely
 (Section 2.5.1) afterwards.

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. Possible exceptions are mentioned below.

2.3. High Level Design

 This section describes the behavior model and general design of
 GRASP, supporting discovery, synchronization and negotiation, to act
 as a platform for different technical objectives.

 o A generic platform:

 The protocol design is generic and independent of the
 synchronization or negotiation contents. The technical contents
 will vary according to the various technical objectives and the
 different pairs of counterparts.

 o Normally, a single main instance of the GRASP protocol engine will
 exist in an autonomic node, and each ASA will run as an
 independent asynchronous process. However, scenarios where
 multiple instances of GRASP run in a single node, perhaps with
 different security properties, are possible (Section 2.5.2). In
 this case, each instance MUST listen independently for GRASP link-
 local multicasts, and all instances MUST be woken by each such
 multicast, in order for discovery and flooding to work correctly.

 o Security infrastructure:

 As noted above, the protocol itself has no built-in security
 functionality, and relies on a separate secure infrastructure.

 o Discovery, synchronization and negotiation are designed together:

 The discovery method and the synchronization and negotiation
 methods are designed in the same way and can be combined when this
 is useful, allowing a rapid mode of operation described in
 Section 2.5.4. These processes can also be performed
 independently when appropriate.

 * Thus, for some objectives, especially those concerned with
 application layer services, another discovery mechanism such as
 the future DNS Service Discovery [RFC7558] MAY be used. The
 choice is left to the designers of individual ASAs.

 o A uniform pattern for technical objectives:

 The synchronization and negotiation objectives are defined
 according to a uniform pattern. The values that they contain
 could be carried either in a simple binary format or in a complex
 object format. The basic protocol design uses the Concise Binary
 Object Representation (CBOR) [RFC7049], which is readily
 extensible for unknown future requirements.

 o A flexible model for synchronization:

 GRASP supports synchronization between two nodes, which could be
 used repeatedly to perform synchronization among a small number of
 nodes. It also supports an unsolicited flooding mode when large
 groups of nodes, possibly including all autonomic nodes, need data
 for the same technical objective.

 * There may be some network parameters for which a more
 traditional flooding mechanism such as DNCP [RFC7787] is
 considered more appropriate. GRASP can coexist with DNCP.

 o A simple initiator/responder model for negotiation:

 Multi-party negotiations are very complicated to model and cannot
 readily be guaranteed to converge. GRASP uses a simple bilateral
 model and can support multi-party negotiations by indirect steps.

 o Organizing of synchronization or negotiation content:

 The technical content transmitted by GRASP will be organized
 according to the relevant function or service. The objectives for
 different functions or services are kept separate, because they
 may be negotiated or synchronized with different counterparts or
 have different response times. Thus a normal arrangement would be
 a single ASA managing a small set of closely related objectives,
 with a version of that ASA in each relevant autonomic node.
 Further discussion of this aspect is out of scope for the current
 document.

 o Requests and responses in negotiation procedures:

 The initiator can negotiate a specific negotiation objective with
 relevant counterpart ASAs. It can request relevant information
 from a counterpart so that it can coordinate its local
 configuration. It can request the counterpart to make a matching
 configuration. It can request simulation or forecast results by
 sending some dry run conditions.

 Beyond the traditional yes/no answer, the responder can reply with
 a suggested alternative value for the objective concerned. This
 would start a bi-directional negotiation ending in a compromise
 between the two ASAs.

 o Convergence of negotiation procedures:

 To enable convergence, when a responder suggests a new value or
 condition in a negotiation step reply, it should be as close as
 possible to the original request or previous suggestion. The
 suggested value of later negotiation steps should be chosen
 between the suggested values from the previous two steps. GRASP
 provides mechanisms to guarantee convergence (or failure) in a
 small number of steps, namely a timeout and a maximum number of
 iterations.

 o Extensibility:

 GRASP intentionally does not have a version number, and can be
 extended by adding new message types and options. The Invalid
 Message (M_INVALID) will be used to signal that an implementation
 does not recognize a message or option sent by another
 implementation. In normal use, new semantics will be added by
 defining new synchronization or negotiation objectives.

2.4. Quick Operating Overview

 An instance of GRASP is expected to run as a separate core module,
 providing an API (such as [I-D.liu-anima-grasp-api]) to interface to
 various ASAs. These ASAs may operate without special privilege,
 unless they need it for other reasons (such as configuring IP
 addresses or manipulating routing tables).

 The GRASP mechanisms used by the ASA are built around GRASP
 objectives defined as data structures containing administrative
 information such as the objective's unique name, and its current
 value. The format and size of the value is not restricted by the
 protocol, except that it must be possible to serialize it for
 transmission in CBOR, which is no restriction at all in practice.

 GRASP provides the following mechanisms:

 o A discovery mechanism (M_DISCOVERY, M_RESPONSE), by which an ASA
 can discover other ASAs supporting a given objective.

 o A negotiation request mechanism (M_REQ_NEG), by which an ASA can
 start negotiation of an objective with a counterpart ASA. Once a
 negotiation has started, the process is symmetrical, and there is
 a negotiation step message (M_NEGOTIATE) for each ASA to use in
 turn. Two other functions support negotiating steps (M_WAIT,
 M_END).

 o A synchronization mechanism (M_REQ_SYN), by which an ASA can
 request the current value of an objective from a counterpart ASA.
 With this, there is a corresponding response function (M_SYNCH)
 for an ASA that wishes to respond to synchronization requests.

 o A flood mechanism (M_FLOOD), by which an ASA can cause the current
 value of an objective to be flooded throughout the autonomic
 network so that any ASA can receive it. One application of this
 is to act as an announcement, avoiding the need for discovery of a
 widely applicable objective.

 Some example messages and simple message flows are provided in
 Appendix D.

2.5. GRASP Protocol Basic Properties and Mechanisms

2.5.1. Required External Security Mechanism

 GRASP does not specify transport security because it is meant to be
 adapted to different environments. Every solution adopting GRASP
 MUST specify a security and transport substrate used by GRASP in that
 solution.

 The substrate MUST enforce sending and receiving GRASP messages only
 between members of a mutually trusted group running GRASP. Each
 group member is an instance of GRASP. The group members are nodes of
 a connected graph. The group and graph is created by the security
 and transport substrate and called the GRASP domain. The substrate
 must support unicast messages between any group members and (link-
 local) multicast messages between adjacent group members. It must
 deny messages between group members and non group members. With this
 model, security is provided by enforcing group membership, but any
 member of the trusted group can attack the entire network until
 revoked.

 Substrates MUST use cryptographic member authentication and message
 integrity for GRASP messages. This can be end-to-end or hop-by-hop
 across the domain. The security and transport substrate MUST provide
 mechanisms to remove untrusted members from the group.

 If the substrate does not mandate and enforce GRASP message
 encryption then any service using GRASP in such a solution MUST
 provide protection and encryption for message elements whose exposure
 could constitute an attack vector.

 The security and transport substrate for GRASP in the ANI is the ACP.
 Unless otherwise noted, we assume this security and transport
 substrate in the remainder of this document. The ACP does mandate
 the use of encryption; therefore GRASP in the ANI can rely on GRASP
 message being encrypted. The GRASP domain is the ACP: all nodes in
 an autonomic domain connected by encrypted virtual links formed by
 the ACP. The ACP uses hop-by-hop security (authentication/
 encryption) of messages. Removal of nodes relies on standard PKI
 certificate revocation or expiry of sufficiently short lived
 certificates. Refer to [I-D.ietf-anima-autonomic-control-plane] for
 more details.

 As mentioned in Section 2.3, some GRASP operations might be performed
 across an administrative domain boundary by mutual agreement, without
 the benefit of an ACP. Such operations MUST be confined to a
 separate instance of GRASP with its own copy of all GRASP data
 structures running across a separate GRASP domain with a security and
 transport substrate. In the most simple case, each point-to-point
 interdomain GRASP peering could be a separate domain and the security
 and transport substrate could be built using transport or network
 layer security protocols. This is subject to future specifications.

 An exception to the requirements for the security and transport
 substrate exists for highly constrained subsets of GRASP meant to
 support the establishment of a security and transport substrate,
 described in the following section.

2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP

 Some services may need to use insecure GRASP discovery, response and
 flood messages without being able to use pre-existing security
 associations, for example as part of discovery for establishing
 security associations such as a security substrate for GRASP.

 Such operations being intrinsically insecure, they need to be
 confined to link-local use to minimize the risk of malicious actions.
 Possible examples include discovery of candidate ACP neighbors
 [I-D.ietf-anima-autonomic-control-plane], discovery of bootstrap
 proxies [I-D.ietf-anima-bootstrapping-keyinfra] or perhaps
 initialization services in networks using GRASP without being fully
 autonomic (e.g., no ACP). Such usage MUST be limited to link-local
 operations on a single interface and MUST be confined to a separate
 insecure instance of GRASP with its own copy of all GRASP data
 structures. This instance is nicknamed DULL - Discovery Unsolicited
 Link-Local.

 The detailed rules for the DULL instance of GRASP are as follows:

 o An initiator MAY send Discovery or Flood Synchronization link-
 local multicast messages which MUST have a loop count of 1, to
 prevent off-link operations. Other unsolicited GRASP message
 types MUST NOT be sent.

 o A responder MUST silently discard any message whose loop count is
 not 1.

 o A responder MUST silently discard any message referring to a GRASP
 Objective that is not directly part of a service that requires
 this insecure mode.

 o A responder MUST NOT relay any multicast messages.

 o A Discovery Response MUST indicate a link-local address.

 o A Discovery Response MUST NOT include a Divert option.

 o A node MUST silently discard any message whose source address is
 not link-local.

 To minimize traffic possibly observed by third parties, GRASP traffic
 SHOULD be minimized by using only Flood Synchronization to announce
 objectives and their associated locators, rather than by using
 Discovery and Response. Further details are out of scope for this
 document

2.5.3. Transport Layer Usage

 All GRASP messages, after they are serialized as a CBOR byte string,
 are transmitted as such directly over the transport protocol in use.
 The transport protocol(s) for a GRASP domain are specified by the
 security and transport substrate as introduced in Section 2.5.1.

 GRASP discovery and flooding messages are designed for GRASP domain
 wide flooding through hop-by-hop link-local multicast forwarding
 between adjacent GRASP nodes. The GRASP security and transport
 substrate needs to specify how these link local multicasts are
 transported. This can be unreliable transport (UDP) but it SHOULD be
 reliable transport (e.g., TCP).

 If the substrate specifies an unreliable transport such as UDP for
 discovery and flooding messages, then it MUST NOT use IP
 fragmentation because of its loss characteristic, especially in
 multi-hop flooding. GRASP MUST then enforce at the user API level a
 limit to the size of discovery and flooding messages, so that no
 fragmentation can occur. For IPv6 transport this means that those
 messages must be at most 1280 bytes sized IPv6 packets (unless there
 is a known larger minimum link MTU across the whole GRASP domain).

 All other GRASP messages are unicast beteween group members of the
 GRASP domain. These MUST use a reliable transport protocol because
 GRASP itself does not provide for error detection, retransmission or
 flow control. Unless otherwise specified by the security and
 transport substrate, TCP MUST be used.

 The security and transport substrate for GRASP in the ANI is the ACP.
 Unless otherwise noted, we assume this security and transport
 substrate in the remainder of this document when describing GRASPs
 message transport. In the ACP, TCP is used for GRASP unicast
 messages. GRASP discovery and flooding messages also use TCP: These
 link-local messages are forwarded by replicating them to all adjacent
 GRASP nodes on the link via TCP connections to those adjacent GRASP
 nodes. Because of this, GRASP in the ANI has no limitations on the
 size of discovery and flooding messages with respect to fragmentation
 issues. UDP is used in the ANI with GRASP only with DULL when the
 ACP is built to discover ACP/GRASP neighbors on links.

 For link-local UDP multicast, the GRASP protocol listens to the well-
 known GRASP Listen Port (Section 2.6). Transport connections for
 Discovery and Flooding on relay nodes must terminate in GRASP
 instances (eg: GRASP ASAs) so that link-local multicast, hop-by-hop
 flooding of M_DISCOVERY and M_FLOOD and hop-by-hop forwarding of
 M_RESPONSE and caching of those responses along the path work
 correctly.

 Unicast transport connections used for synchronization and
 negotiation can terminate directly in ASAs that implement objectives
 and therefore this traffic does not need to pass through GRASP
 instances. For this, the ASA listens on its own dynamically assigned
 ports, which are communicated to its peers during discovery.
 Alternatively, the GRASP instance can also terminate the unicast
 transport connections and pass the traffic from/to the ASA if that is
 preferrable in some implementation (eg: to better decouple ASAs from
 network connections).

2.5.4. Discovery Mechanism and Procedures

2.5.4.1. Separated discovery and negotiation mechanisms

 Although discovery and negotiation or synchronization are defined
 together in GRASP, they are separate mechanisms. The discovery
 process could run independently from the negotiation or
 synchronization process. Upon receiving a Discovery (Section 2.8.4)
 message, the recipient node should return a response message in which
 it either indicates itself as a discovery responder or diverts the
 initiator towards another more suitable ASA. However, this response
 may be delayed if the recipient needs to relay the discovery onwards,
 as described below.

 The discovery action (M_DISCOVERY) will normally be followed by a
 negotiation (M_REQ_NEG) or synchronization (M_REQ_SYN) action. The
 discovery results could be utilized by the negotiation protocol to
 decide which ASA the initiator will negotiate with.

 The initiator of a discovery action for a given objective need not be
 capable of responding to that objective as a Negotiation Counterpart,
 as a Synchronization Responder or as source for flooding. For
 example, an ASA might perform discovery even if it only wishes to act
 a Synchronization Initiator or Negotiation Initiator. Such an ASA
 does not itself need to respond to discovery messages.

 It is also entirely possible to use GRASP discovery without any
 subsequent negotiation or synchronization action. In this case, the
 discovered objective is simply used as a name during the discovery
 process and any subsequent operations between the peers are outside
 the scope of GRASP.

2.5.4.2. Discovery Overview

 A complete discovery process will start with a multicast (of
 M_DISCOVERY) on the local link. On-link neighbors supporting the
 discovery objective will respond directly (with M_RESPONSE). A
 neighbor with multiple interfaces may respond with a cached discovery
 response. If it has no cached response, it will relay the discovery
 on its other GRASP interfaces. If a node receiving the relayed
 discovery supports the discovery objective, it will respond to the
 relayed discovery. If it has a cached response, it will respond with
 that. If not, it will repeat the discovery process, which thereby
 becomes iterative. The loop count and timeout will ensure that the
 process ends. Further details are given below.

 A Discovery message MAY be sent unicast to a peer node, which SHOULD
 then proceed exactly as if the message had been multicast, except
 that when TCP is used, the response will be on the same socket as the
 query. However, this mode does not guarantee successful discovery in
 the general case.

2.5.4.3. Discovery Procedures

 Discovery starts as an on-link operation. The Divert option can tell
 the discovery initiator to contact an off-link ASA for that discovery
 objective. If the security and transport substrate of the GRASP
 domain (see Section 2.5.3) uses UDP link-local multicast then the
 discovery initiator sends these to the ALL_GRASP_NEIGHBORS link-local
 multicast address (Section 2.6) and and all GRASP nodes need to
 listen to this address to act as discovery responder. Because this
 port is unique in a device, this is a function of the GRASP instance
 and not of an individual ASA. As a result, each ASA will need to
 register the objectives that it supports with the local GRASP
 instance.

 If an ASA in a neighbor device supports the requested discovery
 objective, the device SHOULD respond to the link-local multicast with
 a unicast Discovery Response message (Section 2.8.5) with locator
 option(s), unless it is temporarily unavailable. Otherwise, if the
 neighbor has cached information about an ASA that supports the
 requested discovery objective (usually because it discovered the same
 objective before), it SHOULD respond with a Discovery Response
 message with a Divert option pointing to the appropriate Discovery
 Responder. However, it SHOULD NOT respond with a cached response on
 an interface if it learnt that information from the same interface,
 because the peer in question will answer directly if still
 operational.

 If a device has no information about the requested discovery
 objective, and is not acting as a discovery relay (see below) it MUST
 silently discard the Discovery message.

 The discovery initiator MUST set a reasonable timeout on the
 discovery process. A suggested value is 100 milliseconds multiplied
 by the loop count embedded in the objective.

 If no discovery response is received within the timeout, the
 Discovery message MAY be repeated, with a newly generated Session ID
 (Section 2.7). An exponential backoff SHOULD be used for subsequent
 repetitions, to limit the load during busy periods. The details of
 the backoff algorithm will depend on the use case for the objective
 concerned but MUST be consistent with the recommendations in
 [RFC8085] for low data-volume multicast. Frequent repetition might
 be symptomatic of a denial of service attack.

 After a GRASP device successfully discovers a locator for a Discovery
 Responder supporting a specific objective, it SHOULD cache this
 information, including the interface index [RFC3493] via which it was
 discovered. This cache record MAY be used for future negotiation or
 synchronization, and the locator SHOULD be passed on when appropriate
 as a Divert option to another Discovery Initiator.

 The cache mechanism MUST include a lifetime for each entry. The
 lifetime is derived from a time-to-live (ttl) parameter in each
 Discovery Response message. Cached entries MUST be ignored or
 deleted after their lifetime expires. In some environments,
 unplanned address renumbering might occur. In such cases, the
 lifetime SHOULD be short compared to the typical address lifetime.
 The discovery mechanism needs to track the node's current address to
 ensure that Discovery Responses always indicate the correct address.

 If multiple Discovery Responders are found for the same objective,
 they SHOULD all be cached, unless this creates a resource shortage.
 The method of choosing between multiple responders is an
 implementation choice. This choice MUST be available to each ASA but
 the GRASP implementation SHOULD provide a default choice.

 Because Discovery Responders will be cached in a finite cache, they
 might be deleted at any time. In this case, discovery will need to
 be repeated. If an ASA exits for any reason, its locator might still
 be cached for some time, and attempts to connect to it will fail.
 ASAs need to be robust in these circumstances.

2.5.4.4. Discovery Relaying

 A GRASP instance with multiple link-layer interfaces (typically
 running in a router) MUST support discovery on all GRASP interfaces.
 We refer to this as a 'relaying instance'.

 DULL Instances (Section 2.5.2) are always single-interface instances
 and therefore MUST NOT perform discovery relaying.

 If a relaying instance receives a Discovery message on a given
 interface for a specific objective that it does not support and for
 which it has not previously cached a Discovery Responder, it MUST
 relay the query by re-issuing a new Discovery message as a link-local
 multicast on its other GRASP interfaces.

 The relayed discovery message MUST have the same Session ID and
 Initiator field as the incoming (see Section 2.8.4). The Initiator
 IP address field is only used to allow for disambiguation of the
 Session ID and is never used to address Response packets. Response
 packets are sent back to the relaying instance, not the original
 initiator.

 The M_DISCOVERY message does not encode the transport address of the
 originator or relay. Response packets must therefore be sent to the
 transport layer address of the connection on which the M_DISCOVERY
 message was received. If the M_DISCOVERY was relayed via a reliable
 hop-by-hop transport connection, the response is simply sent back via
 the same connection.

 If the M_DISCOVERY was relayed via link-local (eg: UDP) multicast,
 the response is sent back via a reliable hop-by-hop transport
 connection with the same port number as the source port of the link-
 local multicast. Therefore, if link-local multicast is used and
 M_RESPONSE messages are required (which is the case in almost all
 GRASP instances except for the limited use of DULL instances in the
 ANI), GRASP needs to be able to bind to one port number on UDP from
 which to originate the link-local multicast M_DISCOVERY messages and
 the same port number on the reliable hop-by-hop transport (eg: TCP by
 default) to be able to respond to transport connections from
 responders that want to send M_RESPONSE messages back. Note that
 this port does not need to be the GRASP_LISTEN_PORT.

 The relaying instance MUST decrement the loop count within the
 objective, and MUST NOT relay the Discovery message if the result is
 zero. Also, it MUST limit the total rate at which it relays
 discovery messages to a reasonable value, in order to mitigate
 possible denial of service attacks. For example, the rate limit
 could be set to a small multiple of the observed rate of discovery
 messages during normal operation. The relaying instance MUST cache
 the Session ID value and initiator address of each relayed Discovery
 message until any Discovery Responses have arrived or the discovery
 process has timed out. To prevent loops, it MUST NOT relay a
 Discovery message which carries a given cached Session ID and
 initiator address more than once. These precautions avoid discovery
 loops and mitigate potential overload.

 Since the relay device is unaware of the timeout set by the original
 initiator it SHOULD set a suitable timeout for the relayed discovery.
 A suggested value is 100 milliseconds multiplied by the remaining
 loop count.

 The discovery results received by the relaying instance MUST in turn
 be sent as a Discovery Response message to the Discovery message that
 caused the relay action.

2.5.4.5. Rapid Mode (Discovery with Negotiation or Synchronization)

 A Discovery message MAY include an Objective option. This allows a
 rapid mode of negotiation (Section 2.5.5.1) or synchronization
 (Section 2.5.6.3). Rapid mode is currently limited to a single
 objective for simplicity of design and implementation. A possible
 future extension is to allow multiple objectives in rapid mode for
 greater efficiency.

2.5.5. Negotiation Procedures

 A negotiation initiator opens a transport connection to a counterpart
 ASA using the address, protocol and port obtained during discovery.
 It then sends a negotiation request (using M_REQ_NEG) to the
 counterpart, including a specific negotiation objective. It may
 request the negotiation counterpart to make a specific configuration.
 Alternatively, it may request a certain simulation or forecast result
 by sending a dry run configuration. The details, including the
 distinction between a dry run and a live configuration change, will
 be defined separately for each type of negotiation objective. Any
 state associated with a dry run operation, such as temporarily
 reserving a resource for subsequent use in a live run, is entirely a
 matter for the designer of the ASA concerned.

 Each negotiation session as a whole is subject to a timeout (default
 GRASP_DEF_TIMEOUT milliseconds, Section 2.6), initialised when the
 request is sent (see Section 2.8.6). If no reply message of any kind
 is received within the timeout, the negotiation request MAY be
 repeated, with a newly generated Session ID (Section 2.7). An
 exponential backoff SHOULD be used for subsequent repetitions. The
 details of the backoff algorithm will depend on the use case for the
 objective concerned.

 If the counterpart can immediately apply the requested configuration,
 it will give an immediate positive (O_ACCEPT) answer (using M_END).
 This will end the negotiation phase immediately. Otherwise, it will
 negotiate (using M_NEGOTIATE). It will reply with a proposed
 alternative configuration that it can apply (typically, a
 configuration that uses fewer resources than requested by the
 negotiation initiator). This will start a bi-directional negotiation
 (using M_NEGOTIATE) to reach a compromise between the two ASAs.

 The negotiation procedure is ended when one of the negotiation peers
 sends a Negotiation Ending (M_END) message, which contains an accept
 (O_ACCEPT) or decline (O_DECLINE) option and does not need a response
 from the negotiation peer. Negotiation may also end in failure
 (equivalent to a decline) if a timeout is exceeded or a loop count is
 exceeded. When the procedure ends for whatever reason, the transport
 connection SHOULD be closed. A transport session failure is treated
 as a negotiation failure.

 A negotiation procedure concerns one objective and one counterpart.
 Both the initiator and the counterpart may take part in simultaneous
 negotiations with various other ASAs, or in simultaneous negotiations
 about different objectives. Thus, GRASP is expected to be used in a
 multi-threaded mode or its logical equivalent. Certain negotiation
 objectives may have restrictions on multi-threading, for example to
 avoid over-allocating resources.

 Some configuration actions, for example wavelength switching in
 optical networks, might take considerable time to execute. The ASA
 concerned needs to allow for this by design, but GRASP does allow for
 a peer to insert latency in a negotiation process if necessary
 (Section 2.8.9, M_WAIT).

2.5.5.1. Rapid Mode (Discovery/Negotiation Linkage)

 A Discovery message MAY include a Negotiation Objective option. In
 this case it is as if the initiator sent the sequence M_DISCOVERY,
 immediately followed by M_REQ_NEG. This has implications for the
 construction of the GRASP core, as it must carefully pass the
 contents of the Negotiation Objective option to the ASA so that it
 may evaluate the objective directly. When a Negotiation Objective
 option is present the ASA replies with an M_NEGOTIATE message (or
 M_END with O_ACCEPT if it is immediately satisfied with the
 proposal), rather than with an M_RESPONSE. However, if the recipient
 node does not support rapid mode, discovery will continue normally.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Negotiation message
 arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid negotiation
 function SHOULD be disabled by default.

2.5.6. Synchronization and Flooding Procedures

2.5.6.1. Unicast Synchronization

 A synchronization initiator opens a transport connection to a
 counterpart ASA using the address, protocol and port obtained during
 discovery. It then sends a synchronization request (using M_REQ_SYN)
 to the counterpart, including a specific synchronization objective.
 The counterpart responds with a Synchronization message (M_SYNCH,
 Section 2.8.10) containing the current value of the requested
 synchronization objective. No further messages are needed and the
 transport connection SHOULD be closed. A transport session failure
 is treated as a synchronization failure.

 If no reply message of any kind is received within a given timeout
 (default GRASP_DEF_TIMEOUT milliseconds, Section 2.6), the
 synchronization request MAY be repeated, with a newly generated
 Session ID (Section 2.7). An exponential backoff SHOULD be used for
 subsequent repetitions. The details of the backoff algorithm will
 depend on the use case for the objective concerned.

2.5.6.2. Flooding

 In the case just described, the message exchange is unicast and
 concerns only one synchronization objective. For large groups of
 nodes requiring the same data, synchronization flooding is available.
 For this, a flooding initiator MAY send an unsolicited Flood
 Synchronization message containing one or more Synchronization
 Objective option(s), if and only if the specification of those
 objectives permits it. This is sent as a multicast message to the
 ALL_GRASP_NEIGHBORS multicast address (Section 2.6).

 Receiving flood multicasts is a function of the GRASP core, as in the
 case of discovery multicasts (Section 2.5.4.3).

 To ensure that flooding does not result in a loop, the originator of
 the Flood Synchronization message MUST set the loop count in the
 objectives to a suitable value (the default is GRASP_DEF_LOOPCT).
 Also, a suitable mechanism is needed to avoid excessive multicast
 traffic. This mechanism MUST be defined as part of the specification
 of the synchronization objective(s) concerned. It might be a simple
 rate limit or a more complex mechanism such as the Trickle algorithm
 [RFC6206].

 A GRASP device with multiple link-layer interfaces (typically a
 router) MUST support synchronization flooding on all GRASP
 interfaces. If it receives a multicast Flood Synchronization message
 on a given interface, it MUST relay it by re-issuing a Flood
 Synchronization message as a link-local multicast on its other GRASP
 interfaces. The relayed message MUST have the same Session ID as the
 incoming message and MUST be tagged with the IP address of its
 original initiator.

 Link-layer Flooding is supported by GRASP by setting the loop count
 to 1, and sending with a link-local source address. Floods with
 link-local source addresses and a loop count other than 1 are
 invalid, and such messages MUST be discarded.

 The relaying device MUST decrement the loop count within the first
 objective, and MUST NOT relay the Flood Synchronization message if
 the result is zero. Also, it MUST limit the total rate at which it
 relays Flood Synchronization messages to a reasonable value, in order
 to mitigate possible denial of service attacks. For example, the
 rate limit could be set to a small multiple of the observed rate of
 flood messages during normal operation. The relaying device MUST
 cache the Session ID value and initiator address of each relayed
 Flood Synchronization message for a time not less than twice
 GRASP_DEF_TIMEOUT milliseconds. To prevent loops, it MUST NOT relay
 a Flood Synchronization message which carries a given cached Session
 ID and initiator address more than once. These precautions avoid
 synchronization loops and mitigate potential overload.

 Note that this mechanism is unreliable in the case of sleeping nodes,
 or new nodes that join the network, or nodes that rejoin the network
 after a fault. An ASA that initiates a flood SHOULD repeat the flood
 at a suitable frequency, which MUST be consistent with the
 recommendations in [RFC8085] for low data-volume multicast. The ASA
 SHOULD also act as a synchronization responder for the objective(s)
 concerned. Thus nodes that require an objective subject to flooding
 can either wait for the next flood or request unicast synchronization
 for that objective.

 The multicast messages for synchronization flooding are subject to
 the security rules in Section 2.5.1. In practice this means that
 they MUST NOT be transmitted and MUST be ignored on receipt unless
 there is an operational ACP or equivalent strong security in place.
 However, because of the security weakness of link-local multicast
 (Section 4), synchronization objectives that are flooded SHOULD NOT
 contain unencrypted private information and SHOULD be validated by
 the recipient ASA.

2.5.6.3. Rapid Mode (Discovery/Synchronization Linkage)

 A Discovery message MAY include a Synchronization Objective option.
 In this case the Discovery message also acts as a Request
 Synchronization message to indicate to the Discovery Responder that
 it could directly reply to the Discovery Initiator with a
 Synchronization message Section 2.8.10 with synchronization data for
 rapid processing, if the discovery target supports the corresponding
 synchronization objective. The design implications are similar to
 those discussed in Section 2.5.5.1.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Synchronization
 message arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid synchronization
 function SHOULD be configured off by default and MAY be configured on
 or off by Intent.

2.6. GRASP Constants

 o ALL_GRASP_NEIGHBORS

 A link-local scope multicast address used by a GRASP-enabled
 device to discover GRASP-enabled neighbor (i.e., on-link) devices.
 All devices that support GRASP are members of this multicast
 group.

 * IPv6 multicast address: TBD1

 * IPv4 multicast address: TBD2

 o GRASP_LISTEN_PORT (TBD3)

 A well-known UDP user port that every GRASP-enabled network device
 MUST listen to for link-local multicasts when UDP is used for
 M_DISCOVERY or M_FLOOD messages in the GRASP instance This user
 port MAY also be used to listen for TCP or UDP unicast messages in
 a simple implementation of GRASP (Section 2.5.3).

 o GRASP_DEF_TIMEOUT (60000 milliseconds)

 The default timeout used to determine that an operation has failed
 to complete.

 o GRASP_DEF_LOOPCT (6)

 The default loop count used to determine that a negotiation has
 failed to complete, and to avoid looping messages.

 o GRASP_DEF_MAX_SIZE (2048)

 The default maximum message size in bytes.

2.7. Session Identifier (Session ID)

 This is an up to 32-bit opaque value used to distinguish multiple
 sessions between the same two devices. A new Session ID MUST be
 generated by the initiator for every new Discovery, Flood
 Synchronization or Request message. All responses and follow-up
 messages in the same discovery, synchronization or negotiation
 procedure MUST carry the same Session ID.

 The Session ID SHOULD have a very low collision rate locally. It
 MUST be generated by a pseudo-random number generator (PRNG) using a
 locally generated seed which is unlikely to be used by any other
 device in the same network. The PRNG SHOULD be cryptographically
 strong [RFC4086]. When allocating a new Session ID, GRASP MUST check
 that the value is not already in use and SHOULD check that it has not
 been used recently, by consulting a cache of current and recent
 sessions. In the unlikely event of a clash, GRASP MUST generate a
 new value.

 However, there is a finite probability that two nodes might generate
 the same Session ID value. For that reason, when a Session ID is
 communicated via GRASP, the receiving node MUST tag it with the
 initiator's IP address to allow disambiguation. In the highly
 unlikely event of two peers opening sessions with the same Session ID
 value, this tag will allow the two sessions to be distinguished.
 Multicast GRASP messages and their responses, which may be relayed
 between links, therefore include a field that carries the initiator's
 global IP address.

 There is a highly unlikely race condition in which two peers start
 simultaneous negotiation sessions with each other using the same
 Session ID value. Depending on various implementation choices, this
 might lead to the two sessions being confused. See Section 2.8.6 for
 details of how to avoid this.

2.8. GRASP Messages

2.8.1. Message Overview

 This section defines the GRASP message format and message types.
 Message types not listed here are reserved for future use.

 The messages currently defined are:

 Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).

 Request Negotiation, Negotiation, Confirm Waiting and Negotiation
 End (M_REQ_NEG, M_NEGOTIATE, M_WAIT, M_END).

 Request Synchronization, Synchronization, and Flood
 Synchronization (M_REQ_SYN, M_SYNCH, M_FLOOD.

 No Operation and Invalid (M_NOOP, M_INVALID).

2.8.2. GRASP Message Format

 GRASP messages share an identical header format and a variable format
 area for options. GRASP message headers and options are transmitted
 in Concise Binary Object Representation (CBOR) [RFC7049]. In this
 specification, they are described using CBOR data definition language
 (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl]. Fragmentary CDDL is
 used to describe each item in this section. A complete and normative
 CDDL specification of GRASP is given in Section 5, including
 constants such as message types.

 Every GRASP message, except the No Operation message, carries a
 Session ID (Section 2.7). Options are then presented serially in the
 options field.

 In fragmentary CDDL, every GRASP message follows the pattern:

 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,

 *grasp-option]

MESSAGE_TYPE = 1..255
session‑id = 0..4294967295 ;up to 32 bits
grasp‑option = any

 The MESSAGE_TYPE indicates the type of the message and thus defines
 the expected options. Any options received that are not consistent
 with the MESSAGE_TYPE SHOULD be silently discarded.

 The No Operation (noop) message is described in Section 2.8.13.

 The various MESSAGE_TYPE values are defined in Section 5.

 All other message elements are described below and formally defined
 in Section 5.

 If an unrecognized MESSAGE_TYPE is received in a unicast message, an
 Invalid message (Section 2.8.12) MAY be returned. Otherwise the
 message MAY be logged and MUST be discarded. If an unrecognized
 MESSAGE_TYPE is received in a multicast message, it MAY be logged and
 MUST be silently discarded.

2.8.3. Message Size

 GRASP nodes MUST be able to receive unicast messages of at least
 GRASP_DEF_MAX_SIZE bytes. GRASP nodes MUST NOT send unicast messages
 longer than GRASP_DEF_MAX_SIZE bytes unless a longer size is
 explicitly allowed for the objective concerned. For example, GRASP
 negotiation itself could be used to agree on a longer message size.

 The message parser used by GRASP should be configured to know about
 the GRASP_DEF_MAX_SIZE, or any larger negotiated message size, so
 that it may defend against overly long messages.

 The maximum size of multicast messages (M_DISCOVERY and M_FLOOD)
 depends on the link layer technology or link adaptation layer in use.

2.8.4. Discovery Message

 In fragmentary CDDL, a Discovery message follows the pattern:

 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

 A discovery initiator sends a Discovery message to initiate a
 discovery process for a particular objective option.

 The discovery initiator sends all Discovery messages via UDP to port
 GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS multicast
 address on each link-layer interface in use by GRASP. It then
 listens for unicast TCP responses on a given port, and stores the
 discovery results (including responding discovery objectives and
 corresponding unicast locators).

 The listening port used for TCP MUST be the same port as used for
 sending the Discovery UDP multicast, on a given interface. In an
 implementation with a single GRASP instance in a node this MAY be
 GRASP_LISTEN_PORT. To support multiple instances in the same node,
 the GRASP discovery mechanism in each instance needs to find, for
 each interface, a dynamic port that it can bind to for both sending
 UDP link-local multicast and listening for TCP, before initiating any
 discovery.

 The 'initiator' field in the message is a globally unique IP address
 of the initiator, for the sole purpose of disambiguating the Session
 ID in other nodes. If for some reason the initiator does not have a
 globally unique IP address, it MUST use a link-local address for this
 purpose that is highly likely to be unique, for example using
 [RFC7217]. Determination of a node's globally unique IP address is
 implementation-dependent.

 A Discovery message MUST include exactly one of the following:

 o a discovery objective option (Section 2.10.1). Its loop count
 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT). If the discovery initiator
 requires only on-link responses, the loop count MUST be set to 1.

o a negotiation objective option (Section 2.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiatior with
 a Negotiation message for rapid processing, if it could act as the
 corresponding negotiation counterpart. The sender of such a
 Discovery message MUST initialize a negotiation timer and loop
 count in the same way as a Request Negotiation message
 (Section 2.8.6).

 o a synchronization objective option (Section 2.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiator with
 a Synchronization message for rapid processing, if it could act as
 the corresponding synchronization counterpart. Its loop count

 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT).

 As mentioned in Section 2.5.4.2, a Discovery message MAY be sent
 unicast to a peer node, which SHOULD then proceed exactly as if the
 message had been multicast.

2.8.5. Discovery Response Message

 In fragmentary CDDL, a Discovery Response message follows the
 pattern:

 response-message = [M_RESPONSE, session-id, initiator, ttl,

 (+locator-option // divert-option), ?objective)]

 ttl = 0..4294967295 ; in milliseconds

 A node which receives a Discovery message SHOULD send a Discovery
 Response message if and only if it can respond to the discovery.

 It MUST contain the same Session ID and initiator as the Discovery
 message.

 It MUST contain a time-to-live (ttl) for the validity of the
 response, given as a positive integer value in milliseconds. Zero
 implies a value significantly greater than GRASP_DEF_TIMEOUT
 milliseconds (Section 2.6). A suggested value is ten times that
 amount.

 It MAY include a copy of the discovery objective from the
 Discovery message.

 It is sent to the sender of the Discovery message via TCP at the port
 used to send the Discovery message (as explained in Section 2.8.4).
 In the case of a relayed Discovery message, the Discovery Response is
 thus sent to the relay, not the original initiator.

 In all cases, the transport session SHOULD be closed after sending
 the Discovery Response. A transport session failure is treated as no
 response.

 If the responding node supports the discovery objective of the
 discovery, it MUST include at least one kind of locator option
 (Section 2.9.5) to indicate its own location. A sequence of multiple
 kinds of locator options (e.g. IP address option and FQDN option) is
 also valid.

 If the responding node itself does not support the discovery
 objective, but it knows the locator of the discovery objective, then
 it SHOULD respond to the discovery message with a divert option
 (Section 2.9.2) embedding a locator option or a combination of
 multiple kinds of locator options which indicate the locator(s) of
 the discovery objective.

 More details on the processing of Discovery Responses are given in
 Section 2.5.4.

2.8.6. Request Messages

 In fragmentary CDDL, Request Negotiation and Request Synchronization
 messages follow the patterns:

 request-negotiation-message = [M_REQ_NEG, session-id, objective]

 request-synchronization-message = [M_REQ_SYN, session-id, objective]

 A negotiation or synchronization requesting node sends the
 appropriate Request message to the unicast address of the negotiation
 or synchronization counterpart, using the appropriate protocol and
 port numbers (selected from the discovery result). If the discovery
 result is an FQDN, it will be resolved first.

 A Request message MUST include the relevant objective option. In the
 case of Request Negotiation, the objective option MUST include the
 requested value.

 When an initiator sends a Request Negotiation message, it MUST
 initialize a negotiation timer for the new negotiation thread. The
 default is GRASP_DEF_TIMEOUT milliseconds. Unless this timeout is
 modified by a Confirm Waiting message (Section 2.8.9), the initiator
 will consider that the negotiation has failed when the timer expires.

 Similarly, when an initiator sends a Request Synchronization, it
 SHOULD initialize a synchronization timer. The default is
 GRASP_DEF_TIMEOUT milliseconds. The initiator will consider that
 synchronization has failed if there is no response before the timer
 expires.

 When an initiator sends a Request message, it MUST initialize the
 loop count of the objective option with a value defined in the
 specification of the option or, if no such value is specified, with
 GRASP_DEF_LOOPCT.

 If a node receives a Request message for an objective for which no
 ASA is currently listening, it MUST immediately close the relevant
 socket to indicate this to the initiator. This is to avoid
 unnecessary timeouts if, for example, an ASA exits prematurely but
 the GRASP core is listening on its behalf.

 To avoid the highly unlikely race condition in which two nodes
 simultaneously request sessions with each other using the same
 Session ID (Section 2.7), when a node receives a Request message, it
 MUST verify that the received Session ID is not already locally
 active. In case of a clash, it MUST discard the Request message, in
 which case the initiator will detect a timeout.

2.8.7. Negotiation Message

 In fragmentary CDDL, a Negotiation message follows the pattern:

 negotiate-message = [M_NEGOTIATE, session-id, objective]

 A negotiation counterpart sends a Negotiation message in response to
 a Request Negotiation message, a Negotiation message, or a Discovery
 message in Rapid Mode. A negotiation process MAY include multiple
 steps.

 The Negotiation message MUST include the relevant Negotiation
 Objective option, with its value updated according to progress in the
 negotiation. The sender MUST decrement the loop count by 1. If the
 loop count becomes zero the message MUST NOT be sent. In this case
 the negotiation session has failed and will time out.

2.8.8. Negotiation End Message

 In fragmentary CDDL, a Negotiation End message follows the pattern:

 end-message = [M_END, session-id, accept-option / decline-option]

 A negotiation counterpart sends an Negotiation End message to close
 the negotiation. It MUST contain either an accept or a decline
 option, defined in Section 2.9.3 and Section 2.9.4. It could be sent
 either by the requesting node or the responding node.

2.8.9. Confirm Waiting Message

 In fragmentary CDDL, a Confirm Waiting message follows the pattern:

 wait‑message = [M_WAIT, session‑id, waiting‑time]
 waiting‑time = 0..4294967295 ; in milliseconds

A responding node sends a Confirm Waiting message to ask the
requesting node to wait for a further negotiation response. It might
be that the local process needs more time or that the negotiation
depends on another triggered negotiation. This message MUST NOT
include any other options. When received, the waiting time value
overwrites and restarts the current negotiation timer
(Section 2.8.6).

 The responding node SHOULD send a Negotiation, Negotiation End or
 another Confirm Waiting message before the negotiation timer expires.
 If not, when the initiator's timer expires, the initiator MUST treat
 the negotiation procedure as failed.

2.8.10. Synchronization Message

 In fragmentary CDDL, a Synchronization message follows the pattern:

 synch-message = [M_SYNCH, session-id, objective]

 A node which receives a Request Synchronization, or a Discovery
 message in Rapid Mode, sends back a unicast Synchronization message
 with the synchronization data, in the form of a GRASP Option for the
 specific synchronization objective present in the Request
 Synchronization.

2.8.11. Flood Synchronization Message

 In fragmentary CDDL, a Flood Synchronization message follows the
 pattern:

 flood-message = [M_FLOOD, session-id, initiator, ttl,

 +[objective, (locator-option / [])]]

 ttl = 0..4294967295 ; in milliseconds

 A node MAY initiate flooding by sending an unsolicited Flood
 Synchronization Message with synchronization data. This MAY be sent
 to port GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS
 multicast address, in accordance with the rules in Section 2.5.6.

 The initiator address is provided, as described for Discovery
 messages (Section 2.8.4), only to disambiguate the Session ID.

 The message MUST contain a time-to-live (ttl) for the validity of
 the contents, given as a positive integer value in milliseconds.
 There is no default; zero indicates an indefinite lifetime.

 The synchronization data are in the form of GRASP Option(s) for
 specific synchronization objective(s). The loop count(s) MUST be
 set to a suitable value to prevent flood loops (default value is
 GRASP_DEF_LOOPCT).

 Each objective option MAY be followed by a locator option
 associated with the flooded objective. In its absence, an empty
 option MUST be included to indicate a null locator.

 A node that receives a Flood Synchronization message MUST cache the
 received objectives for use by local ASAs. Each cached objective
 MUST be tagged with the locator option sent with it, or with a null
 tag if an empty locator option was sent. If a subsequent Flood
 Synchronization message carrying an objective with same name and the
 same tag, the corresponding cached copy of the objective MUST be
 overwritten. If a subsequent Flood Synchronization message carrying
 an objective with same name arrives with a different tag, a new
 cached entry MUST be created.

 Note: the purpose of this mechanism is to allow the recipient of
 flooded values to distinguish between different senders of the same
 objective, and if necessary communicate with them using the locator,
 protocol and port included in the locator option. Many objectives
 will not need this mechanism, so they will be flooded with a null
 locator.

 Cached entries MUST be ignored or deleted after their lifetime
 expires.

2.8.12. Invalid Message

 In fragmentary CDDL, an Invalid message follows the pattern:

 invalid-message = [M_INVALID, session-id, ?any]

 This message MAY be sent by an implementation in response to an
 incoming unicast message that it considers invalid. The session-id
 MUST be copied from the incoming message. The content SHOULD be
 diagnostic information such as a partial copy of the invalid message
 up to the maximum message size. An M_INVALID message MAY be silently
 ignored by a recipient. However, it could be used in support of
 extensibility, since it indicates that the remote node does not
 support a new or obsolete message or option.

 An M_INVALID message MUST NOT be sent in response to an M_INVALID
 message.

2.8.13. No Operation Message

 In fragmentary CDDL, a No Operation message follows the pattern:

 noop-message = [M_NOOP]

 This message MAY be sent by an implementation that for practical
 reasons needs to initialize a socket. It MUST be silently ignored by
 a recipient.

2.9. GRASP Options

 This section defines the GRASP options for the negotiation and
 synchronization protocol signaling. Additional options may be
 defined in the future.

2.9.1. Format of GRASP Options

 GRASP options are CBOR objects that MUST start with an unsigned
 integer identifying the specific option type carried in this option.
 These option types are formally defined in Section 5. Apart from
 that the only format requirement is that each option MUST be a well-
 formed CBOR object. In general a CBOR array format is RECOMMENDED to
 limit overhead.

 GRASP options may be defined to include encapsulated GRASP options.

2.9.2. Divert Option

 The Divert option is used to redirect a GRASP request to another
 node, which may be more appropriate for the intended negotiation or
 synchronization. It may redirect to an entity that is known as a
 specific negotiation or synchronization counterpart (on-link or off-
 link) or a default gateway. The divert option MUST only be
 encapsulated in Discovery Response messages. If found elsewhere, it
 SHOULD be silently ignored.

 A discovery initiator MAY ignore a Divert option if it only requires
 direct discovery responses.

 In fragmentary CDDL, the Divert option follows the pattern:

 divert-option = [O_DIVERT, +locator-option]

 The embedded Locator Option(s) (Section 2.9.5) point to diverted
 destination target(s) in response to a Discovery message.

2.9.3. Accept Option

 The accept option is used to indicate to the negotiation counterpart
 that the proposed negotiation content is accepted.

 The accept option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Accept option follows the pattern:

 accept-option = [O_ACCEPT]

2.9.4. Decline Option

 The decline option is used to indicate to the negotiation counterpart
 the proposed negotiation content is declined and end the negotiation
 process.

 The decline option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Decline option follows the pattern:

decline‑option = [O_DECLINE, ?reason]
reason = text ;optional UTF‑8 error message

 Note: there might be scenarios where an ASA wants to decline the
 proposed value and restart the negotiation process. In this case it
 is an implementation choice whether to send a Decline option or to
 continue with a Negotiate message, with an objective option that
 contains a null value, or one that contains a new value that might
 achieve convergence.

2.9.5. Locator Options

 These locator options are used to present reachability information
 for an ASA, a device or an interface. They are Locator IPv6 Address
 Option, Locator IPv4 Address Option, Locator FQDN (Fully Qualified
 Domain Name) Option and URI (Uniform Resource Identifier) Option.

 Since ASAs will normally run as independent user programs, locator
 options need to indicate the network layer locator plus the transport
 protocol and port number for reaching the target. For this reason,
 the Locator Options for IP addresses and FQDNs include this
 information explicitly. In the case of the URI Option, this
 information can be encoded in the URI itself.

 Note: It is assumed that all locators used in locator options are in
 scope throughout the GRASP domain. As stated in Section 2.2, GRASP
 is not intended to work across disjoint addressing or naming realms.

2.9.5.1. Locator IPv6 address option

 In fragmentary CDDL, the IPv6 address option follows the pattern:

ipv6‑locator‑option = [O_IPv6_LOCATOR, ipv6‑address,
 transport‑proto, port‑number]
ipv6‑address = bytes .size 16

transport‑proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port‑number = 0..65535

 The content of this option is a binary IPv6 address followed by the
 protocol number and port number to be used.

 Note 1: The IPv6 address MUST normally have global scope. However,
 during initialization, a link-local address MAY be used for specific
 objectives only (Section 2.5.2). In this case the corresponding
 Discovery Response message MUST be sent via the interface to which
 the link-local address applies.

 Note 2: A link-local IPv6 address MUST NOT be used when this option
 is included in a Divert option.

 Note 3: The IPPROTO values are taken from the existing IANA Protocol
 Numbers registry in order to specify TCP or UDP. If GRASP requires
 future values that are not in that registry, a new registry for
 values outside the range 0..255 will be needed.

2.9.5.2. Locator IPv4 address option

 In fragmentary CDDL, the IPv4 address option follows the pattern:

ipv4‑locator‑option = [O_IPv4_LOCATOR, ipv4‑address,
 transport‑proto, port‑number]
ipv4‑address = bytes .size 4

 The content of this option is a binary IPv4 address followed by the
 protocol number and port number to be used.

 Note: If an operator has internal network address translation for
 IPv4, this option MUST NOT be used within the Divert option.

2.9.5.3. Locator FQDN option

 In fragmentary CDDL, the FQDN option follows the pattern:

 fqdn-locator-option = [O_FQDN_LOCATOR, text,

 transport-proto, port-number]

 The content of this option is the Fully Qualified Domain Name of the
 target followed by the protocol number and port number to be used.

 Note 1: Any FQDN which might not be valid throughout the network in
 question, such as a Multicast DNS name [RFC6762], MUST NOT be used
 when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services.

2.9.5.4. Locator URI option

 In fragmentary CDDL, the URI option follows the pattern:

 uri-locator = [O_URI_LOCATOR, text,

 transport-proto / null, port-number / null]

 The content of this option is the Uniform Resource Identifier of the
 target followed by the protocol number and port number to be used (or
 by null values if not required) [RFC3986].

 Note 1: Any URI which might not be valid throughout the network in
 question, such as one based on a Multicast DNS name [RFC6762], MUST
 NOT be used when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services. Therefore its use is not further described in this
 specification.

2.10. Objective Options

2.10.1. Format of Objective Options

 An objective option is used to identify objectives for the purposes
 of discovery, negotiation or synchronization. All objectives MUST be
 in the following format, described in fragmentary CDDL:

 objective = [objective-name, objective-flags, loop-count, ?objective-value]

objective‑name = text
objective‑value = any
loop‑count = 0..255

 All objectives are identified by a unique name which is a UTF-8
 string [RFC3629], to be compared byte by byte.

 The names of generic objectives MUST NOT include a colon (":") and
 MUST be registered with IANA (Section 6).

 The names of privately defined objectives MUST include at least one
 colon (":"). The string preceding the last colon in the name MUST be
 globally unique and in some way identify the entity or person
 defining the objective. The following three methods MAY be used to
 create such a globally unique string:

 1. The unique string is a decimal number representing a registered
 32 bit Private Enterprise Number (PEN) [RFC5612] that uniquely
 identifies the enterprise defining the objective.

 2. The unique string is a fully qualified domain name that uniquely
 identifies the entity or person defining the objective.

 3. The unique string is an email address that uniquely identifies
 the entity or person defining the objective.

 The GRASP protocol treats the objective name as an opaque string.
 For example, "EX1", "32473:EX1", "example.com:EX1", "example.org:EX1
 and "user@example.org:EX1" would be five different objectives.

 The 'objective-flags' field is described below.

 The 'loop-count' field is used for terminating negotiation as
 described in Section 2.8.7. It is also used for terminating
 discovery as described in Section 2.5.4, and for terminating flooding
 as described in Section 2.5.6.2. It is placed in the objective
 rather than in the GRASP message format because, as far as the ASA is
 concerned, it is a property of the objective itself.

 The 'objective-value' field is to express the actual value of a
 negotiation or synchronization objective. Its format is defined in
 the specification of the objective and may be a simple value or a
 data structure of any kind, as long as it can be represented in CBOR.
 It is optional because it is optional in a Discovery or Discovery
 Response message.

2.10.2. Objective flags

 An objective may be relevant for discovery only, for discovery and
 negotiation, or for discovery and synchronization. This is expressed
 in the objective by logical flag bits:

objective‑flags = uint .bits objective‑flag
objective‑flag = &(
F_DISC: 0 ; valid for discovery
F_NEG: 1 ; valid for negotiation
F_SYNCH: 2 ; valid for synchronization
F_NEG_DRY: 3 ; negotiation is dry‑run
)

 These bits are independent and may be combined appropriately, e.g.
 (F_DISC and F_SYNCH) or (F_DISC and F_NEG) or (F_DISC and F_NEG and
 F_NEG_DRY).

 Note that for a given negotiation session, an objective must be
 either used for negotiation, or for dry-run negotiation. Mixing the
 two modes in a single negotiation is not possible.

2.10.3. General Considerations for Objective Options

 As mentioned above, Objective Options MUST be assigned a unique name.
 As long as privately defined Objective Options obey the rules above,
 this document does not restrict their choice of name, but the entity
 or person concerned SHOULD publish the names in use.

 Names are expressed as UTF-8 strings for convenience in designing
 Objective Options for localized use. For generic usage, names
 expressed in the ASCII subset of UTF-8 are RECOMMENDED. Designers
 planning to use non-ASCII names are strongly advised to consult
 [RFC7564] or its successor to understand the complexities involved.
 Since the GRASP protocol compares names byte by byte, all issues of
 Unicode profiling and canonicalization MUST be specified in the
 design of the Objective Option.

 All Objective Options MUST respect the CBOR patterns defined above as
 "objective" and MUST replace the "any" field with a valid CBOR data
 definition for the relevant use case and application.

 An Objective Option that contains no additional fields beyond its
 "loop-count" can only be a discovery objective and MUST only be used
 in Discovery and Discovery Response messages.

 The Negotiation Objective Options contain negotiation objectives,
 which vary according to different functions/services. They MUST be
 carried by Discovery, Request Negotiation or Negotiation messages
 only. The negotiation initiator MUST set the initial "loop-count" to
 a value specified in the specification of the objective or, if no
 such value is specified, to GRASP_DEF_LOOPCT.

 For most scenarios, there should be initial values in the negotiation
 requests. Consequently, the Negotiation Objective options MUST
 always be completely presented in a Request Negotiation message, or
 in a Discovery message in rapid mode. If there is no initial value,
 the value field SHOULD be set to the 'null' value defined by CBOR.

 Synchronization Objective Options are similar, but MUST be carried by
 Discovery, Discovery Response, Request Synchronization, or Flood
 Synchronization messages only. They include value fields only in
 Synchronization or Flood Synchronization messages.

 The design of an objective interacts in various ways with the design
 of the ASAs that will use it. ASA design considerations are
 discussed in [I-D.carpenter-anima-asa-guidelines].

2.10.4. Organizing of Objective Options

 Generic objective options MUST be specified in documents available to
 the public and SHOULD be designed to use either the negotiation or
 the synchronization mechanism described above.

 As noted earlier, one negotiation objective is handled by each GRASP
 negotiation thread. Therefore, a negotiation objective, which is
 based on a specific function or action, SHOULD be organized as a
 single GRASP option. It is NOT RECOMMENDED to organize multiple
 negotiation objectives into a single option, nor to split a single
 function or action into multiple negotiation objectives.

 It is important to understand that GRASP negotiation does not support
 transactional integrity. If transactional integrity is needed for a
 specific objective, this must be ensured by the ASA. For example, an
 ASA might need to ensure that it only participates in one negotiation
 thread at the same time. Such an ASA would need to stop listening
 for incoming negotiation requests before generating an outgoing
 negotiation request.

 A synchronization objective SHOULD be organized as a single GRASP
 option.

 Some objectives will support more than one operational mode. An
 example is a negotiation objective with both a "dry run" mode (where
 the negotiation is to find out whether the other end can in fact make
 the requested change without problems) and a "live" mode, as
 explained in Section 2.5.5. The semantics of such modes will be
 defined in the specification of the objectives. These objectives
 SHOULD include flags indicating the applicable mode(s).

 An issue requiring particular attention is that GRASP itself is not a
 transactionally safe protocol. Any state associated with a dry run
 operation, such as temporarily reserving a resource for subsequent
 use in a live run, is entirely a matter for the designer of the ASA
 concerned.

 As indicated in Section 2.1, an objective's value may include
 multiple parameters. Parameters might be categorized into two
 classes: the obligatory ones presented as fixed fields; and the
 optional ones presented in some other form of data structure embedded
 in CBOR. The format might be inherited from an existing management
 or configuration protocol, with the objective option acting as a
 carrier for that format. The data structure might be defined in a
 formal language, but that is a matter for the specifications of
 individual objectives. There are many candidates, according to the
 context, such as ABNF, RBNF, XML Schema, YANG, etc. The GRASP
 protocol itself is agnostic on these questions. The only restriction
 is that the format can be mapped into CBOR.

 It is NOT RECOMMENDED to mix parameters that have significantly
 different response time characteristics in a single objective.
 Separate objectives are more suitable for such a scenario.

 All objectives MUST support GRASP discovery. However, as mentioned
 in Section 2.3, it is acceptable for an ASA to use an alternative
 method of discovery.

 Normally, a GRASP objective will refer to specific technical
 parameters as explained in Section 2.1. However, it is acceptable to
 define an abstract objective for the purpose of managing or
 coordinating ASAs. It is also acceptable to define a special-purpose
 objective for purposes such as trust bootstrapping or formation of
 the ACP.

 To guarantee convergence, a limited number of rounds or a timeout is
 needed for each negotiation objective. Therefore, the definition of
 each negotiation objective SHOULD clearly specify this, for example a
 default loop count and timeout, so that the negotiation can always be
 terminated properly. If not, the GRASP defaults will apply.

 There must be a well-defined procedure for concluding that a
 negotiation cannot succeed, and if so deciding what happens next
 (e.g., deadlock resolution, tie-breaking, or revert to best-effort
 service). This MUST be specified for individual negotiation
 objectives.

2.10.5. Experimental and Example Objective Options

 The names "EX0" through "EX9" have been reserved for experimental
 options. Multiple names have been assigned because a single
 experiment may use multiple options simultaneously. These
 experimental options are highly likely to have different meanings
 when used for different experiments. Therefore, they SHOULD NOT be
 used without an explicit human decision and MUST NOT be used in
 unmanaged networks such as home networks.

 These names are also RECOMMENDED for use in documentation examples.

3. Implementation Status [RFC Editor: please remove]

 Two prototype implementations of GRASP have been made.

3.1. BUPT C++ Implementation

 o Name: BaseNegotiator.cpp, msg.cpp, Client.cpp, Server.cpp

 o Description: C++ implementation of GRASP core and API

 o Maturity: Prototype code, interoperable between Ubuntu.

 o Coverage: Corresponds to draft-carpenter-anima-gdn-protocol-03.
 Since it was implemented based on the old version draft, the most
 significant limitations comparing to current protocol design
 include:

 * Not support CBOR

 * Not support Flooding

 * Not support loop avoidance

 * only coded for IPv6, any IPv4 is accidental

 o Licensing: Huawei License.

 o Experience: https://github.com/liubingpang/IETF-Anima-Signaling-
 Protocol/blob/master/README.md

 o Contact: https://github.com/liubingpang/IETF-Anima-Signaling-
 Protocol

3.2. Python Implementation

 o Name: graspy

 o Description: Python 3 implementation of GRASP core and API.

 o Maturity: Prototype code, interoperable between Windows 7 and
 Linux.

 o Coverage: Corresponds to draft-ietf-anima-grasp-13. Limitations
 include:

 * insecure: uses a dummy ACP module

 * only coded for IPv6, any IPv4 is accidental

 * FQDN and URI locators incompletely supported

 * no code for rapid mode

 * relay code is lazy (no rate control)

 * all unicast transactions use TCP (no unicast UDP).
 Experimental code for unicast UDP proved to be complex and
 brittle.

 * optional Objective option in Response messages not implemented

 * workarounds for defects in Python socket module and Windows
 socket peculiarities

 o Licensing: Simplified BSD

 o Experience: Tested on Windows, Linux and MacOS.
 https://www.cs.auckland.ac.nz/~brian/graspy/graspy.pdf

 o Contact: https://www.cs.auckland.ac.nz/~brian/graspy/

4. Security Considerations

 A successful attack on negotiation-enabled nodes would be extremely
 harmful, as such nodes might end up with a completely undesirable
 configuration that would also adversely affect their peers. GRASP
 nodes and messages therefore require full protection. As explained
 in Section 2.5.1, GRASP MUST run within a secure environment such as
 the Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
 except for the constrained instances described in Section 2.5.2.

 - Authentication

 A cryptographically authenticated identity for each device is
 needed in an autonomic network. It is not safe to assume that a
 large network is physically secured against interference or that
 all personnel are trustworthy. Each autonomic node MUST be
 capable of proving its identity and authenticating its messages.
 GRASP relies on a separate external certificate-based security
 mechanism to support authentication, data integrity protection,
 and anti-replay protection.

 Since GRASP must be deployed in an existing secure environment,
 the protocol itself specifies nothing concerning the trust anchor
 and certification authority. For example, in the Autonomic
 Control Plane [I-D.ietf-anima-autonomic-control-plane], all nodes
 can trust each other and the ASAs installed in them.

 If GRASP is used temporarily without an external security
 mechanism, for example during system bootstrap (Section 2.5.1),
 the Session ID (Section 2.7) will act as a nonce to provide
 limited protection against third parties injecting responses. A
 full analysis of the secure bootstrap process is in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 - Authorization and Roles

 The GRASP protocol is agnostic about the roles and capabilities of
 individual ASAs and about which objectives a particular ASA is
 authorized to support. An implementation might support
 precautions such as allowing only one ASA in a given node to
 modify a given objective, but this may not be appropriate in all
 cases. For example, it might be operationally useful to allow an
 old and a new version of the same ASA to run simultaneously during
 an overlap period. These questions are out of scope for the
 present specification.

 - Privacy and confidentiality

 GRASP is intended for network management purposes involving
 network elements, not end hosts. Therefore, no personal
 information is expected to be involved in the signaling protocol,
 so there should be no direct impact on personal privacy.
 Nevertheless, applications that do convey personal information
 cannot be excluded. Also, traffic flow paths, VPNs, etc. could be
 negotiated, which could be of interest for traffic analysis.
 Operators generally want to conceal details of their network
 topology and traffic density from outsiders. Therefore, since
 insider attacks cannot be excluded in a large network, the
 security mechanism for the protocol MUST provide message
 confidentiality. This is why Section 2.5.1 requires either an ACP
 or an alternative security mechanism.

 - Link-local multicast security

 GRASP has no reasonable alternative to using link-local multicast
 for Discovery or Flood Synchronization messages and these messages
 are sent in clear and with no authentication. They are only sent
 on interfaces within the autonomic network (see Section 2.1 and
 Section 2.5.1). They are however available to on-link
 eavesdroppers, and could be forged by on-link attackers. In the
 case of Discovery, the Discovery Responses are unicast and will
 therefore be protected (Section 2.5.1), and an untrusted forger
 will not be able to receive responses. In the case of Flood
 Synchronization, an on-link eavesdropper will be able to receive
 the flooded objectives but there is no response message to
 consider. Some precautions for Flood Synchronization messages are
 suggested in Section 2.5.6.2.

 - DoS Attack Protection

 GRASP discovery partly relies on insecure link-local multicast.
 Since routers participating in GRASP sometimes relay discovery
 messages from one link to another, this could be a vector for
 denial of service attacks. Some mitigations are specified in
 Section 2.5.4. However, malicious code installed inside the
 Autonomic Control Plane could always launch DoS attacks consisting
 of spurious discovery messages, or of spurious discovery
 responses. It is important that firewalls prevent any GRASP
 messages from entering the domain from an unknown source.

 - Security during bootstrap and discovery

 A node cannot trust GRASP traffic from other nodes until the
 security environment (such as the ACP) has identified the trust
 anchor and can authenticate traffic by validating certificates for
 other nodes. Also, until it has succesfully enrolled
 [I-D.ietf-anima-bootstrapping-keyinfra] a node cannot assume that
 other nodes are able to authenticate its own traffic. Therefore,
 GRASP discovery during the bootstrap phase for a new device will
 inevitably be insecure. Secure synchronization and negotiation
 will be impossible until enrollment is complete. Further details
 are given in Section 2.5.2.

 - Security of discovered locators

 When GRASP discovery returns an IP address, it MUST be that of a
 node within the secure environment (Section 2.5.1). If it returns
 an FQDN or a URI, the ASA that receives it MUST NOT assume that
 the target of the locator is within the secure environment.

5. CDDL Specification of GRASP

<CODE BEGINS>
grasp‑message = (message .within message‑structure) / noop‑message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

MESSAGE_TYPE = 0..255
session‑id = 0..4294967295 ;up to 32 bits
grasp‑option = any

message /= discovery‑message
discovery‑message = [M_DISCOVERY, session‑id, initiator, objective]

message /= response‑message ;response to Discovery
response‑message = [M_RESPONSE, session‑id, initiator, ttl,
 (+locator‑option // divert‑option), ?objective]

message /= synch-message ;response to Synchronization request
synch-message = [M_SYNCH, session-id, objective]

message /= flood‑message
flood‑message = [M_FLOOD, session‑id, initiator, ttl,
 +[objective, (locator‑option / [])]]

message /= request‑negotiation‑message
request‑negotiation‑message = [M_REQ_NEG, session‑id, objective]

message /= request-synchronization-message
request-synchronization-message = [M_REQ_SYN, session-id, objective]

message /= negotiation‑message
negotiation‑message = [M_NEGOTIATE, session‑id, objective]

message /= end‑message
end‑message = [M_END, session‑id, accept‑option / decline‑option]

message /= wait‑message
wait‑message = [M_WAIT, session‑id, waiting‑time]

message /= invalid‑message
invalid‑message = [M_INVALID, session‑id, ?any]

noop-message = [M_NOOP]

divert-option = [O_DIVERT, +locator-option]

accept-option = [O_ACCEPT]

decline‑option = [O_DECLINE, ?reason]
reason = text ;optional UTF‑8 error message

waiting‑time = 0..4294967295 ; in milliseconds
ttl = 0..4294967295 ; in milliseconds

locator‑option /= [O_IPv4_LOCATOR, ipv4‑address,
 transport‑proto, port‑number]
ipv4‑address = bytes .size 4

locator‑option /= [O_IPv6_LOCATOR, ipv6‑address,
 transport‑proto, port‑number]
ipv6‑address = bytes .size 16

locator-option /= [O_FQDN_LOCATOR, text, transport-proto, port-number]

locator‑option /= [O_URI_LOCATOR, text,
 transport‑proto / null, port‑number / null]

transport‑proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port‑number = 0..65535

initiator = ipv4-address / ipv6-address

objective-flags = uint .bits objective-flag

objective‑flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is dry‑run
)

objective = [objective-name, objective-flags, loop-count, ?objective-value]

objective-name = text ;see section "Format of Objective Options"

objective-value = any

loop-count = 0..255

; Constants for message types and option types

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106
<CODE ENDS>

6. IANA Considerations

 This document defines the GeneRic Autonomic Signaling Protocol
 (GRASP).

 Section 2.6 explains the following link-local multicast addresses,
 which IANA is requested to assign for use by GRASP:

ALL_GRASP_NEIGHBORS multicast address (IPv6): (TBD1). Assigned in
 the IPv6 Link‑Local Scope Multicast Addresses registry.

ALL_GRASP_NEIGHBORS multicast address (IPv4): (TBD2). Assigned in
 the IPv4 Multicast Local Network Control Block.

 Section 2.6 explains the following User Port, which IANA is requested
 to assign for use by GRASP for both UDP and TCP:

GRASP_LISTEN_PORT: (TBD3)
Service Name: Generic Autonomic Signaling Protocol (GRASP)
Transport Protocols: UDP, TCP
Assignee: iesg@ietf.org
Contact: chair@ietf.org
Description: See Section 2.6
Reference: RFC XXXX (this document)

The IANA is requested to create a GRASP Parameter Registry including
two registry tables. These are the GRASP Messages and Options
Table and the GRASP Objective Names Table.

 GRASP Messages and Options Table. The values in this table are names
 paired with decimal integers. Future values MUST be assigned using
 the Standards Action policy defined by [RFC8126]. The following
 initial values are assigned by this document:

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106

 GRASP Objective Names Table. The values in this table are UTF-8
 strings which MUST NOT include a colon (":"), according to
 Section 2.10.1. Future values MUST be assigned using the
 Specification Required policy defined by [RFC8126].

 To assist expert review of a new objective, the specification should
 include a precise description of the format of the new objective,
 with sufficient explanation of its semantics to allow independent
 implementations. See Section 2.10.3 for more details. If the new
 objective is similar in name or purpose to a previously registered
 objective, the specification should explain why a new objective is
 justified.

 The following initial values are assigned by this document:

EX0
EX1
EX2
EX3
EX4
EX5
EX6
EX7
EX8
EX9

7. Acknowledgements

 A major contribution to the original version of this document was
 made by Sheng Jiang and significant contributions were made by
 Toerless Eckert. Significant early review inputs were received from
 Joel Halpern, Barry Leiba, Charles E. Perkins, and Michael
 Richardson. William Atwood provided important assistance in
 debugging a prototype implementation.

 Valuable comments were received from Michael Behringer, Jeferson
 Campos Nobre, Laurent Ciavaglia, Zongpeng Du, Yu Fu, Joel Jaeggli,
 Zhenbin Li, Dimitri Papadimitriou, Pierre Peloso, Reshad Rahman,
 Markus Stenberg, Martin Stiemerling, Rene Struik, Martin Thomson,
 Dacheng Zhang, and participants in the NMRG research group, the ANIMA
 working group, and the IESG.

8. References

8.1. Normative References

 [I-D.greevenbosch-appsawg-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-
 cbor-cddl-11 (work in progress), July 2017.

 [I-D.ietf-anima-autonomic-control-plane]

 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane", draft-ietf-anima-autonomic-control-
 plane-07 (work in progress), July 2017.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7217]
 Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

 [RFC8085]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <http://www.rfc-editor.org/info/rfc8085>.

8.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]

 Carpenter, B. and S. Jiang, "Guidelines for Autonomic
 Service Agents", draft-carpenter-anima-asa-guidelines-02
 (work in progress), July 2017.

 [I-D.chaparadza-intarea-igcp]

 Behringer, M., Chaparadza, R., Petre, R., Li, X., and H.
 Mahkonen, "IP based Generic Control Protocol (IGCP)",
 draft-chaparadza-intarea-igcp-00 (work in progress), July
 2011.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-07 (work in progress), July 2017.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-04 (work in progress), July 2017.

 [I-D.ietf-anima-stable-connectivity]

 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-03 (work in progress), July
 2017.

 [I-D.liu-anima-grasp-api]

 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-liu-anima-grasp-api-04 (work in
 progress), June 2017.

 [I-D.stenberg-anima-adncp]

 Stenberg, M., "Autonomic Distributed Node Consensus
 Protocol", draft-stenberg-anima-adncp-00 (work in
 progress), March 2015.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC2334]
 Luciani, J., Armitage, G., Halpern, J., and N. Doraswamy,
 "Server Cache Synchronization Protocol (SCSP)", RFC 2334,
 DOI 10.17487/RFC2334, April 1998,
 <http://www.rfc-editor.org/info/rfc2334>.

 [RFC2608]
 Guttman, E., Perkins, C., Veizades, J., and M. Day,
 "Service Location Protocol, Version 2", RFC 2608,
 DOI 10.17487/RFC2608, June 1999,
 <http://www.rfc-editor.org/info/rfc2608>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3315]
 Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC3416]
 Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC3493]
 Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <http://www.rfc-editor.org/info/rfc3493>.

 [RFC4861]
 Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC5612]
 Eronen, P. and D. Harrington, "Enterprise Number for
 Documentation Use", RFC 5612, DOI 10.17487/RFC5612, August
 2009, <http://www.rfc-editor.org/info/rfc5612>.

 [RFC5971]
 Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, DOI 10.17487/RFC5971,
 October 2010, <http://www.rfc-editor.org/info/rfc5971>.

 [RFC6206]
 Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
 March 2011, <http://www.rfc-editor.org/info/rfc6206>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC6762]
 Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC6887]
 Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <http://www.rfc-editor.org/info/rfc6887>.

 [RFC7558]
 Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015,
 <http://www.rfc-editor.org/info/rfc7558>.

 [RFC7564]
 Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <http://www.rfc-editor.org/info/rfc7564>.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

 [RFC7576]
 Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <http://www.rfc-editor.org/info/rfc7576>.

 [RFC7787]
 Stenberg, M. and S. Barth, "Distributed Node Consensus
 Protocol", RFC 7787, DOI 10.17487/RFC7787, April 2016,
 <http://www.rfc-editor.org/info/rfc7787>.

 [RFC7788]
 Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <http://www.rfc-editor.org/info/rfc7788>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <http://www.rfc-editor.org/info/rfc8126>.

Appendix A. Open Issues [RFC Editor: This section should be empty.
 Please remove]

 o 68. (Placeholder)

Appendix B. Closed Issues [RFC Editor: Please remove]

 o 1. UDP vs TCP: For now, this specification suggests UDP and TCP
 as message transport mechanisms. This is not clarified yet. UDP
 is good for short conversations, is necessary for multicast
 discovery, and generally fits the discovery and divert scenarios
 well. However, it will cause problems with large messages. TCP
 is good for stable and long sessions, with a little bit of time
 consumption during the session establishment stage. If messages
 exceed a reasonable MTU, a TCP mode will be required in any case.
 This question may be affected by the security discussion.

 RESOLVED by specifying UDP for short message and TCP for longer
 one.

 o 2. DTLS or TLS vs built-in security mechanism. For now, this
 specification has chosen a PKI based built-in security mechanism
 based on asymmetric cryptography. However, (D)TLS might be chosen
 as security solution to avoid duplication of effort. It also
 allows essentially similar security for short messages over UDP
 and longer ones over TCP. The implementation trade-offs are
 different. The current approach requires expensive asymmetric
 cryptographic calculations for every message. (D)TLS has startup
 overheads but cheaper crypto per message. DTLS is less mature
 than TLS.

 RESOLVED by specifying external security (ACP or (D)TLS).

 o The following open issues applied only if the original security
 model was retained:

 * 2.1. For replay protection, GRASP currently requires every
 participant to have an NTP-synchronized clock. Is this OK for
 low-end devices, and how does it work during device
 bootstrapping? We could take the Timestamp out of signature
 option, to become an independent and OPTIONAL (or RECOMMENDED)
 option.

 * 2.2. The Signature Option states that this option could be any
 place in a message. Wouldn't it be better to specify a
 position (such as the end)? That would be much simpler to
 implement.

 RESOLVED by changing security model.

 o 3. DoS Attack Protection needs work.

 RESOLVED by adding text.

 o 4. Should we consider preferring a text-based approach to
 discovery (after the initial discovery needed for bootstrapping)?
 This could be a complementary mechanism for multicast based
 discovery, especially for a very large autonomic network.
 Centralized registration could be automatically deployed
 incrementally. At the very first stage, the repository could be
 empty; then it could be filled in by the objectives discovered by
 different devices (for example using Dynamic DNS Update). The
 more records are stored in the repository, the less the multicast-
 based discovery is needed. However, if we adopt such a mechanism,
 there would be challenges: stateful solution, and security.

 RESOLVED for now by adding optional use of DNS-SD by ASAs.
 Subsequently removed by editors as irrelevant to GRASP istelf.

 o 5. Need to expand description of the minimum requirements for the
 specification of an individual discovery, synchronization or
 negotiation objective.

 RESOLVED for now by extra wording.

 o 6. Use case and protocol walkthrough. A description of how a
 node starts up, performs discovery, and conducts negotiation and
 synchronisation for a sample use case would help readers to
 understand the applicability of this specification. Maybe it
 should be an artificial use case or maybe a simple real one, based
 on a conceptual API. However, the authors have not yet decided
 whether to have a separate document or have it in the protocol
 document.

 RESOLVED: recommend a separate document.

 o 7. Cross-check against other ANIMA WG documents for consistency
 and gaps.

 RESOLVED: Satisfied by WGLC.

 o 8. Consideration of ADNCP proposal.

 RESOLVED by adding optional use of DNCP for flooding-type
 synchronization.

 o 9. Clarify how a GDNP instance knows whether it is running inside
 the ACP. (Sheng)

 RESOLVED by improved text.

 o 10. Clarify how a non-ACP GDNP instance initiates (D)TLS.
 (Sheng)

 RESOLVED by improved text and declaring DTLS out of scope for this
 draft.

 o 11. Clarify how UDP/TCP choice is made. (Sheng) [Like DNS? -
 Brian]

 RESOLVED by improved text.

 o 12. Justify that IP address within ACP or (D)TLS environment is
 sufficient to prove AN identity; or explain how Device Identity
 Option is used. (Sheng)

 RESOLVED for now: we assume that all ASAs in a device are trusted
 as soon as the device is trusted, so they share credentials. In
 that case the Device Identity Option is useless. This needs to be
 reviewed later.

 o 13. Emphasise that negotiation/synchronization are independent
 from discovery, although the rapid discovery mode includes the
 first step of a negotiation/synchronization. (Sheng)

 RESOLVED by improved text.

 o 14. Do we need an unsolicited flooding mechanism for discovery
 (for discovery results that everyone needs), to reduce scaling
 impact of flooding discovery messages? (Toerless)

 RESOLVED: Yes, added to requirements and solution.

 o 15. Do we need flag bits in Objective Options to distinguish
 distinguish Synchronization and Negotiation "Request" or rapid
 mode "Discovery" messages? (Bing)

 RESOLVED: yes, work on the API showed that these flags are
 essential.

 o 16. (Related to issue 14). Should we revive the "unsolicited
 Response" for flooding synchronisation data? This has to be done
 carefully due to the well-known issues with flooding, but it could

 be useful, e.g. for Intent distribution, where DNCP doesn't seem
 applicable.

 RESOLVED: Yes, see #14.

 o 17. Ensure that the discovery mechanism is completely proof
 against loops and protected against duplicate responses.

 RESOLVED: Added loop count mechanism.

 o 18. Discuss the handling of multiple valid discovery responses.

 RESOLVED: Stated that the choice must be available to the ASA but
 GRASP implementation should pick a default.

 o 19. Should we use a text-oriented format such as JSON/CBOR
 instead of native binary TLV format?

 RESOLVED: Yes, changed to CBOR.

 o 20. Is the Divert option needed? If a discovery response
 provides a valid IP address or FQDN, the recipient doesn't gain
 any extra knowledge from the Divert. On the other hand, the
 presence of Divert informs the receiver that the target is off-
 link, which might be useful sometimes.

 RESOLVED: Decided to keep Divert option.

 o 21. Rename the protocol as GRASP (GeneRic Autonomic Signaling
 Protocol)?

 RESOLVED: Yes, name changed.

 o 22. Does discovery mechanism scale robustly as needed? Need hop
 limit on relaying?

 RESOLVED: Added hop limit.

 o 23. Need more details on TTL for caching discovery responses.

 RESOLVED: Done.

 o 24. Do we need "fast withdrawal" of discovery responses?

 RESOLVED: This doesn't seem necessary. If an ASA exits or stops
 supporting a given objective, peers will fail to start future
 sessions and will simply repeat discovery.

 o 25. Does GDNP discovery meet the needs of multi-hop DNS-SD?

 RESOLVED: Decided not to consider this further as a GRASP protocol
 issue. GRASP objectives could embed DNS-SD formats if needed.

 o 26. Add a URL type to the locator options (for security bootstrap
 etc.)

 RESOLVED: Done, later renamed as URI.

 o 27. Security of Flood multicasts (Section 2.5.6.2).

 RESOLVED: added text.

 o 28. Does ACP support secure link-local multicast?

 RESOLVED by new text in the Security Considerations.

 o 29. PEN is used to distinguish vendor options. Would it be
 better to use a domain name? Anything unique will do.

 RESOLVED: Simplified this by removing PEN field and changing
 naming rules for objectives.

 o 30. Does response to discovery require randomized delays to
 mitigate amplification attacks?

 RESOLVED: WG feedback is that it's unnecessary.

 o 31. We have specified repeats for failed discovery etc. Is that
 sufficient to deal with sleeping nodes?

 RESOLVED: WG feedback is that it's unnecessary to say more.

 o 32. We have one-to-one synchronization and flooding
 synchronization. Do we also need selective flooding to a subset
 of nodes?

 RESOLVED: This will be discussed as a protocol extension in a
 separate draft (draft-liu-anima-grasp-distribution).

 o 33. Clarify if/when discovery needs to be repeated.

 RESOLVED: Done.

 o 34. Clarify what is mandatory for running in ACP, expand
 discussion of security boundary when running with no ACP - might
 rely on the local PKI infrastructure.

 RESOLVED: Done.

 o 35. State that role-based authorization of ASAs is out of scope
 for GRASP. GRASP doesn't recognize/handle any "roles".

 RESOLVED: Done.

 o 36. Reconsider CBOR definition for PEN syntax. (objective-name
 = text / [pen, text] ; pen = uint)

 RESOLVED: See issue 29.

 o 37. Are URI locators really needed?

 RESOLVED: Yes, e.g. for security bootstrap discovery, but added
 note that addresses are the normal case (same for FQDN locators).

 o 38. Is Session ID sufficient to identify relayed responses?
 Isn't the originator's address needed too?

 RESOLVED: Yes, this is needed for multicast messages and their
 responses.

 o 39. Clarify that a node will contain one GRASP instance
 supporting multiple ASAs.

 RESOLVED: Done.

 o 40. Add a "reason" code to the DECLINE option?

 RESOLVED: Done.

 o 41. What happens if an ASA cannot conveniently use one of the
 GRASP mechanisms? Do we (a) add a message type to GRASP, or (b)
 simply pass the discovery results to the ASA so that it can open
 its own socket?

 RESOLVED: Both would be possible, but (b) is preferred.

 o 42. Do we need a feature whereby an ASA can bypass the ACP and
 use the data plane for efficiency/throughput? This would require
 discovery to return non-ACP addresses and would evade ACP
 security.

 RESOLVED: This is considered out of scope for GRASP, but a comment
 has been added in security considerations.

 o 43. Rapid mode synchronization and negotiation is currently
 limited to a single objective for simplicity of design and
 implementation. A future consideration is to allow multiple
 objectives in rapid mode for greater efficiency.

 RESOLVED: This is considered out of scope for this version.

 o 44. In requirement T9, the words that encryption "may not be
 required in all deployments" were removed. Is that OK?.

 RESOLVED: No objections.

 o 45. Device Identity Option is unused. Can we remove it
 completely?.

 RESOLVED: No objections. Done.

 o 46. The 'initiator' field in DISCOVER, RESPONSE and FLOOD
 messages is intended to assist in loop prevention. However, we
 also have the loop count for that. Also, if we create a new
 Session ID each time a DISCOVER or FLOOD is relayed, that ID can
 be disambiguated by recipients. It would be simpler to remove the
 initiator from the messages, making parsing more uniform. Is that
 OK?

 RESOLVED: Yes. Done.

 o 47. REQUEST is a dual purpose message (request negotiation or
 request synchronization). Would it be better to split this into
 two different messages (and adjust various message names
 accordingly)?

 RESOLVED: Yes. Done.

 o 48. Should the Appendix "Capability Analysis of Current
 Protocols" be deleted before RFC publication?

 RESOLVED: No (per WG meeting at IETF 96).

 o 49. Section 2.5.1 Should say more about signaling between two
 autonomic networks/domains.

 RESOLVED: Description of separate GRASP instance added.

 o 50. Is Rapid mode limited to on-link only? What happens if first
 discovery responder does not support Rapid Mode? Section 2.5.5,
 Section 2.5.6)

 RESOLVED: Not limited to on-link. First responder wins.

 o 51. Should flooded objectives have a time-to-live before they are
 deleted from the flood cache? And should they be tagged in the
 cache with their source locator?

 RESOLVED: TTL added to Flood (and Discovery Response) messages.
 Cached flooded objectives must be tagged with their originating
 ASA locator, and multiple copies must be kept if necessary.

 o 52. Describe in detail what is allowed and disallowed in an
 insecure instance of GRASP.

 RESOLVED: Done.

 o 53. Tune IANA Considerations to support early assignment request.

 o 54. Is there a highly unlikely race condition if two peers
 simultaneously choose the same Session ID and send each other
 simultaneous M_REQ_NEG messages?

 RESOLVED: Yes. Enhanced text on Session ID generation, and added
 precaution when receiving a Request message.

 o 55. Could discovery be performed over TCP?

 RESOLVED: Unicast discovery added as an option.

 o 56. Change Session-ID to 32 bits?

 RESOLVED: Done.

 o 57. Add M_INVALID message?

 RESOLVED: Done.

 o 58. Maximum message size?

 RESOLVED by specifying default maximum message size (2048 bytes).

 o 59. Add F_NEG_DRY flag to specify a "dry run" objective?.

 RESOLVED: Done.

 o 60. Change M_FLOOD syntax to associate a locator with each
 objective?

 RESOLVED: Done.

 o 61. Is the SONN constrained instance really needed?

 RESOLVED: Retained but only as an option.

 o 62. Is it helpful to tag descriptive text with message names
 (M_DISCOVER etc.)?

 RESOLVED: Yes, done in various parts of the text.

 o 63. Should encryption be MUST instead of SHOULD in Section 2.5.1
 and Section 2.5.1?

 RESOLVED: Yes, MUST implement in both cases.

 o 64. Should more security text be moved from the main text into
 the Security Considerations?

 RESOLVED: No, on AD advice.

 o 65. Do we need to formally restrict Unicode characters allowed in
 objective names?

 RESOLVED: No, but need to point to guidance from PRECIS WG.

 o 66. Split requirements into separate document?

 RESOLVED: No, on AD advice.

 o 67. Remove normative dependency on draft-greevenbosch-appsawg-
 cbor-cddl?

 RESOLVED: No, on AD advice. In worst case, fix at AUTH48.

Appendix C. Change log [RFC Editor: Please remove]

 draft-ietf-anima-grasp-15, 2017-07-07:

 Updates following additional IESG comments:

 Security (Eric Rescorla): missing brittleness of group security
 concept, attack via compromised member.

 TSV (Mirja Kuehlewind): clarification on the use of UDP, TCP, mandate
 use of TCP (or other reliable transport).

 Clarified that in ACP, UDP is not used at all.

 Clarified that GRASP itself needs TCP listen port (was previously
 written as if this was optional).

 draft-ietf-anima-grasp-14, 2017-07-02:

 Updates following additional IESG comments:

 Updated 2.5.1 and 2.5.2 based on IESG security feedback (specify
 dependency against security substrate).

 Strengthened requirement for reliable transport protocol.

 draft-ietf-anima-grasp-13, 2017-06-06:

 Updates following additional IESG comments:

 Removed all mention of TLS, including SONN, since it was under-
 specified.

 Clarified other text about trust and security model.

 Banned Rapid Mode when multicast is insecure.

 Explained use of M_INVALID to support extensibility

 Corrected details on discovery cache TTL and discovery timeout.

 Improved description of multicast UDP w.r.t. RFC8085.

 Clarified when transport connections are opened or closed.

 Noted that IPPROTO values come from the Protocol Numbers registry

 Protocol change: Added protocol and port numbers to URI locator.

 Removed inaccurate text about routing protocols

 Moved Requirements section to an Appendix.

 Other editorial and technical clarifications.

 draft-ietf-anima-grasp-12, 2017-05-19:

 Updates following IESG comments:

 Clarified that GRASP runs in a single addressing realm

 Improved wording about FQDN resolution, clarified that URI usage is
 out of scope.

 Clarified description of negotiation timeout.

 Noted that 'dry run' semantics are ASA-dependent

 Made the ACP a normative reference

 Clarified that LL multicasts are limited to GRASP interfaces

 Unicast UDP moved out of scope

 Editorial clarifications

 draft-ietf-anima-grasp-11, 2017-03-30:

 Updates following IETF 98 discussion:

 Encryption changed to a MUST implement.

 Pointed to guidance on UTF-8 names.

 draft-ietf-anima-grasp-10, 2017-03-10:

 Updates following IETF Last call:

 Protocol change: Specify that an objective with no initial value
 should have its value field set to CBOR 'null'.

 Protocol change: Specify behavior on receiving unrecognized message
 type.

 Noted that UTF-8 names are matched byte-for-byte.

 Added brief guidance for Expert Reviewer of new generic objectives.

 Numerous editorial improvements and clarifications and minor text
 rearrangements, none intended to change the meaning.

 draft-ietf-anima-grasp-09, 2016-12-15:

 Protocol change: Add F_NEG_DRY flag to specify a "dry run" objective.

 Protocol change: Change M_FLOOD syntax to associate a locator with
 each objective.

 Concentrated mentions of TLS in one section, with all details out of
 scope.

 Clarified text around constrained instances of GRASP.

 Strengthened text restricting LL addresses in locator options.

 Clarified description of rapid mode processsing.

 Specified that cached discovery results should not be returned on the
 same interface where they were learned.

 Shortened text in "High Level Design Choices"

 Dropped the word 'kernel' to avoid confusion with o/s kernel mode.

 Editorial improvements and clarifications.

 draft-ietf-anima-grasp-08, 2016-10-30:

 Protocol change: Added M_INVALID message.

 Protocol change: Increased Session ID space to 32 bits.

 Enhanced rules to avoid Session ID clashes.

 Corrected and completed description of timeouts for Request messages.

 Improved wording about exponential backoff and DoS.

 Clarified that discovery relaying is not done by limited security
 instances.

 Corrected and expanded explanation of port used for Discovery
 Response.

 Noted that Discovery message could be sent unicast in special cases.

 Added paragraph on extensibility.

 Specified default maximum message size.

 Added Appendix for sample messages.

 Added short protocol overview.

 Editorial fixes, including minor re-ordering for readability.

 draft-ietf-anima-grasp-07, 2016-09-13:

 Protocol change: Added TTL field to Flood message (issue 51).

 Protocol change: Added Locator option to Flood message (issue 51).

 Protocol change: Added TTL field to Discovery Response message
 (corrollary to issue 51).

 Clarified details of rapid mode (issues 43 and 50).

 Description of inter-domain GRASP instance added (issue 49).

 Description of limited security GRASP instances added (issue 52).

 Strengthened advice to use TCP rather than UDP.

 Updated IANA considerations and text about well-known port usage
 (issue 53).

 Amended text about ASA authorization and roles to allow for
 overlapping ASAs.

 Added text recommending that Flood should be repeated periodically.

 Editorial fixes.

 draft-ietf-anima-grasp-06, 2016-06-27:

 Added text on discovery cache timeouts.

 Noted that ASAs that are only initiators do not need to respond to
 discovery message.

 Added text on unexpected address changes.

 Added text on robust implementation.

 Clarifications and editorial fixes for numerous review comments

 Added open issues for some review comments.

 draft-ietf-anima-grasp-05, 2016-05-13:

 Noted in requirement T1 that it should be possible to implement ASAs
 independently as user space programs.

 Protocol change: Added protocol number and port to discovery
 response. Updated protocol description, CDDL and IANA considerations
 accordingly.

 Clarified that discovery and flood multicasts are handled by the
 GRASP core, not directly by ASAs.

 Clarified that a node may discover an objective without supporting it
 for synchronization or negotiation.

 Added Implementation Status section.

 Added reference to SCSP.

 Editorial fixes.

 draft-ietf-anima-grasp-04, 2016-03-11:

 Protocol change: Restored initiator field in certain messages and
 adjusted relaying rules to provide complete loop detection.

 Updated IANA Considerations.

 draft-ietf-anima-grasp-03, 2016-02-24:

 Protocol change: Removed initiator field from certain messages and
 adjusted relaying requirement to simplify loop detection. Also
 clarified narrative explanation of discovery relaying.

 Protocol change: Split Request message into two (Request Negotiation
 and Request Synchronization) and updated other message names for
 clarity.

 Protocol change: Dropped unused Device ID option.

 Further clarified text on transport layer usage.

 New text about multicast insecurity in Security Considerations.

 Various other clarifications and editorial fixes, including moving
 some material to Appendix.

 draft-ietf-anima-grasp-02, 2016-01-13:

 Resolved numerous issues according to WG discussions.

 Renumbered requirements, added D9.

 Protocol change: only allow one objective in rapid mode.

 Protocol change: added optional error string to DECLINE option.

 Protocol change: removed statement that seemed to say that a Request
 not preceded by a Discovery should cause a Discovery response. That
 made no sense, because there is no way the initiator would know where
 to send the Request.

 Protocol change: Removed PEN option from vendor objectives, changed
 naming rule accordingly.

 Protocol change: Added FLOOD message to simplify coding.

 Protocol change: Added SYNCH message to simplify coding.

 Protocol change: Added initiator id to DISCOVER, RESPONSE and FLOOD
 messages. But also allowed the relay process for DISCOVER and FLOOD
 to regenerate a Session ID.

 Protocol change: Require that discovered addresses must be global
 (except during bootstrap).

 Protocol change: Receiver of REQUEST message must close socket if no
 ASA is listening for the objective.

 Protocol change: Simplified Waiting message.

 Protocol change: Added No Operation message.

 Renamed URL locator type as URI locator type.

 Updated CDDL definition.

 Various other clarifications and editorial fixes.

 draft-ietf-anima-grasp-01, 2015-10-09:

 Updated requirements after list discussion.

 Changed from TLV to CBOR format - many detailed changes, added co-
 author.

 Tightened up loop count and timeouts for various cases.

 Noted that GRASP does not provide transactional integrity.

 Various other clarifications and editorial fixes.

 draft-ietf-anima-grasp-00, 2015-08-14:

 File name and protocol name changed following WG adoption.

 Added URL locator type.

 draft-carpenter-anima-gdn-protocol-04, 2015-06-21:

 Tuned wording around hierarchical structure.

 Changed "device" to "ASA" in many places.

 Reformulated requirements to be clear that the ASA is the main
 customer for signaling.

 Added requirement for flooding unsolicited synch, and added it to
 protocol spec. Recognized DNCP as alternative for flooding synch
 data.

 Requirements clarified, expanded and rearranged following design team
 discussion.

 Clarified that GDNP discovery must not be a prerequisite for GDNP
 negotiation or synchronization (resolved issue 13).

 Specified flag bits for objective options (resolved issue 15).

 Clarified usage of ACP vs TLS/DTLS and TCP vs UDP (resolved issues
 9,10,11).

 Updated DNCP description from latest DNCP draft.

 Editorial improvements.

 draft-carpenter-anima-gdn-protocol-03, 2015-04-20:

 Removed intrinsic security, required external security

 Format changes to allow DNCP co-existence

 Recognized DNS-SD as alternative discovery method.

 Editorial improvements

 draft-carpenter-anima-gdn-protocol-02, 2015-02-19:

 Tuned requirements to clarify scope,

 Clarified relationship between types of objective,

 Clarified that objectives may be simple values or complex data
 structures,

 Improved description of objective options,

 Added loop-avoidance mechanisms (loop count and default timeout,
 limitations on discovery relaying and on unsolicited responses),

 Allow multiple discovery objectives in one response,

 Provided for missing or multiple discovery responses,

 Indicated how modes such as "dry run" should be supported,

 Minor editorial and technical corrections and clarifications,

 Reorganized future work list.

 draft-carpenter-anima-gdn-protocol-01, restructured the logical flow
 of the document, updated to describe synchronization completely, add
 unsolicited responses, numerous corrections and clarifications,
 expanded future work list, 2015-01-06.

 draft-carpenter-anima-gdn-protocol-00, combination of draft-jiang-
 config-negotiation-ps-03 and draft-jiang-config-negotiation-protocol-
 02, 2014-10-08.

Appendix D. Example Message Formats

 For readers unfamiliar with CBOR, this appendix shows a number of
 example GRASP messages conforming to the CDDL syntax given in
 Section 5. Each message is shown three times in the following
 formats:

 1. CBOR diagnostic notation.

 2. Similar, but showing the names of the constants. (Details of the
 flag bit encoding are omitted.)

 3. Hexadecimal version of the CBOR wire format.

 Long lines are split for display purposes only.

D.1. Discovery Example

 The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a
 discovery message looking for objective EX1:

[1, 13948744, h'20010db8f000baaa28ccdc4c97036781', ["EX1", 5, 2, 0]]
[M_DISCOVERY, 13948744, h'20010db8f000baaa28ccdc4c97036781',
 ["EX1", F_SYNCH_bits, 2, 0]]
h'84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200'

 A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a
 locator:

 [2, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,

 [103, h'20010db8f000baaaf000baaaf000baaa', 6, 49443]]
 [M_RESPONSE, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [O_IPv6_LOCATOR, h'20010db8f000baaaf000baaaf000baaa',
 IPPROTO_TCP, 49443]]
 h'85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
 20010db8f000baaaf000baaaf000baaa0619c123'

D.2. Flood Example

 The initiator multicasts a flood message. The single objective has a
 null locator. There is no response:

[9, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", 5, 2, ["Example 1 value=", 100]],[]]]
[M_FLOOD, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[]]]
h'86091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
 828463455831050282704578616d706c6520312076616c75653d186480'

D.3. Synchronization Example

 Following successful discovery of objective EX2, the initiator
 unicasts a request:

[4, 4038926, ["EX2", 5, 5, 0]]
[M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
h'83041a003da10e8463455832050500'

 The peer responds with a value:

[8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
[M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
h'83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8'

D.4. Simple Negotiation Example

 Following successful discovery of objective EX3, the initiator
 unicasts a request:

[3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
[M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
h'83031a000c3ffd8463455833030682634e5a44182f'

 The peer responds with immediate acceptance. Note that no objective
 is needed, because the initiator's request was accepted without
 change:

[6, 802813, [101]]
[M_END , 802813, [O_ACCEPT]]
h'83061a000c3ffd811865'

D.5. Complete Negotiation Example

 Again the initiator unicasts a request:

[3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
[M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
h'83031a00d214628463455833030682634e5a4419019a'

 The responder starts to negotiate (making an offer):

[5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
h'83051a00d214628463455833030682634e5a441850'

 The initiator continues to negotiate (reducing its request, and note
 that the loop count is decremented):

[5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
h'83051a00d214628463455833030582634e5a44190133'

 The responder asks for more time:

[7, 13767778, 34965]
[M_WAIT, 13767778, 34965]
h'83071a00d21462198895'

 The responder continues to negotiate (increasing its offer):

[5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
h'83051a00d214628463455833030482634e5a441878'

 The initiator continues to negotiate (reducing its request):

[5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
h'83051a00d214628463455833030382634e5a4418f6'

 The responder refuses to negotiate further:

[6, 13767778, [102, "Insufficient funds"]]
[M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
h'83061a00d2146282186672496e73756666696369656e742066756e6473'

 This negotiation has failed. If either side had sent [M_END,
 13767778, [O_ACCEPT]] it would have succeeded, converging on the
 objective value in the preceding M_NEGOTIATE. Note that apart from
 the initial M_REQ_NEG, the process is symmetrical.

Appendix E. Requirement Analysis of Discovery, Synchronization and
 Negotiation

 This section discusses the requirements for discovery, negotiation
 and synchronization capabilities. The primary user of the protocol
 is an autonomic service agent (ASA), so the requirements are mainly
 expressed as the features needed by an ASA. A single physical device
 might contain several ASAs, and a single ASA might manage several
 technical objectives. If a technical objective is managed by several
 ASAs, any necessary coordination is outside the scope of the GRASP
 signaling protocol. Furthermore, requirements for ASAs themselves,
 such as the processing of Intent [RFC7575], are out of scope for the
 present document.

E.1. Requirements for Discovery

 D1. ASAs may be designed to manage any type of configurable device
 or software, as required in Appendix E.2. A basic requirement is
 therefore that the protocol can represent and discover any kind of
 technical objective (as defined in Section 2.1) among arbitrary
 subsets of participating nodes.

 In an autonomic network we must assume that when a device starts up
 it has no information about any peer devices, the network structure,
 or what specific role it must play. The ASA(s) inside the device are
 in the same situation. In some cases, when a new application session
 starts up within a device, the device or ASA may again lack
 information about relevant peers. For example, it might be necessary
 to set up resources on multiple other devices, coordinated and
 matched to each other so that there is no wasted resource. Security
 settings might also need updating to allow for the new device or
 user. The relevant peers may be different for different technical
 objectives. Therefore discovery needs to be repeated as often as
 necessary to find peers capable of acting as counterparts for each
 objective that a discovery initiator needs to handle. From this
 background we derive the next three requirements:

 D2. When an ASA first starts up, it may have no knowledge of the
 specific network to which it is attached. Therefore the discovery
 process must be able to support any network scenario, assuming only
 that the device concerned is bootstrapped from factory condition.

 D3. When an ASA starts up, it must require no configured location
 information about any peers in order to discover them.

 D4. If an ASA supports multiple technical objectives, relevant peers
 may be different for different discovery objectives, so discovery
 needs to be performed separately to find counterparts for each
 objective. Thus, there must be a mechanism by which an ASA can
 separately discover peer ASAs for each of the technical objectives
 that it needs to manage, whenever necessary.

 D5. Following discovery, an ASA will normally perform negotiation or
 synchronization for the corresponding objectives. The design should
 allow for this by conveniently linking discovery to negotiation and
 synchronization. It may provide an optional mechanism to combine
 discovery and negotiation/synchronization in a single protocol
 exchange.

 D6. Some objectives may only be significant on the local link, but
 others may be significant across the routed network and require off-
 link operations. Thus, the relevant peers might be immediate
 neighbors on the same layer 2 link, or they might be more distant and
 only accessible via layer 3. The mechanism must therefore provide
 both on-link and off-link discovery of ASAs supporting specific
 technical objectives.

 D7. The discovery process should be flexible enough to allow for
 special cases, such as the following:

 o During initialization, a device must be able to establish mutual
 trust with autonomic nodes elsewhere in the network and
 participate in an authentication mechanism. Although this will
 inevitably start with a discovery action, it is a special case
 precisely because trust is not yet established. This topic is the

 subject of [I-D.ietf-anima-bootstrapping-keyinfra]. We require
 that once trust has been established for a device, all ASAs within
 the device inherit the device's credentials and are also trusted.
 This does not preclude the device having multiple credentials.

 o Depending on the type of network involved, discovery of other
 central functions might be needed, such as the Network Operations
 Center (NOC) [I-D.ietf-anima-stable-connectivity]. The protocol
 must be capable of supporting such discovery during
 initialization, as well as discovery during ongoing operation.

 D8. The discovery process must not generate excessive traffic and
 must take account of sleeping nodes.

 D9. There must be a mechanism for handling stale discovery results.

E.2. Requirements for Synchronization and Negotiation Capability

 Autonomic networks need to be able to manage many different types of
 parameter and consider many dimensions, such as latency, load, unused
 or limited resources, conflicting resource requests, security
 settings, power saving, load balancing, etc. Status information and
 resource metrics need to be shared between nodes for dynamic
 adjustment of resources and for monitoring purposes. While this
 might be achieved by existing protocols when they are available, the
 new protocol needs to be able to support parameter exchange,
 including mutual synchronization, even when no negotiation as such is
 required. In general, these parameters do not apply to all
 participating nodes, but only to a subset.

 SN1. A basic requirement for the protocol is therefore the ability
 to represent, discover, synchronize and negotiate almost any kind of
 network parameter among selected subsets of participating nodes.

 SN2. Negotiation is an iterative request/response process that must
 be guaranteed to terminate (with success or failure). While tie-
 breaking rules must be defined specifically for each use case, the
 protocol should have some general mechanisms in support of loop and
 deadlock prevention, such as hop count limits or timeouts.

 SN3. Synchronization must be possible for groups of nodes ranging
 from small to very large.

 SN4. To avoid "reinventing the wheel", the protocol should be able
 to encapsulate the data formats used by existing configuration
 protocols (such as NETCONF/YANG) in cases where that is convenient.
 SN5. Human intervention in complex situations is costly and error-
 prone. Therefore, synchronization or negotiation of parameters
 without human intervention is desirable whenever the coordination of
 multiple devices can improve overall network performance. It follows
 that the protocol's resource requirements must be small enough to fit
 in any device that would otherwise need human intervention. The
 issue of running in constrained nodes is discussed in
 [I-D.ietf-anima-reference-model].

 SN6. Human intervention in large networks is often replaced by use
 of a top-down network management system (NMS). It therefore follows
 that the protocol, as part of the Autonomic Networking
 Infrastructure, should be capable of running in any device that would
 otherwise be managed by an NMS, and that it can co-exist with an NMS,
 and with protocols such as SNMP and NETCONF.

 SN7. Specific autonomic features are expected to be implemented by
 individual ASAs, but the protocol must be general enough to allow
 them. Some examples follow:

 o Dependencies and conflicts: In order to decide upon a
 configuration for a given device, the device may need information
 from neighbors. This can be established through the negotiation
 procedure, or through synchronization if that is sufficient.
 However, a given item in a neighbor may depend on other
 information from its own neighbors, which may need another
 negotiation or synchronization procedure to obtain or decide.
 Therefore, there are potential dependencies and conflicts among
 negotiation or synchronization procedures. Resolving dependencies
 and conflicts is a matter for the individual ASAs involved. To
 allow this, there need to be clear boundaries and convergence
 mechanisms for negotiations. Also some mechanisms are needed to
 avoid loop dependencies or uncontrolled growth in a tree of
 dependencies. It is the ASA designer's responsibility to avoid or
 detect looping dependencies or excessive growth of dependency
 trees. The protocol's role is limited to bilateral signaling
 between ASAs, and the avoidance of loops during bilateral
 signaling.

 o Recovery from faults and identification of faulty devices should
 be as automatic as possible. The protocol's role is limited to
 discovery, synchronization and negotiation. These processes can
 occur at any time, and an ASA may need to repeat any of these
 steps when the ASA detects an event such as a negotiation
 counterpart failing.

 o Since a major goal is to minimize human intervention, it is
 necessary that the network can in effect "think ahead" before

 changing its parameters. One aspect of this is an ASA that relies
 on a knowledge base to predict network behavior. This is out of
 scope for the signaling protocol. However, another aspect is
 forecasting the effect of a change by a "dry run" negotiation
 before actually installing the change. Signaling a dry run is
 therefore a desirable feature of the protocol.

 Note that management logging, monitoring, alerts and tools for
 intervention are required. However, these can only be features of
 individual ASAs, not of the protocol itself. Another document
 [I-D.ietf-anima-stable-connectivity] discusses how such agents may be
 linked into conventional OAM systems via an Autonomic Control Plane
 [I-D.ietf-anima-autonomic-control-plane].

 SN8. The protocol will be able to deal with a wide variety of
 technical objectives, covering any type of network parameter.
 Therefore the protocol will need a flexible and easily extensible
 format for describing objectives. At a later stage it may be
 desirable to adopt an explicit information model. One consideration
 is whether to adopt an existing information model or to design a new
 one.

E.3. Specific Technical Requirements

 T1. It should be convenient for ASA designers to define new
 technical objectives and for programmers to express them, without
 excessive impact on run-time efficiency and footprint. In
 particular, it should be convenient for ASAs to be implemented
 independently of each other as user space programs rather than as
 kernel code, where such a programming model is possible. The classes
 of device in which the protocol might run is discussed in
 [I-D.ietf-anima-reference-model].

 T2. The protocol should be easily extensible in case the initially
 defined discovery, synchronization and negotiation mechanisms prove
 to be insufficient.

 T3. To be a generic platform, the protocol payload format should be
 independent of the transport protocol or IP version. In particular,
 it should be able to run over IPv6 or IPv4. However, some functions,
 such as multicasting on a link, might need to be IP version
 dependent. By default, IPv6 should be preferred.

 T4. The protocol must be able to access off-link counterparts via
 routable addresses, i.e., must not be restricted to link-local
 operation.

 T5. It must also be possible for an external discovery mechanism to
 be used, if appropriate for a given technical objective. In other
 words, GRASP discovery must not be a prerequisite for GRASP
 negotiation or synchronization.

 T6. The protocol must be capable of distinguishing multiple
 simultaneous operations with one or more peers, especially when wait
 states occur.

 T7. Intent: Although the distribution of Intent is out of scope for
 this document, the protocol must not by design exclude its use for
 Intent distribution.

 T8. Management monitoring, alerts and intervention: Devices should
 be able to report to a monitoring system. Some events must be able
 to generate operator alerts and some provision for emergency
 intervention must be possible (e.g. to freeze synchronization or
 negotiation in a mis-behaving device). These features might not use
 the signaling protocol itself, but its design should not exclude such
 use.

 T9. Because this protocol may directly cause changes to device
 configurations and have significant impacts on a running network, all
 protocol exchanges need to be fully secured against forged messages
 and man-in-the middle attacks, and secured as much as reasonably
 possible against denial of service attacks. There must also be an
 encryption mechanism to resist unwanted monitoring. However, it is
 not required that the protocol itself provides these security
 features; it may depend on an existing secure environment.

Appendix F. Capability Analysis of Current Protocols

 This appendix discusses various existing protocols with properties
 related to the requirements described in Appendix E. The purpose is
 to evaluate whether any existing protocol, or a simple combination of
 existing protocols, can meet those requirements.

 Numerous protocols include some form of discovery, but these all
 appear to be very specific in their applicability. Service Location
 Protocol (SLP) [RFC2608] provides service discovery for managed
 networks, but requires configuration of its own servers. DNS-SD
 [RFC6763] combined with mDNS [RFC6762] provides service discovery for
 small networks with a single link layer. [RFC7558] aims to extend
 this to larger autonomous networks but this is not yet standardized.
 However, both SLP and DNS-SD appear to target primarily application
 layer services, not the layer 2 and 3 objectives relevant to basic
 network configuration. Both SLP and DNS-SD are text-based protocols.
 Simple Network Management Protocol (SNMP) [RFC3416] uses a command/
 response model not well suited for peer negotiation. Network
 Configuration Protocol (NETCONF) [RFC6241] uses an RPC model that
 does allow positive or negative responses from the target system, but
 this is still not adequate for negotiation.

 There are various existing protocols that have elementary negotiation
 abilities, such as Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) [RFC3315], Neighbor Discovery (ND) [RFC4861], Port Control
 Protocol (PCP) [RFC6887], Remote Authentication Dial In User Service
 (RADIUS) [RFC2865], Diameter [RFC6733], etc. Most of them are
 configuration or management protocols. However, they either provide
 only a simple request/response model in a master/slave context or
 very limited negotiation abilities.

 There are some signaling protocols with an element of negotiation.
 For example Resource ReSerVation Protocol (RSVP) [RFC2205] was
 designed for negotiating quality of service parameters along the path
 of a unicast or multicast flow. RSVP is a very specialised protocol
 aimed at end-to-end flows. A more generic design is General Internet
 Signalling Transport (GIST) [RFC5971], but it is complex, tries to
 solve many problems, and is also aimed at per-flow signaling across
 many hops rather than at device-to-device signaling. However, we
 cannot completely exclude extended RSVP or GIST as a synchronization
 and negotiation protocol. They do not appear to be directly useable
 for peer discovery.

 RESTCONF [RFC8040] is a protocol intended to convey NETCONF
 information expressed in the YANG language via HTTP, including the
 ability to transit HTML intermediaries. While this is a powerful
 approach in the context of centralised configuration of a complex
 network, it is not well adapted to efficient interactive negotiation
 between peer devices, especially simple ones that might not include
 YANG processing already.

 The Distributed Node Consensus Protocol (DNCP) [RFC7787] is defined
 as a generic form of state synchronization protocol, with a proposed
 usage profile being the Home Networking Control Protocol (HNCP)
 [RFC7788] for configuring Homenet routers. A specific application of
 DNCP for autonomic networking was proposed in
 [I-D.stenberg-anima-adncp].

 DNCP "is designed to provide a way for each participating node to
 publish a set of TLV (Type-Length-Value) tuples, and to provide a
 shared and common view about the data published... DNCP is most
 suitable for data that changes only infrequently... If constant rapid
 state changes are needed, the preferable choice is to use an
 additional point-to-point channel..."

 Specific features of DNCP include:

 o Every participating node has a unique node identifier.

 o DNCP messages are encoded as a sequence of TLV objects, sent over
 unicast UDP or TCP, with or without (D)TLS security.

 o Multicast is used only for discovery of DNCP neighbors when lower
 security is acceptable.

 o Synchronization of state is maintained by a flooding process using
 the Trickle algorithm. There is no bilateral synchronization or
 negotiation capability.

 o The HNCP profile of DNCP is designed to operate between directly
 connected neighbors on a shared link using UDP and link-local IPv6
 addresses.

 DNCP does not meet the needs of a general negotiation protocol,
 because it is designed specifically for flooding synchronization.
 Also, in its HNCP profile it is limited to link-local messages and to
 IPv6. However, at the minimum it is a very interesting test case for
 this style of interaction between devices without needing a central
 authority, and it is a proven method of network-wide state
 synchronization by flooding.

 The Server Cache Synchronization Protocol (SCSP) [RFC2334] also
 describes a method for cache synchronization and cache replication
 among a group of nodes.

 A proposal was made some years ago for an IP based Generic Control
 Protocol (IGCP) [I-D.chaparadza-intarea-igcp]. This was aimed at
 information exchange and negotiation but not directly at peer
 discovery. However, it has many points in common with the present
 work.

 None of the above solutions appears to completely meet the needs of
 generic discovery, state synchronization and negotiation in a single
 solution. Many of the protocols assume that they are working in a
 traditional top-down or north-south scenario, rather than a fluid
 peer-to-peer scenario. Most of them are specialized in one way or
 another. As a result, we have not identified a combination of
 existing protocols that meets the requirements in Appendix E. Also,
 we have not identified a path by which one of the existing protocols
 could be extended to meet the requirements.

Authors' Addresses

Carsten Bormann
Universitaet Bremen TZI
Postfach 330440
D‑28359 Bremen
Germany

 Email: cabo@tzi.org

Brian Carpenter (editor)
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Bing Liu (editor)
Huawei Technologies Co., Ltd
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

draft-ietf-anima-grasp-api-03 - Generic Autonomic Signaling Protocol Application Program Interface (GRASP API)

draft-ietf-anima-grasp-api-03 - Generic Autonomic Signaling Protocol Application

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: July 25, 2019

B. Carpenter

Univ. of Auckland

B. Liu, Ed.

Huawei Technologies

W. Wang

X. Gong

BUPT University

January 21, 2019

Generic Autonomic Signaling Protocol Application Program Interface (GRASP API)

draft-ietf-anima-grasp-api-03

Abstract

 This document is a conceptual outline of an application programming
 interface (API) for the Generic Autonomic Signaling Protocol (GRASP).
 Such an API is needed for Autonomic Service Agents (ASA) calling the
 GRASP protocol module to exchange autonomic network messages with
 other ASAs.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. GRASP API for ASA
	 2.1. Design Principles

	 2.2. Asynchronous Operations

	 2.3. API definition
	 2.3.1. Parameters and data structures

	 2.3.2. Registration

	 2.3.3. Discovery

	 2.3.4. Negotiation

	 2.3.5. Synchronization and Flooding

	 2.3.6. Invalid Message Function

	3. Implementation Status [RFC Editor: please remove]

	4. Security Considerations

	5. IANA Considerations

	6. Acknowledgements

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Error Codes

	Appendix B. Change log [RFC Editor: Please remove]

	Authors' Addresses

1. Introduction

 As defined in [I-D.ietf-anima-reference-model], the Autonomic Service
 Agent (ASA) is the atomic entity of an autonomic function, and it is
 instantiated on autonomic nodes. When ASAs communicate with each
 other, they should use the Generic Autonomic Signaling Protocol
 (GRASP) [I-D.ietf-anima-grasp].

 As the following figure shows, a GRASP implementation could contain
 two major sub-layers. The bottom is the GRASP base protocol module,
 which is only responsible for sending and receiving GRASP messages
 and maintaining shared data structures. The upper layer contains
 some extended functions based upon GRASP basic protocol. For
 example, [I-D.liu-anima-grasp-distribution] describes a possible
 extended function.

 It is desirable that ASAs can be designed as portable user-space
 programs using a portable API. In many operating systems, the GRASP
 module will therefore be split into two layers, one being a library
 that provides the API and the other being core code containing common
 components such as multicast handling and the discovery cache. The
 details of this are system-dependent. In particular, the GRASP
 library might need to communicate with the GRASP core via an inter-
 process communication (IPC) mechanism.

+‑‑‑‑+ +‑‑‑‑+
|ASAs| |ASAs|
+‑‑‑‑+ +‑‑‑‑+
 | |
 | GRASP Function API |
 | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |GRASP API
| GRASP Extended | |
| Function Modules | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
+‑‑+
| GRASP Library |
| GRASP Module ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑|
| GRASP Core |
+‑‑+

 Both the GRASP library and the extended function modules should be
 available to the ASAs. Thus, there need to be two sub-sets of API.
 However, since the extended functions are expected to be added in an
 incremental manner, it is inappropriate to define all the function
 APIs in a single document. This document only describes the basic
 GRASP API.

 Note that a very simple autonomic node might contain only a single
 ASA in addition to the autonomic infrastructure components described
 in [I-D.ietf-anima-bootstrapping-keyinfra] and
 [I-D.ietf-anima-autonomic-control-plane]. Such a node might directly
 integrate GRASP in its autonomic code and therefore not require this
 API to be installed.

 This document gives a conceptual outline of the API. It is not a
 formal specification for any particular programming language or
 operating system, and it is expected that details will be clarified
 in individual implementations.

2. GRASP API for ASA

2.1. Design Principles

 The assumption of this document is that any Autonomic Service Agent
 (ASA) needs to call a GRASP module that handles protocol details
 (security, sending and listening for GRASP messages, waiting, caching
 discovery results, negotiation looping, sending and receiving
 sychronization data, etc.) but understands nothing about individual
 objectives. The semantics of objectives are unknown to the GRASP
 module and are handled only by the ASAs. Thus, this is a high level
 abstract API for use by ASAs. Individual language bindings should be
 defined in separate documents.

 An assumption of this API is that ASAs may fall into various classes:

 o ASAs that only use GRASP for discovery purposes.

 o ASAs that use GRASP negotiation but only as an initiator (client).

 o ASAs that use GRASP negotiation but only as a responder.

 o ASAs that use GRASP negotiation as an initiator or responder.

 o ASAs that use GRASP synchronization but only as an initiator
 (recipient).

 o ASAs that use GRASP synchronization but only as a responder and/or
 flooder.

 o ASAs that use GRASP synchronization as an initiator, responder
 and/or flooder.

 The API also assumes that one ASA may support multiple objectives.
 Nothing prevents an ASA from supporting some objectives for
 synchronization and others for negotiation.

 The API design assumes that the operating system and programming
 language provide a mechanism for simultaneous asynchronous
 operations. This is discussed in detail in Section 2.2.

 The functions provided by the API do not map one-to-one onto GRASP
 messages. Rather, they are intended to offer convenient support for
 message sequences (such as a discovery request followed by responses
 from several peers, or a negotiation request followed by various
 possible responses).

 This is a preliminary version. A few gaps exist:

 o Authorization of ASAs is out of scope.

 o User-supplied explicit locators for an objective are not
 supported.

 o The Rapid mode of GRASP is not supported.

2.2. Asynchronous Operations

 GRASP includes asynchronous operations and wait states. Most ASAs
 will need to support several simultaneous operations; for example an
 ASA might need to negotiate one objective with a peer while
 discovering and synchronizing a different objective with a different
 peer. Alternatively, an ASA which acts as a resource manager might
 need to run simultaneous negotiations for a given objective with
 multiple different peers. Thus, both the GRASP core and most ASAs
 need to support asynchronous operations. Depending on both the
 operating system and the programming language in use, there are two
 main techniques for such parallel operations: multi-threading, or a
 polling or 'event loop' structure.

 In multi-threading, the operating system and language will provide
 the necessary support for asynchronous operations, including creation
 of new threads, context switching between threads, queues, locks, and
 implicit wait states. In this case, all API calls can be treated
 naturally as synchronous, even if they include wait states, blocking
 and queueing. Simultaneous operations will each run in their own
 threads. For example, the discover() call will not return until
 discovery results have arrived or a timeout has occurred. If the ASA
 has other work to do, the discover() call must be in a thread of its
 own.

 In an event loop implementation, synchronous blocking calls are not
 acceptable. Therefore all calls must be non-blocking, and the main
 loop will support multiple GRASP sessions in parallel by repeatedly
 checking each one for a change of state. To facilitate this, the API
 implementation will provide non-blocking versions of all the
 functions that otherwise involve blocking and queueing. In these
 calls, a 'noReply' code will be returned by each call instead of
 blocking, until such time as the event for which it is waiting (or a
 failure) has occurred. Thus, for example, discover() would return
 "noReply" instead of waiting until discovery has succeeded or timed
 out. The discover() call would be repeated in every cycle of the
 main loop until it completes. A 'session_nonce' parameter (described
 below) is used to distinguish simultaneous GRASP sessions from each
 other, so that any number of sessions may proceed in parallel.

 The following calls involve waiting for a remote operation, so they
 could use this mechanism:

 discover()

 request_negotiate()

 negotiate_step()

 listen_negotiate()

 synchronize()

 In all these calls, the 'session_nonce' is a read/write parameter.
 On the first call, it is set to a null value, and the API returns the
 'noReply' code and a non-null session_nonce value. This value must
 be used in all subsequent calls for the same session. By this
 mechanism, multiple overlapping sessions can be distinguished, both
 in the ASA and in the GRASP core.

 An additional mechanism that might increase efficiency for event loop
 implementations is to add a general call, say notify(), which would
 check the status of all outstanding operations for the calling ASA
 and return the session_nonce values for all sessions that have
 changed state. This would eliminate the need for repeated calls to
 the individual functions returning a "noReply". This call is not
 described below as the details are likely to be implementation-
 specific.

 An implication of the above for all GRASP implementations is that the
 GRASP core must keep state for each GRASP operation in progress, most
 likely keyed by the GRASP Session ID and the GRASP source address of
 the session initiator. Even in a threaded implementation, the GRASP
 core will need such state internally. The session_nonce parameter
 exposes this aspect of the implementation.

2.3. API definition

2.3.1. Parameters and data structures

 This section describes parameters and data structures uaed in
 multiple API calls.

2.3.1.1. Errorcode

 All functions in the API have an unsigned 'errorcode' integer as
 their return value (the first returned value in languages that allow
 multiple returned parameters). An errorcode of zero indicates
 success. Any other value indicates failure of some kind. The first
 three errorcodes have special importance:

 1. Declined: used to indicate that the other end has sent a GRASP
 Negotiation End message (M_END) with a Decline option
 (O_DECLINE).

 2. No reply: used in non-blocking calls to indicate that the other
 end has sent no reply so far (see Section 2.2).

 3. Unspecified error: used when no more specific error code applies.

 Appendix A gives a full list of currently suggested error codes,
 based on implementation experience. While there is no absolute
 requirement for all implementations to use the same error codes, this
 is highly recommended for portability of applications.

2.3.1.2. Timeout

 Wherever a 'timeout' parameter appears, it is an integer expressed in
 milliseconds. If it is zero, the GRASP default timeout
 (GRASP_DEF_TIMEOUT, see [I-D.ietf-anima-grasp]) will apply. If no
 response is received before the timeout expires, the call will fail
 unless otherwise noted.

2.3.1.3. Objective

 An 'objective' parameter is a data structure with the following
 components:

 o name (UTF-8 string) - the objective's name

 o neg (Boolean flag) - True if objective supports negotiation
 (default False)

 o synch (Boolean flag) - True if objective supports synchronization
 (default False)

 o dry (Boolean flag) - True if objective supports dry-run
 negotiation (default False)

 * Note 1: All objectives are assumed to support discovery, so
 there is no Boolean for that.

 * Note 2: Only one of 'synch' or 'neg' may be True.

 * Note 3: 'dry' must not be True unless 'neg' is also True.

 * Note 4: In a language such as C the preferred implementation
 may be to represent the Boolean flags as bits in a single byte.

 o loop_count (integer) - Limit on negotiation steps etc. (default
 GRASP_DEF_LOOPCT, see [I-D.ietf-anima-grasp])

 o value - a specific data structure expressing the value of the
 objective. The format is language dependent, with the constraint
 that it can be validly represented in CBOR (default integer = 0).

 An essential requirement for all language mappings and all
 implementations is that, regardless of what other options exist
 for a language-specific represenation of the value, there is
 always an option to use a CBOR byte string as the value. The API
 will then wrap this byte string in CBOR Tag 24 for transmission
 via GRASP, and unwrap it after reception.

 An example data structure definition for an objective in the C
 language is:

typedef struct {
 char *name;
 uint8_t flags; // flag bits as defined by GRASP
 int loop_count;
 int value_size; // size of value
 uint8_t cbor_value[]; // CBOR bytestring of value
 } objective;

 An example data structure definition for an objective in the
 Python language is:

class objective:
 """A GRASP objective"""
 def __init__(self, name):
 self.name = name #Unique name, string
 self.neg = False #True if objective supports negotiation
 self.dry = False #True if objective supports dry‑run neg.
 self.synch = False #True if objective supports synch
 self.loop_count = GRASP_DEF_LOOPCT #Default starting value
 self.value = 0 #Place holder; any valid Python object

2.3.1.4. ASA_locator

 An 'ASA_locator' parameter is a data structure with the following
 contents:

 o locator - The actual locator, either an IP address or an ASCII
 string.

 o ifi (integer) - The interface identifier index via which this was
 discovered - probably no use to a normal ASA

 o expire (system dependent type) - The time on the local system
 clock when this locator will expire from the cache

 o is_ipaddress (Boolean) - True if the locator is an IP address

 o is_fqdn (Boolean) - True if the locator is an FQDN

 o is_uri (Boolean) - True if the locator is a URI

 o diverted (Boolean) - True if the locator was discovered via a
 Divert option

 o protocol (integer) - Applicable transport protocol (IPPROTO_TCP or
 IPPROTO_UDP)

 o port (integer) - Applicable port number

2.3.1.5. Tagged_objective

 A 'tagged_objective' parameter is a data structure with the following
 contents:

 o objective - An objective

 o locator - The ASA_locator associated with the objective, or a null
 value.

2.3.1.6. Asa_nonce

 In most calls, an 'asa_nonce' parameter is required. It is generated
 when an ASA registers with GRASP, and any call in which an invalid
 nonce is presented will fail. It is an up to 32-bit opaque value
 (for example represented as a uint32_t, depending on the language).
 It should be unpredictable; a possible implementation is to use the
 same mechanism that GRASP uses to generate Session IDs
 [I-D.ietf-anima-grasp]. Another possible implementation is to hash
 the name of the ASA with a locally defined secret key.

2.3.1.7. Session_nonce

 In some calls, a 'session_nonce' parameter is required. This is an
 opaque data structure as far as the ASA is concerned, used to
 identify calls to the API as belonging to a specific GRASP session
 (see Section 2.2). In fully threaded implementations this parameter
 might not be needed, but it is included to act as a session handle if
 necessary. It will also allow GRASP to detect and ignore malicious
 calls or calls from timed-out sessions. A possible implementation is
 to form the nonce from the underlying GRASP Session ID and the source
 address of the session.

2.3.2. Registration

 These functions are used to register an ASA and the objectives that
 it supports with the GRASP module. If an authorization model is
 added to GRASP, it would also be added at this point in the API.

 o register_asa()

 Input parameter:

 name of the ASA (UTF-8 string)

 Return parameters:

 errorcode (integer)

 asa_nonce (integer) (if successful)

 This initialises state in the GRASP module for the calling
 entity (the ASA). In the case of success, an 'asa_nonce' is
 returned which the ASA must present in all subsequent calls.
 In the case of failure, the ASA has not been authorized and
 cannot operate.

 o deregister_asa()

 Input parameters:

 asa_nonce (integer)

 name of the ASA (UTF-8 string)

 Return parameter:

 errorcode (integer)

 This removes all state in the GRASP module for the calling
 entity (the ASA), and deregisters any objectives it has
 registered. Note that these actions must also happen
 automatically if an ASA crashes.

 Note - the ASA name is strictly speaking redundant in this
 call, but is present for clarity.

 o register_objective()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 ttl (integer - default GRASP_DEF_TIMEOUT)

 discoverable (Boolean - default False)

 overlap (Boolean - default False)

 local (Boolean - default False)

 Return parameter:

 errorcode (integer)

 This registers an objective that this ASA supports and may
 modify. The 'objective' becomes a candidate for discovery.
 However, discovery responses should not be enabled until the
 ASA calls listen_negotiate() or listen_synchronize(), showing
 that it is able to act as a responder. The ASA may negotiate
 the objective or send synchronization or flood data.
 Registration is not needed if the ASA only wants to receive
 synchronization or flood data for the objective concerned.

 The 'ttl' parameter is the valid lifetime (time to live) in
 milliseconds of any discovery response for this objective. The
 default value should be the GRASP default timeout
 (GRASP_DEF_TIMEOUT, see [I-D.ietf-anima-grasp]).

 If the parameter 'discoverable' is True, the objective is
 immediately discoverable. This is intended for objectives that
 are only defined for GRASP discovery, and which do not support
 negotiation or synchronization.

 If the parameter 'overlap' is True, more than one ASA may
 register this objective in the same GRASP instance.

 If the parameter 'local' is True, discovery must return a link-
 local address. This feature is for objectives that must be
 restricted to the local link.

 This call may be repeated for multiple objectives.

 o deregister_objective()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameter:

 errorcode (integer)

 The 'objective' must have been registered by the calling ASA;
 if not, this call fails. Otherwise, it removes all state in
 the GRASP module for the given objective.

2.3.3. Discovery

 o discover()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 timeout (integer)

 flush (Boolean - default False)

 Return parameters:

 errorcode (integer)

 locator_list (structure)

 This returns a list of discovered 'ASA_locator's for the given
 objective. If the parameter 'flush' is True, any locally
 cached locators for the objective are deleted first.
 Otherwise, they are returned immediately. If not, GRASP
 discovery is performed, and all results obtained before the
 timeout expires are returned. If no results are obtained, an
 empty list is returned after the timeout. That is not an error
 condition.

 Threaded implementation: This should be called in a separate
 thread if asynchronous operation is required.

 Event loop implementation: An additional read/write
 'session_nonce' parameter is used.

2.3.4. Negotiation

 o request_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 peer (ASA_locator)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 session_nonce (structure) (if successful)

 proffered_objective (structure) (if successful)

 reason (string) (if negotiation declined)

 This function opens a negotiation session. The 'objective'
 parameter must include the requested value, and its loop count
 should be set to a suitable value by the ASA. If not, the
 GRASP default will apply.

 Note that a given negotiation session may or may not be a dry-
 run negotiation; the two modes must not be mixed in a single
 session.

 The 'peer' parameter is the target node; it must be an
 'ASA_locator' as returned by discover(). If the peer is null,
 GRASP discovery is performed first.

 If the 'errorcode' return parameter is 0, the negotiation has
 successfully started. There are then two cases:

 1. The 'session_nonce' parameter is null. In this case the
 negotiation has succeeded (the peer has accepted the
 request). The returned 'proffered_objective' contains the
 value accepted by the peer.

 2. The 'session_nonce' parameter is not null. In this case
 negotiation must continue. The returned
 'proffered_objective' contains the first value proffered by
 the negotiation peer. Note that this instance of the
 objective must be used in the subsequent negotiation call
 because it also contains the current loop count. The
 'session_nonce' must be presented in all subsequent
 negotiation steps.

 This function must be followed by calls to 'negotiate_step'
 and/or 'negotiate_wait' and/or 'end_negotiate' until the
 negotiation ends. 'request_negotiate' may then be called
 again to start a new negotation.

 If the 'errorcode' parameter has the value 1 ('declined'), the
 negotiation has been declined by the peer (M_END and O_DECLINE
 features of GRASP). The 'reason' string is then available for
 information and diagnostic use, but it may be a null string.
 For this and any other error code, an exponential backoff is
 recommended before any retry.

 Threaded implementation: This should be called in a separate
 thread if asynchronous operation is required.

 Event loop implementation: The 'session_nonce' parameter is
 used in read/write mode.

 Special note for the ACP infrastructure ASA: It is likely that
 this ASA will need to discover and negotiate with its peers in
 each of its on-link neighbors. It will therefore need to know
 not only the link-local IP address but also the physical
 interface and transport port for connecting to each neighbor.
 One implementation approach to this is to include these details
 in the 'session_nonce' data structure, which is opaque to
 normal ASAs.

 o listen_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 session_nonce (structure) (if successful)

 requested_objective (structure) (if successful)

 This function instructs GRASP to listen for negotiation
 requests for the given 'objective'. It also enables discovery
 responses for the objective.

 Threaded implementation: It will block waiting for an incoming
 request, so should be called in a separate thread if
 asynchronous operation is required.

 Event loop implementation: A read/write 'session_nonce'
 parameter is used.

 Unless there is an unexpected failure, this call only returns
 after an incoming negotiation request. When it does so,
 'requested_objective' contains the first value requested by the
 negotiation peer. Note that this instance of the objective
 must be used in the subsequent negotiation call because it also
 contains the current loop count. The 'session_nonce' must be
 presented in all subsequent negotiation steps.

 This function must be followed by calls to 'negotiate_step'
 and/or 'negotiate_wait' and/or 'end_negotiate' until the
 negotiation ends. 'listen_negotiate' may then be called again
 to await a new negotation.

 If an ASA is capable of handling multiple negotiations
 simultaneously, it may call 'listen_negotiate' simultaneously
 from multiple threads. The API and GRASP implementation must
 support re-entrant use of the listening state and the
 negotiation calls. Simultaneous sessions will be distinguished
 by the threads themselves, the GRASP Session IDs, and the
 underlying unicast transport sockets.

 o stop_listen_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameter:

 errorcode (integer)

 Instructs GRASP to stop listening for negotiation requests for
 the given objective, i.e., cancels 'listen_negotiate'.
 Threaded implementation: Must be called from a different thread
 than 'listen_negotiate'.

 Event loop implementation: no special considerations.

 o negotiate_step()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 objective (structure)

 timeout (integer)

 Return parameters:

 Exactly as for 'request_negotiate'

 Executes the next negotation step with the peer. The
 'objective' parameter contains the next value being proffered
 by the ASA in this step.

 Threaded implementation: Called in the same thread as the
 preceding 'request_negotiate' or 'listen_negotiate', with the
 same value of 'session_nonce'.

 Event loop implementation: Must use the same value of
 'session_nonce' returned by the preceding 'request_negotiate'
 or 'listen_negotiate'.

 o negotiate_wait()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 Delay negotiation session by 'timeout' milliseconds.

 Threaded implementation: Called in the same thread as the
 preceding 'request_negotiate' or 'listen_negotiate', with the
 same value of 'session_nonce'.

 Event loop implementation: Must use the same value of
 'session_nonce' returned by the preceding 'request_negotiate'
 or 'listen_negotiate'.

 o end_negotiate()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 reply (Boolean)

 reason (UTF-8 string)

 Return parameters:

 errorcode (integer)

 End the negotiation session.

 'reply' = True for accept (successful negotiation), False for
 decline (failed negotiation).

 'reason' = optional string describing reason for decline.

 Threaded implementation: Called in the same thread as the
 preceding 'request_negotiate' or 'listen_negotiate', with the
 same value of 'session_nonce'.

 Event loop implementation: Must use the same value of
 'session_nonce' returned by the preceding 'request_negotiate'
 or 'listen_negotiate'.

2.3.5. Synchronization and Flooding

 o synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 peer (ASA_locator)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 objective (structure) (if successful)

 This call requests the synchronized value of the given
 'objective'.

 Since this is essentially a read operation, any ASA can do it.
 Therefore the API checks that the ASA is registered but the
 objective doesn't need to be registered by the calling ASA.

 If the objective was already flooded, the flooded value is
 returned immediately in the 'result' parameter. In this case,
 the 'source' and 'timeout' are ignored.

 Otherwise, synchronization with a discovered ASA is performed.
 The 'peer' parameter is an 'ASA_locator' as returned by
 discover(). If 'peer' is null, GRASP discovery is performed
 first.

 This call should be repeated whenever the latest value is
 needed.

 Threaded implementation: Call in a separate thread if
 asynchronous operation is required.

 Event loop implementation: An additional read/write
 'session_nonce' parameter is used.

 Since this is essentially a read operation, any ASA can use it.
 Therefore GRASP checks that the calling ASA is registered but
 the objective doesn't need to be registered by the calling ASA.

 In the case of failure, an exponential backoff is recommended
 before retrying.

 o listen_synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 This instructs GRASP to listen for synchronization requests for
 the given objective, and to respond with the value given in the
 'objective' parameter. It also enables discovery responses for
 the objective.

 This call is non-blocking and may be repeated whenever the
 value changes.

 o stop_listen_synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 This call instructs GRASP to stop listening for synchronization
 requests for the given 'objective', i.e. it cancels a previous
 listen_synchronize.

 o flood()

 Input parameters:

 asa_nonce (integer)

 ttl (integer)

 tagged_objective_list (structure)

 Return parameters:

 errorcode (integer)

 This call instructs GRASP to flood the given synchronization
 objective(s) and their value(s) and associated locator(s) to
 all GRASP nodes.

 The 'ttl' parameter is the valid lifetime (time to live) of the
 flooded data in milliseconds (0 = infinity)

 The 'tagged_objective_list' parameter is a list of one or more
 'tagged_objective' couplets. The 'locator' parameter that tags
 each objective is normally null but may be a valid
 'ASA_locator'. Infrastructure ASAs needing to flood an
 {address, protocol, port} 3-tuple with an objective create an
 ASA_locator object to do so. If the IP address in that locator
 is the unspecified address ('::') it is replaced by the link-
 local address of the sending node in each copy of the flood
 multicast, which will be forced to have a loop count of 1.
 This feature is for objectives that must be restricted to the
 local link.

 The function checks that the ASA registered each objective.

 This call may be repeated whenever any value changes.

 o get_flood()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 tagged_objective_list (structure) (if successful)

 This call instructs GRASP to return the given synchronization
 objective if it has been flooded and its lifetime has not
 expired.

 Since this is essentially a read operation, any ASA can do it.
 Therefore the API checks that the ASA is registered but the
 objective doesn't need to be registered by the calling ASA.

 The 'tagged_objective_list' parameter is a list of
 'tagged_objective' couplets, each one being a copy of the
 flooded objective and a coresponding locator. Thus if the same
 objective has been flooded by multiple ASAs, the recipient can
 distinguish the copies.

 Note that this call is for advanced ASAs. In a simple case, an
 ASA can simply call synchronize() in order to get a valid
 flooded objective.

 o expire_flood()

 Input parameters:

 asa_nonce (integer)

 tagged_objective (structure)

 Return parameters:

 errorcode (integer)

 This is a call that can only be used after a preceding call to
 get_flood() by an ASA that is capable of deciding that the
 flooded value is stale or invalid. Use with care.

 The 'tagged_objective' parameter is the one to be expired.

2.3.6. Invalid Message Function

 o send_invalid()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 info (bytes)

 Return parameters:

 errorcode (integer)

 Sends a GRASP Invalid Message (M_INVALID) message, as described
 in [I-D.ietf-anima-grasp]. Should not be used if
 end_negotiate() would be sufficient. Note that this message
 may be used in response to any unicast GRASP message that the
 receiver cannot interpret correctly. In most cases this
 message will be generated internally by a GRASP implementation.

 'info' = optional diagnostic data. May be raw bytes from the
 invalid message.

3. Implementation Status [RFC Editor: please remove]

 A prototype open source Python implementation of GRASP, including an
 API similar to this document, has been used to verify the concepts
 for the threaded model. It may be found at
 <https://github.com/becarpenter/graspy> with associated documentation
 and demonstration ASAs.

4. Security Considerations

 Security issues for the GRASP protocol are discussed in
 [I-D.ietf-anima-grasp]. Authorization of ASAs is a subject for
 future study.

 The 'asa_nonce' parameter is used in the API as a first line of
 defence against a malware process attempting to imitate a
 legitimately registered ASA. The 'session_nonce' parameter is used
 in the API as a first line of defence against a malware process
 attempting to hijack a GRASP session.

5. IANA Considerations

 This document currently makes no request of the IANA.

 Open question: Do we need an IANA registry for the error codes?

6. Acknowledgements

 Excellent suggestions were made by Ignas Bagdonas, Michael Richardson
 and other participants in the ANIMA WG.

7. References

7.1. Normative References

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

7.2. Informative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-18 (work in progress), January 2019.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.liu-anima-grasp-distribution]

 Liu, B., Jiang, S., Xiao, X., Hecker, A., and Z.
 Despotovic, "Information Distribution in Autonomic
 Networking", draft-liu-anima-grasp-distribution-09 (work
 in progress), October 2018.

Appendix A. Error Codes

 This Appendix lists the error codes defined so far, with suggested
 symbolic names and corresponding descriptive strings in English. It
 is expected that complete API implementations will provide for
 localisation of these descriptive strings, and that additional error
 codes will be needed according to implementation details.

 An open issue for these values is whether there is an advantage in
 aligning them with existing error codes in the socket API, where the
 meanings coincide, and using different values otherwise. This is to
 be balanced against the advantage of having a compact and completely
 portable set of error codes for GRASP alone.

ok 0 "OK"
declined 1 "Declined"
noReply 2 "No reply"
unspec 3 "Unspecified error"
ASAfull 4 "ASA registry full"
dupASA 5 "Duplicate ASA name"
noASA 6 "ASA not registered"
notYourASA 7 "ASA registered but not by you"
notBoth 8 "Objective cannot support both negotiation
 and synchronization"
notDry 9 "Dry‑run allowed only with negotiation"
notOverlap 10 "Overlap not supported by this implementation"
objFull 11 "Objective registry full"
objReg 12 "Objective already registered"
notYourObj 13 "Objective not registered by this ASA"
notObj 14 "Objective not found"
notNeg 15 "Objective not negotiable"
noSecurity 16 "No security"
noDiscReply 17 "No reply to discovery"
sockErrNegRq 18 "Socket error sending negotiation request"
noSession 19 "No session"
noSocket 20 "No socket"
loopExhausted 21 "Loop count exhausted"
sockErrNegStep 22 "Socket error sending negotiation step"
noPeer 23 "No negotiation peer"
CBORfail 24 "CBOR decode failure"
invalidNeg 25 "Invalid Negotiate message"
invalidEnd 26 "Invalid end message"
noNegReply 27 "No reply to negotiation step"
noValidStep 28 "No valid reply to negotiation step"
sockErrWait 29 "Socket error sending wait message"
sockErrEnd 30 "Socket error sending end message"
IDclash 31 "Incoming request Session ID clash"
notSynch 32 "Not a synchronization objective"
notFloodDisc 33 "Not flooded and no reply to discovery"
sockErrSynRq 34 "Socket error sending synch request"
noListener 35 "No synch listener"
noSynchReply 36 "No reply to synchronization request"
noValidSynch 37 "No valid reply to synchronization request"
invalidLoc 38 "Invalid locator"

Appendix B. Change log [RFC Editor: Please remove]

 draft-ietf-anima-grasp-api-03, 2019-01-21:

 Replaced empty "logic flows" section by "implementation status".

 Minor clarifications.

 Editorial improvements.

 draft-ietf-anima-grasp-api-02, 2018-06-30:

 Additional suggestion for event-loop API.

 Discussion of error code values.

 draft-ietf-anima-grasp-api-01, 2018-03-03:

 Editorial updates

 draft-ietf-anima-grasp-api-00, 2017-12-23:

 WG adoption

 Editorial improvements.

 draft-liu-anima-grasp-api-06, 2017-11-24:

 Improved description of event-loop model.

 Changed intended status to Informational.

 Editorial improvements.

 draft-liu-anima-grasp-api-05, 2017-10-02:

 Added send_invalid()

 draft-liu-anima-grasp-api-04, 2017-06-30:

 Noted that simple nodes might not include the API.

 Minor clarifications.

 draft-liu-anima-grasp-api-03, 2017-02-13:

 Changed error return to integers.

 Required all implementations to accept objective values in CBOR.

 Added non-blocking alternatives.

 draft-liu-anima-grasp-api-02, 2016-12-17:

 Updated for draft-ietf-anima-grasp-09

 draft-liu-anima-grasp-api-02, 2016-09-30:

 Added items for draft-ietf-anima-grasp-07

 Editorial corrections

 draft-liu-anima-grasp-api-01, 2016-06-24:

 Updated for draft-ietf-anima-grasp-05

 Editorial corrections

 draft-liu-anima-grasp-api-00, 2016-04-04:

 Initial version

Authors' Addresses

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Bing Liu (editor)
Huawei Technologies
Q14, Huawei Campus
No.156 Beiqing Road
Hai‑Dian District, Beijing 100095
P.R. China

 Email: leo.liubing@huawei.com

Wendong Wang
BUPT University
Beijing University of Posts & Telecom.
No.10 Xitucheng Road
Hai‑Dian District, Beijing 100876
P.R. China

 Email: wdwang@bupt.edu.cn

Xiangyang Gong
BUPT University
Beijing University of Posts & Telecom.
No.10 Xitucheng Road
Hai‑Dian District, Beijing 100876
P.R. China

 Email: xygong@bupt.edu.cn

draft-ietf-anima-prefix-management-07 - Autonomic IPv6 Edge Prefix Management in Large-scale Networks

draft-ietf-anima-prefix-management-07 - Autonomic IPv6 Edge Prefix Management in

Index
Back 5
Prev
Next
Forward 5

ANIMA WG

Internet-Draft

Intended status: Informational

Expires: June 18, 2018

S. Jiang, Ed.

Z. Du

Huawei Technologies Co., Ltd

B. Carpenter

Univ. of Auckland

Q. Sun

China Telecom

December 15, 2017

Autonomic IPv6 Edge Prefix Management in Large-scale Networks

draft-ietf-anima-prefix-management-07

Abstract

 This document defines two autonomic technical objectives for IPv6
 prefix management at the edge of large-scale ISP networks, with an
 extension to support IPv4 prefixes. An important purpose of the
 document is to use it for validation of the design of various
 components of the autonomic networking infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Problem Statement
	 3.1. Intended User and Administrator Experience

	 3.2. Analysis of Parameters and Information Involved
	 3.2.1. Parameters each device can define for itself

	 3.2.2. Information needed from network operations

	 3.2.3. Comparison with current solutions

	 3.3. Interaction with other devices
	 3.3.1. Information needed from other devices

	 3.3.2. Monitoring, diagnostics and reporting

	4. Autonomic Edge Prefix Management Solution
	 4.1. Behaviors on prefix requesting device

	 4.2. Behaviors on prefix providing device

	 4.3. Behavior after Successful Negotiation

	 4.4. Prefix logging

	5. Autonomic Prefix Management Objectives
	 5.1. Edge Prefix Objective Option

	 5.2. IPv4 extension

	6. Prefix Management Parameters
	 6.1. Example of Prefix Management Parameters

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgements

	10. Change log [RFC Editor: Please remove]

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Deployment Overview
	 A.1. Address & Prefix management with DHCP

	 A.2. Prefix management with ANI/GRASP

	Authors' Addresses

1. Introduction

 The original purpose of this document was to validate the design of
 the Autonomic Networking Infrastructure (ANI) for a realistic use
 case. It shows how the ANI can be applied to IP prefix delegation
 and it outlines approaches to build a system to do this. A fully
 standardized solution would require more details, so this document is
 informational in nature.

 This document defines two autonomic technical objectives for IPv6
 prefix management in large-scale networks, with an extension to
 support IPv4 prefixes. The background to Autonomic Networking (AN)
 is described in [RFC7575] and [RFC7576]. The GeneRic Autonomic
 Signaling Protocol (GRASP) is specified by [I-D.ietf-anima-grasp] and
 can make use of the proposed technical objectives to provide a
 solution for autonomic prefix management. An important purpose of
 the present document is to use it for validation of the design of
 GRASP and other components of the autonomic networking infrastructure
 described in [I-D.ietf-anima-reference-model].

 This document is not a complete functional specification of an
 autonomic prefix management system and it does not describe all
 detailed aspects of the GRASP objective parameters and Autonomic
 Service Agent (ASA) procedures necessary to build a complete system.
 Instead, it describes the architectural framework utilizing the
 components of the ANI, outlines the different deployment options and
 aspects, and defines GRASP objectives for use in building the system.
 It also provides some basic parameter examples.

 This document is not intended to solve all cases of IPv6 prefix
 management. In fact, it assumes that the network's main
 infrastructure elements already have addresses and prefixes. The
 document is dedicated to how to make IPv6 prefix management at the
 edges of large-scale networks as autonomic as possible. It is
 specifically written for service provider (ISP) networks. Although
 there are similarities between ISPs and large enterprise networks,
 the requirements for the two use cases differ. In any case, the
 scope of the solution is expected to be limited, like any autonomic
 network, to a single management domain.

 However, the solution is designed in a general way. Its use for a
 broader scope than edge prefixes, including some or all
 infrastructure prefixes, is left for future discussion.

 A complete solution has many aspects that are not discussed here.
 Once prefixes have been assigned to routers, they need to be
 communicated to the routing system as they are brought into use.
 Similarly, when prefixes are released, they need to be removed from
 the routing system. Different operators may have different policies
 about prefix lifetimes, and they may prefer to have centralized or
 distributed pools of spare prefixes. In an autonomic network, these
 are properties decided by the design of the relevant ASAs. The GRASP
 objectives are simply building blocks.

 A particular risk of distributed prefix allocation in large networks
 is that over time, it might lead to fragmentation of the address
 space and an undesirable increase in the interior routing protocol
 tables. The extent of this risk depends on the algorithms and
 policies used by the ASAs. Mitigating this risk might even become an
 autonomic function in itself.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses terminology defined in [RFC7575].

3. Problem Statement

 The autonomic networking use case considered here is autonomic IPv6
 prefix management at the edge of large-scale ISP networks.

 Although DHCPv6 Prefix Delegation [RFC3633] supports automated
 delegation of IPv6 prefixes from one router to another, prefix
 management still largely depends on human planning. In other words,
 there is no basic information or policy to support autonomic
 decisions on the prefix length that each router should request or be
 delegated, according to its role in the network. Roles could be
 defined separately for individual devices or could be generic (edge
 router, interior router, etc.). Furthermore, IPv6 prefix management
 by humans tends to be rigid and static after initial planning.

 The problem to be solved by autonomic networking is how to
 dynamically manage IPv6 address space in large-scale networks, so
 that IPv6 addresses can be used efficiently. Here, we limit the
 problem to assignment of prefixes at the edge of the network, close
 to access routers that support individual fixed-line subscribers,
 mobile customers, and corporate customers. We assume that the core
 infrastructure of the network has already been established with
 appropriately assigned prefixes. The AN approach discussed in this
 document is based on the assumption that there is a generic discovery
 and negotiation protocol that enables direct negotiation between
 intelligent IP routers. GRASP [I-D.ietf-anima-grasp] is intended to
 be such a protocol.

3.1. Intended User and Administrator Experience

 The intended experience is, for the administrators of a large-scale
 network, that the management of IPv6 address space at the edge of the
 network can be run with minimum effort, as devices at the edge are
 added and removed and as customers of all kinds join and leave the
 network. In the ideal scenario, the administrators only have to
 specify a single IPv6 prefix for the whole network and the initial
 prefix length for each device role. As far as users are concerned,
 IPv6 prefix assignment would occur exactly as it does in any other
 network.

 The actual prefix usage needs to be logged for potential offline
 management operations including audit and security incident tracing.

3.2. Analysis of Parameters and Information Involved

 For specific purposes of address management, a few parameters are
 involved on each edge device (some of them can be pre-configured
 before they are connected). They include:

 o Identity, authentication and authorization of this device. This
 is expected to use the autonomic networking secure bootstrap
 process [I-D.ietf-anima-bootstrapping-keyinfra], following which
 the device could safely take part in autonomic operations.

 o Role of this device. Some example roles are discussed in
 Section 6.1.

 o An IPv6 prefix length for this device.

 o An IPv6 prefix that is assigned to this device and its downstream
 devices.

 A few parameters are involved in the network as a whole. They are:

 o Identity of a trust anchor, which is a certification authority
 (CA) maintained by the network administrators, used during the
 secure bootstrap process.

 o Total IPv6 address space available for edge devices. It is a pool
 of one or several IPv6 prefixes.

 o The initial prefix length for each device role.

3.2.1. Parameters each device can define for itself

 This section identifies those of the above parameters that do not
 need external information in order for the devices concerned to set
 them to a reasonable default value after bootstrap or after a network
 disruption. There are few of these:

 o Default role of this device.

 o Default IPv6 prefix length for this device.

 o Cryptographic identity of this device, as needed for secure
 bootstrapping [I-D.ietf-anima-bootstrapping-keyinfra].

 The device may be shipped from the manufacturer with pre-configured
 role and default prefix length, which could be modified by an
 autonomic mechanism. Its cryptographic identity will be installed by
 its manufacturer.

3.2.2. Information needed from network operations

 This section identifies those parameters that might need operational
 input in order for the devices concerned to set them to a non-default
 value.

 o Non-default value for the IPv6 prefix length for this device.
 This needs to be decided based on the role of this device.

 o The initial prefix length for each device role.

 o Whether to allow the device to request more address space.

 o The policy when to request more address space, for example, if the
 address usage reaches a certain limit or percentage.

3.2.3. Comparison with current solutions

 This section briefly compares the above use case with current
 solutions. Currently, the address management is still largely
 dependent on human planning. It is rigid and static after initial
 planning. Address requests will fail if the configured address space
 is used up.

 Some autonomic and dynamic address management functions may be
 achievable by extending the existing protocols, for example,
 extending DHCPv6-PD (DHCPv6 Prefix Delegation, [RFC3633]) to request
 IPv6 prefixes according to the device role. However, defining
 uniform device roles may not be a practical task. Some functions are
 not suitable to be achieved by any existing protocols.

 Using a generic autonomic discovery and negotiation protocol instead
 of specific solutions has the advantage that additional parameters
 can be included in the autonomic solution without creating new
 mechanisms. This is the principal argument for a generic approach.

3.3. Interaction with other devices

3.3.1. Information needed from other devices

 This section identifies those of the above parameters that need
 external information from neighbor devices (including the upstream
 devices). In many cases, two-way dialogue with neighbor devices is
 needed to set or optimize them.

 o Identity of a trust anchor.

 o The device will need to discover a device, from which it can
 acquire IPv6 address space.

 o The initial prefix length for each device role, particularly for
 its own downstream devices.

 o The default value of the IPv6 prefix length may be overridden by a
 non-default value.

 o The device will need to request and acquire one or more IPv6
 prefixes that can be assigned to this device and its downstream
 devices.

 o The device may respond to prefix delegation requests from its
 downstream devices.

 o The device may require to be assigned more IPv6 address space, if
 it used up its assigned IPv6 address space.

3.3.2. Monitoring, diagnostics and reporting

 This section discusses what role devices should play in monitoring,
 fault diagnosis, and reporting.

 o The actual address assignments need to be logged for potential
 offline management operations.

 o In general, the usage situation of address space should be
 reported to the network administrators, in an abstract way, for
 example, statistics or visualized report.

 o A forecast of address exhaustion should be reported.

4. Autonomic Edge Prefix Management Solution

 This section introduces the building blocks for an autonomic edge
 prefix management solution. As noted in Section 1, this is not a
 complete description of a solution, which will depend on the detailed
 design of the relevant Autonomic Service Agents. It uses the generic
 discovery and negotiation protocol defined by [I-D.ietf-anima-grasp].
 The relevant GRASP objectives are defined in Section 5.

 The procedures described below are carried out by an Autonomic
 Service Agent (ASA) in each device that participates in the solution.
 We will refer to this as the PrefixManager ASA.

4.1. Behaviors on prefix requesting device

 If the device containing a PrefixManager ASA has used up its address
 pool, it can request more space according to its requirements. It
 should decide the length of the requested prefix and request it by
 the mechanism described in Section 6. Note that although the
 device's role may define certain default allocation lengths, those
 defaults might be changed dynamically, and the device might request
 more, or less, address space due to some local operational heuristic.

 A PrefixManager ASA that needs additional address space should
 firstly discover peers that may be able to provide extra address
 space. The ASA should send out a GRASP Discovery message that
 contains a PrefixManager Objective option (see Section 5.1) in order
 to discover peers also supporting that option. Then it should choose
 one such peer, most likely the first to respond.

 If the GRASP discovery Response message carries a divert option
 pointing to an off-link PrefixManager ASA, the requesting ASA may
 initiate negotiation with that ASA diverted device to find out
 whether it can provide the requested length prefix.

 In any case, the requesting ASA will act as a GRASP negotiation
 initiator by sending a GRASP Request message with a PrefixManager
 Objective option. The ASA indicates in this option the length of the
 requested prefix. This starts a GRASP negotiation process.

 During the subsequent negotiation, the ASA will decide at each step
 whether to accept the offered prefix. That decision, and the
 decision to end negotiation, is an implementation choice.

 The ASA could alternatively initiate rapid mode GRASP discovery with
 an embedded negotiation request, if it is implemented.

4.2. Behaviors on prefix providing device

 At least one device on the network must be configured with the
 initial pool of available prefixes mentioned in Section 3.2. Apart
 from that requirement, any device may act as a prefix providing
 device.

 A device that receives a Discovery message with a PrefixManager
 Objective option should respond with a GRASP Response message if it
 contains a PrefixManager ASA. Further details of the discovery
 process are described in [I-D.ietf-anima-grasp]. When this ASA
 receives a subsequent Request message, it should conduct a GRASP
 negotiation sequence, using Negotiate, Confirm-waiting, and
 Negotiation-ending messages as appropriate. The Negotiate messages
 carry a PrefixManager Objective option, which will indicate the
 prefix and its length offered to the requesting ASA. As described in
 [I-D.ietf-anima-grasp], negotiation will continue until either end
 stops it with a Negotiation-ending message. If the negotiation
 succeeds, the prefix providing ASA will remove the negotiated prefix
 from its pool, and the requesting ASA will add it. If the
 negotiation fails, the party sending the Negotiation-ending message
 may include an error code string.

 During the negotiation, the ASA will decide at each step how large a
 prefix to offer. That decision, and the decision to end negotiation,
 is an implementation choice.

 The ASA could alternatively negotiate in response to rapid mode GRASP
 discovery, if it is implemented.

 This specification is independent of whether the PrefixManager ASAs
 are all embedded in routers, but that would be a rather natural
 scenario. In a hierarchical network topology, a given router
 typically provide prefixes for routers below it in the hierarchy, and
 it is also likely to contain the first PrefixManager ASA discovered
 by those downstream routers. However, the GRASP discovery model,
 including its Redirect feature, means that this is not an exclusive
 scenario, and a downstream PrefixManager ASA could negotiate a new
 prefix with a device other than its upstream router.

 A resource shortage may cause the gateway router to request more
 resource in turn from its own upstream device. This would be another
 independent GRASP discovery and negotiation process. During the
 processing time, the gateway router should send a Confirm-waiting
 Message to the initial requesting router, to extend its timeout.
 When the new resource becomes available, the gateway router responds
 with a GRASP Negotiate message with a prefix length matching the
 request.

 The algorithm to choose which prefixes to assign on the prefix
 providing devices is an implementation choice.

4.3. Behavior after Successful Negotiation

 Upon receiving a GRASP Negotiation-ending message that indicates that
 an acceptable prefix length is available, the requesting device may
 use the negotiated prefix without further messages.

 There are use cases where the ANI/GRASP based prefix management
 approach can work together with DHCPv6-PD [RFC3633] as a complement.
 For example, the ANI/GRASP based method can be used intra-domain,
 while the DHCPv6-PD method works inter-domain (i.e., across an
 administrative boundary). Also, ANI/GRASP can be used inside the
 domain, and DHCP/DHCPv6-PD be used on the edge of the domain to
 client (non-ANI devices). Another similar use case would be ANI/
 GRASP inside the domain, with RADIUS [RFC2865] providing prefixes to
 client devices.

4.4. Prefix logging

 Within the autonomic prefix management, all the prefix assignment is
 done by devices without human intervention. It may be required to
 record all the prefix assignment history, for example to detect or
 trace lost prefixes after outages, or to meet legal requirements.
 However, the logging and reporting process is out of scope for this
 document.

5. Autonomic Prefix Management Objectives

 This section defines the GRASP technical objective options that are
 used to support autonomic prefix management.

5.1. Edge Prefix Objective Option

 The PrefixManager Objective option is a GRASP objective option
 conforming to [I-D.ietf-anima-grasp]. Its name is "PrefixManager"
 (see Section 8) and it carries the following data items as its value:
 the prefix length, and the actual prefix bits. Since GRASP is based
 on CBOR (Concise Binary Object Representation [RFC7049]), the format
 of the PrefixManager Objective option is described as follows in CBOR
 data definition language (CDDL) [I-D.ietf-cbor-cddl]:

 objective = ["PrefixManager", objective-flags, loop-count,

 [length, ?prefix]]

loop‑count = 0..255 ; as in the GRASP specification
objective‑flags /= ; as in the GRASP specification
length = 0..128 ; requested or offered prefix length
prefix = bytes .size 16 ; offered prefix in binary format

 The use of the 'dry run' mode of GRASP is NOT RECOMMENDED for this
 objective, because it would require both ASAs to store state about
 the corresponding negotiation, to no real benefit - the requesting
 ASA cannot base any decisions on the result of a successful dry run
 negotiation.

5.2. IPv4 extension

 This section presents an extended version of the PrefixManager
 Objective that supports IPv4 by adding an extra flag:

 objective = ["PrefixManager", objective-flags, loop-count, prefval]

loop‑count = 0..255 ; as in the GRASP specification
objective‑flags /= ; as in the GRASP specification

prefval /= pref6val
pref6val = [version6, length, ?prefix]
version6 = 6
length = 0..128 ; requested or offered prefix length
prefix = bytes .size 16 ; offered prefix in binary format

prefval /= pref4val
pref4val = [version4, length4, ?prefix4]
version4 = 4
length4 = 0..32 ; requested or offered prefix length
prefix4 = bytes .size 4 ; offered prefix in binary format

 Prefix and address management for IPv4 is considerably more difficult
 than for IPv6, due to the prevalence of NAT, ambiguous addresses
 [RFC1918], and address sharing [RFC6346]. These complexities might
 require further extending the objective with additional fields which
 are not defined by this document.

6. Prefix Management Parameters

 An implementation of a prefix manager MUST include default settings
 of all necessary parameters. However, within a single administrative
 domain, the network operator MAY change default parameters for all
 devices with a certain role. Thus it would be possible to apply an
 intended policy for every device in a simple way, without traditional
 configuration files. As noted in Section 4.1, individual autonomic
 devices may also change their own behavior dynamically.

 For example, the network operator could change the default prefix
 length for each type of role. A prefix management parameters
 objective, which contains mapping information of device roles and
 their default prefix lengths, MAY be flooded in the network, through
 the Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane]. The objective is defined
 in CDDL as follows:

 objective = ["PrefixManager.Params", objective-flags, any]

loop‑count = 0..255 ; as in the GRASP specification
objective‑flags /= ; as in the GRASP specification

 The 'any' object would be the relevant parameter definitions (such as
 the example below) transmitted as a CBOR object in an appropriate
 format.

 This could be flooded to all nodes, and any PrefixManager ASA that
 did not receive it for some reason could obtain a copy using GRASP
 unicast synchronization. Upon receiving the prefix management
 parameters, every device can decide its default prefix length by
 matching its own role.

6.1. Example of Prefix Management Parameters

 The parameters comprise mapping information of device roles and their
 default prefix lengths in an autonomic domain. For example, suppose
 an IPRAN (IP Radio Access Network) operator wants to configure the
 prefix length of Radio Network Controller Site Gateway (RSG) as 34,
 the prefix length of Aggregation Site Gateway (ASG) as 44, and the
 prefix length of Cell Site Gateway (CSG) as 56. This could be
 described in the value of the PrefixManager.Params objective as:

[
 [["role", "RSG"],["prefix_length", 34]],
 [["role", "ASG"],["prefix_length", 44]],
 [["role", "CSG"],["prefix_length", 56]]
]

 This example is expressed in JSON notation [RFC7159], which is easy
 to represent in CBOR.

 An alternative would be to express the parameters in YANG [RFC7950]
 using the YANG-to-CBOR mapping [I-D.ietf-core-yang-cbor].

 For clarity, the background of the example is introduced below, which
 can also be regarded as a use case of the mechanism proposed in this
 document.

 An IPRAN network is used for mobile backhaul, including radio
 stations, RNC (in 3G) or the packet core (in LTE), and the IP network
 between them as shown in Figure 1. The eNB (Evolved Node B), RNC
 (Radio Network Controller), SGW (Service Gateway), and MME (Mobility
 Management Entity) are mobile network entities defined in 3GPP. The
 CSG, ASG, and RSG are entities defined in the IPRAN solution.

 The IPRAN topology shown in Figure 1 includes Ring1 which is the
 circle following ASG1->RSG1->RSG2->ASG2->ASG1, Ring2 following
 CSG1->ASG1->ASG2->CSG2->CSG1, and Ring3 following
 CSG3->ASG1->ASG2->CSG3. In a real deployment of IPRAN, there may be
 more stations, rings, and routers in the topology, and normally the
 network is highly dependent on human design and configuration, which
 is neither flexible nor cost-effective.

+‑‑‑‑‑‑+ +‑‑‑‑‑‑+
| eNB1 |‑‑‑| CSG1 |\
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ \ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 | \ | ASG1 |‑‑‑‑‑‑‑| RSG1 |‑‑‑‑‑‑‑‑‑‑‑|SGW/MME|
 | Ring2 +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ \ /+‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ / | | \ /
| eNB2 |‑‑‑| CSG2 | \ / | Ring1 | \/
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ \ Ring3| | /\
 / \ | | / \
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ / \ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+/ \+‑‑‑‑‑‑‑+
| eNB3 |‑‑‑| CSG3 |‑‑‑‑‑‑‑‑| ASG2 |‑‑‑‑‑‑| RSG2 |‑‑‑‑‑‑‑‑‑| RNC |
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+

 Figure 1: IPRAN Topology Example

 If ANI/GRASP is supported in the IPRAN network, the network nodes
 should be able to negotiate with each other, and make some autonomic
 decisions according to their own status and the information collected
 from the network. The Prefix Management Parameters should be part of
 the information they communicate.

 The routers should know the role of their neighbors, the default
 prefix length for each type of role, etc. An ASG should be able to
 request prefixes from an RSG, and an CSG should be able to request
 prefixes from an ASG. In each request, the ASG/CSG should indicate
 the required prefix length, or its role, which implies what length it
 needs by default.

7. Security Considerations

 Relevant security issues are discussed in [I-D.ietf-anima-grasp].
 The preferred security model is that devices are trusted following
 the secure bootstrap procedure
 [I-D.ietf-anima-bootstrapping-keyinfra] and that a secure Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane] is in
 place.

 It is RECOMMENDED that DHCPv6-PD, if used, should be operated using
 DHCPv6 authentication or Secure DHCPv6.

8. IANA Considerations

 This document defines two new GRASP Objective Option names,
 "PrefixManager" and "PrefixManager.Params". The IANA is requested to
 add these to the GRASP Objective Names Table registry defined by
 [I-D.ietf-anima-grasp] (if approved).

9. Acknowledgements

 Valuable comments were received from William Atwood, Fred Baker,
 Michael Behringer, Ben Campbell, Laurent Ciavaglia, Toerless Eckert,
 Joel Halpern, Russ Housley, Geoff Huston, Warren Kumari, Dan
 Romascanu, and Chongfeng Xie.

10. Change log [RFC Editor: Please remove]

 draft-jiang-anima-prefix-management-00: original version, 2014-10-25.

 draft-jiang-anima-prefix-management-01: add intent example and
 coauthor Zongpeng Du, 2015-05-04.

 draft-jiang-anima-prefix-management-02: update references and the
 format of the prefix management intent, 2015-10-14.

 draft-ietf-anima-prefix-management-00: WG adoption, clarify scope and
 purpose, update text to match latest GRASP spec, 2016-01-11.

 draft-ietf-anima-prefix-management-01: minor update, 2016-07-08.

 draft-ietf-anima-prefix-management-02: replaced intent discussion by
 parameter setting, 2017-01-10.
 draft-ietf-anima-prefix-management-03: corrected object format,
 improved parameter setting example, 2017-03-10.

 draft-ietf-anima-prefix-management-04: add more explanations about
 the solution, add IPv4 options, removed PD flag, 2017-06-23.

 draft-ietf-anima-prefix-management-05: selected one IPv4 option,
 updated references, 2017-08-14.

 draft-ietf-anima-prefix-management-06: handled IETF Last Call
 comments, 2017-10-18.

 draft-ietf-anima-prefix-management-07: handled IESG comments,
 2017-12-18.

11. References

11.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]

 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-12 (work in progress), October 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-09 (work in progress), October 2017.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-00
 (work in progress), July 2017.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3633]
 Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <https://www.rfc-editor.org/info/rfc3633>.

 [RFC7159]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-05 (work in progress), October 2017.

 [I-D.ietf-core-yang-cbor]

 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-05 (work in progress), August
 2017.

 [I-D.liu-dhc-dhcp-yang-model]

 Liu, B., Lou, K., and C. Chen, "Yang Data Model for DHCP
 Protocol", draft-liu-dhc-dhcp-yang-model-06 (work in
 progress), March 2017.

 [RFC1918]
 Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC3046]
 Patrick, M., "DHCP Relay Agent Information Option",
 RFC 3046, DOI 10.17487/RFC3046, January 2001,
 <https://www.rfc-editor.org/info/rfc3046>.

 [RFC6221]
 Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

 [RFC6346]
 Bush, R., Ed., "The Address plus Port (A+P) Approach to
 the IPv4 Address Shortage", RFC 6346,
 DOI 10.17487/RFC6346, August 2011,
 <https://www.rfc-editor.org/info/rfc6346>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7576]
 Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <https://www.rfc-editor.org/info/rfc7576>.

Appendix A. Deployment Overview

 This Appendix includes logical deployment models, and explanations of
 the target deployment models. The purpose is to help in
 understanding the mechanism of the document.

 This Appendix includes two sub-sections: A.1 for the two most common
 DHCP deployment models, and A.2 for the proposed PD deployment model.
 It should be noted that these are just examples, and there are many
 more deployment models.

A.1. Address & Prefix management with DHCP

 Edge DHCP server deployment requires every edge router connecting to
 CPE to be a DHCP server assigning IPv4/IPv6 addresses to CPE - and
 optionally IPv6 prefixes via DHCPv6-PD for IPv6 capable CPE that are
 router and have LANs behind them.

 edge
 dynamic, "netconf/YANG" interfaces
 <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> +‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+ <‑ telemetry | edge router/|‑+ ‑‑‑‑‑ +‑‑‑‑‑+
|config| Domain ... | DHCP server | | ... | CPE |+ LANs
|server| +‑‑‑‑‑‑‑‑‑‑‑‑‑+ | ‑‑‑‑‑ +‑‑‑‑‑+| (‑‑‑|)
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ DHCP/ +‑‑‑‑‑+
 DHCPv6 / PD

 Figure 2: DHCP Deployment Model without a Central DHCP Server

 This requires various coordination functions via some backend system
 depicted as "config server": The address prefixes on the edge
 interfaces should be slightly larger than required for the number of
 CPEs connected so that the overall address space is best used.

 The config server needs to provision edge interface address prefixes
 and DHCP parameters for every edge router. If too fine grained
 prefixes are used, this will result in large routing tables across
 the "Domain". If too coarse grained prefixes are used, address space
 is wasted. (This is less of a concern for IPv6, but if the model
 includes IPv4, it is a very serious concern.)

 There is no standard describing algorithms for how configuration
 servers would best perform this ongoing dynamic provisioning to
 optimize routing table size and address space utilization.

 There are currently no complete YANG models that a config server
 could use to perform these actions (including telemetry of assigned
 addresses from such distributed DHCP servers).

 For example, a YANG model for controlling DHCP server operations is
 still in draft [I-D.liu-dhc-dhcp-yang-model].

 Due to these and other problems of the above model, the more common
 DHCP deployment model is as follows:

+‑‑‑‑‑‑+ edge
|config| initial, "CLI" interfaces
|server| ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> +‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+ | edge router/|‑+ ‑‑‑‑‑ +‑‑‑‑‑+
 | Domain ... | DHCP relay | | ... | CPE |+ LANs
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ | ‑‑‑‑‑ +‑‑‑‑‑+| (‑‑‑|)
|DHCP | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ DHCP/ +‑‑‑‑‑+
|server| DHCPv6 / PD
+‑‑‑‑‑‑+

 Figure 3: DHCP Deployment Model with a Central DHCP Server

 Dynamic provisioning changes to edge routers are avoided by using a
 central DHCP server and reducing the edge router from DHCP server to
 DHCP relay. The "configuration" on the edge routers is static, the
 DHCP relay function inserts "edge interface" and/or subscriber
 identifying options into DHCP requests from CPE (e.g., [RFC3046],
 [RFC6221]), the DHCP server has complete policies for address
 assignments and prefixes useable on every edge-router/interface/
 subscriber-group. When the DHCP relay sees the DHCP reply, it
 inserts static routes for the assigned address/address-prefix into
 the routing table of the edge router which are then to be distributed
 by the IGP (or BGP) inside the domain to make the CPE and LANs
 reachable across the Domain.

 There is no comprehensive standardization of these solutions.
 [RFC3633] section 14, for example, simply refers to "a [non-defined]
 protocol or other out-of-band communication to add routing
 information for delegated prefixes into the provider edge router".

A.2. Prefix management with ANI/GRASP

 With the proposed use of ANI and Prefix-management ASAs using GRASP,
 the deployment model is intended to look as follows:

|<............ ANI Domain / ACP............>| (...)‑>

 Roles
 |
 v "Edge routers"
GRASP parameter +‑‑‑‑‑‑‑‑‑‑+
 Network wide | PM‑ASA | downstream
parameters/policies | (DHCP‑ | interfaces
 | |functions)| ‑‑‑‑‑‑
 v "central device" +‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑+ ^ +‑‑‑‑‑‑‑‑+
|PM‑ASA| <............GRASP | CPE |‑+ (LANs)
+‑‑‑‑‑‑+ . v |(PM‑ASA)| | ‑‑‑|
 . +........+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ |
+...........+ . PM‑ASA . | PM‑ASA | ‑‑‑‑‑‑ +‑‑‑‑‑‑‑‑‑+
.DHCP server. +........+ | (DHCP‑ | SLAAC/
+...........+ "intermediate |functions)| DHCP/DHCP‑PD
 router" +‑‑‑‑‑‑‑‑‑‑+

 Figure 4: Proposed Deployment Model using ANI/GRASP

 The network runs an ANI domain with ACP
 [I-D.ietf-anima-autonomic-control-plane] between some central device
 (e.g., router or ANI enabled management device) and the edge routers.
 ANI/ACP provides a secure, zero-touch communication channel between
 the devices and enables the use of GRASP[I-D.ietf-anima-grasp] not
 only for p2p communication, but also for distribution/flooding.

 The central devices and edge routers run software in the form of
 "Autonomic Service Agents" (ASA) to support this document's autonomic
 IPv6 edge prefix management (PM). The ASAs for prefix management are
 called PM-ASAs below, and together comprise the Autonomic Prefix
 Management Function.

 Edge routers can have different roles based on the type and number of
 CPE attaching to them. Each edge router could be an RSG, ASG, or CSG
 in mobile aggregation networks (see Section 6.1). Mechanisms outside
 the scope of this document make routers aware of their roles.

 Some considerations about the proposed deployment model are listed as
 follows.

 1. In a minimum Prefix Management solution, the central device uses
 the "PrefixManager.Params" GRASP Objective introduced in this
 document to disseminate network wide, per-role parameters to edge
 routers. The PM-ASA uses the parameters applying to its role to
 locally configure pre-existing addressing functions. Because PM-ASA
 does not manage the dynamic assignment of actual IPv6 address
 prefixes in this case, the following options can be considered:

 1.a The edge router connects via downstream interfaces to (host) CPE
 that each requires an address. The PM-ASA sets up for each such
 interface a DHCP requesting router (according to [RFC3633]) to
 request an IPv6 prefix for the interface. The router's address on
 the downstream interface can be another parameter from the GRASP
 Objective. The CPEs assign addresses in the prefix via RAs from the
 router or the PM-ASA manages a local DHCPv6 server to assign
 addresses to the CPEs. A central DHCP server acting as the DHCP
 delegating router (according to [RFC3633]) is required. Its address
 can be another parameter from the GRASP Objective.

 1.b The edge router also connects via downstream interfaces to
 (customer managed) CPEs that are routers and act as DHCPv6 requesting
 routers. The need to support this could be derived from role and/or
 GRASP parameters and the PM-ASA sets up a DHCP relay function to pass
 on requests to the central DHCP server as in 1.a.

 2. In a solution without a central DHCP server, the PM-ASA on the
 edge routers not only learn parameters from "PrefixManager.Params"
 but also utilize GRASP to request/negotiate actual IPv6 prefix
 delegation via the GRASP "PrefixManager" objective described in more
 detail below. In the most simple case, these prefixes are delegated
 via this GRASP objective from the PM-ASA in the central device. This
 device must be provisioned initially with a large pool of prefixes.
 The delegated prefixes are then used by the PM-ASA on the edge
 routers to edge routers to configure prefixes on their downstream
 interfaces to assign addresses via RA/SLAAC to host CPEs. The PM-ASA
 may also start local DHCP servers (as in 1.a) to assign addresses via
 DHCP to CPE from the prefixes it received. This includes both host
 CPEs requesting IPv6 addresses as well as router CPEs that request
 IPv6 prefixes. The PM-ASA needs to manage the address pool(s) it has
 requested via GRASP and allocate sub-address pools to interfaces and
 the local DHCP servers it starts. It needs to monitor the address
 utilization and accordingly request more address prefixes if its
 existing prefixes are exhausted, or return address prefixes when they
 are unneeded.

 This solution is quite similar to the initial described IPv6 DHCP
 deployment model without central DHCP server, and ANI/ACP/GRASP and
 the PM-ASA do provide the automation to make this approach work more
 easily than it is possible today.

 3. The address pool(s) from which prefixes are allocated does not
 need to be taken all from one central location. Edge router PM-ASA
 that received a big (short) prefix from a central PM-ASA could offer
 smaller sub-prefixes to neighboring edge-router PM-ASA. GRASP could
 be used in such a way that the PM-ASA would find and select the
 objective from the closest neighboring PM-ASA, therefore allowing to
 maximize aggregation: A PM-ASA would only request further (smaller/
 shorter) prefixes when it exhausts its own poll (from the central
 location) and can not get further large prefixes from that central
 location anymore. Because the overflow prefixes taken from a
 topological nearby PM-ASA, the number of longer prefixes that have to
 be injected into the routing tables is limited and the topological
 proximity increases the chances that aggregation of prefixes in the
 IGP can most likely limit the geography in which the longer prefixes
 need to be routed.

 4. Instead of peer-to-peer optimization of prefix delegation, a
 hierarchy of PM-ASA can be built (indicated in the picture via a
 dotted intermediate router). This would require additional
 parameters to the "PrefixManager" objective to allow creating a
 hierarchy of PM-ASA across which the prefixes can be delegated. This
 is not detailed further below.

 5. In cases where CPEs are also part of the ANI Domain (e.g.,
 "Managed CPE"), then GRASP will extend into the actual customer sites
 and can equally run a PM-ASA. All the options described in points 1
 to 4 above would then apply to the CPE as the edge router with the
 mayor changes being that a) a CPE router will most likley not need to
 run DHCPv6-PD itself, but only DHCP address assignment, b) The edge
 routers to which the CPE connect would most likely become ideal
 places to run a hierarchical instance of PD-ASAs on as outlined in
 point 1.

Authors' Addresses

Sheng Jiang (editor)
Huawei Technologies Co., Ltd
Q14, Huawei Campus, No.156 Beiqing Road
Hai‑Dian District, Beijing, 100095
P.R. China

 Email: jiangsheng@huawei.com

Zongpeng Du
Huawei Technologies Co., Ltd
Q14, Huawei Campus, No.156 Beiqing Road
Hai‑Dian District, Beijing, 100095
P.R. China

 Email: duzongpeng@huawei.com

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Qiong Sun
China Telecom
No.118, Xizhimennei Street
Beijing 100035
P. R. China

 Email: sunqiong@ctbri.com.cn

draft-ietf-anima-reference-model-10 - A Reference Model for Autonomic Networking

draft-ietf-anima-reference-model-10 - A Reference Model for Autonomic Networking

Index
Back 5
Prev
Next
Forward 5

ANIMA

Internet-Draft

Intended status: Informational

Expires: May 27, 2019

M. Behringer, Ed.

B. Carpenter

Univ. of Auckland

T. Eckert

Futurewei Technologies Inc.

L. Ciavaglia

Nokia

J. Nobre

University of Vale do Rio dos Sinos

November 23, 2018

A Reference Model for Autonomic Networking

draft-ietf-anima-reference-model-10

Abstract

 This document describes a reference model for Autonomic Networking
 for managed networks. It defines the behaviour of an autonomic node,
 how the various elements in an autonomic context work together, and
 how autonomic services can use the infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 27, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. The Network View

	3. The Autonomic Network Element
	 3.1. Architecture

	 3.2. The Adjacency Table

	 3.3. State Machine
	 3.3.1. State 1: Factory Default

	 3.3.2. State 2: Enrolled

	 3.3.3. State 3: In ACP

	4. The Autonomic Networking Infrastructure
	 4.1. Naming

	 4.2. Addressing

	 4.3. Discovery

	 4.4. Signaling Between Autonomic Nodes

	 4.5. Routing

	 4.6. The Autonomic Control Plane

	 4.7. Information Distribution (*)

	5. Security and Trust Infrastructure
	 5.1. Public Key Infrastructure

	 5.2. Domain Certificate

	 5.3. The MASA

	 5.4. Sub-Domains (*)

	 5.5. Cross-Domain Functionality (*)

	6. Autonomic Service Agents (ASA)
	 6.1. General Description of an ASA

	 6.2. ASA Life-Cycle Management

	 6.3. Specific ASAs for the Autonomic Network Infrastructure
	 6.3.1. The enrollment ASAs

	 6.3.2. The ACP ASA

	 6.3.3. The Information Distribution ASA (*)

	7. Management and Programmability
	 7.1. Managing a (Partially) Autonomic Network

	 7.2. Intent (*)

	 7.3. Aggregated Reporting (*)

	 7.4. Feedback Loops to NOC (*)

	 7.5. Control Loops (*)

	 7.6. APIs (*)

	 7.7. Data Model (*)

	8. Coordination Between Autonomic Functions (*)
	 8.1. The Coordination Problem (*)

	 8.2. A Coordination Functional Block (*)

	9. Security Considerations
	 9.1. Protection Against Outsider Attacks

	 9.2. Risk of Insider Attacks

	10. IANA Considerations

	11. Acknowledgements

	12. Contributors

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Authors' Addresses

1. Introduction

 The document "Autonomic Networking - Definitions and Design Goals"
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space, as well as
 a high level reference model. [RFC7576] provides a gap analysis
 between traditional and autonomic approaches.

 This document defines this reference model with more detail, to allow
 for functional and protocol specifications to be developed in an
 architecturally consistent, non-overlapping manner.

 As discussed in [RFC7575], the goal of this work is not to focus
 exclusively on fully autonomic nodes or networks. In reality, most
 networks will run with some autonomic functions, while the rest of
 the network is traditionally managed. This reference model allows
 for this hybrid approach.

 For example, it is possible in an existing, non-autonomic network to
 enrol devices in a traditional way, to bring up a trust
 infrastructure with certificates. This trust infrastructure could
 then be used to automatically bring up an Autonomic Control Plane
 (ACP), and run traditional network operations over the secure and
 self-healing ACP. See [I-D.ietf-anima-stable-connectivity] for a
 description of this use case.

 The scope of this model is therefore limited to networks that are to
 some extent managed by skilled human operators, loosely referred to
 as "professionally managed" networks. Unmanaged networks raise
 additional security and trust issues that this model does not cover.

 This document describes a first, simple, implementable phase of an
 Autonomic Networking solution. It is expected that the experience
 from this phase will be used in defining updated and extended
 specifications over time. Some topics are considered architecturally
 in this document, but are not yet reflected in the implementation
 specifications. They are marked with an (*).

2. The Network View

 This section describes the various elements in a network with
 autonomic functions, and how these entities work together, on a high
 level. Subsequent sections explain the detailed inside view for each
 of the autonomic network elements, as well as the network functions
 (or interfaces) between those elements.

 Figure 1 shows the high level view of an Autonomic Network. It
 consists of a number of autonomic nodes, which interact directly with
 each other. Those autonomic nodes provide a common set of
 capabilities across the network, called the "Autonomic Networking
 Infrastructure" (ANI). The ANI provides functions like naming,
 addressing, negotiation, synchronization, discovery and messaging.

 Autonomic functions typically span several, possibly all nodes in the
 network. The atomic entities of an autonomic function are called the
 "Autonomic Service Agents" (ASA), which are instantiated on nodes.

+‑ +
: : Autonomic Function 1 : :
: ASA 1 : ASA 1 : ASA 1 : ASA 1 :
+‑ +
 : : :
 : +‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ + :
 : : Autonomic Function 2 : :
 : : ASA 2 : ASA 2 : :
 : +‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ + :
 : : :
+‑ +
: Autonomic Networking Infrastructure :
+‑ +
+‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+
| Node 1 |‑‑‑‑‑‑‑‑| Node 2 |‑‑‑‑‑‑‑‑| Node 3 |‑‑‑‑...‑‑‑‑‑| Node n |
+‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+ : +‑‑‑‑‑‑‑‑+

 Figure 1: High level view of an Autonomic Network

 In a horizontal view, autonomic functions span across the network, as
 well as the Autonomic Networking Infrastructure. In a vertical view,
 a node always implements the ANI, plus it may have one or several
 Autonomic Service Agents. ASAs may be standalone, or use other ASAs
 in a hierarchical way.

 The Autonomic Networking Infrastructure (ANI) therefore is the
 foundation for autonomic functions.

3. The Autonomic Network Element

This section explains the general architecture of an Autonomic
Network Element (Section 3.1), how it tracks its surrounding
environment in an Adjacency Table (Section 3.2), and the state
machine which defines the behaviour of the network element
(Section 3.3), based on that adjacency table.

3.1. Architecture

 This section describes an autonomic network element and its internal
 architecture. The reference model explained in the document
 "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
 the sources of information that an autonomic service agent can
 leverage: Self-knowledge, network knowledge (through discovery),
 Intent (see Section 7.2), and feedback loops. There are two levels
 inside an autonomic node: the level of Autonomic Service Agents, and
 the level of the Autonomic Networking Infrastructure, with the former
 using the services of the latter. Figure 2 illustrates this concept.

+‑‑+
| |
| +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ |
	Autonomic		Autonomic		Autonomic	
	Service		Service		Service	
	Agent 1		Agent 2		Agent 3	
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+						
^ ^ ^						
‑ ‑	‑ ‑ API level ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑			
V V V						
‑‑						
Autonomic Networking Infrastructure						
‑ Data structures (ex: certificates, peer information)						
‑ Generalized Autonomic Control Plane (GACP)						
‑ Autonomic Node Addressing and naming						
‑ Discovery, negotiation and synchronisation functions						
‑ Distribution of Intent and other information						
‑ Aggregated reporting and feedback loops						
‑ Routing						
‑‑						
Basic Operating System Functions						
+‑‑+

 Figure 2: Model of an autonomic node

 The Autonomic Networking Infrastructure (lower part of Figure 2)
 contains node specific data structures, for example trust information
 about itself and its peers, as well as a generic set of functions,
 independent of a particular usage. This infrastructure should be
 generic, and support a variety of Autonomic Service Agents (upper
 part of Figure 2). It contains addressing and naming of autonomic
 nodes, discovery, negotiation and synchronisation functions,
 distribution of information, reporting and feedback loops, as well as
 routing inside the Autonomic Control Plane.

 The Generalized Autonomic Control Plane (GACP) is the summary of all
 interactions of the Autonomic Networking Infrastructure with other
 nodes and services. A specific implementation of the GACP is
 referred to here as the Autonomic Control Plane (ACP), and described
 in [I-D.ietf-anima-autonomic-control-plane].

 The use cases of "Autonomics" such as self-management, self-
 optimisation, etc, are implemented as Autonomic Service Agents. They
 use the services and data structures of the underlying Autonomic
 Networking Infrastructure, which should be self-managing.

 The "Basic Operating System Functions" include the "normal OS",
 including the network stack, security functions, etc.

 Full AN nodes have the full Autonomic Networking Infrastructure, with
 the full functionality described in this document. At a later stage
 ANIMA may define a scope for constrained nodes with a reduced ANI and
 well-defined minimal functionality. They are currently out of scope.

3.2. The Adjacency Table

 Autonomic Networking is based on direct interactions between devices
 of a domain. The Autonomic Control Plane (ACP) is normally
 constructed on a hop-by-hop basis. Therefore, many interactions in
 the ANI are based on the ANI adjacency table. There are interactions
 that provide input into the adjacency table, and other interactions
 that leverage the information contained in it.

 The ANI adjacency table contains information about adjacent autonomic
 nodes, at a minimum: node-ID, IP address in data plane, IP address in
 ACP, domain, certificate. An autonomic node maintains this adjacency
 table up to date. The adjacency table only contains information
 about other nodes that are capable of Autonomic Networking; non-
 autonomic nodes are normally not tracked here. However, the
 information is tracked independently of the status of the peer nodes;
 specifically, it contains information about non-enrolled nodes, nodes
 of the same and other domains. The adjacency table may contain
 information about the validity and trust level of the adjacent
 autonomic nodes.

 The adjacency table is fed by the following inputs:

 o Link local discovery: This interaction happens in the data plane,
 using IPv6 link local addressing only, because this addressing
 type is itself autonomic. This way the nodes learns about all
 autonomic nodes around itself. The related standards track
 documents ([I-D.ietf-anima-grasp],
 [I-D.ietf-anima-bootstrapping-keyinfra],
 [I-D.ietf-anima-autonomic-control-plane]) describe in detail how
 link local discovery is used.

 o Vendor re-direct: A new device may receive information on where
 its home network is through a vendor based Manufacturer Authorized
 Signing Authority (MASA, see Section 5.3) re-direct; this is
 typically a routable address.

 o Non-autonomic input: A node may be configured manually with an
 autonomic peer; it could learn about autonomic nodes through DHCP
 options, DNS, and other non-autonomic mechanisms. Generally such
 non-autonomic mechansims require some administrator intervention.
 The key purpose is to by-pass a non-autonomic device or network.
 As this pertains to new devices, it is covered in appendix A and B
 of [I-D.ietf-anima-bootstrapping-keyinfra].

 The adjacency table is defining the behaviour of an autonomic node:

 o If the node has not bootstrapped into a domain (i.e., doesn't have
 a domain certificate), it rotates through all nodes in the
 adjacency table that claim to have a domain, and will attempt
 bootstrapping through them, one by one. One possible response is
 a re-direct via a vendor MASA, which will be entered into the
 adjacency table (see second bullet above). See
 [I-D.ietf-anima-bootstrapping-keyinfra] for details.

 o If the adjacent node has the same domain, it will authenticate
 that adjacent node and, if successful, establish the Autonomic
 Control Plane (ACP). See
 [I-D.ietf-anima-autonomic-control-plane].

 o Once the node is part of the ACP of a domain, it will use GRASP
 [I-D.ietf-anima-grasp] to find Registrar(s) of its domain and
 potentially other services.

 o If the node is part of an ACP and has discovered at least one
 Registrar in its domain via GRASP, it will start the "join

 assistant" ASA, and act as a join assistant for neighboring nodes
 that need to be bootstrapped. See Section 6.3.1.2 for details.

 o Other behaviours are possible, for example establishing the ACP
 also with devices of a sub-domain, to other domains, etc. Those
 will likely be controlled by Intent. They are outside scope for
 the moment. Note that Intent is distributed through the ACP;
 therefore, a node can only adapt Intent driven behaviour once it
 has joined the ACP. At the moment, ANIMA does not consider
 providing Intent outside the ACP; this can be considered later.

 Once a node has joined the ACP, it will also learn the ACP addresses
 of its adjacent nodes, and add them to the adjacency table, to allow
 for communication inside the ACP. Further autonomic domain
 interactions will now happen inside the ACP. At this moment, only
 negotiation / synchronization via GRASP [I-D.ietf-anima-grasp] is
 being defined. (Note that GRASP runs in the data plane, as an input
 in building the adjacency table, as well as inside the ACP.)

 Autonomic Functions consist of Autonomic Service Agents (ASAs). They
 run logically above the AN Infrastructure, and may use the adjacency
 table, the ACP, negotiation and synchronization through GRASP in the
 ACP, Intent and other functions of the ANI. Since the ANI only
 provides autonomic interactions within a domain, autonomic functions
 can also use any other context on a node, specifically the global
 data plane.

3.3. State Machine

 Autonomic Networking applies during the full life-cycle of a node.
 This section describes a state machine of an autonomic node,
 throughout its life.

 A device is normally expected to store its domain specific identity,
 the LDevID (see Section 5.2), in persistent storage, to be available
 after a powercycle event. For device types that cannot store the
 LDevID in persistent storage, a powercycle event is effectively
 equivalent to a factory reset.

3.3.1. State 1: Factory Default

 An autonomic node leaves the factory in this state. In this state,
 the node has no domain specific configuration, specifically no
 LDevID, and could be used in any particular target network. It does
 however have a vendor/manufacturer specific ID, the IDevID [IDevID].
 Nodes without IDevID cannot be autonomically and securely enrolled
 into a domain; they require manual pre-staging, in which case the
 pre-staging takes them directly to state 2.

 Transitions:

 o Bootstrap event: The device enrols into a domain; as part of this
 process it receives a domain identity (LDevID). If enrollment is
 successful, the next state is state 2. See
 [I-D.ietf-anima-bootstrapping-keyinfra] Section 3 for details on
 enrollment.

 o Powercycle event: The device loses all state tables. It remains
 in state: 1.

3.3.2. State 2: Enrolled

 An autonomic node is in the state "enrolled" if it has a domain
 identity (LDevID), and has currently no ACP channel up. It may have
 further configuration or state, for example if it had been in state 3
 before, but lost all its ACP channels. The LDevID can only be
 removed from a device through a factory reset, which also removes all
 other state from the device. This ensures that a device has no stale
 domain specific state when entering the "enrolled" state from state
 1.

 Transitions:

 o Joining ACP: The device establishes an ACP channel to an adjacent
 device. See [I-D.ietf-anima-autonomic-control-plane] for details.
 Next state: 3.

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). it remains in state: 2.

3.3.3. State 3: In ACP

 In this state, the autonomic node has at least one ACP channel to
 another device. The node can now participate in further autonomic
 transactions, such as starting autonomic service agents (e.g., it
 must now enable the join assistant ASA, to help other devices to join
 the domain. Other conditions may apply to such interactions, for
 example to serve as a join assistant, the device must first discover
 a bootstrap Registrar.

 Transitions:

 o Leaving ACP: The device drops the last (or only) ACP channel to an
 adjacent device. Next state: 2.

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). Next state: 2.

4. The Autonomic Networking Infrastructure

 The Autonomic Networking Infrastructure provides a layer of common
 functionality across an Autonomic Network. It provides the
 elementary functions and services, as well as extensions. An
 Autonomic Function, comprising of Autonomic Service Agents on nodes,
 uses the functions described in this section.

4.1. Naming

 Inside a domain, each autonomic device should be assigned a unique
 name. The naming scheme should be consistent within a domain. Names
 are typically assigned by a Registrar at bootstrap time and
 persistent over the lifetime of the device. All Registrars in a
 domain must follow the same naming scheme.

 In the absence of a domain specific naming scheme, a default naming
 scheme should use the same logic as the addressing scheme discussed
 in [I-D.ietf-anima-autonomic-control-plane]. The device name is then
 composed of a Registrar ID (for example taking a MAC address of the
 Registrar) and a device number. An example name would then look like
 this:

 0123-4567-89ab-0001

 The first three fields are the MAC address, the fourth field is the
 sequential number for the device.

4.2. Addressing

 Autonomic Service Agents (ASAs) need to communicate with each other,
 using the autonomic addressing of the Autonomic Networking
 Infrastructure of the node they reside on. This section describes
 the addressing approach of the Autonomic Networking Infrastructure,
 used by ASAs.

 Addressing approaches for the data plane of the network are outside
 the scope of this document. These addressing approaches may be
 configured and managed in the traditional way, or negotiated as a
 service of an ASA. One use case for such an autonomic function is
 described in [I-D.ietf-anima-prefix-management].

 Autonomic addressing is a function of the Autonomic Networking
 Infrastructure (lower part of Figure 2), specifically the Autonomic
 Control Plane. ASAs do not have their own addresses. They may use
 either API calls, or the autonomic addressing scheme of the Autonomic
 Networking Infrastructure.

 An autonomic addressing scheme has the following requirements:

 o Zero-touch for simple networks: Simple networks should have
 complete self-management of addressing, and not require any
 central address management, tools, or address planning.

 o Low-touch for complex networks: If complex networks require
 operator input for autonomic address management, it should be
 limited to high level guidance only, expressed in Intent.

 o Flexibility: The addressing scheme must be flexible enough for
 nodes to be able to move around, for the network to grow, split
 and merge.

 o Robustness: It should be as hard as possible for an administrator
 to negatively affect addressing (and thus connectivity) in the
 autonomic context.

 o Stability: The addressing scheme should be as stable as possible.
 However, implementations need to be able to recover from
 unexpected address changes.

 o Support for virtualization: Autonomic functions can exist either
 at the level of the physical network and physical devices, or at
 the level of virtual machines, containers and networks. In
 particular, Autonomic Nodes may support Autonomic Service Agents
 in virtual entities. The infrastructure, including the addressing
 scheme, should be able to support this architecture.

 o Simplicity: To make engineering simpler, and to give the human
 administrator an easy way to trouble-shoot autonomic functions.

 o Scale: The proposed scheme should work in any network of any size.

 o Upgradability: The scheme must be able to support different
 addressing concepts in the future.

 The proposed addressing scheme is described in the document "An
 Autonomic Control Plane" ([I-D.ietf-anima-autonomic-control-plane]).

4.3. Discovery

 Traditionally, most of the information a node requires is provided
 through configuration or northbound interfaces. An autonomic
 function should rely on such northbound interfaces minimally or not
 at all, and therefore it needs to discover peers and other resources
 in the network. This section describes various discovery functions
 in an autonomic network.

 Discovering nodes and their properties and capabilities: A core
 function to establish an autonomic domain is the mutual discovery of
 autonomic nodes, primarily adjacent nodes and secondarily off-link
 peers. This may in principle either leverage existing discovery
 mechanisms, or use new mechanisms tailored to the autonomic context.
 An important point is that discovery must work in a network with no
 predefined topology, ideally no manual configuration of any kind, and
 with nodes starting up from factory condition or after any form of
 failure or sudden topology change.

 Discovering services: Network services such as AAA should also be
 discovered and not configured. Service discovery is required for
 such tasks. An autonomic network can either leverage existing
 service discovery functions, or use a new approach, or a mixture.

 Thus the discovery mechanism could either be fully integrated with
 autonomic signaling (next section) or could use an independent
 discovery mechanism such as DNS Service Discovery or Service Location
 Protocol. This choice could be made independently for each Autonomic
 Service Agent, although the infrastructure might require some minimal
 lowest common denominator (e.g., for discovering the security
 bootstrap mechanism, or the source of information distribution,
 Section 4.7).

 Phase 1 of Autonomic Networking uses GRASP for discovery, described
 in [I-D.ietf-anima-grasp].

4.4. Signaling Between Autonomic Nodes

 Autonomic nodes must communicate with each other, for example to
 negotiate and/or synchronize technical objectives (i.e., network
 parameters) of any kind and complexity. This requires some form of
 signaling between autonomic nodes. Autonomic nodes implementing a
 specific use case might choose their own signaling protocol, as long
 as it fits the overall security model. However, in the general case,
 any pair of autonomic nodes might need to communicate, so there needs
 to be a generic protocol for this. A prerequisite for this is that
 autonomic nodes can discover each other without any preconfiguration,
 as mentioned above. To be generic, discovery and signaling must be
 able to handle any sort of technical objective, including ones that
 require complex data structures. The document "A Generic Autonomic
 Signaling Protocol (GRASP)" [I-D.ietf-anima-grasp] describes more
 detailed requirements for discovery, negotiation and synchronization
 in an autonomic network. It also defines a protocol, GRASP, for this
 purpose, including an integrated but optional discovery protocol.

 GRASP is normally expected to run inside the Autonomic Control Plane
 (ACP; see Section 4.6) and to depend on the ACP for security. It may
 run insecurely for a short time during bootstrapping.

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. However, scenarios where multiple instances of
 GRASP run in a single node, perhaps with different security
 properties, are not excluded.

4.5. Routing

 All autonomic nodes in a domain must be able to communicate with each
 other, and later phases also with autonomic nodes outside their own
 domain. Therefore, an Autonomic Control Plane relies on a routing
 function. For Autonomic Networks to be interoperable, they must all
 support one common routing protocol.

 The routing protocol is defined in the ACP document
 [I-D.ietf-anima-autonomic-control-plane].

4.6. The Autonomic Control Plane

 The "Autonomic Control Plane" carries the control protocols in an
 autonomic network. In the architecture described here, it is
 implemented as an overlay network. The document "An Autonomic
 Control Plane" ([I-D.ietf-anima-autonomic-control-plane]) describes
 the implementation details suggested here. This document uses the
 term "overlay" to mean a set of point-to-point adjacencies congruent
 with the underlying interconnection topology. The terminology may
 not be aligned with a common usage of the "overlay" term in routing
 context. See [I-D.ietf-anima-stable-connectivity] for uses cases for
 the ACP.

4.7. Information Distribution (*)

 Certain forms of information require distribution across an autonomic
 domain. The distribution of information runs inside the Autonomic
 Control Plane. For example, Intent is distributed across an
 autonomic domain, as explained in [RFC7575].

 Intent is the policy language of an Autonomic Network, see also
 Section 7.2. It is a high level policy, and should change only
 infrequently (order of days). Therefore, information such as Intent
 should be simply flooded to all nodes in an autonomic domain, and
 there is currently no perceived need to have more targeted
 distribution methods. Intent is also expected to be monolithic, and
 flooded as a whole. One possible method for distributing Intent, as
 well as other forms of data, is discussed in
 [I-D.liu-anima-grasp-distribution]. Intent and information
 distribution are not part of phase 1 of ANIMA.

5. Security and Trust Infrastructure

 An Autonomic Network is self-protecting. All protocols are secure by
 default, without the requirement for the administrator to explicitly
 configure security, with the exception of setting up a PKI
 infrastructure.

 Autonomic nodes have direct interactions between themselves, which
 must be secured. Since an autonomic network does not rely on
 configuration, it is not an option to configure, for example, pre-
 shared keys. A trust infrastructure such as a PKI infrastructure
 must be in place. This section describes the principles of this
 trust infrastructure. In this first phase of autonomic networking, a
 device is either within the trust domain and fully trusted, or
 outside the trust domain and fully untrusted.

 The default method to automatically bring up a trust infrastructure
 is defined in the document "Bootstrapping Key Infrastructures"
 [I-D.ietf-anima-bootstrapping-keyinfra]. The ASAs required for this
 enrollment process are described in Section 6.3. An autonomic node
 must implement the enrollment and join assistant ASAs. The registrar
 ASA may be implemented only on a sub-set of nodes.

5.1. Public Key Infrastructure

 An autonomic domain uses a PKI model. The root of trust is a
 certification authority (CA). A registrar acts as a registration
 authority (RA).

 A minimum implementation of an autonomic domain contains one CA, one
 Registrar, and network elements.

5.2. Domain Certificate

 Each device in an autonomic domain uses a domain certificate (LDevID)
 to prove its identity. A new device uses its manufacturer provided
 certificate (IDevID) during bootstrap, to obtain a domain
 certificate. [I-D.ietf-anima-bootstrapping-keyinfra] describes how a
 new device receives a domain certificate, and the certificate format.

5.3. The MASA

 The Manufacturer Authorized Signing Authority (MASA) is a trusted
 service for bootstrapping devices. The purpose of the MASA is to
 provide ownership tracking of devices in a domain. The MASA provides
 audit, authorization, and ownership tokens to the registrar during
 the bootstrap process to assist in the authentication of devices
 attempting to join an Autonomic Domain, and to allow a joining device
 to validate whether it is joining the correct domain. The details
 for MASA service, security, and usage are defined in
 [I-D.ietf-anima-bootstrapping-keyinfra].

5.4. Sub-Domains (*)

 By default, sub-domains are treated as different domains. This
 implies no trust between a domain and its sub-domains, and no trust
 between sub-domains of the same domain. Specifically, no ACP is
 built, and Intent is valid only for the domain it is defined for
 explicitly.

 In phase 2 of ANIMA, alternative trust models should be defined, for
 example to allow full or limited trust between domain and sub-domain.

5.5. Cross-Domain Functionality (*)

 By default, different domains do not interoperate, no ACP is built
 and no trust is implied between them.

 In the future, models can be established where other domains can be
 trusted in full or for limited operations between the domains.

6. Autonomic Service Agents (ASA)

 This section describes how autonomic services run on top of the
 Autonomic Networking Infrastructure.

6.1. General Description of an ASA

 An Autonomic Service Agent (ASA) is defined in [RFC7575] as "An agent
 implemented on an autonomic node that implements an autonomic
 function, either in part (in the case of a distributed function) or
 whole." Thus it is a process that makes use of the features provided
 by the ANI to achieve its own goals, usually including interaction
 with other ASAs via the GRASP protocol [I-D.ietf-anima-grasp] or
 otherwise. Of course it also interacts with the specific targets of
 its function, using any suitable mechanism. Unless its function is
 very simple, the ASA will need to handle overlapping asynchronous
 operations. It may therefore be a quite complex piece of software in
 its own right, forming part of the application layer above the ANI.
 ASA design guidelines are available in
 [I-D.carpenter-anima-asa-guidelines].

 Thus we can distinguish at least three classes of ASAs:

 o Simple ASAs with a small footprint that could run anywhere.

 o Complex, possibly multi-threaded ASAs that have a significant
 resource requirement and will only run on selected nodes.

 o A few 'infrastructure ASAs' that use basic ANI features in support
 of the ANI itself, which must run in all autonomic nodes. These
 are outlined in the following sections.

 Autonomic nodes, and therefore their ASAs, know their own
 capabilities and restrictions, derived from hardware, firmware or
 pre-installed software: They are "self-aware".

 The role of an autonomic node depends on Intent and on the
 surrounding network behaviors, which may include forwarding
 behaviors, aggregation properties, topology location, bandwidth,
 tunnel or translation properties, etc. For example, a node may
 decide to act as a backup node for a neighbor, if its capabilities
 allow it to do so.

 Following an initial discovery phase, the node properties and those
 of its neighbors are the foundation of the behavior of a specific
 node. A node and its ASAs have no pre-configuration for the
 particular network in which they are installed.

 Since all ASAs will interact with the ANI, they will depend on
 appropriate application programming interfaces (APIs). It is
 desirable that ASAs are portable between operating systems, so these
 APIs need to be universal. An API for GRASP is described in
 [I-D.ietf-anima-grasp-api].

 ASAs will in general be designed and coded by experts in a particular
 technology and use case, not by experts in the ANI and its
 components. Also, they may be coded in a variety of programming
 languages, in particular including languages that support object
 constructs as well as traditional variables and structures. The APIs
 should be designed with these factors in mind.

 It must be possible to run ASAs as non-privileged (user space)
 processes except for those (such as the infrastructure ASAs) that
 necessarily require kernel privilege. Also, it is highly desirable
 that ASAs can be dynamically loaded on a running node.

 Since autonomic systems must be self-repairing, it is of great
 importance that ASAs are coded using robust programming techniques.
 All run-time error conditions must be caught, leading to suitable
 minimally disruptive recovery actions, also considering a complete
 restart of the ASA. Conditions such as discovery failures or
 negotiation failures must be treated as routine, with the ASA
 retrying the failed operation, preferably with an exponential back-
 off in the case of persistent errors. When multiple threads are
 started within an ASA, these threads must be monitored for failures
 and hangups, and appropriate action taken. Attention must be given
 to garbage collection, so that ASAs never run out of resources.
 There is assumed to be no human operator - again, in the worst case,
 every ASA must be capable of restarting itself.

 ASAs will automatically benefit from the security provided by the
 ANI, and specifically by the ACP and by GRASP. However, beyond that,
 they are responsible for their own security, especially when
 communicating with the specific targets of their function.
 Therefore, the design of an ASA must include a security analysis
 beyond 'use ANI security.'

6.2. ASA Life-Cycle Management

 ASAs operating on a given ANI may come from different providers and
 pursue different objectives. Management of ASAs and its interactions
 with the ANI should follow the same operating principles, hence
 comply to a generic life-cycle management model.

 The ASA life-cycle provides standard processes to:

 o install ASA: copy the ASA code onto the node and start it,

 o deploy ASA: associate the ASA instance with a (some) managed
 network device(s) (or network function),

 o control ASA execution: when and how an ASA executes its control
 loop.

 The life-cyle will cover the sequential states below: Installation,
 Deployment, Operation and the transitional states in-between. This
 Life-Cycle will also define which interactions ASAs have with the ANI
 in between the different states. The noticeable interactions are:

 o Self-description of ASA instances at the end of deployment: its
 format needs to define the information required for the management
 of ASAs by ANI entities

 o Control of ASA control-loop during the operation: a signaling has
 to carry formatted messages to control ASA execution (at least
 starting and stopping the control loop)

6.3. Specific ASAs for the Autonomic Network Infrastructure

 The following functions provide essential, required functionality in
 an autonomic network, and are therefore mandatory to implement on
 unconstrained autonomic nodes. They are described here as ASAs that
 include the underlying infrastructure components, but implementation
 details might vary.

 The first three together support the trust enrollment process
 described in Section 5. For details see
 [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1. The enrollment ASAs

6.3.1.1. The Pledge ASA

 This ASA includes the function of an autonomic node that bootstraps
 into the domain with the help of an join assitant ASA (see below).
 Such a node is known as a Pledge during the enrollment process. This
 ASA must be installed by default on all nodes that require an
 autonomic zero-touch bootstrap.

6.3.1.2. The Join Assistant ASA

 This ASA includes the function of an autonomic node that helps a non-
 enrolled, adjacent devices to enroll into the domain. This ASA must
 be installed on all nodes, although only one join assistant needs to
 be active on a given LAN. See also
 [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1.3. The Join Registrar ASA

 This ASA includes the join registrar function in an autonomic
 network. This ASA does not need to be installed on all nodes, but
 only on nodes that implement the Join Registrar function.

6.3.2. The ACP ASA

 This ASA includes the ACP function in an autonomic network. In
 particular it acts to discover other potential ACP nodes, and to
 support the establishment and teardown of ACP channels. This ASA
 must be installed on all nodes. For details see Section 4.6 and
 [I-D.ietf-anima-autonomic-control-plane].

6.3.3. The Information Distribution ASA (*)

 This ASA is currently out of scope in ANIMA, and provided here only
 as background information.

 This ASA includes the information distribution function in an
 autonomic network. In particular it acts to announce the
 availability of Intent and other information to all other autonomic
 nodes. This ASA does not need to be installed on all nodes, but only
 on nodes that implement the information distribution function. For
 details see Section 4.7.

 Note that information distribution can be implemented as a function
 in any ASA. See [I-D.liu-anima-grasp-distribution] for more details
 on how information is suggested to be distributed.

7. Management and Programmability

 This section describes how an Autonomic Network is managed, and
 programmed.

7.1. Managing a (Partially) Autonomic Network

 Autonomic management usually co-exists with traditional management
 methods in most networks. Thus, autonomic behavior will be defined
 for individual functions in most environments. Examples for overlap
 are:

 o Autonomic functions can use traditional methods and protocols
 (e.g., SNMP and NETCONF) to perform management tasks, inside and
 outside the ACP;

 o Autonomic functions can conflict with behavior enforced by the
 same traditional methods and protocols;

 o Traditional functions can use the ACP, for example if reachability
 on the data plane is not (yet) established.

 The autonomic Intent is defined at a high level of abstraction.
 However, since it is necessary to address individual managed
 elements, autonomic management needs to communicate in lower-level
 interactions (e.g., commands and requests). For example, it is
 expected that the configuration of such elements be performed using
 NETCONF and YANG modules as well as the monitoring be executed
 through SNMP and MIBs.

 Conflict can occur between autonomic default behavior, autonomic
 Intent, traditional management methods. Conflict resolution is
 achieved in autonomic management through prioritization [RFC7575].
 The rationale is that manual and node-based management have a higher
 priority over autonomic management. Thus, the autonomic default
 behavior has the lowest priority, then comes the autonomic Intent
 (medium priority), and, finally, the highest priority is taken by
 node-specific network management methods, such as the use of command
 line interfaces.

7.2. Intent (*)

 Intent is not covered in the current implementation specifications.
 This section discusses a topic for further research.

 This section gives an overview of Intent, and how it is managed.
 Intent and Policy-Based Network Management (PBNM) is already
 described inside the IETF (e.g., PCIM) and in other SDOs (e.g., DMTF
 and TMF ZOOM).

 Intent can be described as an abstract, declarative, high-level
 policy used to operate an autonomic domain, such as an enterprise
 network [RFC7575]. Intent should be limited to high level guidance
 only, thus it does not directly define a policy for every network
 element separately.

 Intent can be refined to lower level policies using different
 approaches. This is expected in order to adapt the Intent to the
 capabilities of managed devices. Intent may contain role or function
 information, which can be translated to specific nodes [RFC7575].
 One of the possible refinements of the Intent is using Event-
 Condition-Action (ECA) rules.

 Different parameters may be configured for Intent. These parameters
 are usually provided by the human operator. Some of these parameters
 can influence the behavior of specific autonomic functions as well as
 the way the Intent is used to manage the autonomic domain.

 Intent is discussed in more detail in [I-D.du-anima-an-intent].
 Intent as well as other types of information are distributed via
 GRASP, see [I-D.liu-anima-grasp-distribution].

7.3. Aggregated Reporting (*)

 Aggregated reporting is not covered in the current implementation
 specifications. This section discusses a topic for further research.

 An Autonomic Network should minimize the need for human intervention.
 In terms of how the network should behave, this is done through an
 autonomic Intent provided by the human administrator. In an
 analogous manner, the reports which describe the operational status
 of the network should aggregate the information produced in different
 network elements in order to present the effectiveness of autonomic
 Intent enforcement. Therefore, reporting in an autonomic network
 should happen on a network-wide basis [RFC7575].

 Multiple simultaneous events can occur in an autonomic network in the
 same way they can happen in a traditional network. However, when
 reporting to a human administrator, such events should be aggregated
 to avoid notifications about individual managed elements. In this
 context, algorithms may be used to determine what should be reported
 (e.g., filtering) and in which way and how different events are
 related to each other. Besides that, an event in an individual
 element can be compensated by changes in other elements to maintain a
 network-wide target which is described in the autonomic Intent.

 Reporting in an autonomic network may be at the same abstraction
 level as Intent. In this context, the aggregated view of current
 operational status of an autonomic network can be used to switch to
 different management modes. Despite the fact that autonomic
 management should minimize the need for user intervention, possibly
 there are some events that need to be addressed by human
 administrator actions.

7.4. Feedback Loops to NOC (*)

 Feedback loops are required in an autonomic network to allow the
 intervention of a human administrator or central control systems,
 while maintaining a default behaviour. Through a feedback loop an
 administrator must be prompted with a default action, and has the
 possibility to acknowledge or override the proposed default action.

 Uni-directional notifications to the NOC, that do not propose any
 default action, and do not allow an override as part of the
 transaction are considered like traditional notification services,
 such as syslog. They are expected to co-exist with autonomic
 methods, but are not covered in this draft.

7.5. Control Loops (*)

 Control loops are not covered in the current implementation
 specifications. This section discusses a topic for further research.

 Control loops are used in autonomic networking to provide a generic
 mechanism to enable the Autonomic System to adapt (on its own) to
 various factors that can change the goals that the autonomic network
 is trying to achieve, or how those goals are achieved. For example,
 as user needs, business goals, and the ANI itself changes, self-
 adaptation enables the ANI to change the services and resources it
 makes available to adapt to these changes.

 Control loops operate to continuously observe and collect data that
 enables the autonomic management system to understand changes to the
 behavior of the system being managed, and then provide actions to
 move the state of the system being managed toward a common goal.
 Self-adaptive systems move decision-making from static, pre-defined
 commands to dynamic processes computed at runtime.

 Most autonomic systems use a closed control loop with feedback. Such
 control loops should be able to be dynamically changed at runtime to
 adapt to changing user needs, business goals, and changes in the ANI.

7.6. APIs (*)

 APIs are not covered in the current implementation specifications.
 This section discusses a topic for further research.

 Most APIs are static, meaning that they are pre-defined and represent
 an invariant mechanism for operating with data. An Autonomic Network
 should be able to use dynamic APIs in addition to static APIs.

 A dynamic API is one that retrieves data using a generic mechanism,
 and then enables the client to navigate the retrieved data and
 operate on it. Such APIs typically use introspection and/or
 reflection. Introspection enables software to examine the type and
 properties of an object at runtime, while reflection enables a
 program to manipulate the attributes, methods, and/or metadata of an
 object.

 APIs must be able to express and preserve the semantics of data
 models. For example, software contracts [Meyer97] are based on the
 principle that a software-intensive system, such as an Autonomic
 Network, is a set of communicating components whose interaction is
 based on precisely-defined specifications of the mutual obligations
 that interacting components must respect. This typically includes
 specifying:

 o pre-conditions that must be satisfied before the method can start
 execution

 o post-conditions that must be satisfied when the method has
 finished execution

 o invariant attributes that must not change during the execution of
 the method

7.7. Data Model (*)

 Data models are not covered in the current implementation
 specifications. This section discusses a topic for further research.

 The following definitions are adapted from
 [I-D.ietf-supa-generic-policy-data-model]:

 An information model is a representation of concepts of interest to
 an environment in a form that is independent of data repository, data
 definition language, query language, implementation language, and
 protocol. In contrast, a data model is a representation of concepts
 of interest to an environment in a form that is dependent on data
 repository, data definition language, query language, implementation
 language, and protocol (typically, but not necessarily, all three).

 The utility of an information model is to define objects and their
 relationships in a technology-neutral manner. This forms a
 consensual vocabulary that the ANI and ASAs can use. A data model is
 then a technology-specific mapping of all or part of the information
 model to be used by all or part of the system.

 A system may have multiple data models. Operational Support Systems,
 for example, typically have multiple types of repositories, such as
 SQL and NoSQL, to take advantage of the different properties of each.
 If multiple data models are required by an Autonomic System, then an
 information model should be used to ensure that the concepts of each
 data model can be related to each other without technological bias.

 A data model is essential for certain types of functions, such as a
 Model-Reference Adaptive Control Loop (MRACL). More generally, a
 data model can be used to define the objects, attributes, methods,
 and relationships of a software system (e.g., the ANI, an autonomic
 node, or an ASA). A data model can be used to help design an API, as
 well as any language used to interface to the Autonomic Network.

8. Coordination Between Autonomic Functions (*)

 Coordination between autonomic functions is not covered in the
 current implementation specifications. This section discusses a
 topic for further research.

8.1. The Coordination Problem (*)

 Different autonomic functions may conflict in setting certain
 parameters. For example, an energy efficiency function may want to
 shut down a redundant link, while a load balancing function would not
 want that to happen. The administrator must be able to understand
 and resolve such interactions, to steer autonomic network performance
 to a given (intended) operational point.

 Several interaction types may exist among autonomic functions, for
 example:

 o Cooperation: An autonomic function can improve the behavior or
 performance of another autonomic function, such as a traffic
 forecasting function used by a traffic allocation function.

 o Dependency: An autonomic function cannot work without another one
 being present or accessible in the autonomic network.

 o Conflict: A metric value conflict is a conflict where one metric
 is influenced by parameters of different autonomic functions. A
 parameter value conflict is a conflict where one parameter is
 modified by different autonomic functions.

 Solving the coordination problem beyond one-by-one cases can rapidly
 become intractable for large networks. Specifying a common
 functional block on coordination is a first step to address the
 problem in a systemic way. The coordination life-cycle consists in
 three states:

 o At build-time, a "static interaction map" can be constructed on
 the relationship of functions and attributes. This map can be
 used to (pre-)define policies and priorities on identified
 conflicts.

 o At deploy-time, autonomic functions are not yet active/acting on
 the network. A "dynamic interaction map" is created for each
 instance of each autonomic functions and on a per resource basis,
 including the actions performed and their relationships. This map
 provides the basis to identify conflicts that will happen at run-
 time, categorize them and plan for the appropriate coordination
 strategies/mechanisms.

 o At run-time, when conflicts happen, arbitration is driven by the
 coordination strategies. Also new dependencies can be observed
 and inferred, resulting in an update of the dynamic interaction
 map and adaptation of the coordination strategies and mechanisms.

 Multiple coordination strategies and mechanisms exist and can be
 devised. The set ranges from basic approaches such as random process
 or token-based process, to approaches based on time separation and
 hierarchical optimization, to more complex approaches such as multi-
 objective optimization, and other control theory approaches and
 algorithms family.

8.2. A Coordination Functional Block (*)

 A common coordination functional block is a desirable component of
 the ANIMA reference model. It provides a means to ensure network
 properties and predictable performance or behavior such as stability,
 and convergence, in the presence of several interacting autonomic
 functions.

 A common coordination function requires:

 o A common description of autonomic functions, their attributes and
 life-cycle.

 o A common representation of information and knowledge (e.g.,
 interaction maps).

 o A common "control/command" interface between the coordination
 "agent" and the autonomic functions.

 Guidelines, recommendations or BCPs can also be provided for aspects
 pertaining to the coordination strategies and mechanisms.

9. Security Considerations

 In this section we distinguish outsider and insider attacks. In an
 outsider attack all network elements and protocols are securely
 managed and operating, and an outside attacker can sniff packets in
 transit, inject and replay packets. In an insider attack, the
 attacker has access to an autonomic node or other means (e.g. remote
 code execution in the node by exploiting ACP-independent
 vulnerabilities in the node platform) to produce arbitrary payloads
 on the protected ACP channels.

 If a system has vulnerabilities in the implementation or operation
 (configuration), an outside attacker can exploit such vulnerabilies
 to become an insider attacker.

9.1. Protection Against Outsider Attacks

 Here, we assume that all systems involved in an autonomic network are
 secured and operated according to best current practices. These
 protection methods comprise traditional security implementation and
 operation methods (such as code security, strong randomization
 algorithms, strong passwords, etc.) as well as mechanisms specific to
 an autonomic network (such as a secured MASA service).

 Traditional security methods for both implementation and operation
 are outside scope for this document.

 AN specific protocols and methods must also follow traditional
 security methods, in that all packets that can be sniffed or injected
 by an outside attacker are:

 o protected against modification.

 o authenticated.

 o protected against replay attacks.

 o confidentiality protected (encrypted).

 o and that the AN protocols are robust against packet drops and man-
 in-the-middle attacks.

 How these requirements are met is covered in the AN standards track
 documents that define the methods used, specifically
 [I-D.ietf-anima-bootstrapping-keyinfra], [I-D.ietf-anima-grasp], and
 [I-D.ietf-anima-autonomic-control-plane].

 Most AN messages run inside the cryptographically protected ACP. The
 unprotected AN messages outside the ACP are limited to a simple
 discovery method, defined in Section 2.5.2 of [I-D.ietf-anima-grasp]:
 The "Discovery Unsolicited Link-Local (DULL)" message, with detailed
 rules on its usage.

 If AN messages can be observed by a third party, they might reveal
 valuable information about network configuration, security
 precautions in use, individual users, and their traffic patterns. If
 encrypted, AN messages might still reveal some information via
 traffic analysis.

9.2. Risk of Insider Attacks

 An autonomic network consists of autonomic devices that form a
 distributed self-managing system. Devices within a domain have
 credentials issued from a common trust anchor and can use them to
 create mutual trust. This means that any device inside a trust
 domain can by default use all distributed functions in the entire
 autonomic domain in a malicious way.

 If an autonomic node or protocol has vulnerabilities or is not
 securely operated, an outside attacker has the following generic ways
 to take control of an autonomic network:

 o Introducing a fake device into the trust domain, by subverting the
 authentication methods. This depends on the correct
 specification, implementation and operation of the AN protocols.

 o Subverting a device which is already part of a trust domain, and
 modifying its behavior. This threat is not specific to the
 solution discussed in this document, and applies to all network
 solutions.

 o Exploiting potentially yet unknown protocol vulnerabilities in the
 AN or other protocols. Also this is a generic threat that applies
 to all network solutions.

 The above threats are in principle comparable to other solutions: In
 the presence of design, implementation or operational errors,
 security is no longer guaranteed. However, the distributed nature of
 AN, specifically the Autonomic Control Plane, increases the threat
 surface significantly. For example, a compromised device may have
 full IP reachability to all other devices inside the ACP, and can use
 all AN methods and protocols.

 For the next phase of the ANIMA work it is therefore recommended to
 introduce a sub-domain security model, to reduce the attack surface
 and not expose a full domain to a potential intruder. Furthermore,
 additional security mechanisms on the ASA level should be considered
 for high-risk autonomic functions.

10. IANA Considerations

 This document requests no action by IANA.

11. Acknowledgements

 Many people have provided feedback and input to this document: Sheng
 Jiang, Roberta Maglione, Jonathan Hansford, Jason Coleman, Artur
 Hecker. Useful reviews were made by Joel Halpern, Radia Perlman,
 Tianran Zhou and Christian Hopps.

12. Contributors

 Significant contributions to this document have been made by John
 Strassner and Bing Liu from Huawei, and Pierre Peloso from Nokia.

13. References

13.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]

 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-17 (work in progress), November 2018.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [IDevID]
 IEEE Standard, , "IEEE 802.1AR Secure Device Identifier",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

13.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]

 Carpenter, B., Ciavaglia, L., Jiang, S., and P. Pierre,
 "Guidelines for Autonomic Service Agents", draft-
 carpenter-anima-asa-guidelines-05 (work in progress), June
 2018.

 [I-D.du-anima-an-intent]

 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L., and M.
 Behringer, "ANIMA Intent Policy and Format", draft-du-
 anima-an-intent-05 (work in progress), February 2017.

 [I-D.ietf-anima-grasp-api]

 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-02 (work in
 progress), June 2018.

 [I-D.ietf-anima-prefix-management]

 Jiang, S., Du, Z., and B. Carpenter, "Autonomic IPv6 Edge
 Prefix Management in Large-scale Networks", draft-ietf-
 anima-prefix-management-07 (work in progress), December
 2017.

 [I-D.ietf-anima-stable-connectivity]

 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-supa-generic-policy-data-model]

 Halpern, J. and J. Strassner, "Generic Policy Data Model
 for Simplified Use of Policy Abstractions (SUPA)", draft-
 ietf-supa-generic-policy-data-model-04 (work in progress),
 June 2017.

 [I-D.liu-anima-grasp-distribution]

 Liu, B., Jiang, S., Xiao, X., Hecker, A., and Z.
 Despotovic, "Information Distribution in Autonomic
 Networking", draft-liu-anima-grasp-distribution-09 (work
 in progress), October 2018.

 [Meyer97]
 Meyer, B., "Object-Oriented Software Construction (2nd
 edition)", Prentice-Hall, ISBN 978-0136291558, 1997.

 [RFC7575]
 Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015, <https://www.rfc-
 editor.org/info/rfc7575>.

 [RFC7576]
 Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015, <https://www.rfc-
 editor.org/info/rfc7576>.

Authors' Addresses

 Michael H. Behringer (editor)

 Email: Michael.H.Behringer@gmail.com

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland 1142
New Zealand

 Email: brian.e.carpenter@gmail.com

Toerless Eckert
Futurewei Technologies Inc.
2330 Central Expy
Santa Clara 95050
USA

 Email: tte@cs.fau.de

Laurent Ciavaglia
Nokia
Villarceaux
Nozay 91460
FR

 Email: laurent.ciavaglia@nokia.com

Jeferson Campos Nobre
University of Vale do Rio dos Sinos
Av. Unisinos, 950
Sao Leopoldo 91501‑970
Brazil

 Email: jcnobre@unisinos.br

draft-ietf-bmwg-evpntest-01 - Benchmarking Methodology for EVPN and PBB-EVPN

draft-ietf-bmwg-evpntest-01 - Benchmarking Methodology for EVPN and PBB-EVPN

Index
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Standards Track

Expires: May 30, 2019

S. Jacob, Ed.

K. Tiruveedhula

Juniper Networks

November 26, 2018

Benchmarking Methodology for EVPN and PBB-EVPN

draft-ietf-bmwg-evpntest-01

Abstract

 This document defines methodologies for benchmarking EVPN and PBB-
 EVPN performance. EVPN is defined in RFC 7432, and is being deployed
 in Service Provider networks. Specifically this document defines the
 methodologies for benchmarking EVPN/PBB-EVPN convergence, data plane
 performance, and control plane performance.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 30, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Terminologies

	2. Test Topology

	3. Test Cases
	 3.1. How long it takes to learn local mac address in EVPN

	 3.2. How long it takes to learn local mac address in PBB EVPN

	 3.3. How long it takes to learn the remote macs

	 3.4. PBB-EVPN How long it takes to learn the mac from remote peer

	 3.5. How long it takes to flush the local macs due to CE link flap and measure the relearning rate of MACs

	 3.6. PBB-EVPN how long it takes to flush the local macs and measure the relearning rate of macs during PE-CE link flap

	 3.7. How long it takes to flush the remote macs, due to remote link failure

	 3.8. PBB-EVPN How long it takes to flush the remote macs due to remote link failure

	 3.9. To measure the MAC aging time

	 3.10. PBB-EVPN To measure the MAC aging time

	 3.11. How long it takes to age out the remote macs

	 3.12. PBB-EVPN How long it takes to age out the remote macs

	 3.13. How long it takes to learn both local and remote macs

	 3.14. PBB-EVPN How long it takes to learn both local and remote macs

	4. High Availability
	 4.1. To Record the whether there is traffic loss due to routing engine failover for redundancy test

	 4.2. PBB-EVPN To Record the whether there is traffic loss due to routing engine failover for redundancy test

	5. ARP/ND Scale And Prefix Scale
	 5.1. To find ARP/ND scale

	 5.2. To find the prefix(type 5 route) scale

	6. Scale
	 6.1. To Measure the scale limit of DUT with trigger (Scale without traffic)

	 6.2. PBB-EVPN To measure the scale limit with trigger

	 6.3. To measure the convergence time of DUT with scale and traffic

	 6.4. .PBB-EVPN To measure the convergence time of DUT with scale and traffic

	7. SOAK Test
	 7.1. To Measure the stability of the DUT with scale and traffic

	 7.2. PBB-EVPN to measure the stability of DUT with scale and traffic

	8. Acknowledgements

	9. IANA Considerations

	10. Security Considerations

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Appendix

	Authors' Addresses

1. Introduction

 EVPN is defined in RFC 7432, and describes BGP MPLS- based Ethernet
 VPNs (EVPN). PBB-EVPN is defined in RFC 7623, discusses how Ethernet
 Provider backbone Bridging can be combined with EVPNs to provide a
 new/combined solution. This draft defines methodologies that can be
 used to benchmark both RFC 7432 and RFC 7623 solutions. Further,
 this draft provides methodologies for benchmarking the performance of
 EVPN data and control planes, MAC learning, MAC flushing, MAC ageing,
 convergence, high availability, and scale.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Terminologies

 MHPE Multi homed Provide Edge router.

 RR Route Reflector.

 P Provider Router.

 CE Customer Router/Devices/Switch.

 MHPE2 Multi homed Provider Edge router 2.

 MHPE1 Multi homed Provider Edge router 1.

 SHPE3 Single homed Provider Edge Router 3.

 AA EVPN Terminologies AA All-Active.

 SA EVPN Terminologies SA Single-Active.

 RT Router Tester.

 Sub Interface Each physical Interfaces is subdivided in to Logical
 units.

 EVI EVPN Instances which will be running on sub interface or physical
 port of the provider Edge routers.

 DF Designated Forwarder.

 ESI Ethernet Segment Identifier.

2. Test Topology

 EVPN/PBB-EVPN Services running on SHPE3, MHPE1 and MHPE2 in Single
 Active Mode:

 Topology Diagram

 | [Traffic Generator] Router Tester traffic receiver for layer 2 traffic from CE
+‑‑‑‑‑‑‑‑‑‑+
| |
| SHPE3 |
| SHPE3 |
+‑‑‑‑‑‑‑‑‑‑+
 |
 |Core link
+‑‑‑‑‑‑‑‑‑‑+
| |
| RR |
| | Route Reflector/Core router
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | Core links |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
		MHPE2
DUT		
MHPE1		
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | PE‑CE link |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑
| |
| CE |
| layer2 |
|bridge |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑ [Traffic Generator](Router Tester sending layer 2 traffic with different VLAN)

Topology 1

 | [Traffic Generator] Router Tester sending layer 2 traffic.
+‑‑‑‑‑‑‑‑‑‑+
| |
| SHPE3 |
| SHPE3 |
+‑‑‑‑‑‑‑‑‑‑+
 |
 |Core link
+‑‑‑‑‑‑‑‑‑‑+
| |
| RR |
| | Route Reflector/Core router
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | Core links |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
		MHPE2
DUT		
MHPE1		
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | PE‑CE link |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑
| |
| CE |
| layer2 |
|bridge |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑ [Traffic Generator](Router Tester receiver for layer 2 traffic with different vlans.)

Topology 2

 | [Traffic Generator] Router Tester sending layer 2 bi directional traffic sender/receiver
+‑‑‑‑‑‑‑‑‑‑+
| |
| SHPE3 |
| SHPE3 |
+‑‑‑‑‑‑‑‑‑‑+
 |
 |Core link
+‑‑‑‑‑‑‑‑‑‑+
| |
| RR |
| | Route Reflector/Core router
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | Core links |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
		MHPE2
DUT		
MHPE1		
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | PE‑CE link |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑
| |
| CE |
| layer2 |
|bridge |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑ [Traffic Generator](Router Tester sending bi directional layer 2 traffic with different VLAN sender/receiver)

Topology 3

 | Traffic generator (no traffic)
+‑‑‑‑‑‑‑‑‑‑+
| |
| SHPE3 |
| SHPE3 |

+‑‑‑‑‑‑‑‑‑‑+
 |
 |Core link
+‑‑‑‑‑‑‑‑‑‑+
| |
| RR |
| | Route Reflector/Core router
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | Core links |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
		MHPE2
DUT		
MHPE1		
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 Traffic generator (no traffic)
 Traffic generator sending prefixes to DUT

Topology 4

 There are five routers in the topology. SHPE3, RR/P, MHPE1 and MHPE2
 emulating a service provider network. CE is a customer device
 connected to MHPE1 and MHPE2, it is configured with bridge domains in
 different vlans. The router tester is connected to CE and SHPE3.The
 MHPE1 acts DUT.The RT will act as sender and receiver.The measurement
 will be taken in DUT.

 All routers except CE is configured with OSPF/IS-IS,LDP,MPLS,BGP with
 EVPN address family.

 All routers except CE must have IBGP configured with RR acting as
 route reflector.

 MHPE1,MHPE2,SHPE3 must be configured with "N" EVPN/PBB-EVPN instances
 depends up on the cases.

 MHPE1 and MHEPE2 must be configured with ESI per vlan or ESI on IFD.

 MHPE1 and MHEPE2 are running Single Active mode of EVPN.

 CE is acting as bridge configured with vlans that is configured on
 MHPE1,MHPE2,SHPE3.

 Depends up on the test traffic will be flowing uni directional or bi
 directional depends on the topology mentioned above.

 The above configuration will serve as base configuration for all the
 test cases.

3. Test Cases

 The following tests are conducted to measure the time taken to learn
 the "X" number of MAC's locally in EVI . The data plane learning of
 MAC will happen locally from connected interface. The control plane
 learning of MAC is through BGP advertisements from the remote
 PE(SHPE3). The control plane learning of "X" MAC. The data plane
 MAC learning can be measured using the parameters defined in RFC 2889
 section 5.8.

3.1. How long it takes to learn local mac address in EVPN

 Objective:

 To Record the time taken to learn the MAC address locally in DUT.

 Topology : Topology 1

 Procedure:

 Send "X" unicast frames from CE to MHPE1(DUT) working in SA mode with
 "X" different source and destination address from RT. The DUT must
 learn these "X" macs in data plane. After measuring the time taken
 to learn the macs, stop the traffic. Clear the mac table, then
 increase the scale of "X" by 10%. repeat the above procedure. After
 each iteration the scale must be increased by 10% till the limit of
 the DUT is reached.

 Measurement :

 Measure the time taken to learn "X" MACs in DUT evpn mac table. The
 data plane measurement is taken by considering DUT as black box the
 range of X MAC is known from RT and the same must be learned in DUT,
 the time taken to learn "X" macs is measured. The same procedure
 must be used for increased scale.

 Repeat these test and plot the data. The test is repeated for "N"
 times and the values are collected. The mac learning time is
 calculated by averaging the values obtained from "N" samples.

 Mac learning rate in sec for "X" macs = (T1+T2+..Tn/N)

 Mac learning rate in sec for "X+10%" macs = (T1+T2+..Tn/N)

3.2. How long it takes to learn local mac address in PBB EVPN

 Objective:

 To Record the time taken to learn the MAC address locally.

 Topology : Topology 1

 Procedure:

 Send "X" unicast frames from CE to MHPE1(DUT) working in SA mode with
 "X" different source and destination address from RT. The DUT must
 learn "X" macs in data plane.After measuring the time taken to learn
 the macs,stop the traffic and then clear mac table. Then increase
 the scale of "X" by 10%.repeat the above procedure. After each
 iteration the scale must be increased by 10% till the limit of the
 DUT is reached.

 Measurement :

 Measure the time taken by the DUT to learn the "X" MACs in the data
 plane. The data plane measurement is taken by considering DUT as
 black box the range of "X" MAC is known from RT and the same must be
 learned in DUT, the time taken to learn "X" MAC is measured. Repeat
 these test and plot the data. The test is repeated for "N" times and
 the values are collected. The mac learning time is calculated by
 averaging the values obtained from "N" samples. The same process is
 repeated for increased scale.

 Mac learning rate in for "X" mac's in sec = (T1+T2+..Tn/N)

 Mac learning rate for "X+10%" in sec = (T1+T2+..Tn/N)

3.3. How long it takes to learn the remote macs

 Objective:

 To Record the time taken to learn the remote macs.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to SHPE3 from RT. SHPE3
 will advertise these locally learned macs to MHPE1 and MHPE2 via
 control plane.Measure the time taken to learn these X MACs from
 remote peer in DUT EVPN MAC address table.The DUT and MHPE2 are
 running SA mode. After measuring the time taken to learn the
 macs.stop the traffic and then clear mac table.Then increase the
 scale of "X" by 10%. repeat the above procedure. After each
 iteration the scale must be increased by 10% till the limit of the
 DUT is reached.

 Measurement :

 Measure the time taken by the DUT to learn the "X" MACs in the data
 plane.Repeat these test and plot the data.The test is repeated for
 "N" times and the values are collected.The mac learning time is
 calculated by averaging the values obtained from "N" samples.The same
 process is repeated for increased scale.

 Mac learning rate for "X" remote macs in sec = (T1+T2+..Tn/N)

 Mac learning rate for "X+10%" remote macs in sec = (T1+T2+..Tn/N)

3.4. PBB-EVPN How long it takes to learn the mac from remote peer

 Objective:

 To Record the time taken to learn the remote macs.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to SHPE3 from RT.These macs
 will be flooded to MHPE1 and MHPE2 by SHPE3.The DUT and MHPE2 are
 running SA mode.After measuring the time taken to learn the macs.
 Stop the traffic and then clear mac table. Then increase the scale
 of "X" by 10%.repeat the above procedure. After each iteration the
 scale must be increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to learn X mac address in DUT mac table.
 Repeat these test and plot the data.The test is repeated for "N"
 times and the values are collected.The mac learning time is
 calculated by averaging the values obtained by "N" samples. The same
 process is repeated for increased scale.

 Mac learning rate for "X" remote macs in sec = (T1+T2+..Tn/N)

 Mac learning rate for "X+10%" remote macs in sec = (T1+T2+..Tn/N)

3.5. How long it takes to flush the local macs due to CE link flap and
 measure the relearning rate of MACs

 Objective:

 To record the time taken to flush the mac learned locally and the
 time taken to relearn the same amount of macs.

 Topology : Topology 1

 Procedure:

 Send X frames with X different SA and DA to DUT from CE using traffic
 generator. Wait till the MHPE1 learns all X MAC address. Then fail
 the MHPE1 CE link and measure the time taken to flush these X MACs
 from the EVPN MAC table. Bring up the link which was made Down(the
 link between MHPE1 and CE).Measure time taken to relearn it. The DUT
 and MHPE2 are running SA mode.After measuring the time taken to re
 learn the macs.Stop the traffic and then clear mac table. Then
 increase the scale of "X" by 10%.repeat the above procedure. After
 each iteration the scale must be increased by 10% till the limit of
 the DUT is reached.

 Measurement :

 Measure the time taken for flushing these X MAC address. Measure the
 time taken to relearn the X MACs in DUT. Repeat these test and plot
 the data. The test is repeated for "N" times and the values are
 collected. The flush and the relearning time is calculated by
 averaging the values obtained by "N" samples. The same process is
 repeated for increased scale.

 Flush time for X Macs in sec = (T1+T2+..Tn/N)

 Relearning time for X macs in sec = (T1+T2+..Tn/N)

 Flush time for X+10% Macs in sec = (T1+T2+..Tn/N)

 Relearning time for X+10% macs in sec = (T1+T2+..Tn/N)

3.6. PBB-EVPN how long it takes to flush the local macs and measure the
 relearning rate of macs during PE-CE link flap

 Objective:

 To record the time taken to flush the mac learned locally and the
 time taken to relearn the same amount of macs.

 Topology : Topology 1

 Procedure:

 Send X frames with X different SA and DA to DUT from CE using traffic
 generator. Wait till the MHPE1 learn all X MAC address. Then fail
 the MHPE1 CE link and measure the time taken to flush these X MACs
 from the PBB-EVPN MAC table. Then bring up the link. Measure the
 time taken to relearn X MACS. The DUT and MHPE2 are running SA mode.
 After measuring the time taken to re learn the macs.Stop the traffic
 and then clear mac table.Then increase the scale of "X" by 10%.
 repeat the above procedure. After each iteration the scale must be
 increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken for flushing these X MAC address. Measure the
 time taken to relearn the X MACs in DUT. Repeat these test and plot
 the data. The test is repeated for "N" times and the values are
 collected. The flush and the relearning time is calculated by
 averaging the values obtained by "N" samples.The same process is
 repeated for increased scale.

 Flush time for X Macs in sec = (T1+T2+..Tn/N)

 Relearning time for X macs in sec = (T1+T2+..Tn/N)

 Flush time for X+10% Macs in sec = (T1+T2+..Tn/N)

 Relearning time for X+10% macs in sec = (T1+T2+..Tn/N)

3.7. How long it takes to flush the remote macs, due to remote link
 failure.

 Objective:

 To record the time taken to flush the remote mac learned in DUT
 during remote link failure.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Bring down the link between SHPE3 and traffic
 generator. Then measure the time taken to flush the DUT EVPN MAC
 table. The DUT and MHPE2 are running SA mode.Stop the traffic and
 then clear mac table.Then increase the scale of "X" by 10%. repeat
 the above procedure.After each iteration the scale must be increased
 by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to flush X remote MACs from EVPN MAC table of
 DUT. Repeat these test and plot the data. The test is repeated for
 "N" times and the values are collected. The flush rate is calculated
 averaging the values obtained by "N" samples.The same process is
 repeated for increased scale.

 Flush time for X Macs in sec = (T1+T2+..Tn/N)

 Flush time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.8. PBB-EVPN How long it takes to flush the remote macs due to remote
 link failure

 Objective:

 To record the time taken to flush the remote mac learned in DUT
 during remote link failure.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Bring down the link between SHPE3 and traffic
 generator. Then measure the time taken to flush the DUT PBB-EVPN MAC
 address table. The remote MACs will be learned by Data plane, but
 the B-MAC will be learned by control plane. The DUT and MHPE2 are
 running SA mode.Stop the traffic and then clear mac table.Then
 increase the scale of "X" by 10%.repeat the above procedure. After
 each iteration the scale must be increased by 10% till the limit of
 the DUT is reached.

 Measurement :

 Measure the time taken to flush X remote MACs from PBB-EVPN MAC table
 of DUT. Repeat these test and plot the data. The test is repeated
 for "N" times and the values are collected. The flush rate is
 calculated by averaging the values obtained by "N" samples. The same
 process is repeated for increased scale.

 Flush time for X Macs in sec = (T1+T2+..Tn/N)

 Flush time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.9. To measure the MAC aging time.

 Objective:

 To measure the mac aging time.

 Topology : Topology 1

 Procedure:

 Send X frames with X different SA and DA to DUT from CE using traffic
 generator. Wait till X MAC address are learned. Then stop the
 traffic. Record the time taken to flush X MACS from DUT EVPN MAC
 table due to aging. The DUT and MHPE2 are running SA mode. Then
 increase the scale of "X" by 10%.repeat the above procedure. After
 each iteration the scale must be increased by 10% till the limit of
 the DUT is reached.

 Measurement :

 Measure the time taken to flush X MAC address due to aging. Repeat
 these test and plot the data. The test is repeated for "N" times and
 the values are collected. The aging is calculated averaging the
 values obtained by "N" samples.The same process is repeated for
 increased scale.

 Aging time for X Macs in sec = (T1+T2+..Tn/N)

 Aging time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.10. PBB-EVPN To measure the MAC aging time.

 Objective:

 To measure the mac aging time.

 Topology : Topology 1

 Procedure:

 Send X frames with X different SA and DA to DUT from CE using traffic
 generator. Wait till X MAC address are learned in DUT PBB- EVPN MAC
 table. Then stop the traffic. Record the time taken to flush X MAC
 entries due to aging. The DUT and MHPE2 running in SA mode. Then
 increase the scale of "X" by 10%.repeat the above procedure. After
 each iteration the scale must be increased by 10% till the limit of
 the DUT is reached.

 Measurement :

 Measure the time taken to flush X MAC address due to aging. Repeat
 these test and plot the data. The test is repeated for "N" times and
 the values are collected. The aging is calculated by averaging the
 values obtained by "N" samples.The same process is repeated for
 increased scale.

 Aging time for X Macs in sec = (T1+T2+..Tn/N)

 Aging time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.11. How long it takes to age out the remote macs

 Objective:

 To measure the remote mac aging time.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Stop the traffic at remote PE SHPE3.Due to MAC
 aging SHPE3 will withdraw its routes from DUT and MHPE2. Measure the
 time taken to remove these MACs from DUT EVPN MAC table. DUT and
 MHPE2 are running in SA mode.Then increase the scale of "X" by
 10%.repeat the above procedure. After each iteration the scale must
 be increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to flush X remote MACs learned in DUT EVPN MAC
 table due to aging. Repeat these test and plot the data. The test
 is repeated for "N" times and the values are collected. The aging is
 calculated by averaging the values obtained by "N" samples. the same
 process is repeated for increased scale.

 Aging time for X Macs in sec = (T1+T2+..Tn/N)

 Aging time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.12. PBB-EVPN How long it takes to age out the remote macs.

 Objective:

 To measure the remote mac aging time.

 Topology : Topology 2

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Stop the traffic at remote PE(SHPE3).Measure the
 time taken to remove these remote MACs from DUT PBB-EVPN MAC table.
 The DUT and MHPE2 are running in SA mode.Then increase the scale of
 "X" by 10%.repeat the above procedure. After each iteration the
 scale must be increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to flush the X remote MACs from DUT PBB-EVPN
 MAC table due to aging Repeat these test and plot the data. The test
 is repeated for "N" times and the values are collected. The aging is
 calculated by averaging the values obtained by "N" samples. The same
 process is repeated for increased scale.

 Aging time for X Macs in sec = (T1+T2+..Tn/N)

 Aging time for X+10% Macs in sec = (T1+T2+..Tn/N)

3.13. How long it takes to learn both local and remote macs.

 Objective:

 To record the time taken to learn both local and remote macs.

 Topology : Topology 3

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Send X frames with different SA and DA from
 traffic generator connected to CE. The SA and DA of flows must be
 complimentary to have unicast flows. Measure the time taken by the
 DUT to learn 2X in EVPN MAC. DUT and MHPE2 are running in SA mode.
 Stop the traffic, clear the mac table.Then increase the scale of "X"
 by 10%.repeat the above procedure. After each iteration the scale
 must be increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to learn 2X MAC address in DUT EVPN MAC table.
 Repeat these test and plot the data. The test is repeated for "N"
 times and the values are collected. The mac learning time is
 calculated by averaging the values obtained by "N" samples.The same
 process is repeated for increased scale.

 Time to learn 2X Macs in sec = (T1+T2+..Tn/N)

 Time to learn 2(X+10%) Macs in sec = (T1+T2+..Tn/N)

3.14. PBB-EVPN How long it takes to learn both local and remote macs

 Objective:

 To record the time taken to learn both local and remote macs.

 Topology : Topology 3

 Procedure:

 Send X frames with X different SA and DA to DUT from SHPE3 using
 traffic generator. Send X frames with different SA and DA from
 traffic generator connected to CE. The SA and DA of flows must be
 complimentary to have unicast flows. Measure the time taken by the
 DUT to learn 2X in MAC table. DUT and MHPE2 are running in SA mode.
 Stop the traffic, clear the mac table.Then increase the scale of "X"
 by 10%.repeat the above procedure. After each iteration the scale
 must be increased by 10% till the limit of the DUT is reached.

 Measurement :

 Measure the time taken to learn 2X MAC address table in DUT PBB-EVPN
 MAC table. Repeat these test and plot the data. The test is
 repeated for "N" times and the values are collected. The mac
 learning time is calculated by averaging the values obtained by "N"
 samples.The same process must be repeated for increased scale.

 Time to learn 2X Macs in sec = (T1+T2+..Tn/N)

 Time to learn 2(X+10%) Macs in sec = (T1+T2+..Tn/N)

4. High Availability

4.1. To Record the whether there is traffic loss due to routing engine
 failover for redundancy test.

 Objective:

 To record traffic loss during routing engine failover.

 Topology : Topology 3

 Procedure:

 Send X frames from CE to DUT from traffic generator withX different
 SA and DA. Send X frames from traffic generator to SHPE3 with X
 different SA and DA so that 2X MAC address will be learned in DUT.
 There is a bi directional traffic flow with X pps in each direction.
 Then do a routing engine fail-over.

 Measurement :

 There should be 0 traffic loss which is the ideal case, No change in
 the DF role. DUT should not withdraw any routes.Repeat the test "N"
 times and plot the data.The packet loss is calculated by averaging
 the values obtained from "N" samples.

 Packet loss in sec = (T1+T2+..Tn/N)

4.2. PBB-EVPN To Record the whether there is traffic loss due to
 routing engine failover for redundancy test

 Objective:

 To record traffic loss during routing engine failover.

 Topology : Topology 3

 Procedure:

 Send X frames to DUT with X different SA and DA from CE using the
 traffic generator. Send X frames from traffic generator to SHPE3
 with X different SA and DA so that 2X MAC address will be Learned in
 DUT. There is a bi directional traffic flow with X pps in each
 direction. Then do a routing engine fail-over.

 Measurement :

 There should be 0 traffic loss which is the ideal case, No change in
 the DF role. DUT should not withdraw any routes.Repeat the test "N"
 times and plot the data.The packet loss is calculated by averaging
 the values obtained from "N" samples.

 Packet loss in sec = (T1+T2+..Tn/N)

5. ARP/ND Scale And Prefix Scale

 These tests are conducted to Record the scaling parameter of ARP/ND
 of the DUT.

5.1. To find ARP/ND scale

 Objective:

 To Record the ARP/ND scale of the DUT.

 Topology : Topology 1

 Procedure:

 Send X arp/icmpv6 request from RT to DUT with different sender ip/
 ipv6 address to the same target gateway ip address. Measure whether
 X MAC+IPv4 address/MAC+IPv6 address of the hosts are learned in DUT.
 Increase the scale by 10 percent, then measure the DUT in order to
 find the new scale is reached.continue till the limit of the DUT.

that is DUT is no longer learn the arp/ND generated by
the traffic generator.

 Measurement :

 The DUT must learn the arp and ND and it must advertise mac+ip/
 mac+ipv6 to the remote PE's. Scale value is calculated based on the
 maximum number if mac+ip/mac+ipv6 is learned beyond this number DUT
 cant learn. The test is repeated "N" times and the average value is
 taken as the scale limit.

5.2. To find the prefix(type 5 route) scale

 Objective:

 To Record the Prefix scale limit of the DUT

 Topology : Topology 4

 Procedure:

 Send X Prefix to the DUT. DUT must learn the X prefixes and
 advertise as type 5 route to the remote router. Increase the scale
 by 10 percent, then measure the DUT in order to find the new scale is
 reached. continue till the limit of the DUT is reached, that is DUT
 is no longer learn the prefixes which is generated by traffic
 generator.

 Measurement :

 The test is carried to find out the prefix scale of the DUT. The
 test is repeated "N" times. The final scale value will be the average of
 "N" samples.

6. Scale

 This is to measure the performance of DUT in scaling to "X" EVPN
 instances. The measured parameters are CPU usage, memory
 leak,crashes.

6.1. To Measure the scale limit of DUT with trigger (Scale without
 traffic)

 Objective:

 To measure the scale limit of DUT for EVPN.

 Topology : Topology 3

 Procedure:

 The DUT,MHPE2 and SHPE3 are scaled to "N" EVI.Clear BGP neighbors of
 the DUT. Once adjacency is established in the DUT. Measure the
 routes received from MHPE2 and SHPE3 for "N" EVI in the DUT.

 Measurement :

 There should not be any loss of route types 1,2,3 and 4 in DUT. DUT
 must relearn all type 1,2,3 and 4 from remote routers. The DUT must
 be subjected to various values of N to find the optimal scale limit

6.2. PBB-EVPN To measure the scale limit with trigger.

 Objective:

 To measure the scale limit of DUT for PBB-EVPN.

 Topology : Topology 3

 Procedure:

 The DUT,MHPE2 and SHPE3 are scaled to "N" PBB-EVPN instances. Clear
 BGP neighbors in the DUT Once adjacency is established in DUT, check
 routes received from SHPE3 and MHPE2.

 Measurement :

 There should not be any loss of route types 2,3 and 4 in DUT. The
 DUT must relearn all type 2,3 and 4 routes from remote routers. The
 DUT must be subjected to various values of N to find the optimal
 scale limit.

6.3. To measure the convergence time of DUT with scale and traffic.

 Objective:

 To measure the convergence time of DUT when the DUT is scaled with
 EVPN instance along with traffic.

 Topology : Topology 3

 Procedure:

 Scale N EVIs in DUT,SHPE3 and MHPE2.Send F frames to DUT from CE
 using traffic generator with X different SA and DA for N EVI's. Send
 F frames from traffic generator to SHPE3 with X different SA and DA.
 There will be 2X number of MAC address will be learned in DUT EVPN
 MAC table. There is a bi directional traffic flow with F pps in each
 direction. Then clear the BGP neighbors in the DUT. Once the
 adjacency is restored in DUT. Measure the time taken to learn 2X MAC
 address in DUT MAC table.

 Measurement :

 The DUT must learn 2X MAC address. Measure the time taken to learn
 2X MAC in DUT. Repeat these test and plot the data.The test is
 repeated for "N" times and the values are collected.The convergence
 time is calculated by averaging the values obtained by "N" samples.

 Convergence time in sec = (T1+T2+..Tn/N)

6.4. .PBB-EVPN To measure the convergence time of DUT with scale and
 traffic.

 Objective:

 To measure the convergence time of DUT when the DUT is scaled with
 PBB-EVPN instance along with traffic.

 Topology : Topology 3

 Procedure:

 Scale N PBB-EVI's in DUT,SHPE3 and MHPE2.Send F frames to DUT from CE
 using traffic generator with X different SA and DA for N EVI's. Send
 F frames from traffic generator to SHPE3 with X different SA and DA.
 There will be 2X number of MAC address will be learned in DUT PBB-
 EVPN MAC table. There is a bi directional traffic flow with F pps in
 each direction. Then clear the BGP neighbors in the DUT. Once the
 adjacency is restored in DUT. Measure the time taken to learn 2X MAC
 address in DUT PBB-MAC table.

 Measurement :

 The DUT must learn 2X MAC address. Measure the time taken to learn
 2X MAC in DUT. Repeat these test and plot the data. The test is
 repeated for "N" times and the values are collected. The convergence
 time is calculated by averaging the values obtained by "N" samples.

 Convergence time in sec = (T1+T2+..Tn/N)

7. SOAK Test

 This is measuring the performance of DUT running with scaled
 configuration with traffic over a peroid of time "T'". In each
 interval "t1" the parameters measured are CPU usage, memory usage,
 crashes.

7.1. To Measure the stability of the DUT with scale and traffic.

 Objective:

 To measure the stability of the DUT in a scaled environment with
 traffic.

 Topology : Topology 3

 Procedure:

 Scale N EVI's in DUT,SHPE3 and MHPE2.Send F frames to DUT from CE
 using traffic generator with different X SA and DA for N EVI's. Send
 F frames from traffic generator to SHPE3 with X different SA and DA.
 There will be 2X number of MAC address will be learned in DUT EVPN
 MAC table. There is a bi directional traffic flow with F pps in each
 direction. The DUT must run with traffic for 24 hours, every hour
 check for memory leak, crash.

 Measurement :

 Take the hourly reading of CPU, process memory. There should not be
 any leak, crashes, CPU spikes.

7.2. PBB-EVPN to measure the stability of DUT with scale and traffic.

 Objective:

 To measure the stability of the DUT in a scaled environment with
 traffic.

 Topology : Topology 3

 Procedure:

 Scale N PBB-EVI's in DUT,SHPE3 and MHPE2.Send F frames to DUT from CE
 using traffic generator with X different SA and DA for N EVI's. Send
 F frames from traffic generator to SHPE3 with X different SA and DA.
 There will be 2X number of MAC address will be learned in DUT PBB-
 EVPN MAC table. There is a bi directional traffic flow with F pps in
 Each direction. The DUT must run with traffic for 24 hours, every
 hour check the memory leak, crashes.

 Measurement :

 Take the hourly reading of CPU process, memory usages. There should
 not be any memory leak, crashes,CPU spikes.

8. Acknowledgements

 We would like to thank Fioccola Giuseppe of Telecom Italia reviewing
 our draft and commenting it. We would like to thank Sarah Banks for
 guiding and mentoring us.

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 There is no additional consideration from RFC 6192.

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2544]
 Bradner, S. and J. McQuaid, "Benchmarking Methodology for
 Network Interconnect Devices", RFC 2544,
 DOI 10.17487/RFC2544, March 1999,
 <https://www.rfc-editor.org/info/rfc2544>.

 [RFC2899]
 Ginoza, S., "Request for Comments Summary RFC Numbers
 2800-2899", RFC 2899, DOI 10.17487/RFC2899, May 2001,
 <https://www.rfc-editor.org/info/rfc2899>.

11.2. Informative References

 [RFC7432]
 Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
 Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
 Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
 2015, <https://www.rfc-editor.org/info/rfc7432>.

 [RFC7623]
 Sajassi, A., Ed., Salam, S., Bitar, N., Isaac, A., and W.
 Henderickx, "Provider Backbone Bridging Combined with
 Ethernet VPN (PBB-EVPN)", RFC 7623, DOI 10.17487/RFC7623,
 September 2015, <https://www.rfc-editor.org/info/rfc7623>.

Appendix A. Appendix

Authors' Addresses

Sudhin Jacob (editor)
Juniper Networks
Bangalore
India

Phone: +91 8061212543
Email: sjacob@juniper.net

Kishore Tiruveedhula
Juniper Networks
10 Technology Park Dr
Westford, MA 01886
USA

Phone: +1 9785898861
Email: kishoret@juniper.net

draft-ietf-bmwg-ngfw-performance-00 - Benchmarking Methodology for Network Security Device Performance

draft-ietf-bmwg-ngfw-performance-00 - Benchmarking Methodology for Network Secur

Index
Prev
Next
Forward 5

Benchmarking Methodology Working Group

Internet-Draft

Intended status: Informational

Expires: September 6, 2019

B. Balarajah

C. Rossenhoevel

EANTC AG

B. Monkman

NetSecOPEN

March 5, 2019

Benchmarking Methodology for Network Security Device Performance

draft-ietf-bmwg-ngfw-performance-00

Abstract

 This document provides benchmarking terminology and methodology for
 next-generation network security devices including next-generation
 firewalls (NGFW), intrusion detection and prevention solutions (IDS/
 IPS) and unified threat management (UTM) implementations. This
 document aims to strongly improve the applicability, reproducibility,
 and transparency of benchmarks and to align the test methodology with
 today's increasingly complex layer 7 application use cases. The main
 areas covered in this document are test terminology, traffic profiles
 and benchmarking methodology for NGFWs to start with.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements

	3. Scope

	4. Test Setup
	 4.1. Testbed Configuration

	 4.2. DUT/SUT Configuration

	 4.3. Test Equipment Configuration
	 4.3.1. Client Configuration

	 4.3.2. Backend Server Configuration

	 4.3.3. Traffic Flow Definition

	 4.3.4. Traffic Load Profile

	5. Test Bed Considerations

	6. Reporting
	 6.1. Key Performance Indicators

	7. Benchmarking Tests
	 7.1. Throughput Performance With NetSecOPEN Traffic Mix
	 7.1.1. Objective

	 7.1.2. Test Setup

	 7.1.3. Test Parameters

	 7.1.4. Test Procedures and expected Results

	 7.2. TCP/HTTP Connections Per Second
	 7.2.1. Objective

	 7.2.2. Test Setup

	 7.2.3. Test Parameters

	 7.2.4. Test Procedures and Expected Results

	 7.3. HTTP Throughput
	 7.3.1. Objective

	 7.3.2. Test Setup

	 7.3.3. Test Parameters

	 7.3.4. Test Procedures and Expected Results

	 7.4. TCP/HTTP Transaction Latency
	 7.4.1. Objective

	 7.4.2. Test Setup

	 7.4.3. Test Parameters

	 7.4.4. Test Procedures and Expected Results

	 7.5. Concurrent TCP/HTTP Connection Capacity
	 7.5.1. Objective

	 7.5.2. Test Setup

	 7.5.3. Test Parameters

	 7.5.4. Test Procedures and expected Results

	 7.6. TCP/HTTPS Connections per second
	 7.6.1. Objective

	 7.6.2. Test Setup

	 7.6.3. Test Parameters

	 7.6.4. Test Procedures and expected Results

	 7.7. HTTPS Throughput
	 7.7.1. Objective

	 7.7.2. Test Setup

	 7.7.3. Test Parameters

	 7.7.4. Test Procedures and Expected Results

	 7.8. HTTPS Transaction Latency
	 7.8.1. Objective

	 7.8.2. Test Setup

	 7.8.3. Test Parameters

	 7.8.4. Test Procedures and Expected Results

	 7.9. Concurrent TCP/HTTPS Connection Capacity
	 7.9.1. Objective

	 7.9.2. Test Setup

	 7.9.3. Test Parameters

	 7.9.4. Test Procedures and expected Results

	8. Formal Syntax

	9. IANA Considerations

	10. Acknowledgements

	11. Contributors

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. NetSecOPEN Basic Traffic Mix

	Authors' Addresses

1. Introduction

 15 years have passed since IETF recommended test methodology and
 terminology for firewalls initially ([RFC2647], [RFC3511]). The
 requirements for network security element performance and
 effectiveness have increased tremendously since then. Security
 function implementations have evolved to more advanced areas and have
 diversified into intrusion detection and prevention, threat
 management, analysis of encrypted traffic, etc. In an industry of
 growing importance, well-defined and reproducible key performance
 indicators (KPIs) are increasingly needed: They enable fair and
 reasonable comparison of network security functions. All these
 reasons have led to the creation of a new next-generation firewall
 benchmarking document.

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119], [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Scope

 This document provides testing terminology and testing methodology
 for next-generation firewalls and related security functions. It
 covers two main areas: Performance benchmarks and security
 effectiveness testing. This document focuses on advanced, realistic,
 and reproducible testing methods. Additionally, it describes test
 bed environments, test tool requirements and test result formats.

4. Test Setup

 Test setup defined in this document is applicable to all benchmarking
 test scenarios described in Section 7.

4.1. Testbed Configuration

 Testbed configuration MUST ensure that any performance implications
 that are discovered during the benchmark testing aren't due to the
 inherent physical network limitations such as number of physical
 links and forwarding performance capabilities (throughput and
 latency) of the network devise in the testbed. For this reason, this
 document recommends avoiding external devices such as switches and
 routers in the testbed wherever possible.

 However, in the typical deployment, the security devices (DUT/SUT)
 are connected to routers and switches which will reduce the number of
 entries in MAC or ARP tables of the DUT/SUT. If MAC or ARP tables
 have many entries, this may impact the actual DUT/SUT performance due
 to MAC and ARP/ND table lookup processes. Therefore, it is
 RECOMMENDED to connect aggregation switches or routers between test
 equipment and DUT/SUT as shown in Figure 1. The aggregation switches
 or routers can be also used to aggregate the test equipment or DUT/
 SUT ports, if the numbers of used ports are mismatched between test
 equipment and DUT/SUT.

 If the test equipment is capable of emulating layer 3 routing
 functionality and there is no need for test equipment port
 aggregation, it is RECOMMENDED to configure the test setup as shown
 in Figure 2.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |Aggregation Switch/| | | | Aggregation Switch/|
 | Router +‑‑‑‑‑‑+ DUT/SUT +‑‑‑‑‑‑+ Router |
 | | | | | |
 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Emulated Router(s)				Emulated Router(s)	
	(Optional)				(Optional)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Clients				Servers	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
Test Equipment		Test Equipment				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Testbed Setup - Option 1

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
	Emulated Router(s)						Emulated Router(s)	
	(Optional)	+‑‑‑‑‑ DUT/SUT +‑‑‑‑‑+ (Optional)						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
	Clients				Servers			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+						
Test Equipment		Test Equipment						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: Testbed Setup - Option 2

4.2. DUT/SUT Configuration

 A unique DUT/SUT configuration MUST be used for all benchmarking
 tests described in Section 7. Since each DUT/SUT will have their own
 unique configuration, users SHOULD configure their device with the
 same parameters that would be used in the actual deployment of the
 device or a typical deployment. Users MUST enable security features
 on the DUT/SUT to achieve maximum security coverage for a specific
 deployment scenario.

 This document attempts to define the recommended security features
 which SHOULD be consistently enabled for all the benchmarking tests
 described in Section 7. Table 1 below describes the RECOMMENDED sets
 of feature list which SHOULD be configured on the DUT/SUT.

 Based on customer use case, users MAY enable or disable SSL
 inspection feature for "Throughput Performance with NetSecOPEN
 Traffic Mix" test scenario described in Section 7.1

 To improve repeatability, a summary of the DUT configuration
 including description of all enabled DUT/SUT features MUST be
 published with the benchmarking results.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | NGFW |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
DUT Features	Mandatory	Optional
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
SSL Inspection	x	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
IDS/IPS	x	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Web Filtering		x
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Antivirus	x	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Anti Spyware	x	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Anti Botnet	x	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
DLP		x
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
DDoS		x
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Certificate		x
Validation		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Logging and	x	
Reporting		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
Application	x	
Identification		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+

 Table 1: DUT/SUT Feature List

 In summary, DUT/SUT SHOULD be configured as follows:

 o All security inspection enabled

 o Disposition of all traffic is logged - Logging to an external
 device is permissible

 o Detection of CVEs matching the following characteristics when
 searching the National Vulnerability Database (NVD)

 * CVSS Version: 2

 * CVSS V2 Metrics: AV:N/Au:N/I:C/A:C

 * AV=Attack Vector, Au=Authentication, I=Integrity and
 A=Availability

 * CVSS V2 Severity: High (7-10)

 * If doing a group test the published start date and published
 end date SHOULD be the same

 o Geographical location filtering and Application Identification and
 Control configured to be triggered based on a site or application
 from the defined traffic mix

 In addition, it is also RECOMMENDED to configure a realistic number
 of access policy rules on the DUT/SUT. This document determines the
 number of access policy rules for three different classes of DUT/SUT.
 The classification of the DUT/SUT MAY be based on its maximum
 supported firewall throughput performance number defined in the
 vendor data sheet. This document classifies the DUT/SUT in three
 different categories; namely small, medium, and maximum.

 The RECOMMENDED throughput values for the following classes are:

 Extra Small (XS) - supported throughput less than 1Gbit/s

 Small (S) - supported throughput less than 5Gbit/s

 Medium (M) - supported throughput greater than 5Gbit/s and less than
 10Gbit/s

 Large (L) - supported throughput greater than 10Gbit/s

 The Access Conrol Rules (ACL) defined in Table 2 SHOULD be configured
 from top to bottom in the correct order as shown in the table.
 (Note: There will be differences between how security vendors
 implement ACL decision making.) The configured ACL MUST NOT block
 the test traffic used for the benchmarking test scenarios.

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	DUD/SUT
	Classification
	#rules
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+	
	Match
Rules Type	Criteria
+‑‑‑+	
Application	Application
layer	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ ‑‑+	
Transport	Src IP and
layer	TCP/UDP
	Dst ports
+‑‑‑+	
IP layer	Src/Dst IP
+‑‑‑+	
Application	Application
layer	
+‑‑‑+	
Transport	Src IP and
layer	TCP/UDP
	Dst ports
+‑‑‑+	
IP layer	Src IP
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

 Table 2: DUT/SUT Access List

4.3. Test Equipment Configuration

 In general, test equipment allows configuring parameters in different
 protocol layers. These parameters thereby influence the traffic
 flows which will be offered and impact performance measurements.

 This document specifies common test equipment configuration
 parameters applicable for all test scenarios defined in Section 7.
 Any test scenario specific parameters are described under the test
 setup section of each test scenario individually.

4.3.1. Client Configuration

 This section specifies which parameters SHOULD be considered while
 configuring clients using test equipment. Also, this section
 specifies the recommended values for certain parameters.

4.3.1.1. TCP Stack Attributes

 The TCP stack SHOULD use a TCP Reno [RFC5681] variant, which include
 congestion avoidance, back off and windowing, fast retransmission,
 and fast recovery on every TCP connection between client and server
 endpoints. The default IPv4 and IPv6 MSS segments size MUST be set
 to 1460 bytes and 1440 bytes respectively and a TX and RX receive
 windows of 65536 bytes. Client initial congestion window MUST NOT
 exceed 10 times the MSS. Delayed ACKs are permitted and the maximum
 client delayed Ack MUST NOT exceed 10 times the MSS before a forced
 ACK. Up to 3 retries SHOULD be allowed before a timeout event is
 declared. All traffic MUST set the TCP PSH flag to high. The source
 port range SHOULD be in the range of 1024 - 65535. Internal timeout
 SHOULD be dynamically scalable per RFC 793. Client SHOULD initiate
 and close TCP connections. TCP connections MUST be closed via FIN.

4.3.1.2. Client IP Address Space

 The sum of the client IP space SHOULD contain the following
 attributes. The traffic blocks SHOULD consist of multiple unique,
 discontinuous static address blocks. A default gateway is permitted.
 The IPv4 ToS byte or IPv6 traffic class should be set to '00' or
 '000000' respectively.

 The following equation can be used to determine the required total
 number of client IP address.

 Desired total number of client IP = Target throughput [Mbit/s] /
 Throughput per IP address [Mbit/s]

 Based on deployment and use case scenario, the value for "Throughput
 per IP address" can be varied.

 (Option 1) Enterprise customer use case: 6-7 Mbps per IP (e.g.

 1,400-1,700 IPs per 10Gbit/s throughput)

 (Option 2) Mobile ISP use case: 0.1-0.2 Mbps per IP (e.g.

 50,000-100,000 IPs per 10Gbit/s throughput)

 Based on deployment and use case scenario, client IP addresses SHOULD
 be distributed between IPv4 and IPv6 type. The Following options can
 be considered for a selection of traffic mix ratio.

 (Option 1) 100 % IPv4, no IPv6

 (Option 2) 80 % IPv4, 20% IPv6

 (Option 3) 50 % IPv4, 50% IPv6

 (Option 4) 20 % IPv4, 80% IPv6

 (Option 5) no IPv4, 100% IPv6

4.3.1.3. Emulated Web Browser Attributes

 The emulated web browser contains attributes that will materially
 affect how traffic is loaded. The objective is to emulate modern,
 typical browser attributes to improve realism of the result set.

 For HTTP traffic emulation, the emulated browser MUST negotiate HTTP
 1.1. HTTP persistency MAY be enabled depending on test scenario.
 The browser MAY open multiple TCP connections per Server endpoint IP
 at any time depending on how many sequential transactions are needed
 to be processed. Within the TCP connection multiple transactions MAY
 be processed if the emulated browser has available connections. The
 browser SHOULD advertise a User-Agent header. Headers MUST be sent
 uncompressed. The browser SHOULD enforce content length validation.

 For encrypted traffic, the following attributes SHALL define the
 negotiated encryption parameters. The test clients MUST use TLSv1.2
 or higher. TLS record size MAY be optimized for the HTTPS response
 object size up to a record size of 16 KByte. The client endpoint
 MUST send TLS Extension Server Name Indication (SNI) information when
 opening a security tunnel. Each client connection MUST perform a
 full handshake with servercertificate and MUST NOT use session reuse
 or resumption. Cipher suite and key size should be defined in the
 parameter session of each test scenario.

4.3.2. Backend Server Configuration

 This document specifies which parameters should be considerable while
 configuring emulated backend servers using test equipment.

4.3.2.1. TCP Stack Attributes

 The TCP stack on the server side SHOULD be configured similar to the
 client side configuration described in Section 4.3.1.1. In addition,
 server initial congestion window MUST NOT exceed 10 times the MSS.
 Delayed ACKs are permitted and the maximum server delayed ACK MUST
 NOT exceed 10 times the MSS before a forced ACK.

4.3.2.2. Server Endpoint IP Addressing

 The server IP blocks SHOULD consist of unique, discontinuous static
 address blocks with one IP per Server Fully Qualified Domain Name
 (FQDN) endpoint per test port. The IPv4 ToS byte and IPv6 traffic
 class bytes should be set to '00' and '000000' respectively.

4.3.2.3. HTTP / HTTPS Server Pool Endpoint Attributes

 The server pool for HTTP SHOULD listen on TCP port 80 and emulate
 HTTP version 1.1 with persistence. The Server MUST advertise server
 type in the Server response header [RFC2616]. For HTTPS server, TLS
 1.2 or higher MUST be used with a maximum record size of 16 KBytes
 and MUST NOT use ticket resumption or Session ID reuse . The server
 MUST listen on port TCP 443. The server SHALL serve a certificate to
 the client. It is REQUIRED that the HTTPS server also check Host SNI
 information with the FQDN. Cipher suite and key size should be
 defined in the parameter section of each test scenario.

4.3.3. Traffic Flow Definition

 This section describes the traffic pattern between client and server
 endpoints. At the beginning of the test, the server endpoint
 initializes and will be ready to accept connection states including
 initialization of the TCP stack as well as bound HTTP and HTTPS
 servers. When a client endpoint is needed, it will initialize and be
 given attributes such as a MAC and IP address. The behavior of the
 client is to sweep though the given server IP space, sequentially
 generating a recognizable service by the DUT. Thus, a balanced, mesh
 between client endpoints and server endpoints will be generated in a
 client port server port combination. Each client endpoint performs
 the same actions as other endpoints, with the difference being the
 source IP of the client endpoint and the target server IP pool. The
 client SHALL use Fully Qualified Domain Names (FQDN) in Host Headers
 and for TLS Server Name Indication (SNI).

4.3.3.1. Description of Intra-Client Behavior

 Client endpoints are independent of other clients that are
 concurrently executing. When a client endpoint initiates traffic,
 this section describes how the client steps though different
 services. Once the test is initialized, the client endpoints SHOULD
 randomly hold (perform no operation) for a few milliseconds to allow
 for better randomization of start of client traffic. Each client
 will either open a new TCP connection or connect to a TCP persistence
 stack still open to that specific server. At any point that the
 service profile may require encryption, a TLS encryption tunnel will
 form presenting the URL request to the server. The server will then
 perform an SNI name check with the proposed FQDN compared to the
 domain embedded in the certificate. Only when correct, will the
 server process the HTTPS response object. The initial response
 object to the server MUST NOT have a fixed size; its size is based on
 benchmarking tests described in Section 7. Multiple additional sub-
 URLs (response objects on the service page) MAY be requested
 simultaneously. This MAY be to the same server IP as the initial
 URL. Each sub-object will also use a conical FQDN and URL path, as
 observed in the traffic mix used.

4.3.4. Traffic Load Profile

 The loading of traffic is described in this section. The loading of
 a traffic load profile has five distinct phases: Init, ramp up,
 sustain, ramp down, and collection.

 1. During the Init phase, test bed devices including the client and
 server endpoints should negotiate layer 2-3 connectivity such as
 MAC learning and ARP. Only after successful MAC learning or ARP/
 ND resolution SHALL the test iteration move to the next phase.
 No measurements are made in this phase. The minimum RECOMMEND
 time for Init phase is 5 seconds. During this phase, the
 emulated clients SHOULD NOT initiate any sessions with the DUT/
 SUT, in contrast, the emulated servers should be ready to accept
 requests from DUT/SUT or from emulated clients.

 2. In the ramp up phase, the test equipment SHOULD start to generate
 the test traffic. It SHOULD use a set approximate number of
 unique client IP addresses actively to generate traffic. The
 traffic SHOULD ramp from zero to desired target objective. The
 target objective will be defined for each benchmarking test. The
 duration for the ramp up phase MUST be configured long enough, so
 that the test equipment does not overwhelm DUT/SUT's supported
 performance metrics namely; connections per second, concurrent
 TCP connections, and application transactions per second. The
 RECOMMENDED time duration for the ramp up phase is 180-300
 seconds. No measurements are made in this phase.

 3. In the sustain phase, the test equipment SHOULD continue
 generating traffic to constant target value for a constant number
 of active client IPs. The RECOMMENDED time duration for sustain
 phase is 600 seconds. This is the phase where measurements
 occur.

 4. In the ramp down/close phase, no new connections are established,
 and no measurements are made. The time duration for ramp up and
 ramp down phase SHOULD be same. The RECOMMENDED duration of this
 phase is between 180 to 300 seconds.

 5. The last phase is administrative and will occur when the test
 equipment merges and collates the report data.

5. Test Bed Considerations

 This section recommends steps to control the test environment and
 test equipment, specifically focusing on virtualized environments and
 virtualized test equipment.

 1. Ensure that any ancillary switching or routing functions between
 the system under test and the test equipment do not limit the
 performance of the traffic generator. This is specifically
 important for virtualized components (vSwitches, vRouters).

 2. Verify that the performance of the test equipment matches and
 reasonably exceeds the expected maximum performance of the system
 under test.

 3. Assert that the test bed characteristics are stable during the
 entire test session. Several factors might influence stability
 specifically for virtualized test beds, for example additional
 workloads in a virtualized system, load balancing and movement of
 virtual machines during the test, or simple issues such as
 additional heat created by high workloads leading to an emergency
 CPU performance reduction.

 Test bed reference pre-tests help to ensure that the desired traffic
 generator aspects such as maximum throughput and the network
 performance metrics such as maximum latency and maximum packet loss
 are met.

 Once the desired maximum performance goals for the system under test
 have been identified, a safety margin of 10% SHOULD be added for
 throughput and subtracted for maximum latency and maximum packet
 loss.

 Test bed preparation may be performed either by configuring the DUT
 in the most trivial setup (fast forwarding) or without presence of
 DUT.

6. Reporting

 This section describes how the final report should be formatted and
 presented. The final test report MAY have two major sections;
 Introduction and result sections. The following attributes SHOULD be
 present in the introduction section of the test report.

 1. The name of the NetSecOPEN traffic mix (see Appendix A) MUST be
 prominent.

 2. The time and date of the execution of the test MUST be prominent.

 3. Summary of testbed software and Hardware details

 A. DUT Hardware/Virtual Configuration

 + This section SHOULD clearly identify the make and model of
 the DUT

 + The port interfaces, including speed and link information
 MUST be documented.

 + If the DUT is a virtual VNF, interface acceleration such
 as DPDK and SR-IOV MUST be documented as well as cores
 used, RAM used, and the pinning / resource sharing
 configuration. The Hypervisor and version MUST be
 documented.

 + Any additional hardware relevant to the DUT such as
 controllers MUST be documented

 B. DUT Software

 + The operating system name MUST be documented

 + The version MUST be documented

 + The specific configuration MUST be documented

 C. DUT Enabled Features

 + Specific features, such as logging, NGFW, DPI MUST be
 documented

 + Attributes of those featured MUST be documented

 + Any additional relevant information about features MUST be
 documented

 D. Test equipment hardware and software

 + Test equipment vendor name

 + Hardware details including model number, interface type

 + Test equipment firmware and test application software
 version

 4. Results Summary / Executive Summary

 1. Results SHOULD resemble a pyramid in how it is reported, with
 the introduction section documenting the summary of results
 in a prominent, easy to read block.

 2. In the result section of the test report, the following
 attributes should be present for each test scenario.

 a. KPIs MUST be documented separately for each test
 scenario. The format of the KPI metrics should be
 presented as described in Section 6.1.

 b. The next level of details SHOULD be graphs showing each
 of these metrics over the duration (sustain phase) of the
 test. This allows the user to see the measured
 performance stability changes over time.

6.1. Key Performance Indicators

 This section lists KPIs for overall benchmarking tests scenarios.
 All KPIs MUST be measured during the sustain phase of the traffic
 load profile described in Section 4.3.4. All KPIs MUST be measured
 from the result output of test equipment.

o Concurrent TCP Connections
 This key performance indicator measures the average concurrent
 open TCP connections in the sustaining period.

 o TCP Connections Per Second

 This key performance indicator measures the average established
 TCP connections per second in the sustaining period. For "TCP/
 HTTP(S) Connection Per Second" benchmarking test scenario, the KPI
 is measured average established and terminated TCP connections per
 second simultaneously.

o Application Transactions Per Second
 This key performance indicator measures the average successfully
 completed application transactions per second in the sustaining
 period.

o TLS Handshake Rate
 This key performance indicator measures the average TLS 1.2 or
 higher session formation rate within the sustaining period.

o Throughput
 This key performance indicator measures the average Layer 2
 throughput within the sustaining period as well as average packets
 per seconds within the same period. The value of throughput
 SHOULD be presented in Gbit/s rounded to two places of precision
 with a more specific kbps in parenthesis. Optionally, goodput MAY
 also be logged as an average goodput rate measured over the same
 period. Goodput result SHALL also be presented in the same format
 as throughput.

o URL Response time / Time to Last Byte (TTLB)
 This key performance indicator measures the minimum, average and
 maximum per URL response time in the sustaining period. The
 latency is measured at Client and in this case would be the time
 duration between sending a GET request from Client and the
 receival of the complete response from the server.

o Application Transaction Latency
 This key performance indicator measures the minimum, average and
 maximum the amount of time to receive all objects from the server.
 The value of application transaction latency SHOULD be presented
 in millisecond rounded to zero decimal.

o Time to First Byte (TTFB)
 This key performance indicator will measure minimum, average and
 maximum the time to first byte. TTFB is the elapsed time between
 sending the SYN packet from the client and receiving the first
 byte of application date from the DUT/SUT. TTFB SHOULD be
 expressed in millisecond.

7. Benchmarking Tests

7.1. Throughput Performance With NetSecOPEN Traffic Mix

7.1.1. Objective

 Using NetSecOPEN traffic mix, determine the maximum sustainable
 throughput performance supported by the DUT/SUT. (see Appendix A for
 details about traffic mix)

 This test scenario is RECOMMENDED to perform twice; one with SSL
 inspection feature enabled and the second scenario with SSL
 inspection feature disabled on the DUT/SUT.

7.1.2. Test Setup

 Test bed setup MUST be configured as defined in Section 4. Any test
 scenario specific test bed configuration changes MUST be documented.

7.1.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.1.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.1.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 noted for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target throughput: It can be defined based on requirements.
 Otherwise it represents aggregated line rate of interface(s) used
 in the DUT/SUT

 Initial throughput: 10% of the "Target throughput"

 One of the following ciphers and keys are RECOMMENDED to use for
 this test scenarios.

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithm: ecdsa_secp256r1_sha256 and Supported group:
 sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithm: rsa_pkcs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithm: ecdsa_secp384r1_sha384 and Supported group:
 sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithm: rsa_pkcs1_sha384 and Supported group: secp256)

7.1.3.3. Traffic Profile

 Traffic profile: Test scenario MUST be run with a single application
 traffic mix profile (see Appendix A for details about traffic mix).
 The name of the NetSecOPEN traffic mix MUST be documented.

7.1.3.4. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of total attempt
 transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

c. Maximum deviation (max. dev) of application transaction time or
 TTLB (Time To Last Byte) MUST be less than X (The value for "X"
 will be finalized and updated after completion of PoC test)
 The following equation MUST be used to calculate the deviation of
 application transaction latency or TTLB
 max. dev = max((avg_latency ‑ min_latency),(max_latency ‑
 avg_latency)) / (Initial latency)
 Where, the initial latency is calculated using the following
 equation. For this calculation, the latency values (min', avg'
 and max') MUST be measured during test procedure step 1 as
 defined in Section 7.1.4.1.

 The variable latency represents application transaction latency
 or TTLB.
 Initial latency:= min((avg' latency ‑ min' latency) | (max'
 latency ‑ avg' latency))

 d. Maximum value of Time to First Byte (TTFB) MUST be less than X

7.1.3.5. Measurement

 Following KPI metrics MUST be reported for this test scenario.

 Mandatory KPIs: average Throughput, average Concurrent TCP
 connections, TTLB/application transaction latency (minimum, average
 and maximum) and average application transactions per second

 Optional KPIs: average TCP connections per second, average TLS
 handshake rate and TTFB

7.1.4. Test Procedures and expected Results

 The test procedures are designed to measure the throughput
 performance of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps.

7.1.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to generate test
 traffic at the "Initial throughput" rate as described in the
 parameters Section 7.1.3.2. The test equipment SHOULD follow the
 traffic load profile definition as described in Section 4.3.4. The
 DUT/SUT SHOULD reach the "Initial throughput" during the sustain
 phase. Measure all KPI as defined in Section 7.1.3.5. The measured
 KPIs during the sustain phase MUST meet acceptance criteria "a" and
 "b" defined in Section 7.1.3.4.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to step 2.

7.1.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to generate traffic at the "Target
 throughput" rate defined in the parameter table. The test equipment
 SHOULD follow the traffic load profile definition as described in
 Section 4.3.4. The test equipment SHOULD start to measure and record
 all specified KPIs. The frequency of KPI metric measurements MUST be
 less than 5 seconds. Continue the test until all traffic profile
 phases are completed.

 The DUT/SUT is expected to reach the desired target throughput during
 the sustain phase. In addition, the measured KPIs MUST meet all
 acceptance criteria. Follow step 3, if the KPI metrics do not meet
 the acceptance criteria.

7.1.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.2. TCP/HTTP Connections Per Second

7.2.1. Objective

 Using HTTP traffic, determine the maximum sustainable TCP connection
 establishment rate supported by the DUT/SUT under different
 throughput load conditions.

 To measure connections per second, test iterations MUST use different
 fixed HTTP response object sizes defined in Section 7.2.3.2.

7.2.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.2.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.2.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.2.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target connections per second: Initial value from product data sheet
 (if known)

 Initial connections per second: 10% of "Target connections per
 second"

 The client SHOULD negotiate HTTP 1.1 and close the connection with
 FIN immediately after completion of one transaction. In each test
 iteration, client MUST send GET command requesting a fixed HTTP
 response object size.

 The RECOMMENDED response object sizes are 1, 2, 4, 16, 64 KByte

7.2.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of total attempt
 transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate

 d. Concurrent TCP connections SHOULD be constant during steady
 state. Any deviation of concurrent TCP connections MUST be less
 than 10%. This confirms the DUT opens and closes TCP connections
 almost at the same rate

7.2.3.4. Measurement

 Following KPI metrics MUST be reported for each test iteration.

 Mandatory KPIs: average TCP connections per second, average
 Throughput and Average Time to First Byte (TTFB).

7.2.4. Test Procedures and Expected Results

 The test procedure is designed to measure the TCP connections per
 second rate of the DUT/SUT at the sustaining period of the traffic
 load profile. The test procedure consists of three major steps.
 This test procedure MAY be repeated multiple times with different IP
 types; IPv4 only, IPv6 only and IPv4 and IPv6 mixed traffic
 distribution.

7.2.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure the traffic load profile of the test equipment to establish
 "initial connections per second" as defined in the parameters
 Section 7.2.3.2. The traffic load profile SHOULD be defined as
 described in Section 4.3.4.

 The DUT/SUT SHOULD reach the "Initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet acceptance criteria a, b, c, and d defined in Section 7.2.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.2.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in Section 4.3.4.

 During the ramp up and sustain phase of each test iteration, other
 KPIs such as throughput, concurrent TCP connections and application
 transactions per second MUST NOT reach to the maximum value the DUT/
 SUT can support. The test results for specific test iterations
 SHOULD NOT be reported, if the above mentioned KPI (especially
 throughput) reaches the maximum value. (Example: If the test
 iteration with 64Kbyte of HTTP response object size reached the
 maximum throughput limitation of the DUT, the test iteration MAY be
 interrupted and the result for 64kbyte SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 The DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 MUST meet all acceptance criteria.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.2.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable connections per second
 within the acceptance criteria.

7.3. HTTP Throughput

7.3.1. Objective

 Determine the throughput for HTTP transactions varying the HTTP
 response object size.

7.3.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.3.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.3.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.3.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Throughput: Initial value from product data sheet (if known)

 Initial Throughput: 10% of "Target Throughput"

 Number of HTTP response object requests (transactions) per
 connection: 10

 RECOMMENDED HTTP response object size: 1KB, 16KB, 64KB, 256KB and
 mixed objects defined in the table

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Object size (KByte) | Number of requests/ |
| | Weight |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0.2 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 6 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 8 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 9 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 10 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 25 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 26 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 35 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 59 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 347 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 3: Mixed Objects

7.3.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of attempt transactions.

 b. Traffic should be forwarded constantly.

 c. Concurrent connetions MUST be constant. The deviation of
 concurrent TCP connection MUST NOT increase more than 10%

7.3.3.4. Measurement

 The KPI metrics MUST be reported for this test scenario:

 Average Throughput, average HTTP transactions per second, concurrent
 connections, and average TCP connections per second.

7.3.4. Test Procedures and Expected Results

 The test procedure is designed to measure HTTP throughput of the DUT/
 SUT. The test procedure consists of three major steps. This test
 procedure MAY be repeated multiple times with different IPv4 and IPv6
 traffic distribution and HTTP response object sizes.

7.3.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to establish
 "Initial Throughput" as defined in the parameters Section 7.3.3.2.

 The traffic load profile SHOULD be defined as described in
 Section 4.3.4. The DUT/SUT SHOULD reach the "Initial Throughput"
 during the sustain phase. Measure all KPI as defined in
 Section 7.3.3.4.

 The measured KPIs during the sustain phase MUST meet the acceptance
 criteria "a" defined in Section 7.3.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.3.4.2. Step 2: Test Run with Target Objective

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired "Target Throughput" at
 the sustain phase. In addition, the measured KPIs must meet all
 acceptance criteria.

 Perform the test separately for each HTTP response object size.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.3.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.4. TCP/HTTP Transaction Latency

7.4.1. Objective

 Using HTTP traffic, determine the average HTTP transaction latency
 when DUT is running with sustainable HTTP transactions per second
 supported by the DUT/SUT under different HTTP response object sizes.

 Test iterations MUST be performed with different HTTP response object
 sizes in two different scenarios.one with a single transaction and
 the other with multiple transactions within a single TCP connection.
 For consistency both the single and multiple transaction test MUST be
 configured with HTTP 1.1.

 Scenario 1: The client MUST negotiate HTTP 1.1 and close the
 connection with FIN immediately after completion of a single
 transaction (GET and RESPONSE).

 Scenario 2: The client MUST negotiate HTTP 1.1 and close the
 connection FIN immediately after completion of 10 transactions (GET
 and RESPONSE) within a single TCP connection.

7.4.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.4.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.4.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.4.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3 . Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target objective for scenario 1: 50% of the maximum connection per
 second measured in test scenario TCP/HTTP Connections Per Second
 (Section 7.2)

 Target objective for scenario 2: 50% of the maximum throughput
 measured in test scenario HTTP Throughput (Section 7.3)

 Initial objective for scenario 1: 10% of Target objective for
 scenario 1"

 Initial objective for scenario 2: 10% of "Target objective for
 scenario 2"

 HTTP transaction per TCP connection: test scenario 1 with single
 transaction and the second scenario with 10 transactions

 HTTP 1.1 with GET command requesting a single object. The
 RECOMMENDED object sizes are 1, 16 or 64 Kbyte. For each test
 iteration, client MUST request a single HTTP response object size.

7.4.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile. Ramp up and
 ramp down phase SHOULD NOT be considered.

 Generic criteria:

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of attempt transactions.

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate.

 d. Concurrent TCP connections should be constant during steady
 state. This confirms the DUT opens and closes TCP connections at
 the same rate.

 e. After ramp up the DUT MUST achieve the "Target objective" defined
 in the parameter Section 7.4.3.2 and remain in that state for the
 entire test duration (sustain phase).

7.4.3.4. Measurement

 Following KPI metrics MUST be reported for each test scenario and
 HTTP response object sizes separately:

 average TCP connections per second and average application
 transaction latency

 All KPI's are measured once the target throughput achieves the steady
 state.

7.4.4. Test Procedures and Expected Results

 The test procedure is designed to measure the average application
 transaction latencies or TTLB when the DUT is operating close to 50%
 of its maximum achievable throughput or connections per second. This
 test procedure CAN be repeated multiple times with different IP types
 (IPv4 only, IPv6 only and IPv4 and IPv6 mixed traffic distribution),
 HTTP response object sizes and single and multiple transactions per
 connection scenarios.

7.4.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to establish
 "Initial objective" as defined in the parameters Section 7.4.3.2.
 The traffic load profile can be defined as described in
 Section 4.3.4.

 The DUT/SUT SHOULD reach the "Initial objective" before the sustain
 phase. The measured KPIs during the sustain phase MUST meet the
 acceptance criteria a, b, c, d, e and f defined in Section 7.4.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.4.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target objective" defined in
 the parameters table. The test equipment SHOULD follow the traffic
 load profile definition as described in Section 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach to the maximum value that the DUT/SUT can support.
 The test results for specific test iterations SHOULD NOT be reported,
 if the above mentioned KPI (especially throughput) reaches to the
 maximum value. (Example: If the test iteration with 64Kbyte of HTTP
 response object size reached the maximum throughput limitation of the
 DUT, the test iteration MAY be interrupted and the result for 64kbyte
 SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 DUT/SUT is expected to reach the desired "Target objective" at the
 sustain phase. In addition, the measured KPIs MUST meet all
 acceptance criteria.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.4.4.3. Step 3: Test Iteration

 Determine the maximum achievable connections per second within the
 acceptance criteria and measure the latency values.

7.5. Concurrent TCP/HTTP Connection Capacity

7.5.1. Objective

 Determine the maximum number of concurrent TCP connections that the
 DUT/ SUT sustains when using HTTP traffic.

7.5.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.5.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.5.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.5.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 noted for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target concurrent connection: Initial value from product data
 sheet (if known)

 Initial concurrent connection: 10% of "Target concurrent
 connection"

 Maximum connections per second during ramp up phase: 50% of
 maximum connections per second measured in test scenario TCP/HTTP
 Connections per second (Section 7.2)

 Ramp up time (in traffic load profile for "Target concurrent
 connection"): "Target concurrent connection" / "Maximum
 connections per second during ramp up phase"

 Ramp up time (in traffic load profile for "Initial concurrent
 connection"): "Initial concurrent connection" / "Maximum
 connections per second during ramp up phase"

 The client MUST negotiate HTTP 1.1 with persistence and each client
 MAY open multiple concurrent TCP connections per server endpoint IP.

 Each client sends 10 GET commands requesting 1Kbyte HTTP response
 object in the same TCP connection (10 transactions/TCP connection)
 and the delay (think time) between the transaction MUST be X seconds.
 X = ("Ramp up time" + "steady state time") /10

 The established connections SHOULD remain open until the ramp down
 phase of the test. During the ramp down phase, all connections
 SHOULD be successfully closed with FIN.

7.5.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transaction) of total attempted
 transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic should be forwarded constantly

 d. During the sustain phase, the maximum deviation (max. dev) of
 application transaction latency or TTLB (Time To Last Byte) MUST
 be less than 10%

7.5.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 average Throughput, Concurrent TCP connections (minimum, average and
 maximum), TTLB/ application transaction latency (minimum, average and
 maximum) and average application transactions per second.

7.5.4. Test Procedures and expected Results

 The test procedure is designed to measure the concurrent TCP
 connection capacity of the DUT/SUT at the sustaining period of
 traffic load profile. The test procedure consists of three major
 steps. This test procedure MAY be repeated multiple times with
 different IPv4 and IPv6 traffic distribution.

7.5.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure test equipment to establish "Initial concurrent TCP
 connections" defined in Section 7.5.3.2. Except ramp up time, the
 traffic load profile SHOULD be defined as described in Section 4.3.4.

 During the sustain phase, the DUT/SUT SHOULD reach the "Initial
 concurrent TCP connections". The measured KPIs during the sustain
 phase MUST meet the acceptance criteria "a" and "b" defined in
 Section 7.5.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.5.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target concurrent TCP
 connections". The test equipment SHOULD follow the traffic load
 profile definition (except ramp up time) as described in
 Section 4.3.4.

 During the ramp up and sustain phase, the other KPIs such as
 throughput, TCP connections per second and application transactions
 per second MUST NOT reach to the maximum value that the DUT/SUT can
 support.

 The test equipment SHOULD start to measure and record KPIs defined in
 Section 7.5.3.4. The frequency of measurement MUST be less than 5
 seconds. Continue the test until all traffic profile phases are
 completed.

 The DUT/SUT is expected to reach the desired target concurrent
 connection at the sustain phase. In addition, the measured KPIs must
 meet all acceptance criteria.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.5.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable concurrent TCP
 connections capacity within the acceptance criteria.

7.6. TCP/HTTPS Connections per second

7.6.1. Objective

 Using HTTPS traffic, determine the maximum sustainable SSL/TLS
 session establishment rate supported by the DUT/SUT under different
 throughput load conditions.

 Test iterations MUST include common cipher suites and key strengths
 as well as forward looking stronger keys. Specific test iterations
 MUST include ciphers and keys defined in Section 7.6.3.2.

 For each cipher suite and key strengths, test iterations MUST use a
 single HTTPS response object size defined in the test equipment
 configuration parameters Section 7.6.3.2 to measure connections per
 second performance under a variety of DUT Security inspection load
 conditions.

7.6.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.6.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.6.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.6.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target connections per second: Initial value from product data sheet
 (if known)

 Initial connections per second: 10% of "Target connections per
 second"

 RECOMMENDED ciphers and keys:

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithm: ecdsa_secp256r1_sha256 and Supported group: sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithm: rsa_pkcs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithm: ecdsa_secp384r1_sha384 and Supported group: sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithm: rsa_pkcs1_sha384 and Supported group: secp256)

 The client MUST negotiate HTTPS 1.1 and close the connection with FIN
 immediately after completion of one transaction. In each test
 iteration, client MUST send GET command requesting a fixed HTTPS
 response object size. The RECOMMENDED object sizes are 1, 2, 4, 16,
 64 Kbyte.

7.6.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria:

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of attempt transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate

 d. Concurrent TCP connections SHOULD be constant during steady
 state. This confirms that the DUT open and close the TCP
 connections at the same rate

7.6.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 average TCP connections per second, average Throughput and Average
 Time to TCP First Byte.

7.6.4. Test Procedures and expected Results

 The test procedure is designed to measure the TCP connections per
 second rate of the DUT/SUT at the sustaining period of traffic load
 profile. The test procedure consists of three major steps. This
 test procedure MAY be repeated multiple times with different IPv4 and
 IPv6 traffic distribution.

7.6.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to establish
 "Initial connections per second" as defined in Section 7.6.3.2. The
 traffic load profile CAN be defined as described in Section 4.3.4.

 The DUT/SUT SHOULD reach the "Initial connections per second" before
 the sustain phase. The measured KPIs during the sustain phase MUST
 meet the acceptance criteria a, b, c, and d defined in
 Section 7.6.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.6.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target connections per second"
 defined in the parameters table. The test equipment SHOULD follow
 the traffic load profile definition as described in Section 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach the maximum value that the DUT/SUT can support. The
 test results for specific test iteration SHOULD NOT be reported, if
 the above mentioned KPI (especially throughput) reaches the maximum
 value. (Example: If the test iteration with 64Kbyte of HTTPS
 response object size reached the maximum throughput limitation of the
 DUT, the test iteration can be interrupted and the result for 64kbyte
 SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired target connections per
 second rate at the sustain phase. In addition, the measured KPIs
 must meet all acceptance criteria.

 Follow the step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.6.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable connections per second
 within the acceptance criteria.

7.7. HTTPS Throughput

7.7.1. Objective

 Determine the throughput for HTTPS transactions varying the HTTPS
 response object size.

 Test iterations MUST include common cipher suites and key strengths
 as well as forward looking stronger keys. Specific test iterations
 MUST include the ciphers and keys defined in the parameter
 Section 7.7.3.2.

7.7.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. must be documented.

7.7.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.7.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.7.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 Target Throughput: Initial value from product data sheet (if known)

 Initial Throughput: 10% of "Target Throughput"

 Number of HTTPS response object requests (transactions) per
 connection: 10

 RECOMMENDED ciphers and keys:

 1. ECHDE-ECDSA-AES128-GCM-SHA256 with Prime256v1 (Signature Hash
 Algorithm: ecdsa_secp256r1_sha256 and Supported group: sepc256r1)

 2. ECDHE-RSA-AES128-GCM-SHA256 with RSA 2048 (Signature Hash
 Algorithm: rsa_pkcs1_sha256 and Supported group: sepc256)

 3. ECDHE-ECDSA-AES256-GCM-SHA384 with Secp521 (Signature Hash
 Algorithm: ecdsa_secp384r1_sha384 and Supported group: sepc521r1)

 4. ECDHE-RSA-AES256-GCM-SHA384 with RSA 4096 (Signature Hash
 Algorithm: rsa_pkcs1_sha384 and Supported group: secp256)

 RECOMMENDED HTTPS response object size: 1KB, 2KB, 4KB, 16KB, 64KB,
 256KB and mixed object defined in the table below.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Object size (KByte) | Number of requests/ |
| | Weight |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0.2 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 6 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 8 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 9 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 10 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 25 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 26 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 35 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 59 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 347 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 4: Mixed Objects

7.7.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of attempt transactions.

 b. Traffic should be forwarded constantly.

 c. The deviation of concurrent TCP connections MUST be less than 10%

7.7.3.4. Measurement

 The KPI metrics MUST be reported for this test scenario:

 Average Throughput, Average transactions per second, concurrent
 connections, and average TCP connections per second.

7.7.4. Test Procedures and Expected Results

 The test procedure consists of three major steps. This test
 procedure MAY be repeated multiple times with different IPv4 and IPv6
 traffic distribution and HTTPS response object sizes.

7.7.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to establish
 "initial throughput" as defined in the parameters Section 7.7.3.2.

 The traffic load profile should be defined as described in
 Section 4.3.4. The DUT/SUT SHOULD reach the "Initial Throughput"
 during the sustain phase. Measure all KPI as defined in
 Section 7.7.3.4.

 The measured KPIs during the sustain phase MUST meet the acceptance
 criteria "a" defined in Section 7.7.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.7.4.2. Step 2: Test Run with Target Objective

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.

 The DUT/SUT is expected to reach the desired "Target Throughput" at
 the sustain phase. In addition, the measured KPIs MUST meet all
 acceptance criteria.

 Perform the test separately for each HTTPS response object size.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.7.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable throughput within the
 acceptance criteria. Final test iteration MUST be performed for the
 test duration defined in Section 4.3.4.

7.8. HTTPS Transaction Latency

7.8.1. Objective

 Using HTTPS traffic, determine the average HTTPS transaction latency
 when DUT is running with sustainable HTTPS transactions per second
 supported by the DUT/SUT under different HTTPS response object size.

 Scenario 1: The client MUST negotiate HTTPS and close the connection
 with FIN immediately after completion of a single transaction (GET
 and RESPONSE).

 Scenario 2: The client MUST negotiate HTTPS and close the connection
 with FIN immediately after completion of 10 transactions (GET and
 RESPONSE) within a single TCP connection.

7.8.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.8.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.8.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.8.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 RECOMMENDED cipher suites and key size: ECDHE-ECDSA-AES256-GCM-SHA384
 with Secp521 bits key size (Signature Hash Algorithm:
 ecdsa_secp384r1_sha384 and Supported group: sepc521r1)

 Target objective for scenario 1: 50% of the maximum connections per
 second measured in test scenario TCP/HTTPS Connections per second
 (Section 7.6)

 Target objective for scenario 2: 50% of the maximum throughput
 measured in test scenario HTTPS Throughput (Section 7.7)

 Initial objective for scenario 1: 10% of Target objective for
 scenario 1"

 Initial objective for scenario 2: 10% of "Target objective for
 scenario 2"

 HTTPS transaction per TCP connection: test scenario 1 with single
 transaction and the second scenario with 10 transactions

 HTTPS 1.1 with GET command requesting a single 1, 16 or 64 Kbyte
 object. For each test iteration, client MUST request a single HTTPS
 response object size.

7.8.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile. Ramp up and
 ramp down phase SHOULD NOT be considered.

 Generic criteria:

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of attempt transactions.

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic should be forwarded at a
 constant rate.

 d. Concurrent TCP connections should be constant during steady
 state. This confirms the DUT opens and closes TCP connections at
 the same rate.

 e. After ramp up the DUT MUST achieve the "Target objective" defined
 in the parameter Section 7.8.3.2 and remain in that state for the
 entire test duration (sustain phase).

7.8.3.4. Measurement

 Following KPI metrics MUST be reported for each test scenario and
 HTTPS response object sizes separately:

 average TCP connections per second and average application
 transaction latency or TTLB

 All KPI's are measured once the target connections per second
 achieves the steady state.

7.8.4. Test Procedures and Expected Results

 The test procedure is designed to measure average application
 transaction latency or TTLB when the DUT is operating close to 50% of
 its maximum achievable connections per second. This test procedure
 can be repeated multiple times with different IP types (IPv4 only,
 IPv6 only and IPv4 and IPv6 mixed traffic distribution), HTTPS
 response object sizes and single and multiple transactions per
 connection scenarios.

7.8.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of the all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure traffic load profile of the test equipment to establish
 "Initial objective" as defined in the parameters Section 7.8.3.2.
 The traffic load profile can be defined as described in
 Section 4.3.4.

 The DUT/SUT SHOULD reach the "Initial objective" before the sustain
 phase. The measured KPIs during the sustain phase MUST meet the
 acceptance criteria a, b, c, d, e and f defined in Section 7.8.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.8.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target objective" defined in
 the parameters table. The test equipment SHOULD follow the traffic
 load profile definition as described in Section 4.3.4.

 During the ramp up and sustain phase, other KPIs such as throughput,
 concurrent TCP connections and application transactions per second
 MUST NOT reach to the maximum value that the DUT/SUT can support.
 The test results for specific test iterations SHOULD NOT be reported,
 if the above mentioned KPI (especially throughput) reaches to the
 maximum value. (Example: If the test iteration with 64Kbyte of HTTP
 response object size reached the maximum throughput limitation of the
 DUT, the test iteration MAY be interrupted and the result for 64kbyte
 SHOULD NOT be reported).

 The test equipment SHOULD start to measure and record all specified
 KPIs. The frequency of measurement MUST be less than 5 seconds.
 Continue the test until all traffic profile phases are completed.
 DUT/SUT is expected to reach the desired "Target objective" at the
 sustain phase. In addition, the measured KPIs MUST meet all
 acceptance criteria.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.8.4.3. Step 3: Test Iteration

 Determine the maximum achievable connections per second within the
 acceptance criteria and measure the latency values.

7.9. Concurrent TCP/HTTPS Connection Capacity

7.9.1. Objective

 Determine the maximum number of concurrent TCP connections that the
 DUT/SUT sustains when using HTTPS traffic.

7.9.2. Test Setup

 Test bed setup SHOULD be configured as defined in Section 4. Any
 specific test bed configuration changes such as number of interfaces
 and interface type, etc. MUST be documented.

7.9.3. Test Parameters

 In this section, test scenario specific parameters SHOULD be defined.

7.9.3.1. DUT/SUT Configuration Parameters

 DUT/SUT parameters MUST conform to the requirements defined in
 Section 4.2. Any configuration changes for this specific test
 scenario MUST be documented.

7.9.3.2. Test Equipment Configuration Parameters

 Test equipment configuration parameters MUST conform to the
 requirements defined in Section 4.3. Following parameters MUST be
 documented for this test scenario:

 Client IP address range defined in Section 4.3.1.2

 Server IP address range defined in Section 4.3.2.2

 Traffic distribution ratio between IPv4 and IPv6 defined in
 Section 4.3.1.2

 RECOMMENDED cipher suites and key size: ECDHE-ECDSA-AES256-GCM-
 SHA384 with Secp521 bits key size (Signature Hash Algorithm:
 ecdsa_secp384r1_sha384 and Supported group: sepc521r1)

 Target concurrent connections: Initial value from product data
 sheet (if known)

 Initial concurrent connections: 10% of "Target concurrent
 connections"

 Connections per second during ramp up phase: 50% of maximum
 connections per second measured in test scenario TCP/HTTPS
 Connections per second (Section 7.6)

 Ramp up time (in traffic load profile for "Target concurrent
 connections"): "Target concurrent connections" / "Maximum
 connections per second during ramp up phase"

 Ramp up time (in traffic load profile for "Initial concurrent
 connections"): "Initial concurrent connections" / "Maximum
 connections per second during ramp up phase"

 The client MUST perform HTTPS transaction with persistence and each
 client can open multiple concurrent TCP connections per server
 endpoint IP.

 Each client sends 10 GET commands requesting 1Kbyte HTTPS response
 objects in the same TCP connections (10 transactions/TCP connection)
 and the delay (think time) between each transactions MUST be X
 seconds.

 X = ("Ramp up time" + "steady state time") /10

 The established connections SHOULD remain open until the ramp down
 phase of the test. During the ramp down phase, all connections
 SHOULD be successfully closed with FIN.

7.9.3.3. Test Results Acceptance Criteria

 The following test Criteria is defined as test results acceptance
 criteria. Test results acceptance criteria MUST be monitored during
 the whole sustain phase of the traffic load profile.

 a. Number of failed Application transactions MUST be less than
 0.001% (1 out of 100,000 transactions) of total attempted
 transactions

 b. Number of Terminated TCP connections due to unexpected TCP RST
 sent by DUT/SUT MUST be less than 0.001% (1 out of 100,000
 connections) of total initiated TCP connections

 c. During the sustain phase, traffic SHOULD be forwarded constantly

 d. During the sustain phase, the maximum deviation (max. dev) of
 application transaction latency or TTLB (Time To Last Byte) MUST
 be less than 10%

7.9.3.4. Measurement

 Following KPI metrics MUST be reported for this test scenario:

 Average Throughput, max. Min. Avg. Concurrent TCP connections, TTLB/
 application transaction latency and average application transactions
 per second

7.9.4. Test Procedures and expected Results

 The test procedure is designed to measure the concurrent TCP
 connection capacity of the DUT/SUT at the sustaining period of
 traffic load profile. The test procedure consists of three major
 steps. This test procedure MAY be repeated multiple times with
 different IPv4 and IPv6 traffic distribution.

7.9.4.1. Step 1: Test Initialization and Qualification

 Verify the link status of all connected physical interfaces. All
 interfaces are expected to be in "UP" status.

 Configure test equipment to establish "initial concurrent TCP
 connections" defined in Section 7.9.3.2. Except ramp up time, the
 traffic load profile SHOULD be defined as described in Section 4.3.4.
 During the sustain phase, the DUT/SUT SHOULD reach the "Initial
 concurrent TCP connections". The measured KPIs during the sustain
 phase MUST meet the acceptance criteria "a" and "b" defined in
 Section 7.9.3.3.

 If the KPI metrics do not meet the acceptance criteria, the test
 procedure MUST NOT be continued to "Step 2".

7.9.4.2. Step 2: Test Run with Target Objective

 Configure test equipment to establish "Target concurrent TCP
 connections".The test equipment SHOULD follow the traffic load
 profile definition (except ramp up time) as described in
 Section 4.3.4.

 During the ramp up and sustain phase, the other KPIs such as
 throughput, TCP connections per second and application transactions
 per second MUST NOT reach to the maximum value that the DUT/SUT can
 support.

 The test equipment SHOULD start to measure and record KPIs defined in
 Section 7.9.3.4. The frequency of measurement MUST be less than 5
 seconds. Continue the test until all traffic profile phases are
 completed.

 The DUT/SUT is expected to reach the desired target concurrent
 connections at the sustain phase. In addition, the measured KPIs
 MUST meet all acceptance criteria.

 Follow step 3, if the KPI metrics do not meet the acceptance
 criteria.

7.9.4.3. Step 3: Test Iteration

 Determine the maximum and average achievable concurrent TCP
 connections within the acceptance criteria.

8. Formal Syntax

9. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

10. Acknowledgements

 Acknowledgements will be added in the future release.

11. Contributors

 The authors would like to thank the many people that contributed
 their time and knowledge to this effort.

 Specifically, to the co-chairs of the NetSecOPEN Test Methodology
 working group and the NetSecOPEN Security Effectiveness working group
 - Alex Samonte, Aria Eslambolchizadeh, Carsten Rossenhoevel and David
 DeSanto.

 Additionally, the following people provided input, comments and spent
 time reviewing the myriad of drafts. If we have missed anyone the
 fault is entirely our own. Thanks to - Amritam Putatunda, Chao Guo,
 Chris Chapman, Chris Pearson, Chuck McAuley, David White, Jurrie Van
 Den Breekel, Michelle Rhines, Rob Andrews, Samaresh Nair, and Tim
 Winters.

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [RFC2616]
 Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

 [RFC2647]
 Newman, D., "Benchmarking Terminology for Firewall
 Performance", RFC 2647, DOI 10.17487/RFC2647, August 1999,
 <https://www.rfc-editor.org/info/rfc2647>.

 [RFC3511]
 Hickman, B., Newman, D., Tadjudin, S., and T. Martin,
 "Benchmarking Methodology for Firewall Performance",
 RFC 3511, DOI 10.17487/RFC3511, April 2003,
 <https://www.rfc-editor.org/info/rfc3511>.

 [RFC5681]
 Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

Appendix A. NetSecOPEN Basic Traffic Mix

 A traffic mix for testing performance of next generation firewalls
 MUST scale to stress the DUT based on real-world conditions. In
 order to achieve this the following MUST be included:

 o Clients connecting to multiple different server FQDNs per
 application

 o Clients loading apps and pages with connections and objects in
 specific orders

 o Multiple unique certificates for HTTPS/TLS

 o A wide variety of different object sizes

 o Different URL paths

 o Mix of HTTP and HTTPS

 A traffic mix for testing performance of next generation firewalls
 MUST also facility application identification using different
 detection methods with and without decryption of the traffic. Such
 as:

 o HTTP HOST based application detection

 o HTTPS/TLS Server Name Indication (SNI)

 o Certificate Subject Common Name (CN)

 The mix MUST be of sufficient complexity and volume to render
 differences in individual apps as statistically insignificant. For
 example, changes in like to like apps - such as one type of video
 service vs. another both consist of larger objects whereas one news
 site vs. another both typically have more connections then other apps
 because of trackers and embedded advertising content. To achieve
 sufficient complexity, a mix MUST have:

 o Thousands of URLs each client walks thru

 o Hundreds of FQDNs each client connects to

 o Hundreds of unique certificates for HTTPS/TLS

 o Thousands of different object sizes per client in orders matching
 applications

 The following is a description of what a popular application in an
 enterprise traffic mix contains.

 Table 5 lists the FQDNs, number of transactions and bytes transferred
 as an example client interacts with Office 365 Outlook, Word, Excel,
 PowerPoint, SharePoint and Skype.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Office365 FQDN | Bytes | Transaction |
+==+
| r1.res.office365.com | 14,056,960 | 192 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | 6,731,019 | 22 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | 6,269,492 | 42 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| swx.cdn.skype.com | 6,100,027 | 12 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | 6,036,947 | 41 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| spoprod‑a.akamaihd.net | 3,904,250 | 25 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑excel‑15.cdn.office.net | 2,767,941 | 16 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| outlook.office365.com | 2,047,301 | 86 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shellprod.msocdn.com | 1,008,370 | 11 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | 932,080 | 25 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| res.delve.office.com | 760,146 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑powerpoint‑15.cdn.office.net | 557,604 | 3 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| appsforoffice.microsoft.com | 511,171 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| powerpoint.officeapps.live.com | 471,625 | 14 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| excel.officeapps.live.com | 342,040 | 14 |

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| s1‑officeapps‑15.cdn.office.net | 331,343 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir0a.online.lync.com | 66,930 | 15 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| portal.office.com | 13,956 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| config.edge.skype.com | 6,911 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| clientlog.portal.office.com | 6,608 | 8 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir.online.lync.com | 4,343 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| graph.microsoft.com | 2,289 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| nam.loki.delve.office.com | 1,812 | 5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.microsoftonline.com | 464 | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.windows.net | 232 | 1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 5: Office365

 Clients MUST connect to multiple server FQDNs in the same order as
 real applications. Connections MUST be made when the client is
 interacting with the application and MUST NOT first setup up all
 connections. Connections SHOULD stay open per client for subsequent
 transactions to the same FQDN similar to how a web browser behaves.
 Clients MUST use different URL Paths and Object sizes in orders as
 they are observed in real Applications. Clients MAY also setup
 multiple connections per FQDN to process multiple transactions in a
 sequence at the same time. Table 6 has a partial example sequence of
 the Office 365 Word application transactions.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| FQDN | URL Path | Object |
| | | size |
+===+
| company1‑my.sharepoint.com | /personal... | 23,132 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | /we/WsaUpload.ashx | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/.../blank.js | 454 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/.../ | 23,254 |
| | initstrings.js | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

| static.sharepointonline.com | /bld/.../init.js | 292,740 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /ScriptResource... | 102,774 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /ScriptResource... | 40,329 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| company1‑my.sharepoint.com | /WebResource... | 23,063 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| word‑edit.officeapps.live.com | /we/wordeditorframe. | 60,657 |
| | aspx... | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| static.sharepointonline.com | /bld/_layouts/.../ | 454 |
| | blank.js | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | /we/s/.../ | 19,201 |
| | EditSurface.css | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
| s1‑word‑edit‑15.cdn.office.net | /we/s/.../ | 221,397 |
| | WordEditor.css | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
s1‑officeapps‑15.cdn.office.net	/we/s/.../	107,571
	Microsoft	
	Ajax.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	39,981
	wacbootwe.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑officeapps‑15.cdn.office.net	/we/s/.../	51,749
	CommonIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	6,050
	Compat.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	54,158
	Box4Intl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	24,946
	WoncaIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	53,515
	WordEditorIntl.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../	1,978,712
	WordEditorExp.js	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
s1‑word‑edit‑15.cdn.office.net	/we/s/.../jSanity.js	10,912
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+		
word‑edit.officeapps.live.com	/we/OneNote.ashx	145,708

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+

 Table 6: Office365 Word Transactions

 For application identification the HTTPS/TLS traffic MUST include
 realistic Certificate Subject Common Name (CN) data as well as Server
 Name Indications (SNI). For example, a DUT MAY detect Facebook Chat
 traffic by inspecting the certificate and detecting *.facebook.com in
 the certificate subject CN and subsequently detect the word chat in
 the FQDN 5-edge-chat.facebook.com and identify traffic on the
 connection to be Facebook Chat.

 Table 7 includes further examples in SNI and CN pairs for several
 FQDNs of Office 365.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Server Name Indication (SNI) | Certificate Subject |
| | Common Name (CN) |
+===+
| r1.res.office365.com | *.res.outlook.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.windows.net | graph.windows.net |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir0a.online.lync.com | *.online.lync.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| login.microsoftonline.com | stamp2.login.microsoftonline.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| webdir.online.lync.com | *.online.lync.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| graph.microsoft.com | graph.microsoft.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| outlook.office365.com | outlook.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| appsforoffice.microsoft.com | appsforoffice.microsoft.com |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 7: Office365 SNI and CN Pairs Examples

 NetSecOPEN has provided a reference enterprise perimeter traffic mix
 with dozens of applications, hundreds of connections, and thousands
 of transactions.

 The enterprise perimeter traffic mix consists of 70% HTTPS and 30%
 HTTP by Bytes, 58% HTTPS and 42% HTTP by Transactions. By
 connections with a single connection per FQDN the mix consists of 43%
 HTTPS and 57% HTTP. With multiple connections per FQDN the HTTPS
 percentage is higher.

 Table 8 is a summary of the NetSecOPEN enterprise perimeter traffic
 mix sorted by bytes with unique FQDNs and transactions per
 applications.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application | FQDNs | Transactions | Bytes |
+===+
| Office365 | 26 | 558 | 52,931,947 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Box | 4 | 90 | 23,276,089 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Salesforce | 6 | 365 | 23,137,548 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Gmail | 13 | 139 | 16,399,289 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Linkedin | 10 | 206 | 15,040,918 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DailyMotion | 8 | 77 | 14,751,514 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| GoogleDocs | 2 | 71 | 14,205,476 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikia | 15 | 159 | 13,909,777 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Foxnews | 82 | 499 | 13,758,899 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Yahoo Finance | 33 | 254 | 13,134,011 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Youtube | 8 | 97 | 13,056,216 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Facebook | 4 | 207 | 12,726,231 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CNBC | 77 | 275 | 11,939,566 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Lightreading | 27 | 304 | 11,200,864 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BusinessInsider | 16 | 142 | 11,001,575 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Alexa | 5 | 153 | 10,475,151 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CNN | 41 | 206 | 10,423,740 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Twitter Video | 2 | 72 | 10,112,820 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Cisco Webex | 1 | 213 | 9,988,417 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Slack | 3 | 40 | 9,938,686 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Google Maps | 5 | 191 | 8,771,873 |

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SpectrumIEEE | 7 | 145 | 8,682,629 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Yelp | 9 | 146 | 8,607,645 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Vimeo | 12 | 74 | 8,555,960 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikihow | 11 | 140 | 8,042,314 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Netflix | 3 | 31 | 7,839,256 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Instagram | 3 | 114 | 7,230,883 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Morningstar | 30 | 150 | 7,220,121 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Docusign | 5 | 68 | 6,972,738 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Twitter | 1 | 100 | 6,939,150 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Tumblr | 11 | 70 | 6,877,200 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Whatsapp | 3 | 46 | 6,829,848 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Imdb | 16 | 251 | 6,505,227 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NOAAgov | 1 | 44 | 6,316,283 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IndustryWeek | 23 | 192 | 6,242,403 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Spotify | 18 | 119 | 6,231,013 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AutoNews | 16 | 165 | 6,115,354 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Evernote | 3 | 47 | 6,063,168 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NatGeo | 34 | 104 | 6,026,344 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BBC News | 18 | 156 | 5,898,572 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Investopedia | 38 | 241 | 5,792,038 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Pinterest | 8 | 102 | 5,658,994 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Succesfactors | 2 | 112 | 5,049,001 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AbaJournal | 6 | 93 | 4,985,626 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Pbworks | 4 | 78 | 4,670,980 |

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NetworkWorld | 42 | 153 | 4,651,354 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| WebMD | 24 | 280 | 4,416,736 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| OilGasJournal | 14 | 105 | 4,095,255 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Trello | 5 | 39 | 4,080,182 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BusinessWire | 5 | 109 | 4,055,331 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Dropbox | 5 | 17 | 4,023,469 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Nejm | 20 | 190 | 4,003,657 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| OilGasDaily | 7 | 199 | 3,970,498 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Chase | 6 | 52 | 3,719,232 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MedicalNews | 6 | 117 | 3,634,187 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Marketwatch | 25 | 142 | 3,291,226 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Imgur | 5 | 48 | 3,189,919 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NPR | 9 | 83 | 3,184,303 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Onelogin | 2 | 31 | 3,132,707 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Concur | 2 | 50 | 3,066,326 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Service‑now | 1 | 37 | 2,985,329 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Apple itunes | 14 | 80 | 2,843,744 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BerkeleyEdu | 3 | 69 | 2,622,009 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MSN | 39 | 203 | 2,532,972 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Indeed | 3 | 47 | 2,325,197 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MayoClinic | 6 | 56 | 2,269,085 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Ebay | 9 | 164 | 2,219,223 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| UCLAedu | 3 | 42 | 1,991,311 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ConstructionDive | 5 | 125 | 1,828,428 |

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EducationNews | 4 | 78 | 1,605,427 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BofA | 12 | 68 | 1,584,851 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ScienceDirect | 7 | 26 | 1,463,951 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Reddit | 8 | 55 | 1,441,909 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| FoodBusinessNews | 5 | 49 | 1,378,298 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Amex | 8 | 42 | 1,270,696 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Weather | 4 | 50 | 1,243,826 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Wikipedia | 3 | 27 | 958,935 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Bing | 1 | 52 | 697,514 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ADP | 1 | 30 | 508,654 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Grand Total | 983 | 10021 | 569,819,095 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 8: Summary of NetSecOPEN Enterprise Perimeter Traffic Mix

Authors' Addresses

 Balamuhunthan Balarajah

 Email: bm.balarajah@gmail.com

Carsten Rossenhoevel
EANTC AG
Salzufer 14
Berlin 10587
Germany

 Email: cross@eantc.de

Brian Monkman
NetSecOPEN

 Email: bmonkman@netsecopen.org

draft-ietf-dime-agent-overload-11 - Diameter Agent Overload and the Peer Overload Report

draft-ietf-dime-agent-overload-11 - Diameter Agent Overload and the Peer Overloa

Index
Next
Forward 5

Diameter Maintenance and Extensions (DIME)

Internet-Draft

Updates: RFC7683 (if approved)

Intended status: Standards Track

Expires: September 23, 2017

S. Donovan

Oracle

March 22, 2017

Diameter Agent Overload and the Peer Overload Report

draft-ietf-dime-agent-overload-11.txt

Abstract

 This specification documents an extension to RFC 7683 (Diameter
 Overload Indication Conveyance (DOIC)) base solution. The extension
 defines the Peer overload report type. The initial use case for the
 Peer report is the handling of occurrences of overload of a Diameter
 agent.

Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 23, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology and Abbreviations

	3. Peer Report Use Cases
	 3.1. Diameter Agent Overload Use Cases
	 3.1.1. Single Agent

	 3.1.2. Redundant Agents

	 3.1.3. Agent Chains

	 3.2. Diameter Endpoint Use Cases
	 3.2.1. Hop-by-hop Abatement Algorithms

	4. Interaction Between Host/Realm and Peer Overload Reports

	5. Peer Report Behavior
	 5.1. Capability Announcement
	 5.1.1. Reacting Node Behavior

	 5.1.2. Reporting Node Behavior

	 5.2. Peer Overload Report Handling
	 5.2.1. Overload Control State

	 5.2.2. Reporting Node Maintenance of Peer Report OCS

	 5.2.3. Reacting Node Maintenance of Peer Report OCS

	 5.2.4. Peer-Report Reporting Node Behavior

	 5.2.5. Peer-Report Reacting Node Behavior

	6. Peer Report AVPs
	 6.1. OC-Supported-Features AVP
	 6.1.1. OC-Feature-Vector AVP

	 6.1.2. OC-Peer-Algo AVP

	 6.2. OC-OLR AVP
	 6.2.1. OC-Report-Type AVP

	 6.3. SourceID AVP

	 6.4. Attribute Value Pair Flag Rules

	7. IANA Considerations
	 7.1. AVP Codes

	 7.2. New Registries

	8. Security Considerations

	9. Acknowledgements

	10. References
	 10.1. Informative References

	 10.2. Normative References

	Author's Address

1. Introduction

 This specification documents an extension to the Diameter Overload
 Indication Conveyance (DOIC) [RFC7683] base solution. The extension
 defines the Peer overload report type. The initial use case for the
 Peer report is the handling of occurrences of overload of a Diameter
 agent.

 This document defines the behavior of Diameter nodes when Diameter
 agents enter an overload condition and send an overload report
 requesting a reduction of traffic. It also defines new overload
 report type, the Peer overload report type, that is used for handling
 of agent overload conditions. The Peer overload report type is
 defined in a generic fashion so that it can also be used for other
 Diameter overload scenarios.

 The base Diameter overload specification [RFC7683] addresses the
 handling of overload when a Diameter endpoint (a Diameter Client or
 Diameter Server as defined in [RFC6733]) becomes overloaded.

 In the base specification, the goal is to handle abatement of the
 overload occurrence as close to the source of the Diameter traffic as
 feasible. When possible this is done at the originator of the
 traffic, generally referred to as a Diameter Client. A Diameter
 Agent might also handle the overload mitigation. For instance, a
 Diameter Agent might handle Diameter overload mitigation when it
 knows that a Diameter Client does not support the DOIC extension.

 This document extends the base Diameter endpoint overload
 specification to address the case when Diameter Agents become
 overloaded. Just as is the case with other Diameter nodes --
 Diameter Clients and Diameter Servers -- surges in Diameter traffic
 can cause a Diameter Agent to be asked to handle more Diameter
 traffic than it was configured to handle. For a more detailed
 discussion of what can cause the overload of Diameter nodes, refer to
 the Diameter Overload Requirements [RFC7068].

 This document defines a new overload report type to communicate
 occurrences of agent overload. This report type works for the "Loss"
 overload mitigation algorithm defined in [RFC7683] and is expected to
 work for other overload abatement algorithms defined in extensions to
 the DOIC solution.

2. Terminology and Abbreviations

 AVP

 Attribute Value Pair

 Diameter Node

 A [RFC7683] Diameter Client, an [RFC7683] Diameter Server, and
 [RFC7683] Diameter Agent.

 Diameter Endpoint

 An [RFC7683] Diameter Client and [RFC7683] Diameter Server.

 Diameter Agent

 An [RFC7683] Diameter Agent.

 Reporting Node

 A DOIC Node that sends an overload report in a Diameter answer
 message.

 Reacting Node

 A DOIC Node that receives and acts on a DOIC overload report.

 DOIC Node

 A Diameter Node that supports the DOIC solution defined in
 [RFC7683].

3. Peer Report Use Cases

 This section outlines representative use cases for the peer report
 used to communicate agent overload.

 There are two primary classes of use cases currently identified,
 those involving the overload of agents and those involving overload
 of Diameter endpoints. In both cases the goal is to use an overload
 algorithm that controls traffic sent towards peers.

3.1. Diameter Agent Overload Use Cases

 The peer report needs to support the following use cases.

 In the figures in this section, elements labeled "c" are Diameter
 Clients, elements labeled "a" are Diameter Agents and elements
 labeled "s" are Diameter Servers.

3.1.1. Single Agent

 This use case is illustrated in Figure 1. In this case, the client
 sends all traffic through the single agent. If there is a failure in
 the agent then the client is unable to send Diameter traffic toward
 the server.

+‑+ +‑+ +‑+
|c|‑‑‑‑|a|‑‑‑‑|s|
+‑+ +‑+ +‑+

 Figure 1

 A more likely case for the use of agents is illustrated in Figure 2.
 In this case, there are multiple servers behind the single agent.
 The client sends all traffic through the agent and the agent
 determines how to distribute the traffic to the servers based on
 local routing and load distribution policy.

 +‑+
 ‑‑|s|
+‑+ +‑+ / +‑+
|c|‑‑‑‑|a|‑ ...
+‑+ +‑+ \ +‑+
 ‑‑|s|
 +‑+

 Figure 2

 In both of these cases, the occurrence of overload in the single
 agent must by handled by the client in a similar fashion as if the
 client were handling the overload of a directly connected server.
 When the agent becomes overloaded it will insert an overload report
 in answer messages flowing to the client. This overload report will
 contain a requested reduction in the amount of traffic sent to the
 agent. The client will apply overload abatement behavior as defined
 in the base Diameter overload specification [RFC7683] or the
 extension draft that defines the indicated overload abatement
 algorithm. This will result in the throttling of the abated traffic
 that would have been sent to the agent, as there is no alternative
 route. The client sends an appropriate error response to the
 originator of the request.

3.1.2. Redundant Agents

 Figure 3 and Figure 4 illustrate a second, and more likely, type of
 deployment scenario involving agents. In both of these cases, the
 client has Diameter connections to two agents.

 Figure 3 illustrates a client that has a primary connection to one of
 the agents (agent a1) and a secondary connection to the other agent
 (agent a2). In this scenario, under normal circumstances, the client
 will use the primary connection for all traffic. The secondary
 connection is used when there is a failure scenario of some sort.

 +‑‑+ +‑+
 ‑‑|a1|‑‑‑|s|
+‑+ / +‑‑+\ /+‑+
|c|‑ x
+‑+ . +‑‑+/ \+‑+
 ..|a2|‑‑‑|s|
 +‑‑+ +‑+

 Figure 3

 The second case, in Figure 4, illustrates the case where the
 connections to the agents are both actively used. In this case, the
 client will have local distribution policy to determine the traffic
 sent through each client.

 +‑‑+ +‑+
 ‑‑|a1|‑‑‑|s|
+‑+ / +‑‑+\ /+‑+
|c|‑ x
+‑+ \ +‑‑+/ \+‑+
 ‑‑|a2|‑‑‑|s|
 +‑‑+ +‑+

 Figure 4

 In the case where one of the agents in the above scenarios become
 overloaded, the client should reduce the amount of traffic sent to
 the overloaded agent by the amount requested. This traffic should
 instead be routed through the non-overloaded agent. For example,
 assume that the overloaded agent requests a reduction of 10 percent.
 The client should send 10 percent of the traffic that would have been
 routed to the overloaded agent through the non-overloaded agent.
 When the client has an active and a standby connection to the two
 agents then an alternative strategy for responding to an overload
 report from an agent is to change the standby connection to active.
 This will result in all traffic being routed through the new active
 connection.

 In the case where both agents are reporting overload, the client may
 need to start decreasing the total traffic sent to the agents. This
 would be done in a similar fashion as discussed in Section 3.1.1 The
 amount of traffic depends on the combined reduction requested by the
 two agents.

3.1.3. Agent Chains

 There are also deployment scenarios where there can be multiple
 Diameter Agents between Diameter Clients and Diameter Servers. An
 example of this type of deployment includes when there are Diameter
 agents between administrative domains.

 Figure 5 illustrates one such network deployment case. Note that
 while this figure shows a maximum of two agents being involved in a
 Diameter transaction, it is possible that more than two agents could
 be in the path of a transaction.

 +‑‑‑+ +‑‑‑+ +‑+
 ‑‑|a11|‑‑‑‑‑|a21|‑‑‑|s|
+‑+ / +‑‑‑+ \ / +‑‑‑+\ /+‑+
|c|‑ x x
+‑+ \ +‑‑‑+ / \ +‑‑‑+/ \+‑+
 ‑‑|a12|‑‑‑‑‑|a22|‑‑‑|s|
 +‑‑‑+ +‑‑‑+ +‑+

 Figure 5

 Handling of overload of one or both of agents a11 or a12 in this case
 is equivalent to that discussed in Section 3.1.2.

 Overload of agents a21 and a22 must be handled by the previous hop
 agents. As such, agents a11 and a12 must handle the overload
 mitigation logic when receiving an agent overload report from agents
 a21 and a22.

 The handling of peer overload reports is similar to that discussed in
 Section 3.1.2. If the overload can be addressed using diversion then
 this approach should be taken.

 If both of the agents have requested a reduction in traffic then the
 previous hop agent must start throttling the appropriate number of
 transactions. When throttling requests, an agent uses the same error
 responses as defined in the base DOIC specification [RFC7683].

3.2. Diameter Endpoint Use Cases

 This section outlines use cases for the peer overload report
 involving Diameter Clients and Diameter Servers.

3.2.1. Hop-by-hop Abatement Algorithms

 It is envisioned that abatement algorithms will be defined that will
 support the option for Diameter Endpoints to send peer reports. For
 instance, it is envisioned that one usage scenario for the rate
 algorithm, [I-D.ietf-dime-doic-rate-control], which is being worked
 on by the DIME working group as this document is being written, will
 involve abatement being done on a hop-by-hop basis.

 This rate deployment scenario would involve Diameter Endpoints
 generating peer reports and selecting the rate algorithm for
 abatement of overload conditions.

4. Interaction Between Host/Realm and Peer Overload Reports

 It is possible that both an agent and an end-point in the path of a
 transaction are overloaded at the same time. When this occurs,
 Diameter entities need to handle both overload reports. In this
 scenario the reacting node should first handle the throttling of the
 overloaded host or realm. Any messages that survive throttling due
 to host or realm reports should then go through abatement for the
 peer overload report. In this scenario, when doing abatement on the
 PEER report, the reacting node SHOULD take into consideration the
 number of messages already throttled by the handling of the HOST/
 REALM report abatement.

 Note: The goal is to avoid traffic oscillations that might result
 from throttling of messages for both the HOST/REALM overload
 reports and the PEER overload reports. This is especially a
 concern if both reports indicate the LOSS abatement algorithm.

5. Peer Report Behavior

 This section defines the normative behavior associated with the Peer
 Report extension to the DOIC solution.

5.1. Capability Announcement

5.1.1. Reacting Node Behavior

 When sending a Diameter request a DOIC Node that supports the
 OC_PEER_REPORT (as defined in Section 6.1.1) feature MUST include in
 the OC-Supported-Features AVP an OC-Feature-Vector AVP with the
 OC_PEER_REPORT bit set.

 When sending a request a DOIC Node that supports the OC_PEER_REPORT
 feature MUST include a SourceID AVP in the OC-Supported-Features AVP
 with its own DiameterIdentity.

 When a Diameter Agent relays a request that includes a SourceID AVP
 in the OC-Supported-Features AVP, if the Diameter Agent supports the
 OC_PEER_REPORT feature then it MUST remove the received SourceID AVP
 and replace it with a SourceID AVP containing its own
 DiameterIdentity.

5.1.2. Reporting Node Behavior

 When receiving a request a DOIC Node that supports the OC_PEER_REPORT
 feature MUST update transaction state with an indication of whether
 or not the peer from which the request was received supports the
 OC_PEER_REPORT feature.

 Note: The transaction state is used when the DOIC Node is acting
 as a peer-report reporting node and needs send OC-OLR reports of
 type peer in answer messages. The peer overload reports are only
 included in answer messages being sent to peers that support the
 OC_PEER_REPORT feature.

 The peer supports the OC_PEER_REPORT feature if the received request
 contains an OC-Supported-Features AVP with the OC-Feature-Vector with
 the OC_PEER_REPORT feature bit set and with a SourceID AVP with a
 value that matches the DiameterIdentity of the peer from which the
 request was received.

 When an agent relays an answer message, a reporting node that
 supports the OC_PEER_REPORT feature MUST strip any SourceID AVP from
 the OC-Supported-Features AVP.

 When sending an answer message, a reporting node that supports the
 OC_PEER_REPORT feature MUST determine if the peer to which the answer
 is to be sent supports the OC_PEER_REPORT feature.

 If the peer supports the OC_PEER_REPORT feature then the reporting
 node MUST indicate support for the feature in the OC-Supported-
 Features AVP.

 If the peer supports the OC_PEER_REPORT feature then the reporting
 node MUST insert the SourceID AVP in the OC-Supported-Features AVP in
 the answer message.

 If the peer supports the OC_PEER_REPORT feature then the reporting
 node MUST insert the OC-Peer-Algo AVP in the OC-Supported-Features
 AVP. The OC-Peer-Algo AVP MUST indicate the overload abatement
 algorithm that the reporting node wants the reacting nodes to use
 should the reporting node send a peer overload report as a result of
 becoming overloaded.

5.2. Peer Overload Report Handling

 This section defines the behavior for the handling of overload
 reports of type peer.

5.2.1. Overload Control State

 This section describes the Overload Control State (OCS) that might be
 maintained by both the peer-report reporting node and the peer-report
 reacting node.

 This is an extension of the OCS handling defined in [RFC7683].

5.2.1.1. Reporting Node Peer Report OCS

 A DOIC Node that supports the OC_PEER_REPORT feature SHOULD maintain
 Reporting Node OCS, as defined in [RFC7683] and extended here.

 If different abatement specific contents are sent to each peer then
 the reporting node MUST maintain a separate reporting node peer
 report OCS entry per peer to which a peer overload report is sent.

 Note: The rate overload abatement algorithm allows for different
 rates to be sent to each peer.

5.2.1.2. Reacting Node Peer Report OCS

 In addition to OCS maintained as defined in [RFC7683], a reacting
 node that supports the OC_PEER_REPORT feature maintains the following
 OCS per supported Diameter application:

 A peer-type OCS entry for each peer to which it sends requests.

 A peer-type OCS entry is identified by the pair of Application-ID and
 the peer's DiameterIdentity.

 The peer-type OCS entry include the following information (the actual
 information stored is an implementation decision):

 Sequence number (as received in the OC-OLR AVP).

 Time of expiry (derived from OC-Validity-Duration AVP received in
 the OC-OLR AVP and time of reception of the message carrying OC-
 OLR AVP).

 Selected abatement algorithm (as received in the OC-Supported-
 Features AVP).

 Input data that is abatement algorithm specific (as received in
 the OC-OLR AVP -- for example, OC-Reduction-Percentage for the
 loss abatement algorithm).

5.2.2. Reporting Node Maintenance of Peer Report OCS

 All rules for managing the reporting node OCS entries defined in
 [RFC7683] apply to the peer report.

5.2.3. Reacting Node Maintenance of Peer Report OCS

 When a reacting node receives an OC-OLR AVP with a report type of
 peer it MUST determine if the report was generated by the Diameter
 peer from which the report was received.

 If a reacting node receives an OC-OLR AVP of type peer and the
 SourceID matches the DiameterIdentity of the Diameter peer from which
 the response message was received then the report was generated by a
 Diameter peer.

 If a reacting node receives an OC-OLR AVP of type peer and the
 SourceID does not match the DiameterIdentity of the Diameter peer
 from which the response message was received then the reacting node
 MUST ignore the overload report.

 Note: Under normal circumstances, a Diameter node will not add a
 peer report when sending to a peer that does not support this
 extension. This requirement is to handle the case where peer
 reports are erroneously or maliciously inserted into response
 messages.

 If the peer report was received from a Diameter peer then the
 reacting node MUST determine if it is for an existing or new overload
 condition.

 The peer report is for an existing overload condition if the reacting
 node has an OCS that matches the received peer report. For a peer
 report, this means it matches the Application-ID and the peer's
 DiameterIdentity in an existing OCS entry.

 If the peer report is for an existing overload condition then it MUST
 determine if the peer report is a retransmission or an update to the
 existing OLR.

 If the sequence number for the received peer report is greater than
 the sequence number stored in the matching OCS entry then the
 reacting node MUST update the matching OCS entry.

 If the sequence number for the received peer report is less than or
 equal to the sequence number in the matching OCS entry then the
 reacting node MUST silently ignore the received peer report. The
 matching OCS MUST NOT be updated in this case.

 If the received peer report is for a new overload condition then the
 reacting node MUST generate a new OCS entry for the overload
 condition.

 For a peer report this means it creates an OCS entry with a
 DiameterIdentity from the SourceID AVP in the received OC-OLR AVP.

 If the received peer report contains a validity duration of zero
 ("0") then the reacting node MUST update the OCS entry as being
 expired.

 The reacting node does not delete an OCS when receiving an answer
 message that does not contain an OC-OLR AVP (i.e. absence of OLR
 means "no change").

 The reacting node sets the abatement algorithm based on the OC-Peer-
 Algo AVP in the received OC-Supported-Features AVP.

5.2.4. Peer-Report Reporting Node Behavior

 When there is an existing reporting node peer report OCS entry, the
 reporting node MUST include an OC-OLR AVP with a report type of peer
 using the contents of the reporting node peer report OCS entry in all
 answer messages sent by the reporting node to peers that support the
 OC_PEER_REPORT feature.

 The reporting node determines if a peer supports the
 OC_PEER_REPORT feature based on the indication recorded in the
 reporting node's transaction state.

 The reporting node MUST include its DiameterIdentity in the SourceID
 AVP in the OC-OLR AVP. This is used by DOIC Nodes that support the
 OC_PEER_REPORT feature to determine if the report was received from a
 Diameter peer.

 The reporting agent must follow all other overload reporting node
 behaviors outlined in the DOIC specification.

5.2.5. Peer-Report Reacting Node Behavior

 A reacting node supporting this extension MUST support the receipt of
 multiple overload reports in a single message. The message might
 include a host overload report, a realm overload report and/or a peer
 overload report.

 When a reacting node sends a request it MUST determine if that
 request matches an active OCS.

 In all cases, if the reacting node is an agent then it MUST strip the
 Peer Report OC-OLR AVP from the message.

 If the request matches an active OCS then the reacting node MUST
 apply abatement treatment to the request. The abatement treatment
 applied depends on the abatement algorithm indicated in the OCS.

 For peer overload reports, the preferred abatement treatment is
 diversion. As such, the reacting node SHOULD attempt to divert
 requests identified as needing abatement to other peers.

 If there is not sufficient capacity to divert abated traffic then the
 reacting node MUST throttle the necessary requests to fit within the
 available capacity of the peers able to handle the requests.

 If the abatement treatment results in throttling of the request and
 if the reacting node is an agent then the agent MUST send an
 appropriate error response as defined in [RFC7683].

 In the case that the OCS entry validity duration expires or has a
 validity duration of zero ("0"), meaning that if the reporting node
 has explicitly signaled the end of the overload condition then
 abatement associated with the OCS entry MUST be ended in a controlled
 fashion.

6. Peer Report AVPs

6.1. OC-Supported-Features AVP

 This extension adds a new feature to the OC-Feature-Vector AVP. This
 feature indication shows support for handling of peer overload
 reports. Peer overload reports are used by agents to indicate the
 need for overload abatement handling by the agent's peer.

 A supporting node must also include the SourceID AVP in the OC-
 Supported-Features capability AVP.

 This AVP contains the DiameterIdentity of the node that supports the
 OC_PEER_REPORT feature. This AVP is used to determine if support for
 the peer overload report is in an adjacent node. The value of this
 AVP should be the same Diameter identity used as part of the Diameter
 Capabilities Exchange procedure defined in [RFC7683].

 This extension also adds the OC-Peer-Algo AVP to the OC-Supported-
 Features AVP. This AVP is used by a reporting node to indicate the
 abatement algorithm it will use for peer overload reports.

OC‑Supported‑Features ::= < AVP Header: 621 >
 [OC‑Feature‑Vector]
 [SourceID]
 [OC‑Peer‑Algo]
 * [AVP]

6.1.1. OC-Feature-Vector AVP

 The peer report feature defines a new feature bit for the OC-Feature-
 Vector AVP.

 OC_PEER_REPORT (0x0000000000000010)

 When this flag is set by a DOIC Node it indicates that the DOIC
 Node supports the peer overload report type.

6.1.2. OC-Peer-Algo AVP

 The OC-Peer-Algo AVP (AVP code TBD1) is of type Unsigned64 and
 contains a 64 bit flags field of announced capabilities of a DOIC
 Node. The value of zero (0) is reserved.

 Feature bits defined for the OC-Feature-Vector AVP and associated
 with overload abatement algorithms are reused for this AVP.

6.2. OC-OLR AVP

 This extension makes no changes to the OC_Sequence_Number or
 OC_Validity_Duration AVPs in the OC-OLR AVP. These AVPs are also be
 used in peer overload reports.

 The OC_PEER_REPORT feature extends the base Diameter overload
 specification by defining a new overload report type of "peer". See
 section [7.6] in [RFC7683] for a description of the OC-Report-Type
 AVP.

 The overload report MUST also include the Diameter identity of the
 agent that generated the report. This is necessary to handle the
 case where there is a non supporting agent between the reporting node
 and the reacting node. Without the indication of the agent that
 generated the overload report, the reacting node could erroneously
 assume that the report applied to the non-supporting node. This
 could, in turn, result in unnecessary traffic being either diverted
 or throttled.

 The SourceID AVP is used in the OC-OLR AVP to carry this
 DiameterIdentity.

OC‑OLR ::= < AVP Header: 623 >
 < OC‑Sequence‑Number >
 < OC‑Report‑Type >
 [OC‑Reduction‑Percentage]
 [OC‑Validity‑Duration]
 [SourceID]
 * [AVP]

6.2.1. OC-Report-Type AVP

 The following new report type is defined for the OC-Report-Type AVP.

PEER_REPORT 2 The overload treatment should apply to all requests
 bound for the peer identified in the overload report. If the peer
 identified in the overload report is not a peer to the reacting
 endpoint then the overload report should be stripped and not acted
 upon.

6.3. SourceID AVP

 The SourceID AVP (AVP code TBD2) is of type DiameterIdentity and is
 inserted by a Diameter node to indicate the source of the AVP in
 which it is a part.

 In the case of peer reports, the SourceID AVP indicates the node that
 supports this feature (in the OC-Supported-Features AVP) or the node
 that generates an overload with a report type of peer (in the OC-OLR
 AVP).

 It contains the DiameterIdentity of the inserting node. This is used
 by other Diameter nodes to determine the node that inserted the
 enclosing AVP that contains the SourceID AVP.

6.4. Attribute Value Pair Flag Rules

 +‑‑‑‑‑‑‑‑‑+
 |AVP flag |
 |rules |
 +‑‑‑‑+‑‑‑‑+
 AVP Section | |MUST|
 Attribute Name Code Defined Value Type |MUST| NOT|
+‑‑+‑‑‑‑+‑‑‑‑+
|OC‑Peer‑Algo TBD1 6.1.2 Unsigned64 | | V |
|SourceID TBD2 6.3 DiameterIdentity | | V |
+‑‑+‑‑‑‑+‑‑‑‑+

7. IANA Considerations

7.1. AVP Codes

 New AVPs defined by this specification are listed in Section 6.4.
 All AVP codes are allocated from the 'Authentication, Authorization,
 and Accounting (AAA) Parameters' AVP Codes registry.

 One new OC-Report-Type AVP value is defined in Section 6.2.1

7.2. New Registries

 There are no new IANA registries introduced by this document.

 The values used for the OC-Peer-Algo AVP are the subset of the "OC-
 Feature-Vector AVP Values (code 622)" registry. Only the values in
 that registry that apply to overload abatement algorithms apply to
 the OC-Peer-Algo AVP.

8. Security Considerations

 Agent overload is an extension to the base Diameter overload
 mechanism. As such, all of the security considerations outlined in
 [RFC7683] apply to the agent overload scenarios.

 It is possible that the malicious insertion of an agent overload
 report could have a bigger impact on a Diameter network as agents can
 be concentration points in a Diameter network. Where an end-point
 report would impact the traffic sent to a single Diameter server, for
 example, a peer report could throttle all traffic to the Diameter
 network.

 This impact is amplified in an agent that sits at the edge of a
 Diameter network that serves as the entry point from all other
 Diameter networks.

 The impacts of this attack, as well as the mitigation strategies, are
 the same as outlined in [RFC7683].

9. Acknowledgements

 Adam Roach and Eric McMurry for the work done in defining a
 comprehensive Diameter overload solution in draft-roach-dime-
 overload-ctrl-03.txt.

 Ben Campbell for his insights and review of early versions of this
 document.

10. References

10.1. Informative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7068]
 McMurry, E. and B. Campbell, "Diameter Overload Control
 Requirements", RFC 7068, DOI 10.17487/RFC7068, November
 2013, <http://www.rfc-editor.org/info/rfc7068>.

10.2. Normative References

 [I-D.ietf-dime-doic-rate-control]

 Donovan, S. and E. Noel, "Diameter Overload Rate Control",
 draft-ietf-dime-doic-rate-control-03 (work in progress),
 March 2016.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC7683]
 Korhonen, J., Ed., Donovan, S., Ed., Campbell, B., and L.
 Morand, "Diameter Overload Indication Conveyance",
 RFC 7683, DOI 10.17487/RFC7683, October 2015,
 <http://www.rfc-editor.org/info/rfc7683>.

Author's Address

Steve Donovan
Oracle
7460 Warren Parkway, Suite 300
Frisco, Texas 75034
United States

 Email: srdonovan@usdonovans.com

draft-ietf-dime-doic-rate-control-11 - Diameter Overload Rate Control

draft-ietf-dime-doic-rate-control-11 - Diameter Overload Rate Control

Index
Prev
Next
Forward 5

Diameter Maintenance and Extensions (DIME)

Internet-Draft

Intended status: Standards Track

Expires: August 15, 2019

S. Donovan, Ed.

Oracle

E. Noel

AT&T Labs

February 11, 2019

Diameter Overload Rate Control

draft-ietf-dime-doic-rate-control-11

Abstract

 This specification documents an extension to the Diameter Overload
 Indication Conveyance (DOIC) [RFC7683] base solution. This extension
 adds a new overload control abatement algorithm. This abatement
 algorithm allows for a DOIC reporting node to specify a maximum rate
 at which a DOIC reacting node sends Diameter requests to the DOIC
 reporting node.

Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 15, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Interaction with DOIC Report Types

	4. Capability Announcement

	5. Overload Report Handling
	 5.1. Reporting Node Overload Control State

	 5.2. Reacting Node Overload Control State

	 5.3. Reporting Node Maintenance of Overload Control State

	 5.4. Reacting Node Maintenance of Overload Control State

	 5.5. Reporting Node Behavior for Rate Abatement Algorithm

	 5.6. Reacting Node Behavior for Rate Abatement Algorithm

	6. Rate Abatement Algorithm AVPs
	 6.1. OC-Supported-Features AVP
	 6.1.1. OC-Feature-Vector AVP

	 6.2. OC-OLR AVP
	 6.2.1. OC-Maximum-Rate AVP

	 6.3. Attribute Value Pair Flag Rules

	7. Rate-Based Abatement Algorithm
	 7.1. Overview

	 7.2. Reporting Node Behavior

	 7.3. Reacting Node Behavior
	 7.3.1. Default Algorithm for Rate-based Control

	 7.3.2. Priority Treatment

	 7.3.3. Optional Enhancement: Avoidance of Resonance

	8. IANA Consideration
	 8.1. AVP Codes

	 8.2. OC-Supported-Features

	 8.3. New DOIC report types

	9. Security Considerations

	10. Acknowledgements

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Authors' Addresses

1. Introduction

 This document defines a new Diameter overload control abatement
 algorithm, the "rate" algorithm.

 The base Diameter overload specification [RFC7683] defines the "loss"
 algorithm as the default Diameter overload abatement algorithm. The
 loss algorithm allows a reporting node (see Section 2) to instruct a
 reacting node (see Section 2) to reduce the amount of traffic sent to
 the reporting node by abating (diverting or throttling) a percentage
 of requests sent to the server. While this can effectively decrease
 the load handled by the server, it does not directly address cases
 where the rate of arrival of service requests changes quickly. For
 instance, if the service requests that result in Diameter
 transactions increase quickly then the loss algorithm cannot
 guarantee the load presented to the server remains below a specific
 rate level. The loss algorithm can be slow to ensure the stability
 of reporting nodes when subjected to rapidly-changing loads. The
 "loss" algorithm errs both in throttling too much when there is a dip
 in offered load, and throttling not enough when there is a spike in
 offered load.

 Consider the case where a reacting node is handling 100 service
 requests per second, where each of these service requests results in
 one Diameter transaction being sent to a reporting node. If the
 reporting node is approaching an overload state, or is already in an
 overload state, it will send a Diameter overload report requesting a
 percentage reduction in traffic sent when the loss algorithm is used
 as Diameter overload abatement algorithm. Assume for this discussion
 that the reporting node requests a 10% reduction. The reacting node
 will then abate (diverting or throttling) ten Diameter transactions a
 second, sending the remaining 90 transactions per second to the
 reporting node.

 Now assume that the reacting node's service requests spikes to 1000
 requests per second. The reacting node will continue to honor the
 reporting node's request for a 10% reduction in traffic. This
 results, in this example, in the reacting node sending 900 Diameter
 transactions per second, abating the remaining 100 transactions per
 second. This spike in traffic is significantly higher than the
 reporting node is expecting to handle and can result in negative
 impacts to the stability of the reporting node.

 The reporting node can, and likely would, send another overload
 report requesting that the reacting node abate 91% of requests to get
 back to the desired 90 transactions per second. However, once the
 spike has abated and the reacting node handled service requests
 returns to 100 per second, this will result in just 9 transactions
 per second being sent to the reporting node, requiring a new overload
 report setting the reduction percentage back to 10%. This control
 feedback loop has the potential to make the situation worse by
 causing wide fluctuations in traffic on multiple nodes in the
 Diameter network.

 One of the benefits of a rate-based algorithm over the loss algorithm
 is that it better handles spikes in traffic. Instead of sending a
 request to reduce traffic by a percentage, the rate approach allows
 the reporting node to specify the maximum number of Diameter requests
 per second that can be sent to the reporting node. For instance, in
 this example, the reporting node could send a rate-based request
 specifying the maximum transactions per second to be 90. The
 reacting node will send the 90 regardless of whether it is receiving
 100 or 1000 service requests per second.

 It should be noted that one of the implications of the rate-based
 algorithm is that the reporting node needs to determine how it wants
 to distribute its load over the set of reacting nodes from which it
 is receiving traffic. For instance, if the reporting node is
 receiving Diameter traffic from 10 reacting nodes and has a capacity
 of 100 transactions per second then the reporting node could choose
 to set the rate for each of the reacting nodes to 10 transactions per
 second. This, of course, is assuming that each of the reacting nodes
 has equal performance characteristics. The reporting node could also
 choose to have a high capacity reacting node send 55 transactions per
 second and the remaining 9 low capacity reacting nodes send 5
 transactions per second. The ability of the reporting node to
 specify the amount of traffic on a per-reacting-node basis implies
 that the reporting node must maintain state for each of the reacting
 nodes. This state includes the current allocation of Diameter
 traffic to that reacting node. If the number of reacting nodes
 changes, either because new nodes are added, nodes are removed from
 service or nodes fail, then the reporting node will need to
 redistribute the maximum Diameter transactions over the new set of
 reacting nodes.

 This document extends the base Diameter Overload Indication
 Conveyance (DOIC) solution [RFC7683] to add support for the rate-
 based overload abatement algorithm.

 This document draws heavily on work in the SIP Overload Control
 working group. The definition of the rate abatement algorithm is
 copied almost verbatim from the SIP Overload Control (SOC) document
 [RFC7415], with changes focused on making the wording consistent with
 the DOIC solution and the Diameter protocol.

2. Terminology

 Diameter Node

 A Diameter Client, Diameter Server, or Diameter Agent. [RFC6733]

 Diameter Endpoint

 A Diameter Client or Diameter Server. [RFC6733]

 DOIC Node

 A Diameter Node that supports the DOIC solution defined in
 [RFC7683].

 Reporting Node

 A DOIC Node that sends a DOIC overload report.

 Reacting Node

 A DOIC Node that receives and acts on a DOIC overload report.

3. Interaction with DOIC Report Types

 As of the publication of this specification, there are two DOIC
 report types defined with the specification of a third in progress:

HOST_REPORT 0 Overload of a specific Diameter Application at a
 specific Diameter Node as defined in [RFC7683]

REALM_REPORT 1 Overload of a specific Diameter Application at a
 specific Diameter Realm as defined in [RFC7683]

PEER_REPORT 2 Overload of a specific Diameter peer as defined in
 [I‑D.ietf‑dime‑agent‑overload]

 The rate algorithm MAY be selected by reporting nodes for any of
 these report types.

 It is expected that all report types defined in the future will
 indicate whether or not the rate algorithm can be used with that
 report type.

4. Capability Announcement

 This document defines the rate abatement algorithm (referred to as
 rate in this document) feature. Support for the rate feature by a
 DOIC node will be indicated by a new value of the OC-Feature-Vector
 AVP, as described in Section 6.1.1, per the rules defined in
 [RFC7683].

 Since all nodes that support DOIC are required to support the loss
 algorithm, DOIC nodes supporting the rate feature will support both
 the loss and rate-based abatement algorithms.

 DOIC reacting nodes supporting the rate feature MUST indicate support
 for both the loss and rate algorithms in the OC-Feature-Vector AVP
 and MAY indicate support for other algorithms.

 As defined in [RFC7683], a DOIC reporting node supporting the rate
 feature selects a single abatement algorithm in the OC-Feature-Vector
 AVP and OC-Peer-Algo AVP in the answer message sent to the DOIC
 reacting nodes.

 A reporting node can select one abatement algorithm to apply to host
 and realm reports and a different algorithm to apply to peer reports.

 For host or realm reports the selected algorithm is reflected in
 the OC-Feature-Vector AVP sent as part of the OC-Supported-
 Features AVP included in answer messages for transaction where the
 request contained an OC-Supported-Features AVP. This is per the
 procedures defined in [RFC7683].

 For peer reports the selected algorithm is reflected in the OC-
 Peer-Algo AVP sent as part of the OC-Supported-Features AVP
 included answer messages for transactions where the request
 contained an OC-Supported-Features AVP. This is per the
 procedures defined in [I-D.ietf-dime-agent-overload].

5. Overload Report Handling

 This section describes any changes to the behavior defined in
 [RFC7683] for handling of overload reports when the rate overload
 abatement algorithm is used.

5.1. Reporting Node Overload Control State

 A reporting node that uses the rate abatement algorithm SHOULD
 maintain reporting node Overload Control State (OCS) for each
 reacting node to which it sends a rate Overload Report (OLR).

 This is different from the behavior defined in [RFC7683] where a
 reporting node sends a single loss percentage to all reacting
 nodes.

 A reporting node SHOULD maintain OCS entries when using the rate
 abatement algorithm per supported Diameter application, per targeted
 reacting node and per report type.

 A rate OCS entry is identified by the tuple of Application-Id, report
 type and DiameterIdentity of the target of the rate OLR.

 The rate OCS entry SHOULD include the rate allocated to the reacting
 note.

 A reporting node that has selected the rate overload abatement
 algorithm MUST indicate the rate requested to be applied by DOIC
 reacting nodes in the OC-Maximum-Rate AVP included in the OC-OLR AVP.

 All other elements for the OCS defined in [RFC7683] and
 [I-D.ietf-dime-agent-overload] also apply to the reporting nodes OCS
 when using the rate abatement algorithm.

5.2. Reacting Node Overload Control State

 A reacting node that supports the rate abatement algorithm MUST
 indicate rate as the selected abatement algorithm in the reacting
 node OCS based on the OC-Feature-Vector AVP or the OC-Peer-Algo AVP
 in the received OC-Supported-Features AVP.

 A reacting node that supports the rate abatement algorithm MUST
 include the rate specified in the OC-Maximum-Rate AVP included in the
 OC-OLR AVP as an element of the abatement-algorithm-specific portion
 of reacting node OCS entries.

 All other elements for the OCS defined in [RFC7683] and
 [I-D.ietf-dime-agent-overload] also apply to the reporting nodes OCS
 when using the rate abatement algorithm.

5.3. Reporting Node Maintenance of Overload Control State

 A reporting node that has selected the rate overload abatement
 algorithm and enters an overload condition MUST indicate rate as the
 abatement algorithm and MUST indicate the selected rate in the
 resulting reporting node OCS entries.

 When selecting the rate algorithm in the response to a request that
 contained an OC-Supporting-Features AVP with an OC-Feature-Vector AVP
 indicating support for the rate feature, a reporting node MUST ensure
 that a reporting node OCS entry exists for the target of the overload
 report. The target is defined as follows:

 o For Host reports, the target is the DiameterIdentity contained in
 the Origin-Host AVP received in the request.

 o For Realm reports, the target is the DiameterIdentity contained in
 the Origin-Realm AVP received in the request.

 o For Peer reports, the target is the DiameterIdentity of the
 Diameter Peer from which the request was received.

 A reporting node that receives a capability announcement from a new
 reacting node, meaning a reacting node for which it does not have an
 OCS entry, and the reporting node chooses the rate algorithm for that
 reacting node may need to recalculate the rate to be allocated to all
 reacting nodes. Any changed rate values will be communicated in the
 next OLR sent to each reacting node.

5.4. Reacting Node Maintenance of Overload Control State

 When receiving an answer message indicating that the reporting node
 has selected the rate algorithm, a reacting node MUST indicate the
 rate abatement algorithm in the reacting node OCS entry for the
 reporting node.

 A reacting node receiving an overload report for the rate abatement
 algorithm MUST save the rate received in the OC-Maximum-Rate AVP
 contained in the OC-OLR AVP in the reacting node OCS entry.

5.5. Reporting Node Behavior for Rate Abatement Algorithm

 When in an overload condition with rate selected as the overload
 abatement algorithm and when handling a request that contained an OC-
 Supported-Features AVP that indicated support for the rate abatement
 algorithm, a reporting node SHOULD include an OC-OLR AVP for the rate
 algorithm using the parameters stored in the reporting node OCS for
 the target of the overload report.

 Note: It is also possible for the reporting node to send overload
 reports with the rate algorithm indicated even when the reporting
 node is not in an overloaded state. This could be a strategy to
 proactively avoid entering into an overloaded state. Whether to
 do so is up to local policy.

 When sending an overload report for the rate algorithm, the OC-
 Maximum-Rate AVP MUST be included in the OC-OLR AVP and the OC-
 Reduction-Percentage AVP MUST NOT be included.

5.6. Reacting Node Behavior for Rate Abatement Algorithm

 When determining if abatement treatment should be applied to a
 request being sent to a reporting node that has selected the rate
 overload abatement algorithm, the reacting node can choose to use the
 algorithm detailed in Section 7.

 Other algorithms for controlling the rate MAY be implemented by the
 reacting node. Any algorithm implemented MUST correctly limit the
 maximum rate of traffic being sent to the reporting node.

 Once a determination is made by the reacting node that an individual
 Diameter request is to be subjected to abatement treatment then the
 procedures for throttling and diversion defined in [RFC7683] and
 [I-D.ietf-dime-agent-overload] apply.

6. Rate Abatement Algorithm AVPs

6.1. OC-Supported-Features AVP

 The rate algorithm does not add any new AVPs to the OC-Supported-
 Features AVP.

 The rate algorithm does add a new feature bit to be carried in the
 OC-Feature-Vector AVP.

6.1.1. OC-Feature-Vector AVP

 This extension adds the following capability to the OC-Feature-Vector
 AVP.

 OLR_RATE_ALGORITHM (bit 2)

 Bit 2 is assigned to the rate overload abatement algorithm. When
 this flag is set by the overload control endpoint it indicates
 that the DOIC Node supports the rate overload abatement algorithm.

6.2. OC-OLR AVP

 This extension defines the OC-Maximum-Rate AVP to be an optional part
 of the OC-OLR AVP.

OC‑OLR ::= < AVP Header: TBD2 >
 < OC‑Sequence‑Number >
 < OC‑Report‑Type >
 [OC‑Reduction‑Percentage]
 [OC‑Validity‑Duration]
 [SourceID]
 [OC‑Maximum‑Rate]
 * [AVP]

 This extension makes no changes to the other AVPs that are part of
 the OC-OLR AVP.

 This extension does not define new overload report types. The
 existing report types of host and realm defined in [RFC7683] apply to
 the rate control algorithm. The peer report type defined in
 [I-D.ietf-dime-agent-overload] also applies to the rate control
 algorithm.

6.2.1. OC-Maximum-Rate AVP

 The OC-Maximum-Rate AVP (AVP code TBD1) is of type Unsigned32 and
 describes the maximum rate that the sender is requested to send
 traffic. This is specified in terms of requests per second.

 A value of zero indicates that no traffic is to be sent.

6.3. Attribute Value Pair Flag Rules

 +‑‑‑‑‑‑‑‑‑+
 |AVP flag |
 |rules |
 +‑‑‑‑+‑‑‑‑+
 AVP Section | |MUST|
 Attribute Name Code Defined Value Type |MUST| NOT|
+‑‑‑+‑‑‑‑+‑‑‑‑+
|OC‑Maximum‑Rate TBD1 6.2 Unsigned32 | | V |
+‑‑‑+‑‑‑‑+‑‑‑‑+

7. Rate-Based Abatement Algorithm

 This section is pulled from [RFC7415], with minor changes needed to
 make it apply to the Diameter protocol.

7.1. Overview

 The reporting node is the one protected by the overload control
 algorithm defined here. The reacting node is the one that abates
 traffic towards the server.

 Following the procedures defined in [RFC7683], the reacting node and
 reporting node signal their support for rate-based overload control.

 Then periodically, the reporting node relies on internal measurements
 (e.g. CPU utilization or queuing delay) to evaluate its overload
 state and estimate a target maximum Diameter request rate in number
 of requests per second (as opposed to target percent reduction in the
 case of loss-based abatement).

 When in an overloaded state, the reporting node uses the OC-OLR AVP
 to inform reacting nodes of its overload state and of the target
 Diameter request rate.

 Upon receiving the overload report with a target maximum Diameter
 request rate, each reacting node applies overload abatement for new
 Diameter requests towards the reporting node.

7.2. Reporting Node Behavior

 The actual algorithm used by the reporting node to determine its
 overload state and estimate a target maximum Diameter request rate is
 beyond the scope of this document.

 However, the reporting node MUST periodically evaluate its overload
 state and estimate a target Diameter request rate beyond which it
 would become overloaded. The reporting node must allocate a portion
 of the target Diameter request rate to each of its reacting nodes.
 The reporting node may set the same rate for every reacting node, or
 may set different rates for different reacting node.

 The maximum rate determined by the reporting node for a reacting node
 applies to the entire stream of Diameter requests, even though
 abatement may only affect a particular subset of the requests, since
 the reacting node might apply priority as part of its decision of
 which requests to abate.

 When setting the maximum rate for a particular reacting node, the
 reporting node may need take into account the workload (e.g. CPU
 load per request) of the distribution of message types from that
 reacting node. Furthermore, because the reacting node may prioritize
 the specific types of messages it sends while under overload
 restriction, this distribution of message types may be different from
 the message distribution for that reacting node under non-overload
 conditions (e.g., either higher or lower CPU load).

 Note that the value of OC-Maximum-Rate AVP (in request messages per
 second) for the rate algorithm provides a loose upper bound on the
 traffic sent by the reacting node to the reporting node.

 In other words, when multiple reacting nodes are being controlled by
 an overloaded reporting node, at any given time, some reporting nodes
 may receive requests at a rate below its target maximum Diameter
 request rate while others above that target rate. But the resulting
 request rate presented to the overloaded reporting node will converge
 towards the target Diameter request rate or a lower rate.

 Upon detection of overload, and the determination to invoke overload
 controls, the reporting node follows the specifications in [RFC7683]
 to notify its clients of the allocated target maximum Diameter
 request rate and to notify them that the rate overload abatement is
 in effect.

 The reporting node uses the OC-Maximum-Rate AVP defined in this
 specification to communicate a target maximum Diameter request rate
 to each of its clients.

7.3. Reacting Node Behavior

7.3.1. Default Algorithm for Rate-based Control

 A reference algorithm is shown below.

 Note that use of // below inidcates a comment.

 No priority case:

// T: inter‑transmission interval, set to 1 / OC‑Maximum‑Rate
// TAU: tolerance parameter
// ta: arrival time of the most recent arrival
// LCT: arrival time of last Diameter request that
// was sent to the server
// (initialized to the first arrival time)
// X: current value of the leaky bucket counter (initialized to
// TAU0)

 // After most recent arrival, calculate auxiliary variable Xp
 Xp = X - (ta - LCT);

if (Xp <= TAU) {
 // Transmit Diameter request
 // Update X and LCT
 X = max (0, Xp) + T;
 LCT = ta;
} else {
 // Reject Diameter request
 // Do not update X and LCT
}

 In determining whether or not to transmit a specific message, the
 reacting node can use any algorithm that limits the message rate to
 the OC-Maximum-Rate AVP value in units of messages per second. For
 ease of discussion, we define T = 1/[OC-Maximum-Rate] as the target
 inter-Diameter request interval. It may be strictly deterministic,
 or it may be probabilistic. It may, or may not, have a tolerance
 factor, to allow for short bursts, as long as the long term rate
 remains below 1/T.

 The algorithm may have provisions for prioritizing traffic.

 If the algorithm requires other parameters (in addition to "T", which
 is 1/OC-Maximum-Rate), they may be set autonomously by the reacting
 node, or they may be negotiated independently between reacting node
 and reporting node.

 In either case, the coordination is out of scope for this document.
 The default algorithms presented here (one with and one without
 provisions for prioritizing traffic) are only examples.

 To apply abatement treatment to new Diameter requests at the rate
 specified in the OC-Maximum-Rate AVP value sent by the reporting node
 to its reacting nodes, the reacting node MAY use the proposed default
 algorithm for rate-based control or any other equivalent algorithm
 that forward messages in conformance with the upper bound of 1/T
 messages per second.

 The default Leaky Bucket algorithm presented here is based on [ITU-T
 Rec. I.371] Appendix A.2. The algorithm makes it possible for
 reacting nodes to deliver Diameter requests at a rate specified in
 the OC-Maximum-Rate value with tolerance parameter TAU (preferably
 configurable).

 Conceptually, the Leaky Bucket algorithm can be viewed as a finite
 capacity bucket whose real-valued content drains out at a continuous
 rate of 1 unit of content per time unit and whose content increases
 by the increment T for each forwarded Diameter request. T is
 computed as the inverse of the rate specified in the OC-Maximum-Rate
 AVP value, namely T = 1 / OC-Maximum-Rate.

 Note that when the OC-Maximum-Rate value is 0 with a non-zero OC-
 Validity-Duration, then the reacting node should apply abatement
 treatment to 100% of Diameter requests destined to the overloaded
 reporting node. However, when the OC-Validity-Duration value is 0,
 the reacting node should stop applying abatement treatment.

 If, at a new Diameter request arrival, the content of the bucket is
 less than or equal to the limit value TAU, then the Diameter request
 is forwarded to the server; otherwise, the abatement treatment is
 applied to the Diameter request.

 Note that the capacity of the bucket (the upper bound of the counter)
 is (T + TAU).

 The tolerance parameter TAU determines how close the long-term
 admitted rate is to an ideal control that would admit all Diameter
 requests for arrival rates less than 1/T and then admit Diameter
 requests precisely at the rate of 1/T for arrival rates above 1/T.
 In particular at mean arrival rates close to 1/T, it determines the
 tolerance to deviation of the inter-arrival time from T (the larger
 TAU the more tolerance to deviations from the inter-departure
 interval T).

 This deviation from the inter-departure interval influences the
 admitted rate burstyness, or the number of consecutive Diameter
 requests forwarded to the reporting node (burst size proportional to
 TAU over the difference between 1/T and the arrival rate).

 In situations where reacting nodes are configured with some knowledge
 about the reporting node and other traffic sources (e.g., operator
 pre-provisioning), it can be beneficial to choose a value of TAU
 based on how many reacting nodes will be sending requests to the
 reporting node.

 Reporting nodes with a very large number of reacting nodes, each with
 a relatively small arrival rate, will generally benefit from a
 smaller value for TAU in order to limit queuing (and hence response
 times) at the reporting node when subjected to a sudden surge of
 traffic from all reacting nodes. Conversely, a reporting node with a
 relatively small number of reacting nodes, each with proportionally
 larger arrival rate, will benefit from a larger value of TAU.

 Once the control has been activated, at the arrival time of the k-th
 new Diameter request, ta(k), the content of the bucket is
 provisionally updated to the value

 X' = X - (ta(k) - LCT)

 where X is the value of the leaky bucket counter after arrival of the
 last forwarded Diameter request, and LCT is the time at which the
 last Diameter request was forwarded.

 If X' is less than or equal to the limit value TAU, then the new
 Diameter request is forwarded and the leaky bucket counter X is set
 to X' (or to 0 if X' is negative) plus the increment T, and LCT is
 set to the current time ta(k). If X' is greater than the limit value
 TAU, then the abatement treatment is applied to the new Diameter
 request and the values of X and LCT are unchanged.

 When the first response from the reporting node has been received
 indicating control activation (OC-Validity-Duration>0), LCT is set to
 the time of activation, and the leaky bucket counter is initialized
 to the parameter TAU0 (preferably configurable) which is 0 or larger
 but less than or equal to TAU.

 TAU can assume any positive real number value and is not necessarily
 bounded by T.

 TAU=4*T is a reasonable compromise between burst size and abatement
 rate adaptation at low offered rate.

 Note that specification of a value for TAU, and any communication or
 coordination between servers, is beyond the scope of this document.

7.3.2. Priority Treatment

 A reference algorithm is shown below.

 Priority case:

 // T: inter‑transmission interval, set to 1 / OC‑Maximum‑Rate
 // TAU1: tolerance parameter of no priority Diameter requests
 // TAU2: tolerance parameter of priority Diameter requests
 // ta: arrival time of the most recent arrival
 // LCT: arrival time of last Diameter request that
 // was sent to the server
 // (initialized to the first arrival time)
 // X: current value of the leaky bucket counter (initialized to
 // TAU0)

 // After most recent arrival, calculate auxiliary variable Xp
 Xp = X ‑ (ta ‑ LCT);

if (AnyRequestReceived && Xp <= TAU1) || (PriorityRequestReceived &&
 Xp <= TAU2 && Xp > TAU1) {
 // Transmit Diameter request
 // Update X and LCT
 X = max (0, Xp) + T;
 LCT = ta;
 } else {
 // Apply abatement treatment to Diameter request
 // Do not update X and LCT
 }

 The reacting node is responsible for applying message priority and
 for maintaining two categories of requests: Request candidates for
 reduction, requests not subject to reduction (except under
 extenuating circumstances when there aren't any messages in the first
 category that can be reduced).

 Accordingly, the proposed Leaky bucket implementation is modified to
 support priority using two thresholds for Diameter requests in the
 set of request candidates for reduction. With two priorities, the
 proposed Leaky bucket requires two thresholds TAU1 < TAU2:

 o All new requests would be admitted when the leaky bucket counter
 is at or below TAU1,

 o Only higher priority requests would be admitted when the leaky
 bucket counter is between TAU1 and TAU2,

 o All requests would be rejected when the bucket counter is above
 TAU2.

 This can be generalized to n priorities using n thresholds for n>2.

 With a priority scheme that relies on two tolerance parameters (TAU2
 influences the priority traffic, TAU1 influences the non-priority
 traffic), always set TAU1 <= TAU2 (TAU is replaced by TAU1 and TAU2).
 Setting both tolerance parameters to the same value is equivalent to
 having no priority. TAU1 influences the admitted rate the same way
 as TAU does when no priority is set. And the larger the difference
 between TAU1 and TAU2, the closer the control is to strict priority
 queuing.

 TAU1 and TAU2 can assume any positive real number value and is not
 necessarily bounded by T.

 Reasonable values for TAU0, TAU1 & TAU2 are:

 o TAU0 = 0,

 o TAU1 = 1/2 * TAU2, and

 o TAU2 = 10 * T.

 Note that specification of a value for TAU1 and TAU2, and any
 communication or coordination between servers, is beyond the scope of
 this document.

7.3.3. Optional Enhancement: Avoidance of Resonance

 As the number of reacting node sources of traffic increases and the
 throughput of the reporting node decreases, the maximum rate admitted
 by each reacting node needs to decrease, and therefore the value of T
 becomes larger. Under some circumstances, e.g. if the traffic arises
 very quickly simultaneously at many sources, the occupancies of each
 bucket can become synchronized, resulting in the admissions from each
 source being close in time and batched or very 'peaky' arrivals at
 the reporting node, which not only gives rise to control instability,
 but also very poor delays and even lost messages. An appropriate
 term for this is 'resonance' [Erramilli].

 If the network topology is such that resonance can occur, then a
 simple way to avoid resonance is to randomize the bucket occupancy at
 two appropriate points -- at the activation of control and whenever
 the bucket empties -- as described below.

 After updating the value of the leaky bucket to X', generate a value
 u as follows:

 if X' > 0, then u=0

 else if X' <= 0, then let u be set to a random value uniformly
 distributed between -1/2 and +1/2

 Then (only) if the arrival is admitted, increase the bucket content
 by an amount T + uT, which will therefore be just T if the bucket
 hadn't emptied, or lie between T/2 and 3T/2 if it had.

 This randomization should also be done when control is activated,
 i.e. instead of simply initializing the leaky bucket counter to TAU0,
 initialize it to TAU0 + uT, where u is uniformly distributed as
 above. Since activation would have been a result of response to a
 request sent by the reacting node, the second term in this expression
 can be interpreted as being the bucket increment following that
 admission.

 This method has the following characteristics:

 o If TAU0 is chosen to be equal to TAU and all sources activate
 control at the same time due to an extremely high request rate,
 then the time until the first request admitted by each reacting
 node would be uniformly distributed over [0,T];

 o The maximum occupancy is TAU + (3/2)T, rather than TAU + T without
 randomization;

 o For the special case of 'classic gapping' where TAU=0, then the
 minimum time between admissions is uniformly distributed over
 [T/2, 3T/2], and the mean time between admissions is the same,
 i.e. T+1/R where R is the request arrival rate.

 o At high load randomization rarely occurs, so there is no loss of
 precision of the admitted rate, even though the randomized
 'phasing' of the buckets remains.

8. IANA Consideration

8.1. AVP Codes

 New AVPs defined by this specification are listed in Section 6. All
 AVP codes are allocated from the 'Authentication, Authorization, and
 Accounting (AAA) Parameters' AVP Codes registry.

8.2. OC-Supported-Features

 As indicated in Section 6.1.1, a new allocation is required in the
 OC-Feature-Vector AVP.

8.3. New DOIC report types

 All DOIC report types defined in the future MUST indicate whether or
 not the rate algorithm can be used with that report type.

9. Security Considerations

 The rate overload abatement mechanism is an extension to the base
 Diameter overload mechanism. As such, all of the security
 considerations outlined in [RFC7683] apply to the rate overload
 abatement mechanism.

 In addition, the rate algorithm could be used to handle DoS attacks
 more effectively than the loss algorithm.

10. Acknowledgements

 Lionel Morand for his contributions to the document.

11. References

11.1. Normative References

 [I-D.ietf-dime-agent-overload]

 Donovan, S., "Diameter Agent Overload", draft-ietf-dime-
 agent-overload-00 (work in progress), December 2014.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC7683]
 Korhonen, J., Ed., Donovan, S., Ed., Campbell, B., and L.
 Morand, "Diameter Overload Indication Conveyance",
 RFC 7683, DOI 10.17487/RFC7683, October 2015,
 <https://www.rfc-editor.org/info/rfc7683>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [Erramilli]

 Erramilli, A. and L. Forys, "Traffic Synchronization
 Effects In Teletraffic Systems", 1991.

 [RFC7415]
 Noel, E. and P. Williams, "Session Initiation Protocol
 (SIP) Rate Control", RFC 7415, DOI 10.17487/RFC7415,
 February 2015, <https://www.rfc-editor.org/info/rfc7415>.

Authors' Addresses

Steve Donovan (editor)
Oracle
7460 Warren Pkwy # 300
Frisco, Texas 75034
United States

 Email: srdonovan@usdonovans.com

Eric Noel
AT&T Labs
200s Laurel Avenue
Middletown, NJ 07747
United States

 Email: ecnoel@research.att.com

draft-ietf-dime-group-signaling-12 - Diameter Group Signaling

draft-ietf-dime-group-signaling-12 - Diameter Group Signaling

Index
Prev
Next
Forward 5

Diameter Maintenance and Extensions (DIME)

Internet-Draft

Intended status: Standards Track

Expires: July 1, 2019

M. Jones

M. Liebsch

L. Morand

December 28, 2018

Diameter Group Signaling

draft-ietf-dime-group-signaling-12.txt

Abstract

 In large network deployments, a single Diameter node can support over
 a million concurrent Diameter sessions. Recent use cases have
 revealed the need for Diameter nodes to apply the same operation to a
 large group of Diameter sessions concurrently. The Diameter base
 protocol commands operate on a single session so these use cases
 could result in many thousands of command exchanges to enforce the
 same operation on each session in the group. In order to reduce
 signaling, it would be desirable to enable bulk operations on all (or
 part of) the sessions managed by a Diameter node using a single or a
 few command exchanges. This document specifies the Diameter protocol
 extensions to achieve this signaling optimization.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 1, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Protocol Overview
	 3.1. Building and Modifying Session Groups

	 3.2. Issuing Group Commands

	 3.3. Permission Considerations

	4. Protocol Description
	 4.1. Session Grouping Capability Discovery
	 4.1.1. Explicit Capability Discovery

	 4.1.2. Implicit Capability Discovery

	 4.2. Session Grouping
	 4.2.1. Group assignment at session initiation

	 4.2.2. Removing a session from a session group

	 4.2.3. Mid-session group assignment modifications

	 4.3. Deleting a Session Group

	 4.4. Performing Group Operations
	 4.4.1. Sending Group Commands

	 4.4.2. Receiving Group Commands

	 4.4.3. Error Handling for Group Commands

	 4.4.4. Single-Session Fallback

	5. Operation with Proxy Agents

	6. Commands Formatting
	 6.1. Formatting Example: Group Re-Auth-Request

	7. Attribute-Value-Pairs (AVP)
	 7.1. Session-Group-Info AVP

	 7.2. Session-Group-Control-Vector AVP

	 7.3. Session-Group-Id AVP

	 7.4. Group-Response-Action AVP

	 7.5. Session-Group-Capability-Vector AVP

	8. Result-Code AVP Values

	9. IANA Considerations
	 9.1. AVP Codes

	 9.2. New Registries

	10. Security Considerations

	11. Acknowledgments

	12. Normative References

	Appendix A. Session Management -- Exemplary Session State Machine
	 A.1. Use of groups for the Authorization Session State Machine

	Authors' Addresses

1. Introduction

 In large network deployments, a single Diameter node can support over
 a million concurrent Diameter sessions. Recent use cases have
 revealed the need for Diameter nodes to apply the same operation to a
 large group of Diameter sessions concurrently. For example, a policy
 decision point may need to modify the authorized quality of service
 for all active users having the same type of subscription. The
 Diameter base protocol commands operate on a single session so these
 use cases could result in many thousands of command exchanges to
 enforce the same operation on each session in the group. In order to
 reduce signaling, it would be desirable to enable bulk operations on
 all (or part of) the sessions managed by a Diameter node using a
 single or a few command exchanges.

 This document describes mechanisms for grouping Diameter sessions and
 applying Diameter commands, such as performing re-authentication, re-
 authorization, termination and abortion of sessions to a group of
 sessions. This document does not define a new Diameter application.
 Instead it defines mechanisms, commands and AVPs that may be used by
 any Diameter application that requires management of groups of
 sessions.

 These mechanisms take the following design goals and features into
 account:

 o Minimal impact to existing applications

 o Extension of existing commands' Command Code Format (CCF) with
 optional AVPs to enable grouping and group operations

 o Fallback to single session operation

 o Implicit discovery of capability to support grouping and group
 operations in case no external mechanism is available to discover a
 Diameter peer's capability to support session grouping and session
 group operations

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 This document uses terminology defined in [RFC6733].

3. Protocol Overview

3.1. Building and Modifying Session Groups

 Client and Server can assign a new Diameter session to a group, e.g.
 in case the subscription profile of the associated user has similar
 characteristics as the profile of other users whose Diameter session
 has been assigned to one or multiple groups. A single command can be
 issued and applied to all sessions associated with such group(s),
 e.g. to adjust common profile or policy settings.

 The assignment of a Diameter session to a group can be changed mid-
 session. For example, if a user's subscription profile changes mid-
 session, a Diameter server may remove the session from its current
 group and assign the session to a different group that is more
 appropriate for the new subscription profile.

 In case of mobile users, the user's session may get transferred to a
 new Diameter client during handover and assigned to a different
 group, which is maintained at the new Diameter client, mid-session.

 A session group, which has sessions assigned, can be deleted, e.g.
 due to a change in multiple users' subscription profile so that the
 group's assigned sessions do not share certain characteristics
 anymore. Deletion of such group requires subsequent individual
 treatment of each of the assigned sessions. A node may decide to
 assign some of these sessions to any other existing or new group.

3.2. Issuing Group Commands

 Changes in the network condition may result in the Diameter server's
 decision to close all sessions in a given group. The server issues a
 single Session Termination Request (STR) command , identifying the
 group of sessions which are to be terminated. The Diameter client
 treats the STR as group command and initiates termination of all
 sessions associated with the identified group. Subsequently, the
 client confirms successful termination of these sessions to the
 server by sending a single Session Termination Answer (STA) command,
 which includes the identifier of the group.

3.3. Permission Considerations

 Permission considerations in the context of this draft apply to the
 permission of Diameter nodes to build new session groups, to assign/
 remove a session to/from a session group and to delete an existing
 session group.

 This specification follows the most flexible model where both, a
 Diameter client and a Diameter server can create a new group and
 assign a new identifier to that session group. When a Diameter node
 decides to create a new session group, e.g. to group all sessions
 which share certain characteristics, the node builds a session group
 identifier according to the rules described in Section 7.3 and
 becomes the owner of the group. This specification does not
 constrain the permission to add or remove a session to/from a session
 group to the group owner, instead each node can add a session to any
 known group or remove a session from a group. A session group is
 deleted and its identifier released after the last session has been
 removed from the session group. Also the modification of groups in
 terms of moving a session from one session group to a different
 session group is permitted to any Diameter node. A Diameter node can
 delete a session group and its group identifier mid-session,
 resulting in individual treatment of the sessions which have been
 previously assigned to the deleted group. Prerequisite for deletion
 of a session group is that the Diameter node created the session
 beforehand, hence the node became the group owner.

 The enforcement of more constrained permissions is left to the
 specification of a particular group signaling enabled Diameter
 application and compliant implementations of such application MUST
 enforce the associated permission model. Details about enforcing a
 more constraint permission model are out of scope of this
 specification. For example, a more constrained model could require
 that a client MUST NOT remove a session from a group which is owned
 by the server.

 The following table depicts the permission considerations as per the
 present specification:

+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Operation | Server | Client |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Create a new Session Group (Diameter node | X | X |
| becomes the group owner) | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Assign a Session to an owned Session Group | X | X |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Assign a Session to a non‑owned Session Group | X | X |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Remove a Session from an owned Session Group | X | X |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Remove a Session from a non‑owned Session Group | X | X |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Remove a Session from a Session Group where the | X | X |
| Diameter node created the assignment | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Remove a Session from a Session Group where a | | |
| different Diameter node created the assignment | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Overrule a different Diameter node's | | |
| group assignment *) | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Delete a Session Group which is owned by the | X | X |
| Diameter node | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Delete a Session Group which is not owned by | | |
| the Diameter node | | |
+‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+

 Default Permission as per this Specification

 *) Editors' note: The protocol specification in this document does
 not consider overruling a node's assignment of a session to a session
 group. Here, overruling is to be understood as a node changing the
 group(s) assignment as per the node's request. Group signaling
 enabled applications may take such protocol support and associated
 protocol semantics into account in their specification. One
 exception is adopted in this specification, which allows a Diameter
 server to reject a group assignment as per the client's request.

4. Protocol Description

4.1. Session Grouping Capability Discovery

 Diameter nodes SHOULD assign a session to a session group and perform
 session group operations with a node only after having ensured that
 the node announced associated support beforehand.

4.1.1. Explicit Capability Discovery

 New Diameter applications may consider support for Diameter session
 grouping and for performing group commands during the standardization
 process. Such applications provide intrinsic discovery for the
 support of group commands and announce this capability through the
 assigned application ID.

 System- and deployment-specific means, as well as out-of-band
 mechanisms for capability exchange can be used to announce nodes'
 support for session grouping and session group operations. In such
 case, the optional Session-Group-Capability-Vector AVP, as described
 in Section 4.1.2 can be omitted in Diameter messages being exchanged
 between nodes.

4.1.2. Implicit Capability Discovery

 If no explicit mechanism for capability discovery is deployed to
 enable Diameter nodes to learn about nodes' capability to support
 session grouping and group commands, a Diameter node SHOULD append
 the Session-Group-Capability-Vector AVP to any Diameter messages
 exchanged with its nodes to announce its capability to support
 session grouping and session group operations. Implementations
 following the specification as per this document set the
 BASE_SESSION_GROUP_CAPABILITY flag of the Session-Group-Capability-
 Vector AVP.

 When a Diameter node receives at least one Session-Group-Capability-
 Vector AVP from a node with the BASE_SESSION_GROUP_CAPABILITY flag
 set, the Diameter node maintains a log to remember the node's
 capability to support group commands.

4.2. Session Grouping

 This specification does not limit the number of session groups, to
 which a single session is assigned. It is left to the application to
 determine the policy of session grouping. In case an application
 facilitates a session to belong to multiple session groups, the
 application MUST maintain consistency of associated application
 session states for these multiple session groups.

 Either Diameter node (client or server) can initiate the assignment
 of a session to a single or multiple session groups. Modification of
 a group by removing or adding a single or multiple user sessions can
 be initiated and performed mid-session by either Diameter node.
 Diameter AAA applications typically assign client and server roles to
 the Diameter nodes, which are referred to as relevant Diameter nodes
 to utilize session grouping and issue group commands. Section 5
 describes particularities about session grouping and performing group
 commands when relay agents or proxies are deployed.

 Diameter nodes, which are group-aware, MUST store and maintain an
 entry about the group assignment together with a session's state. A
 list of all known session groups should be locally maintained on each
 node, each group pointing to individual sessions being assigned to
 the group. A Diameter node MUST also keep a record about sessions,
 which have been assigned to a session group by itself.

4.2.1. Group assignment at session initiation

 To assign a session to a group at session initiation, a Diameter
 client sends a service specific request, e.g. NASREQ AA-Request
 [RFC7155], containing one or more session group identifiers. Each of
 these groups MUST be identified by a unique Session-Group-Id
 contained in a separate Session-Group-Info AVP as specified in
 Section 7.

 The client may choose one or multiple session groups from a list of
 existing session groups. Alternatively, the client may decide to
 create a new group to which the session is assigned and identify
 itself in the <DiameterIdentity> portion of the Session-Group-Id AVP
 as per Section 7.3. For all assignments of a session to an active
 session group made by the client or the server, the
 SESSION_GROUP_STATUS_IND flag in the Session-Group-Info AVP, which
 identifies the session group, MUST be set. A set
 SESSION_GROUP_STATUS_IND flag indicates that the identified session
 group has just been created or is still active.

 The client MUST set the SESSION_GROUP_ALLOCATION_ACTION flag of the
 Session-Group-Control-Vector AVP in each appended Session-Group-Info
 AVP to indicate that the session contained in the request should be
 assigned to the identified session group.

 The client may also indicate in the request that the server is
 responsible for the assignment of the session in one or multiple
 sessions owned by the server. In such a case, the client MUST
 include the Session-Group-Info AVP in the request including the
 Session-Group-Control-Vector AVP with the
 SESSION_GROUP_ALLOCATION_ACTION flag set but no Session-Group-Id AVP.
 If the Diameter server receives a command request from a Diameter
 client and the command comprises at least one Session-Group-Info AVP
 having the SESSION_GROUP_ALLOCATION_ACTION flag in the Session-Group-
 Control-Vector AVP set, the server can accept or reject the request
 for group assignment. Reasons for rejection may be e.g. lack of
 resources for managing additional groups. When rejected, the session
 MUST NOT be assigned to any session group.

 If the Diameter server accepts the client's request for a group
 assignment, the server MUST assign the new session to each of the one
 or multiple identified session groups when present in the Session-
 Group-Info AVP. In case one or multiple identified session groups
 are not already stored by the server, the server MUST store the new
 identified group(s) to its local list of known session groups. When
 sending the response to the client, e.g. a service-specific auth
 response as per NASREQ AA-Answer [RFC7155], the server MUST include
 all Session-Group-Info AVPs as received in the client's request.

 In addition to the one or multiple session groups identified in the
 client's request, the server may decide to assign the new session to
 one or multiple additional groups. In such a case, the server MUST
 add to the response the additional Session-Group-Info AVPs, each
 identifying a session group to which the new session is assigned by
 the server. Each of the Session-Group-Info AVP added by the server
 MUST have the SESSION_GROUP_ALLOCATION_ACTION flag set in the
 Session-Group-Control-Vector AVP set.

 If the Diameter server rejects the client's request for a group
 assignment, the server sends the response to the client, e.g. a
 service-specific auth response as per NASREQ AA-Answer [RFC7155], and
 MUST include all Session-Group-Info AVPs as received in the client's
 request (if any) while clearing the SESSION_GROUP_ALLOCATION_ACTION
 flag of the Session-Group-Control-Vector AVP. The server MAY accept
 the client's request for the identified session but refuse the
 session's assignment to any session group. The server sends the
 response to the client indicating success in the result code. In
 such case the session is treated as single session without assignment
 to any session group by the Diameter nodes.

 If the Diameter server accepts the client's request for a group
 assignment, but the assignment of the session to one or some of the
 multiple identified session groups fails, the session group
 assignment is treated as failure. In such case the session is
 treated as single session without assignment to any session group by
 the Diameter nodes. The server sends the response to the client and
 MAY include as information to the client only those Session-Group-
 Info AVPs for which the group assignment failed. The
 SESSION_GROUP_ALLOCATION_ACTION flag of included Session-Group-Info
 AVPs MUST be cleared.

 If the Diameter server receives a command request from a Diameter
 client and the command comprises one or multiple Session-Group-Info
 AVPs and none of them includes a Session-Group-Id AVP, the server MAY
 decide to assign the session to one or multiple session groups. For
 each session group, to which the server assigns the new session, the
 server includes a Session-Group-Info AVP with the Session-Group-Id
 AVP identifying a session group in the response sent to the client.
 Each of the Session-Group-Info AVPs included by the server MUST have
 the SESSION_GROUP_ALLOCATION_ACTION flag of the Session-Group-
 Control-Vector AVP set.

 If the Diameter server receives a command request from a Diameter
 client and the command does not contain any Session-Group-Info AVP,
 the server MUST NOT assign the new session to any session group but
 treat the request as for a single session. The server MUST NOT
 return any Session-Group-Info AVP in the command response.

 If the Diameter client receives a response to its previously issued
 request from the server and the response comprises at least one
 Session-Group-Info AVP having the SESSION_GROUP_ALLOCATION_ACTION
 flag of the associated Session-Group-Control-Vector AVP set, the
 client MUST add the new session to all session groups as identified
 in the one or multiple Session-Group-Info AVPs. If the Diameter
 client fails to add the session to one or more session groups as
 identified in the one or multiple Session-Group-info AVPs, the client
 MUST terminate the session. The client MAY send a subsequent request
 for session initiation to the server without requesting the
 assignment of the session to a session group

 If the Diameter client receives a response to its previously issued
 request from the server and the one or more Session-Group-Info AVPs
 have the SESSION_GROUP_ALLOCATION_ACTION flag of the associated
 Session-Group-Control-Vector AVP cleared, the client MUST terminate
 the assignment of the session to the one or multiple groups. If the
 response from the server indicates success in the result code but
 solely the assignment of the session to a session group has been
 rejected by the server, the client treats the session as single
 session without group assignment.

 A Diameter client, which sent a request for session initiation to a
 Diameter server and appended a single or multiple Session-Group-Id
 AVPs but cannot find any Session-Group-Info AVP in the associated
 response from the Diameter server proceeds as if the request was
 processed for a single session. When the Diameter client is
 confident that the Diameter server supports session grouping and
 group signaling, the Diameter client SHOULD NOT retry to request
 group assignment for this session, but MAY try to request group
 assignment for other new sessions.

4.2.2. Removing a session from a session group

 When a Diameter client decides to remove a session from a particular
 session group, the client sends a service-specific re-authorization
 request to the server and adds one Session-Group-Info AVP to the
 request for each session group, from which the client wants to remove
 the session. The session, which is to be removed from a group, is
 identified in the Session-Id AVP of the command request. The
 SESSION_GROUP_ALLOCATION_ACTION flag of the Session-Group-Control-
 Vector AVP in each Session-Group-Info AVP MUST be cleared to indicate
 removal of the session from the session group identified in the
 associated Session-Group-id AVP.

 When a Diameter client decides to remove a session from all session
 groups, to which the session has been previously assigned, the client
 sends a service-specific re-authorization request to the server and
 adds a single Session-Group-Info AVP to the request which has the
 SESSION_GROUP_ALLOCATION_ACTION flag cleared and the Session-Group-Id
 AVP omitted. The session, which is to be removed from all groups, to
 which the session has been previously assigned, is identified in the
 Session-Id AVP of the command request.

 If the Diameter server receives a request from the client which has
 at least one Session-Group-Info AVP appended with the
 SESSION_GROUP_ALLOCATION_ACTION flag cleared, the server MUST remove
 the session from the session group identified in the associated
 Session-Group-Id AVP. If the request comprises at least one Session-
 Group-info AVP with the SESSION_GROUP_ALLOCATION_ACTION flag cleared
 and no Session-Id AVP present, the server MUST remove the session
 from all session groups to which the session has been previously
 assigned. The server MUST include in its response to the requesting
 client all Session-Group-Id AVPs as received in the request.

 When the Diameter server decides to remove a session from one or
 multiple particular session groups or from all session groups to
 which the session has been assigned beforehand, the server sends a
 Re-Authorization Request (RAR) or a service-specific server-initiated
 request to the client, indicating the session in the Session-Id AVP
 of the request. The client sends a Re-Authorization Answer (RAA) or
 a service-specific answer to respond to the server's request. The
 client subsequently sends service-specific re-authorization request
 containing one or multiple Session-Group-Info AVPs, each indicating a
 session group, to which the session had been previously assigned. To
 indicate removal of the indicated session from one or multiple
 session groups, the server sends a service-specific auth response to
 the client, containing a list of Session-Group-Info AVPs with the
 SESSION_GROUP_ALLOCATION_ACTION flag cleared and the Session-Group-Id
 AVP identifying the session group, from which the session should be
 removed. The server MAY include to the service-specific auth
 response a list of Session-Group-Info AVPs with the
 SESSION_GROUP_ALLOCATION_ACTION flag set and the Session-Group-Id AVP
 identifying session groups to which the session remains subscribed.
 In case the server decides to remove the identified session from all
 session groups, to which the session has been previously assigned,
 the server includes in the service-specific auth response at least
 one Session-Group-Info AVP with the SESSION_GROUP_ALLOCATION_ACTION
 flag cleared and Session-Group-Id AVP absent.

4.2.3. Mid-session group assignment modifications

 Either Diameter node (client or server) can modify the group
 membership of an active Diameter session according to the specified
 permission considerations.

 To update an assigned group mid-session, a Diameter client sends a
 service-specific re-authorization request to the server, containing
 one or multiple Session-Group-Info AVPs with the
 SESSION_GROUP_ALLOCATION_ACTION flag set and the Session-Group-Id AVP
 present, identifying the session group to which the session should be
 assigned. With the same message, the client may send one or multiple
 Session-Group-Info AVP with the SESSION_GROUP_ALLOCATION_ACTION flag
 cleared and the Session-Group-Id AVP identifying the session group
 from which the identified session is to be removed. To remove the
 session from all previously assigned session groups, the client
 includes at least one Session-Group-Info AVP with the
 SESSION_GROUP_ALLOCATION_ACTION flag cleared and no Session-Group-Id
 AVP present. When the server received the service-specific re-
 authorization request, it MUST update its locally maintained view of
 the session groups for the identified session according to the
 appended Session-Group-Info AVPs. The server sends a service-
 specific auth response to the client containing one or multiple
 Session-Group-Info AVPs with the SESSION_GROUP_ALLOCATION_ACTION flag
 set and the Session-Group-Id AVP identifying the new session group to
 which the identified session has been assigned.

 When a Diameter server enforces an update to the assigned groups mid-
 session, it sends a Re-Authorization Request (RAR) message to the
 client identifying the session, for which the session group lists are
 to be updated. The client responds with a Re-Authorization Answer
 (RAA) message. The client subsequently sends a service-specific re-
 authorization request containing one or multiple Session-Group-Info
 AVPs with the SESSION_GROUP_ALLOCATION_ACTION flag set and the
 Session-Group-Id AVP identifying the session group to which the
 session had been previously assigned. The server responds with a
 service-specific auth response and includes one or multiple Session-
 Group-Info AVP with the SESSION_GROUP_ALLOCATION_ACTION flag set and
 the Session-Group-Id AVP identifying the session group, to which the
 identified session is to be assigned. With the same response
 message, the server may send one or multiple Session-Group-Info AVPs
 with the SESSION_GROUP_ALLOCATION_ACTION flag cleared and the
 Session-Group-Id AVP identifying the session groups from which the
 identified session is to be removed. When server wants to remove the
 session from all previously assigned session groups, it sends at
 least one Session-Group-Info AVP with the response having the
 SESSION_GROUP_ALLOCATION_ACTION flag cleared and no Session-Group-Id
 AVP present.

4.3. Deleting a Session Group

 To delete a session group and release the associated Session-Group-Id
 value, the owner of a session group appends a single Session-Group-
 Info AVP having the SESSION_GROUP_STATUS_IND flag cleared and the
 Session-Group-Id AVP identifying the session group, which is to be
 deleted. The SESSION_GROUP_ALLOCATION_ACTION flag of the associated
 Session-Group-Control-Vector AVP MUST be cleared.

4.4. Performing Group Operations

4.4.1. Sending Group Commands

 Either Diameter node (client or server) can request the recipient of
 a request to process an associated command for all sessions being
 assigned to one or multiple groups by identifying these groups in the
 request. The sender of the request appends for each group, to which
 the command applies, a Session-Group-Info AVP including the Session-
 Group-Id AVP to identify the associated session group. Both, the
 SESSION_GROUP_ALLOCATION_ACTION flag as well as the
 SESSION_GROUP_STATUS_IND flag MUST be set.

 If the CCF of the request mandates a Session-Id AVP, the Session-Id
 AVP MUST identify one of the single sessions which is assigned to at
 least one of the groups being identified in the appended Session-
 Group-Id AVPs.

 The sender of the request MUST indicate to the receiver how multiple
 resulting transactions associated with a group command are to be
 treated by appending a single instance of a Group-Response-Action
 AVP. When a server sends, as example, a Re-Authorization Request
 (RAR) or a service-specific server-initiated request to the client,
 it can indicate to the client whether to process the request, after
 having sent the RAA to the server, with either sending a single RAR
 message for all identified groups (server sets the Group-Response-
 Action AVP to ALL_GROUPS (1)), or sending a single RAR message for
 each identified group individually (server sets the Group-Response-
 Action AVP to PER_GROUP (1)). The server may also request the client
 to follow-up with a single RAR message per impacted session (server
 sets the Group-Response-Action AVP to PER_SESSION). In such case,
 the client sends only one RAR message for an impacted session in case
 the session is included in more than one of the identified session
 groups.

 If the sender sends a request including the Group-Response-Action AVP
 set to ALL_GROUPS (1) or PER_GROUP (2), it MUST expect some delay
 before receiving the corresponding answer(s) as the answer(s) will
 only be sent back when the request is processed for all the sessions
 or all the session of a session group. If the process of the request
 is delay-sensitive, the sender SHOULD NOT set the Group-Response-
 Action AVP to ALL_GROUPS (1) or PER_GROUP (2). If the answer can be
 sent before the complete process of the request for all the sessions
 or if the request timeout timer is high enough, the sender MAY set
 the Group-Response-Action AVP to ALL_GROUPS (1) or PER_GROUP (2).

 If the sender wants the receiver of the request to process the
 associated command solely for a single session, the sender does not
 append any group identifier, but identifies the relevant session in
 the Session-Id AVP.

4.4.2. Receiving Group Commands

 A Diameter node receiving a request to process a command for a group
 of sessions, identifies the relevant groups according to the appended
 Session-Group-Id AVP in the Session-Group-Info AVP and processes the
 group command according to the appended Group-Response-Action AVP .
 If the received request identifies multiple groups in multiple
 appended Session-Group-Id AVPs, the receiver SHOULD process the
 associated command for each of these groups. If a session has been
 assigned to more than one of the identified groups, the receiver MUST
 process the associated command only once per session.

4.4.3. Error Handling for Group Commands

 When a Diameter node receives a request to process a command for one
 or more session groups and the result of processing the command is an
 error that applies to all sessions in the identified groups, an
 associated protocol error MUST be returned to the source of the
 request. In such case, the sender of the request MUST fall back to
 single-session processing and the session groups, which have been
 identified in the group command, MUST be deleted according to the
 procedure described in Section 4.3.

 When a Diameter node receives a request to process a command for one
 or more session groups and the result of processing the command
 succeeds for some sessions identified in one or multiple session
 groups, but fails for one or more sessions, the Result-Code AVP in
 the response message SHOULD indicate DIAMETER_LIMITED_SUCCESS as per
 Section 7.1.2 of [RFC6733].

 In case of limited success, the sessions, for which the processing of
 the group command failed, MUST be identified using a Failed-AVP AVP
 as per Section 7.5 of [RFC6733]. The sender of the request MUST fall
 back to single-session operation for each of the identified sessions,
 for which the group command failed. In addition, each of these
 sessions MUST be removed from all session groups to which the group
 command applied. To remove sessions from a session group, the
 Diameter client performs the procedure described in Section 4.2.2.

4.4.4. Single-Session Fallback

 Either Diameter node can fall back to single session operation by
 ignoring and omitting the optional group session-specific AVPs.
 Fallback to single-session operation is performed by processing the
 Diameter command solely for the session identified in the mandatory
 Session-Id AVP. In such case, the response to the group command MUST
 NOT identify any group but identify solely the single session for
 which the command has been processed.

5. Operation with Proxy Agents

 In case of a present stateful Proxy Agent between a Diameter client
 and a Diameter server, this specification assumes that the Proxy
 Agent is aware of session groups and session group handling. The
 Proxy MUST update and maintain consistency of its local session
 states as per the result of the group commands which are operated
 between a Diameter client and a server. In such case, the Proxy
 Agent MUST act as a Diameter server in front of the Diameter client
 and MUST act as a Diameter client in front of the Diameter server.
 Therefore, the client and server behavior described in Section 4
 applies respectively to the stateful Proxy Agent.

 In case a stateful Proxy Agent manipulates session groups, it MUST
 maintain consistency of session groups between a client and a server.
 This applies to a deployment where the Proxy Agent utilizes session
 grouping and performs group operations with, for example, a Diameter
 server, whereas the Diameter client is not aware of session groups.
 In such case the Proxy Agent must reflect the states associated with
 the session groups as individual session operations towards the
 client and ensure the client has a consistent view of each session.
 The same applies to a deployment where all nodes, the Diameter client
 and server, as well as the Proxy Agent are group-aware but the Proxy
 Agent manipulates groups, e.g. to adopt different administrative
 policies that apply to the client's domain and the server's domain.

 Stateless Proxy Agents do not maintain any session state (only
 transaction state are maintained). Consequently, the notion of
 session group is transparent for any stateless Proxy Agent present
 between a Diameter client and a Diameter server handling session
 groups. Session group related AVPs being defined as optional AVP
 SHOULD be ignored by stateless Proxy Agents and SHOULD NOT be removed
 from the Diameter commands. If they are removed by the Proxy Agent
 for any reason, the Diameter client and Diameter server will discover
 the absence the related session group AVPs and will fall back to
 single-session processing, as described in Section 4.

6. Commands Formatting

 This document does not specify new Diameter commands to enable group
 operations, but relies on command extensibility capability provided
 by the Diameter Base protocol. This section provides the guidelines
 to extend the CCF of existing Diameter commands with optional AVPs to
 enable the recipient of the command applying the command to all
 sessions associated with the identified group(s).

6.1. Formatting Example: Group Re-Auth-Request

 A request for re-authentication of one or more groups of users is
 issued by appending one or multiple Session-Group-Id AVP(s), as well
 as a single instance of a Group-Response-Action AVP to the Re-Auth-
 Request (RAR). The one or multiple Session-Group-Id AVP(s) identify
 the associated group(s) for which the group re-authentication has
 been requested. The Group-Response-Action AVP identifies the
 expected means to perform and respond to the group command. The
 recipient of the group command initiates re-authentication for all
 users associated with the identified group(s). Furthermore, the
 sender of the group re-authentication request appends a Group-
 Response-Action AVP to provide more information to the receiver of
 the command about how to accomplish the group operation.

 The value of the mandatory Session-Id AVP MUST identify a session
 associated with a single user, which is assigned to at least one of
 the groups being identified in the appended Session-Group-Id AVPs.

<RAR> ::= < Diameter Header: 258, REQ, PXY >
 < Session‑Id >
 { Origin‑Host }
 { Origin‑Realm }
 { Destination‑Realm }
 { Destination‑Host }
 { Auth‑Application‑Id }
 { Re‑Auth‑Request‑Type }
 [User‑Name]
 [Origin‑State‑Id]
 * [Proxy‑Info]
 * [Route‑Record]
 [Session‑Group‑Capability‑Vector]
 * [Session‑Group‑Info]
 [Group‑Response‑Action]
 * [AVP]

7. Attribute-Value-Pairs (AVP)

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | AVP Flag rules |
 +‑‑‑‑+‑‑‑+‑‑‑‑‑‑+‑‑‑‑+
 AVP | | |SHOULD|MUST|
 Attribute Name Code Value Type |MUST|MAY| NOT | NOT|
+‑‑‑+‑‑‑‑+‑‑‑+‑‑‑‑‑‑+‑‑‑‑+
Session‑Group‑Info TBD1 Grouped		P		V
Session‑Group‑Control‑Vector TBD2 Unsigned32		P		V
Session‑Group‑Id TBD3 OctetString		P		V
Group‑Response‑Action TBD4 Unsigned32		P		V
Session‑Group‑Capability‑Vector TBD5 Unsigned32		P		V
+‑‑‑+‑‑‑‑+‑‑‑+‑‑‑‑‑‑+‑‑‑‑+

 AVPs for the Diameter Group Signaling

7.1. Session-Group-Info AVP

 The Session-Group-Info AVP (AVP Code TBD1) is of type Grouped. It
 contains the identifier of the session group as well as an indication
 of the node responsible for session group identifier assignment.

Session‑Group‑Info ::= < AVP Header: TBD1 >
 < Session‑Group‑Control‑Vector >
 [Session‑Group‑Id]
 * [AVP]

7.2. Session-Group-Control-Vector AVP

 The Session-Group-Control-Vector AVP (AVP Code TBD2) is of type
 Unsigned32 and contains a 32-bit flags field to control the group
 assignment at session-group aware nodes.

 The following control flags are defined in this document:

 SESSION_GROUP_ALLOCATION_ACTION (0x00000001)

 This flag indicates the action to be performed for the identified
 session. When this flag is set, it indicates that the identified
 Diameter session is to be assigned to the session group as
 identified by the Session-Group-Id AVP or the session's assignment
 to the session group identified in the Session-Group-Id AVP is
 still valid. When the flag is cleared, the identified Diameter
 session is to be removed from at least one session group. When
 the flag is cleared and the Session-Group-Info AVP identifies a
 particular session group in the associated Session-Group-Id AVP,
 the session is to be removed solely from the identified session
 group. When the flag is cleared and the Session-Group-Info AVP
 does not identify a particular session group (Session-Group-Id AVP
 is absent), the identified Diameter session is to be removed from
 all session groups, to which it has been previously assigned.

 SESSION_GROUP_STATUS_IND (0x00000010)

 This flag indicates the status of the session group identified in
 the associated Session-Group-Id AVP. The flag is set when the
 identified session group has just been created or is still active.
 If the flag is cleared, the identified session group is deleted
 and the associated Session-Group-Id is released. If the Session-
 Group-Info AVP does not comprise a Session-Group-Id AVP, this flag
 is meaningless and MUST be ignored by the receiver.

7.3. Session-Group-Id AVP

 The Session-Group-Id AVP (AVP Code TBD3) is of type UTF8String and
 identifies a group of Diameter sessions.

 The Session-Group-Id MUST be globally and eternally unique, as it is
 meant to uniquely identify a group of Diameter sessions without
 reference to any other information.

 The default format of the Session-Group-id MUST comply to the format
 recommended for a Session-Id, as defined in the section 8.8 of the
 [RFC6733]. The <DiameterIdentity> portion of the Session-Group-Id
 MUST identify the Diameter node, which owns the session group.

7.4. Group-Response-Action AVP

 The Group-Response-Action AVP (AVP Code TBD4) is of type Unsigned32
 and contains a 32-bit address space representing values indicating
 how the node SHOULD issue follow up exchanges in response to a
 command which impacts multiple sessions. The following values are
 defined by this document:

 ALL_GROUPS (1)

 Follow up message exchanges associated with a group command should
 be performed with a single message exchange for all impacted
 groups.

 PER_GROUP (2)

 Follow up message exchanges associated with a group command should
 be performed with a separate message exchange for each impacted
 group.

 PER_SESSION (3)

 Follow up message exchanges associated with a group command should
 be performed with a separate message exchange for each impacted
 session.

7.5. Session-Group-Capability-Vector AVP

 The Session-Group-Capability-Vector AVP (AVP Code TBD5) is of type
 Unsigned32 and contains a 32-bit flags field to indicate capabilities
 in the context of session-group assignment and group operations.

 The following capabilities are defined in this document:

 BASE_SESSION_GROUP_CAPABILITY (0x00000001)

 This flag indicates the capability to support session grouping and
 session group operations according to this specification.

8. Result-Code AVP Values

 This document does not define new Result-Code [RFC6733] values for
 existing applications, which are extended to support group commands.
 Specification documents of new applications, which will have
 intrinsic support for group commands, may specify new Result-Codes.

9. IANA Considerations

 This section contains the namespaces that have either been created in
 this specification or had their values assigned to existing
 namespaces managed by IANA.

9.1. AVP Codes

 This specification requires IANA to register the following new AVPs
 from the AVP Code namespace defined in [RFC6733].

 o Session-Group-Info

 o Session-Group-Control-Vector

 o Session-Group-Id

 o Group-Response-Action

 o Session-Group-Capability-Vector

 The AVPs are defined in Section 7.

9.2. New Registries

 This specification requires IANA to create two registries:

 o Session-Group-Control-Vector AVP registry for control bits with
 two initial assignments, which are described in Section 7.2. The
 future registration assignment policy is proposed to be
 Specification Required.

 o Session-Group-Capability-Vector AVP with one initial assignment,
 which is described in Section 7.5. The future registration
 assignment policy is proposed to be Standards Action.

 The AVP names can be used as registry names.

10. Security Considerations

 The security considerations of the Diameter protocol itself are
 discussed in [RFC6733]. Use of the AVPs defined in this document
 MUST take into consideration the security issues and requirements of
 the Diameter base protocol. In particular, the Session-Group-Info
 AVP (including the Session-group-Control-Vector and the Session-
 Group-Id AVPs) should be considered as a security-sensitive AVPs in
 the same manner than the Session-Id AVP in the Diameter base protocol
 [RFC6733].

 The management of session groups relies upon the existing trust
 relationship between the Diameter client and the Diameter server
 managing the groups of sessions. This document defines a mechanism
 that allows a client or a server to act on multiple sessions at the
 same time using only one command. if the Diameter client or server is
 compromised, an attacker could launch DoS attacks by terminating a
 large number of sessions with a limited set of commands using the
 session group management concept.

 According to the Diameter base protocol [RFC6733], transport
 connections between Diameter peers are protected by TLS/TCP, DTLS/
 SCTP or alternative security mechanisms that are independent of
 Diameter, such as IPsec. However, the lack of end-to-end security
 features makes it difficult to establish trust in the session group
 related information received from non-adjacent nodes. Any Diameter
 agent in the message path can potentially modify the content of the
 message and therefore the information sent by the Diameter client or
 the server. The DIME working group is currently working on solutions
 for providing end-to-end security features. When available, these
 features should enable the establishment of trust relationship
 between non-adjacent nodes and the security required for session
 group management would normally rely on this end-to-end security.
 However, there is no assumption in this document that such end-to-end
 security mechanism will be available. It is only assume that the
 solution defined on this document relies on the security framework
 provided by the Diameter based protocol.

 In some cases, a Diameter Proxy agent can act on behalf of a client
 or server. In such a case, the security requirements that normally
 apply to a client (or a server) apply equally to the Proxy agent.

11. Acknowledgments

 The authors of this document want to thank Ben Campbell and Eric
 McMurry for their valuable comments to early versions of this draft.
 Furthermore, authors thank Steve Donovan and Mark Bales for the
 thorough review and comments on advanced versions of the WG document,
 which helped a lot to improve this specification.

12. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC7155]
 Zorn, G., Ed., "Diameter Network Access Server
 Application", RFC 7155, DOI 10.17487/RFC7155, April 2014,
 <https://www.rfc-editor.org/info/rfc7155>.

Appendix A. Session Management -- Exemplary Session State Machine

A.1. Use of groups for the Authorization Session State Machine

 Section 8.1 in [RFC6733] defines a set of finite state machines,
 representing the life cycle of Diameter sessions, and which MUST be
 observed by all Diameter implementations that make use of the
 authentication and/or authorization portion of a Diameter
 application. This section defines, as example, additional state
 transitions related to the processing of the group commands which may
 impact multiple sessions.

 The group membership is session state and therefore only those state
 machines from [RFC6733] in which the server is maintaining session
 state are relevant in this document. As in [RFC6733], the term
 Service-Specific below refers to a message defined in a Diameter
 application (e.g., Mobile IPv4, NASREQ).

 The following state machine is observed by a client when state is
 maintained on the server. State transitions which are unmodified
 from [RFC6733] are not repeated here.

 The Diameter group command in the following tables is differentiated
 from a single-session related command by a preceding 'G' (Group). A
 Group Re-Auth Request, which applies to one or multiple session
 groups, has been exemplarily described in Section 6.1. Such Group
 RAR command is denoted as 'GRAR' in the following table. The same
 notation applies to other commands as per [RFC6733].

 CLIENT, STATEFUL
State Event Action New State
‑‑‑
Idle Client or Device Requests Send Pending
 access service
 specific
 auth req
 optionally
 including
 groups

Open GASR received with Send GASA Discon
 Group‑Response‑Action with
 = ALL_GROUPS, Result‑Code
 session is assigned to = SUCCESS,

 received group(s) and Send GSTR.
 client will comply with
 request to end the session

Open GASR received with Send GASA Discon
 Group‑Response‑Action with
 = PER_GROUPS, Result‑Code
 session is assigned to = SUCCESS,
 received group(s) and Send GSTR
 client will comply with per group
 request to end the session
Open GASR received with Send GASA Discon
 Group‑Response‑Action with
 = PER_SESSION, Result‑Code
 session is assigned to = SUCCESS,
 received group(s) and Send STR
 client will comply with per session
 request to end the session

Open GASR received, Send GASA Open
 client will not comply with with
 request to end all session Result‑Code
 in received group(s) != SUCCESS

Discon GSTA Received Discon. Idle
 user/device

Open GRAR received with Send GRAA, Pending
 Group‑Response‑Action Send
 = ALL_GROUPS, service
 session is assigned to specific
 received group(s) and group
 client will perform re‑auth req
 subsequent re‑auth

Open GRAR received with Send GRAA, Pending
 Group‑Response‑Action Send
 = PER_GROUP, service
 session is assigned to specific
 received group(s) and group
 client will perform re‑auth req
 subsequent re‑auth per group

Open GRAR received with Send GRAA, Pending
 Group‑Response‑Action Send
 = PER_SESSION, service
 session is assigned to specific
 received group(s) and re‑auth req

 client will perform per session
 subsequent re‑auth

Open GRAR received and client will Send GRAA Idle
 not perform subsequent with
 re‑auth Result‑Code
 != SUCCESS,
 Discon.
 user/device

Pending Successful service‑specific Provide Open
 group re‑authorization answer service
 received.

Pending Failed service‑specific Discon. Idle
 group re‑authorization answer user/device
 received.

 The following state machine is observed by a server when it is
 maintaining state for the session. State transitions which are
 unmodified from [RFC6733] are not repeated here.

 SERVER, STATEFUL
State Event Action New State
‑‑‑

Idle Service‑specific authorization Send Open
 request received, and user successful
 is authorized service
 specific
 answer
 optionally
 including
 groups

Open Server wants to terminate Send GASR Discon
 group(s)

Discon GASA received Cleanup Idle

Any GSTR received Send GSTA, Idle
 Cleanup

Open Server wants to reauth Send GRAR Pending
 group(s)

Pending GRAA received with Result‑Code Update Open
 = SUCCESS session(s)

Pending GRAA received with Result‑Code Cleanup Idle
 != SUCCESS session(s)

Open Service‑specific group Send Open
 re‑authoization request successful
 received and user is service
 authorized specific
 group
 re‑auth
 answer

Open Service‑specific group Send Idle
 re‑authorization request failed
 received and user is service
 not authorized specific
 group
 re‑auth
 answer,
 cleanup

Authors' Addresses

 Mark Jones

 Email: mark@azu.ca

 Marco Liebsch

 Email: marco.liebsch@neclab.eu

 Lionel Morand

 Email: lionel.morand@orange.com

draft-ietf-dime-load-09 - Diameter Load Information Conveyance

draft-ietf-dime-load-09 - Diameter Load Information Conveyance

Index
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Standards Track

Expires: September 23, 2017

B. Campbell

S. Donovan, Ed.

Oracle

JJ. Trottin

Nokia

March 22, 2017

Diameter Load Information Conveyance

draft-ietf-dime-load-09

Abstract

 RFC7068 describes requirements for Overload Control in Diameter.
 This includes a requirement to allow Diameter nodes to send "load"
 information, even when the node is not overloaded. RFC7683 (Diameter
 Overload Information Conveyance (DOIC)) solution describes a
 mechanism meeting most of the requirements, but does not currently
 include the ability to send load information. This document defines
 a mechanism for conveying of Diameter load information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 23, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology and Abbreviations

	3. Conventions Used in This Document

	4. Background
	 4.1. Differences between Load and Overload information

	 4.2. How is Load Information Used?

	5. Solution Overview
	 5.1. Theory of Operation

	6. Load Mechanism Procedures
	 6.1. Reporting Node Behavior
	 6.1.1. Endpoint Reporting Node Behavior

	 6.1.2. Agent Reporting Node Behavior

	 6.2. Reacting Node Behavior

	 6.3. Extensibility

	 6.4. Addition and Removal of Nodes

	7. Attribute Value Pairs
	 7.1. Load AVP

	 7.2. Load-Type AVP

	 7.3. Load-Value AVP

	 7.4. SourceID AVP

	 7.5. Attribute Value Pair flag rules

	8. Security Considerations

	9. IANA Considerations
	 9.1. AVP Codes

	 9.2. New Registries

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Appendix A. Topology Scenarios
	 A.1. No Agent

	 A.2. Single Agent

	 A.3. Multiple Agents

	 A.4. Linked Agents

	 A.5. Shared Server Pools

	 A.6. Agent Chains

	 A.7. Fully Meshed Layers

	 A.8. Partitions

	 A.9. Active-Standby Nodes

	Authors' Addresses

1. Introduction

 [RFC7068] describes requirements for Overload Control in Diameter
 [RFC6733]. The DIME working group has finished the Diameter Overload
 Information Conveyance (DOIC) mechanism [RFC7683]. As currently
 specified, DOIC fulfills some, but not all, of the requirements.

 In particular, DOIC does not fulfill Req 23 and Req 24:

 REQ 23: The solution MUST provide sufficient information to enable
 a load-balancing node to divert messages that are rejected or
 otherwise throttled by an overloaded upstream node to other
 upstream nodes that are the most likely to have sufficient
 capacity to process them.

 REQ 24: The solution MUST provide a mechanism for indicating load
 levels, even when not in an overload condition, to assist nodes in
 making decisions to prevent overload conditions from occurring.

 There are several other requirements in [RFC7068] that mention both
 overload and load information that are only partially fulfilled by
 DOIC.

 The DIME working group explicitly chose not to fulfill these
 requirements when publishing DOIC [RFC7683] due to several reasons.
 A principal reason was that the working group did not agree on a
 general approach for conveying load information. It chose to
 progress the rest of DOIC, and deferred load information conveyance
 to a DOIC extension or a separate mechanism.

 This document defines a mechanism that addresses the load-related
 requirements from RFC 7068.

2. Terminology and Abbreviations

 AVP

 Attribute Value Pair

 DOIC

 Diameter Overload Information Conveyance ([RFC7683])

 Load

 The relative usage of the Diameter message processing capacity of
 a Diameter node. A low load level indicates that the Diameter
 node is under utilized. A high load level indicates that the node
 is closer to being fully utilized.

 Offered Load

 The actual traffic sent to the reporting node after overload
 abatement and routing decisions are made.

 Reporting Node

 Reporting Node: A Diameter node that generates a load report.

 Reacting Node

 Reacting Node: A Diameter node that acts upon a load report.

 Routing Information

 Routing Information referred to in this document can include the
 Routing and Peer tables defined in RFC 6733. It can also include
 other implementation specific tables used to store load
 information. This document does not define the structure of such
 tables.

3. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 RFC 2119 [RFC2119] interpretation does not apply for the above listed
 words when they are not used in all-caps format.

4. Background

4.1. Differences between Load and Overload information

 Previous discussions of how to solve the load-related requirements in
 [RFC7068] have shown that people did not have an agreed-upon concept
 of how "load" information differs from "overload" information. While
 the two concepts are highly interrelated, there are two primary
 differences. First, a Diameter node always has a load. At any given
 time that load may be effectively zero, effectively fully loaded, or
 somewhere in between. In contrast, overload is an exceptional
 condition. A node only has overload information when it is in an
 overloaded state. Furthermore, the relationship between a node's
 load level and overload state at any given time may be vague. For
 example, a node may normally operate at a "fully loaded" level, but
 still not be considered overloaded. Another node may declare itself
 to be "overloaded" even though it might not be fully "loaded".

 Second, Overload information, in the form of a DOIC Overload Report
 (OLR) [RFC7683] indicates an explicit request for action on the part
 of the reacting node. That is, the OLR requests that the reacting
 node reduces the offered load -- the actual traffic sent to the
 reporting node after overload abatement and routing decisions are
 made -- by an indicated amount (by default), or as prescribed by the
 selected abatement algorithm. Effectively, DOIC provides a contract
 between the reporting node and the reacting node.

 In contrast, load is informational. That is, load information can be
 considered a hint to the recipient node. That node may use the load
 information for load balancing purposes, as an input to certain
 overload abatement techniques, to make inferences about the
 likelihood that the sending node becomes overloaded in the immediate
 future, or for other purposes.

 None of this prevents a Diameter node from deciding to reduce the
 offered load based on load information. The fundamental difference
 is that an overload report requires the reduction of offered load.
 It is also reasonable for a Diameter node to decide to increase the
 offered load based on load information.

4.2. How is Load Information Used?

 [RFC7068] contemplates two primary uses for load information. Req 23
 discusses how load information might be used when performing
 diversion as an overload abatement technique, as described in
 [RFC7683]. When a reacting node diverts traffic away from an
 overloaded node, it needs load information for the other candidates
 for that traffic in order to effectively load balance the diverted
 load between potential candidates. Otherwise, diversion has a
 greater potential to drive other nodes into overload.

 Req 24 discusses how Diameter load information might be used when no
 overload condition currently exists. Diameter nodes can use the load
 information to make decisions to try to avoid overload conditions in
 the first place. Normal load-balancing falls into this category, but
 the diameter node can take other proactive steps as well.

 If the loaded nodes are Diameter servers (or clients in the case of
 server-to-client transactions), both of these uses of load
 information should be accomplished by a Diameter node that performs
 server selection (selection of the Diameter endpont to which the
 request is to be routed for processing). Typically, server selection
 is performed by a node (a client or an agent) that is an immediate
 peer of the server. However, there are scenarios (see Appendix A)
 where a client or proxy that is not the immediate peer to the
 selected servers performs server selection. In this case, the client
 or proxy enforces the server selection by inserting a Destination-
 Host AVP.

 For example, a Diameter node (e.g. client) can use a redirect
 agent to get candidate destination host addresses. The redirect
 agent might return several destination host addresses, from which
 the Diameter node selects one. The Diameter node can use load
 information received from these hosts to make the selection.

 Just as load information can be used as part of server selection, it
 can also be used as input to the selection of the next-hop peer to
 which a request is to be routed.

 It should be noted that a Diameter node will need to process both
 Load reports and Overload reports from the same Diameter node. The
 reacting node for the Overload report always has the responsibility
 to reduce the amount of Diameter traffic sent to the overloaded node.
 If, or how, the reacting node uses load information to achieve this
 is left as an implementation decision.

5. Solution Overview

 The mechanism defined here for the conveyance of load information is
 similar in some ways to the mechanism defined for DOIC and is
 different in other ways.

 As with DOIC, load information is conveyed by piggy-backing the Load
 AVPs on existing Diameter applications.

 There are two primary differences. First, there is no capability
 negotiation process for load. The sender of the load information is
 sending it with the expectation that any supporting nodes will use it
 when making routing decisions. If there are no nodes that support
 the Load mechanism then the load information is ignored.

 The second big difference between DOIC and Load is visibility of the
 DOIC or load information within a Diameter network. DOIC information
 is sent end-to-end resulting in the ability of all nodes in the path
 of the answer message that carries the OC-OLR AVP to act on the
 information, although only one node actually comsumes and reacts to
 the report. The DOIC overload reports remain in the message all the
 way from the reporting node to the node that is the target for the
 answer message.

 For the Load mechanism there are two types of Load reports and only
 the first one is transmitted end-to-end.

 The first type of Load report is a HOST report which contains the
 load of the endpoint sending the answer message. This Load report is
 carried end-to-end to enable any nodes that make server selection
 decisions to use the load status of the sending endpoint as part of
 the server selection decision. Unlike with DOIC, more than one node
 may make use of the load information received.

 The second type of Load report is a PEER report. This report is used
 by Diameter nodes as part of the logic to select the next-hop
 Diameter node and, as such, does not have significance beyond the
 peer node. Load reports of type PEER are removed by the first
 supporting Diameter node to receive the report.

 Because Load reports can traverse Diameter nodes that do not support
 the Load mechanism, it is necessary to include the identity of the
 node to which the Load report applies as part of the Load report.
 This allows for a Diameter node to verify that a Load report applies
 to its peer or if it should be ignored.

 The Load report includes a value indicating relative load of the
 sending node, specified in a manner consistent with that defined for
 DNS SRV [RFC2782].

 The goal is to make it possible to use both the load values received
 as a part of the Diameter Load mechanism and weight values received
 as a result of a DNS SRV query. As a result, the Diameter load value
 has a range of 0-65535. This value and DNS SRV weight values are
 then used in a distribution algorithm similar to that specified in
 [RFC2782].

 The DNS SRV distribution algorithm results in more messages being
 sent to a node with a higher weight value. As a result, a higher
 Diameter load value indicates a LOWER load on the sending node. A
 node that is heavily loaded sends a lower Diameter load value.
 Stated another way, a node that has zero load would have a load value
 of 65535. A node that is 100% loaded would have a load value of 0.

 The distribution algorithm used by Diameter nodes supporting the
 Diameter Load mechanism is an implementation decision but it needs to
 result in similar behavior to the algorithm described for the use of
 weight values specified in [RFC2782].

 The method for calculating the load value included in the Load report
 is also left as an implementation decision.

 The frequency for sending of Load reports is also left as an
 implementation decision. The sending node might choose to send Load
 reports in all messages or it might choose to only send Load reports
 when the load value has changed by some implementation specific
 amount. The important consideration is that all nodes needing the
 load information have a sufficiently accurate view of the node's
 load.

5.1. Theory of Operation

 This section outlines how the Diameter Load mechanism is expected to
 work.

 For this discussion, assume the following Diameter network
 configuration:

 ‑‑‑A1‑‑‑A3‑‑‑‑S[1], S[2]...S[p]
 / | \ /
C | x
 \ | / \
 ‑‑‑A2‑‑‑A4‑‑‑‑S[p+1], S[p+2] ...S[n]

 Figure 1: Example Diameter Network

 Note that in this diagram, S[1], S[2] through S[p] are peers to A3.
 S[p+1], S[p+2] through S[n] are peers to A4.

 Also assume that the request for a Diameter transaction takes the
 following path:

C A1 A4 S[n]
| | | |
|‑‑‑‑‑>|‑‑‑‑‑>|‑‑‑‑‑>|
xxR xxR xxR

 Figure 2: Request Message Path

 When sending the answer message, an endpoint node that supports the
 Diameter Load mechanism includes its own load information in the
 answer message. Because it is a Diameter endpoint it includes a HOST
 Load report.

C A1 A4 S[n]
| | | |
| | |<‑‑‑‑‑|
| | xxA(Load type:HOST, source:S[n])
| | | |

 Figure 3: Answer Message from S[n]

 If Agent A4 supports the Load mechanism then A4's actions depend on
 whether A4 is responsible for doing server selection. If A4 is not
 doing server selection then A4 ignores the HOST Load report. If A4
 is responsible for doing server selection then it stores the load
 information for S[n] in its routing information for the handling of
 subsequent request messages. In both cases A4 leaves the HOST report
 in the message.

 Note: If A4 does not support the Load mechanism then it will relay
 the answer message without doing any processing on the load
 information. In this case the load information AVPs will be
 relayed without change.

 A4 then calculates its own load information and inserts load
 information AVPs of type PEER in the message before sending the
 message to A1.

C A1 A4 S[n]
| | | |
| |<‑‑‑‑‑| |
| xxA(Load type:PEER, source:A4)
| xxA(Load type:HOST, source:S[n])
| | | |

 Figure 4: Answer Message from A4

 If A1 supports the Load mechanism then it processes each of the Load
 reports it receives separately.

 For the PEER Load report, A1 first determines if the source of the
 report indicated in the Load report matches the DiameterIdentity of
 the Diameter node from which the request was received. If the
 identities do not match then the PEER Load report is discarded. If
 the identities match then A1 saves the load information in its
 routing information for routing of subsequent request messages. In
 both cases A1 strips the PEER Load report from the message.

 For the HOST Load report, A1's actions depend on whether A1 is
 responsible for doing server selection. If A1 is not doing server
 selection then A1 ignores the HOST Load report. If A1 is responsible
 for doing server selection then it stores the load information for
 S[n] in its routing information for the handling of subsequent
 request messages. In both cases A1 leaves the HOST report in the
 message.

 A1 then calculates its own load information and inserts load
 information AVPs of type PEER in the message before sending the
 message to C:

C A1 A4 S[n]
| | | |
|<‑‑‑‑‑| | |
 xxA(Load type:PEER, source:A1)
 xxA(Load type:HOST, source:S[n])

 Figure 5: Answer Message from A1

 As with A1, C processes each Load report separately.

 For the PEER Load report, C follows the same procedure as A1 for
 determining if the Load report was received from the peer from which
 the report was sent. When finding it does, C stores the load
 information for use when making future routing decisions.

 For the HOST Load report, C saves the load information only if it is
 responsible for doing server selection.

 The load information received by all nodes is then used for routing
 of subsequent request messages.

6. Load Mechanism Procedures

 This section defines the normative behaviors for the Load mechanism.

6.1. Reporting Node Behavior

 This section defines the procedures of Diameter reporting nodes that
 generate Load reports.

6.1.1. Endpoint Reporting Node Behavior

 A Diameter endpoint that supports the Diameter Load mechanism MUST
 include a Load report of type HOST in sufficient answer messages to
 ensure that all consumers of the load information receive timely
 updates.

 The Diameter endpoint MUST include its own DiameterIdentity in the
 SourceID AVP included in the Load AVP.

 The Diameter endpoint MUST include a Load-Type AVP of type HOST in
 the Load AVP.

 The Diameter endpoint MUST include its load value in the Load-Value
 AVP in the Load AVP.

 The LOAD value should be calculated in a way that reflects the
 available load independently of the weight of each server, in order
 to accurately compare LOAD values from different nodes. Any specific
 LOAD value needs to identify the same amount of available capacity,
 regardless the Diameter node that calculates the value.

 The mechanism used to calculate the LOAD value that fulfills this
 requirement is an implementation decision.

 The frequency of sending Load reports is an implementation decision.

 For instance, if the only consumer of the Load reports is the
 endpoint's peer then the endpoint can choose to only include a
 Load report when the load of the endpoint has changed by a
 meaningful percentage. If there are consumers of the endpoint
 Load report other then the endpoint's peer (this will be the case
 if other nodes are responsible for server selection) then the
 endpoint might choose to include Load reports in all answer
 messages as a way of ensuring that all nodes doing server
 selection get accurate load information.

6.1.2. Agent Reporting Node Behavior

 A Diameter Agent that supports the Diameter Load mechanism MUST
 include a PEER Load report in sufficient answer messages to ensure
 that all users of the load information receive timely updates.

 The Diameter Agent MUST include its own DiameterIdentity in the
 SourceID AVP included in the Load AVP.

 The Diameter Agent MUST include a Load-Type AVP of type PEER in the
 Load AVP.

 The Diameter Agent MUST include its load value in the Load-Value AVP
 in the Load AVP.

 The LOAD value should be calculated in a way that reflects the
 available load independently of the weight of each agent, in order to
 accurately compare LOAD values from different nodes. Any specific
 LOAD value needs to identify the same amount of available capacity,
 regardless the Diameter node that calculates the value.

 The mechanism used to calculate the LOAD value that fulfills this
 requirement is an implementation decision.

 The frequency of sending Load reports is an implementation decision.

 Note: In the case of peer Load reports it is only necessary to
 include Load reports when the load value has changed by some
 meaningful value, as long as the agent ensures that all peers
 receive the report. It is also acceptable to include the Load
 report in every answer message handled by the Diameter Agent.

6.2. Reacting Node Behavior

 This section defines the behavior of Diameter nodes processing Load
 reports.

 A Diameter node that supports the Diameter Load mechanism MUST be
 prepared to process Load reports of type HOST and of type PEER, as
 indicated in the Load-Type AVP included in the Load AVP received in
 the same answer message or from multiple answer messages.

 Note that the node needs to be able to handle messages with no
 load reports, messages with just a PEER Load report, messages with
 just an HOST Load report and messages with both types of Load
 reports.

 If the Diameter node is not responsible for doing server selection
 then it SHOULD ignore Load reports of type HOST.

 If the Diameter node is responsible for doing server selection then
 it SHOULD save the load value included in the Load-Value AVP included
 in the Load AVP of type HOST in its routing information.

 If the Diameter node receives a Load report of type PEER then the
 Diameter node MUST determine if the Load report was inserted into the
 answer message by the peer from which the message was received. This
 is achieved by comparing the DiameterIdentity associated with the
 connection from which the message was received with the
 DiameterIdentity included in the SourceID AVP in the Load report.
 If the Diameter node determines that the Load report of type PEER was
 not received from the peer that sent or relayed the answer message
 then the node MUST ignore the Load report.

 If the Diameter node determines that the Load report of type PEER was
 received from the peer that sent or relayed the answer message then
 the node SHOULD save the load information in its routing information.

 In all cases, a Diameter Agent MUST strip all Load reports of type
 PEER received in answer messages.

 Note: This ensures that there will be precisely one Load report of
 type PEER, that of the Diameter node sending the message, in any
 answer messages sent by the Diameter Agent.

 How a Diameter node uses load information for making routing
 decisions is an implementation decision. However, the distribution
 algorithm MUST result in similar behavior as the algorithm described
 for the use of weight values in [RFC2782].

6.3. Extensibility

 The Load mechanism can be extended to include additional information
 in the Load reports.

 Any extension may define new AVPs for use in Load reports. These new
 AVPs SHOULD be defined to be extensions to the Load AVPs defined in
 this document.

 [RFC6733] defined Grouped AVP extension mechanisms apply. This
 allows, for example, defining a new feature that is mandatory to be
 understood even when piggybacked on an existing application.

 As with any Diameter specification, [RFC6733] requires all new AVPs
 to be registered with IANA. See Section 9 for the required
 procedures.

6.4. Addition and Removal of Nodes

 When a Diameter node is added, the new node will start by advertising
 its load. Downstream nodes will need to factor the new load
 information into load balancing decisions. The downstream nodes can
 attempt to ensure a smooth increase of the traffic to the new node,
 avoiding an immediate spike of traffic to the new node. The method
 for handling of such a smooth increase is implementation specific but
 it can rely on the evolution of load information received from the
 new node and from the other nodes.

 When removing a node in a controlled way (e.g. for maintenance
 purpose, so outside a failure case), it might be appropriate to
 progressively reduce the traffic to this node by routing traffic to
 other nodes. Simple load information (load percentage) would not be
 sufficient. The method for handling of the node removal is
 implementation specific but it can rely on the evolution of the load
 information received from the node to be removed.

7. Attribute Value Pairs

 The section defines the AVPs required for the Load mechanism.

7.1. Load AVP

 The Load AVP (AVP code TBD1) is of type Grouped and is used to convey
 load information between Diameter nodes.

Load ::= < AVP Header: TBD1 >
 [Load‑Type]
 [Load‑Value]
 [SourceID]
 * [AVP]

7.2. Load-Type AVP

 The Load-Type AVP (AVP code TBD2) is of type Enumerated. It is used
 to convey the type of Diameter node that sent the load information.
 The following values are defined:

HOST 0 The Load report is for a host.

PEER 1 The Load report is for a peer.

7.3. Load-Value AVP

 The Load-Value AVP (AVP code TBD3) is of type Unsigned64. It is used
 to convey relative load information about the sender of the Load
 report.

 The Load-Value AVP is specified in a manner similar to the weight
 value in DNS SRV ([RFC2782]).

 The Load-Value has a range of 0-65535.

 A higher value indicates a lower load on the sending node. A lower
 value indicates that the sending node is heavily loaded.

 Stated another way, a node that has zero load would have a load
 value of 65535. A node that is 100% loaded would have a load
 value of 0.

7.4. SourceID AVP

 The SourceID AVP is defined in [I-D.ietf-dime-agent-overload]. It is
 used to identify the Diameter node that sent the Load report.

7.5. Attribute Value Pair flag rules

 +‑‑‑‑‑‑‑‑‑+
 |AVP flag |
 |rules |
 +‑‑‑‑+‑‑‑‑+
 AVP Section | |MUST|
 Attribute Name Code Defined Value Type |MUST| NOT|
+‑‑+‑‑‑‑+‑‑‑‑+
|Load TBD1 x.1 Grouped | | V |
+‑‑+‑‑‑‑+‑‑‑‑+
|Load‑Type TBD2 x.2 Enumerated | | V |
+‑‑+‑‑‑‑+‑‑‑‑+
|Load‑Value TBD3 x.3 Unsigned64 | | V |
+‑‑ ‑+‑‑‑‑+‑‑‑‑+
|SourceID TBD4 x.4 DiameterIdentity | | V |
+‑‑+‑‑‑‑+‑‑‑‑+

 As described in the Diameter base protocol [RFC6733], the M-bit usage
 for a given AVP in a given command may be defined by the application.

8. Security Considerations

 Load information may be sensitive information in some cases.
 Depending on the mechanism, an unauthorized recipient might be able
 to infer the topology of a Diameter network from load information.
 Load information might be useful in identifying targets for Denial of
 Service (DoS) attacks, where a node known to be already heavily
 loaded might be a tempting target. Load information might also be
 useful as feedback about the success of an ongoing DoS attack.

 Given that routing decisions are impacted by load information, there
 is potential for negative impacts on a Diameter network caused by
 erroneous or malicious Load reports. This includes the malicious
 changing of load values by Diameter Agents.

 Any load information conveyance mechanism will need to allow
 operators to avoid sending load information to nodes that are not
 authorized to receive it. Since Diameter currently only offers
 authentication of nodes at the transport level and does not support
 end-to-end security mechanisms, any solution that sends load
 information to non-peer nodes requires a transitive-trust model.

9. IANA Considerations

9.1. AVP Codes

New AVPs defined by this specification are listed in
Section Section 7. All AVP codes are allocated from the
'Authentication, Authorization, and Accounting (AAA) Parameters' AVP
Codes registry.

9.2. New Registries

 This document makes no new registry requests of IANA.

10. References

10.1. Normative References

 [I-D.ietf-dime-agent-overload]

 Donovan, S., "Diameter Agent Overload", draft-ietf-dime-
 agent-overload-02 (work in progress), August 2015.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2782]
 Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <http://www.rfc-editor.org/info/rfc2782>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC7683]
 Korhonen, J., Ed., Donovan, S., Ed., Campbell, B., and L.
 Morand, "Diameter Overload Indication Conveyance",
 RFC 7683, DOI 10.17487/RFC7683, October 2015,
 <http://www.rfc-editor.org/info/rfc7683>.

10.2. Informative References

 [RFC7068]
 McMurry, E. and B. Campbell, "Diameter Overload Control
 Requirements", RFC 7068, DOI 10.17487/RFC7068, November
 2013, <http://www.rfc-editor.org/info/rfc7068>.

Appendix A. Topology Scenarios

 This section presents a number of Diameter topology scenarios, and
 discusses how load information might be used in each scenario.

A.1. No Agent

 Figure 6 shows a simple client-server scenario, where a client picks
 from a set of candidate servers available for a particular realm and
 application. The client selects the server for a given transaction
 using the load information received from each server.

 ‑‑‑‑‑‑S1
 /
C
 \
 ‑‑‑‑‑‑S2

 Figure 6: Basic Client Server Scenario

 If a node supports dynamic discovery, it will not obtain load
 information from the nodes with which it has no Diameter
 connection established. Nevertheless it might take into account
 the load information from the other nodes to decide to add
 connections to new nodes with the dynamic discovery mechanism.

 Note: The use of dynamic connections needs to be considered.

A.2. Single Agent

 Figure 7 shows a client that sends requests to an agent. The agent
 selects the request destination from a set of candidate servers,
 using load information received from each server. The client does
 not need to receive load information, since it does not select
 between multiple agents.

 ‑‑‑‑‑‑S1
 /
C‑‑‑‑A
 \
 ‑‑‑‑‑‑S2

 Figure 7: Simple Agent Scenario

A.3. Multiple Agents

 Figure 8 shows a client selecting between multiple agents, and each
 agent selecting from multiple servers. The client selects an agent
 based on the load information received from each agent. Each agent
 selects a server based on the load information received from its
 servers.

 This scenario adds a complication that one set of servers may be more
 loaded than the other set. If, for example, S4 was the least loaded
 server, C would need to know to select agent A2 to reach S4. This
 might require C to receive load information from the servers as well
 as the agents. Alternatively, each agent might use the load of its
 servers as an input into calculating its own load, in effect
 aggregating upstream load.

 Similarly, if C sends a host-routed request [RFC7683], it needs to
 know which agent can deliver requests to the selected server.
 Without some special, potentially proprietary, knowledge of the
 topology upstream of A1 and A2, C would select the agent based on the
 normal peer selection procedures for the realm and application, and
 perhaps consider the load information from A1 and A2. If C sends a
 request to A1 that contains a Destination-Host AVP with a value of
 S4, A1 will not be able to deliver the request.

 ‑‑‑‑‑S3
 /
 ‑‑‑A1‑‑‑‑‑‑S1
 /
C
 \
 ‑‑‑A2‑‑‑‑‑‑S2
 \
 ‑‑‑‑ S4

 Figure 8: Multiple Agents and Servers

A.4. Linked Agents

 Figure 9 shows a scenario similar to that of Figure 8, except that
 the agents are linked, so that A1 can forward a request to A2, and
 vice-versa. Each agent could receive load information from the
 linked agent, as well as its connected servers.

 This somewhat simplifies the complication from Figure 8, due to the
 fact that C does not necessarily need to choose a particular agent to
 reach a particular server. But it creates a similar question of how,
 for example, A1 might know that S4 was less loaded than S1 or S3.
 Additionally, it creates the opportunity for sub-optimal request
 paths. For example [C,A1,A2,S4] vs. [C,A2,S4].

 A likely application for linked agents is when each agent prefers to
 route only to directly connected servers and only forwards requests
 to another agent under exceptional circumstances. For example, A1
 might not forward requests to A2 unless both S1 and S3 are
 overloaded. In this case, A1 might use the load information from S1
 and S3 to select between those, and only consider the load
 information from A2 (and other connected agents) if it needs to
 divert requests to different agents.

 ‑‑‑‑‑S3
 /
 ‑‑‑A1‑‑‑‑‑‑S1
 / |
C |
 \ |
 ‑‑‑A2‑‑‑‑‑‑S2
 \
 ‑‑‑‑ S4

 Figure 9: Linked Agents

 Figure 10 is a variant of Figure 9. In this case, C1 sends all
 traffic through A1 and C2 sends all traffic through A2. By default,
 A1 will load balance traffic between S1 and S3 and A2 will load
 balance traffic between S2 and S4.

 Now, if S1 S3 are significantly more loaded than S2 S4, A1 may route
 some C1 traffic to A2. This is non optimal path but allows a better
 load balancing between the servers. To achieve this, A1 needs to
 receive some load info from A2 about S2/S4 load.

 ‑‑‑‑‑S3
 /
C1‑‑‑‑A1‑‑‑‑‑‑S1
 |
 |
 |
C2‑‑‑‑A2‑‑‑‑‑‑S2
 \
 ‑‑‑‑ S4

 Figure 10: Linked Agents

A.5. Shared Server Pools

 Figure 11 is similar to Figure 9, except that instead of a link
 between agents, each agent is linked to all servers. (The links to
 each set of servers should be interpreted as a link to each server.
 The links are not shown separately due to the limitations of ASCII
 art.)

 In this scenario, each agent can select among all of the servers,
 based on the load information from the servers. The client need only
 be concerned with the load information of the agents.

 ‑‑‑A1‑‑‑S[1], S[2]...S[p]
 / \ /
C x
 \ / \
 ‑‑‑A2‑‑‑S[p+1], S[p+2] ...S[n]

 Figure 11: Shared Server Pools

A.6. Agent Chains

 The scenario in Figure 12 is similar to that of Figure 8, except
 that, instead of the client possibly needing to select an agent that
 can route requests to the least loaded server, in this case A1 and A2
 need to make similar decisions when selecting between A3 or A4. As
 the former scenario, this could be mitigated if A3 and A4 aggregate
 upstream loads into the load information they report downstream.

 ‑‑‑A1‑‑‑A3‑‑‑‑S[1], S[2]...S[p]
 / | \ /
C | x
 \ | / \
 ‑‑‑A2‑‑‑A4‑‑‑‑S[p+1], S[p+2] ...S[n]

 Figure 12: Agent Chains

A.7. Fully Meshed Layers

 Figure 13 extends the scenario in Figure 11 by adding an extra layer
 of agents. But since each layer of nodes can reach any node in the
 next layer, each node only needs to consider the load of its next-hop
 peer.

 ‑‑‑A1‑‑‑A3‑‑‑S[1], S[2]...S[p]
 / | \ / |\ /
C | x | x
 \ | / \ |/ \
 ‑‑‑A2‑‑‑A4‑‑‑S[p+1], S[p+2] ...S[n]

 Figure 13: Full Mesh

A.8. Partitions

 A Diameter network with multiple servers is said to be "partitioned"
 when only a subset of available servers can serve a particular realm-
 routed request. For example, one group of servers may handle users
 whose names start with "A" through "M", and another group may handle
 "N" through "Z".

 In such a partitioned network, nodes cannot load-balance requests
 across partitions, since not all servers can handle the request. A
 client, or an intermediate agent, may still be able to load-balance
 between servers inside a partition.

A.9. Active-Standby Nodes

 The previous scenarios assume that traffic can be load balanced among
 all peers that are eligible to handle a request. That is, the peers
 operate in an "active-active" configuration. In an "active-standby"
 configuration, traffic would be load-balanced among active peers.
 Requests would only be sent to peers in a "standby" state if the
 active peers became unavailable. For example, requests might be
 diverted to a stand-by peer if one or more active peers becomes
 overloaded.

Authors' Addresses

Ben Campbell
Oracle
7460 Warren Parkway # 300
Frisco, Texas 75034
USA

 Email: ben@nostrum.com

Steve Donovan (editor)
Oracle
7460 Warren Parkway # 300
Frisco, Texas 75034
United States

 Email: srdonovan@usdonovans.com

Jean‑Jacques Trottin
Nokia
Route de Villejust
91620 Nozay
France

 Email: jean-jacques.trottin@nokia.com

draft-ietf-dnsop-7706bis-03 - Running a Root Server Local to a Resolver

draft-ietf-dnsop-7706bis-03 - Running a Root Server Local to a Resolver

Index
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 7706 (if approved)

Intended status: Informational

Expires: September 9, 2019

W. Kumari

Google

P. Hoffman

ICANN

March 8, 2019

Running a Root Server Local to a Resolver

draft-ietf-dnsop-7706bis-03

Abstract

 Some DNS recursive resolvers have longer-than-desired round-trip
 times to the closest DNS root server. Some DNS recursive resolver
 operators want to prevent snooping of requests sent to DNS root
 servers by third parties. Such resolvers can greatly decrease the
 round-trip time and prevent observation of requests by running a copy
 of the full root zone on the same server, such as on a loopback
 address. This document shows how to start and maintain such a copy
 of the root zone that does not pose a threat to other users of the
 DNS, at the cost of adding some operational fragility for the
 operator.

 This draft will update RFC 7706. See Section 1.1 for a list of
 topics that will be added in the update.

 [Ed note: Text inside square brackets ([]) is additional background
 information, answers to freqently asked questions, general musings,
 etc. They will be removed before publication.]

 [This document is being collaborated on in Github at:
 https://github.com/wkumari/draft-kh-dnsop-7706bis. The most recent
 version of the document, open issues, and so on should all be
 available there. The authors gratefully accept pull requests.]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Updates from RFC 7706

	 1.2. Requirements Notation

	2. Requirements

	3. Operation of the Root Zone on the Local Server

	4. Using the Root Zone Server on the Same Host

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Current Sources of the Root Zone

	Appendix B. Example Configurations of Common Implementations
	 B.1. Example Configuration: BIND 9.12

	 B.2. Example Configuration: Unbound 1.8

	 B.3. Example Configuration: BIND 9.14

	 B.4. Example Configuration: Unbound 1.9

	 B.5. Example Configuration: Knot Resolver

	 B.6. Example Configuration: Microsoft Windows Server 2012

	Acknowledgements

	Authors' Addresses

1. Introduction

 DNS recursive resolvers have to provide answers to all queries from
 their customers, even those for domain names that do not exist. For
 each queried name that has a top-level domain (TLD) that is not in
 the recursive resolver's cache, the resolver must send a query to a
 root server to get the information for that TLD, or to find out that
 the TLD does not exist. Research shows that the vast majority of
 queries going to the root are for names that do not exist in the root
 zone because negative answers are sometimes cached for a much shorter
 period of time.

 Many of the queries from recursive resolvers to root servers get
 answers that are referrals to other servers. Malicious third parties
 might be able to observe that traffic on the network between the
 recursive resolver and root servers.

 The primary goals of this design are to provide more reliable answers
 for queries to the root zone during network attacks, and to prevent
 queries and responses from being visible on the network. This design
 will probably have little effect on getting faster responses to stub
 resolver for good queries on TLDs, because the TTL for most TLDs is
 usually long-lived (on the order of a day or two) and is thus usually
 already in the cache of the recursive resolver; the same is true for
 the TTL for negative answers from the root servers. (Although the
 primary goal of the design is for serving the root zone, the method
 can be used for any zone.)

 This document describes a method for the operator of a recursive
 resolver to have a complete root zone locally, and to hide these
 queries from outsiders. The basic idea is to create an up-to-date
 root zone server on the same host as the recursive server, and use
 that server when the recursive resolver looks up root information.
 The recursive resolver validates all responses from the root server
 on the same host, just as it would all responses from a remote root
 server.

 This design explicitly only allows the new root zone server to be run
 on the same server as the recursive resolver, in order to prevent the
 server from serving authoritative answers to any other system.
 Specifically, the root server on the local system MUST be configured
 to only answer queries from the resolvers on the same host, and MUST
 NOT answer queries from any other resolver.

 At the time that RFC 7706 was published, it was considered
 controversial: there was not consensus on whether this was a "best
 practice". In fact, many people felt that it is an excessively risky
 practice because it introduced a new operational piece to local DNS
 operations where there was not one before. Since then, the DNS
 operational community has largely shifted to believing that local
 serving of the root zone for an individual resolver is a reasonable
 practice. The advantages listed above do not come free: if this new
 system does not work correctly, users can get bad data, or the entire
 recursive resolution system might fail in ways that are hard to
 diagnose.

 This design uses authoritative name server software running on the
 same machine as the recursive resolver. Thus, recursive resolver
 software such as BIND or modern versions of common open source
 recursive resolver software do not need to add new functionality, but
 other recursive resolver software might need to be able to talk to an
 authoritative server running on the same host.

 A different approach to solving some of the problems discussed in
 this document is described in [RFC8198].

1.1. Updates from RFC 7706

 RFC 7706 explicitly required that the root server instance be run on
 the loopback interface of the host running the validating resolver.
 However, RFC 7706 also had examples of how to set up common software
 that did not use the loopback interface. Thus, this document loosens
 the restriction on the interface but keeps the requirement that only
 systems running on that single host be able to query that root server
 instance.

 Removed the prohibition on distribution of recursive DNS servers
 including configurations for this design because some already do, and
 others have expressed an interest in doing so.

 Added the idea that a recursive resolver using this design might
 switch to using the normal (remote) root servers if the local root
 server fails.

 Refreshed the list of where one can get copies of the root zone.

 Added examples of other resolvers and updated the existing examples.

 [This section will list all the changes from RFC 7706. For this
 draft, it is also the list of changes that we will make in future
 versions of the daft.]

 [Make the use cases explicit. Be clearer that a real use case is
 folks who are worried that root server unavailabilty due to DDoS
 against them is a reason some people would use the mechanisms here.
]

 [Describe how slaving the root zone from root zone servers does not
 fully remove the reliance on the root servers being available.]

 [Other new topics might go here.]

1.2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Requirements

 In order to implement the mechanism described in this document:

 o The system MUST be able to validate a zone with DNSSEC [RFC4033].

 o The system MUST have an up-to-date copy of the key used to sign
 the DNS root.

 o The system MUST be able to retrieve a copy of the entire root zone
 (including all DNSSEC-related records).

 o The system MUST be able to run an authoritative server for the
 root zone on the same host. The root server instance MUST only
 respond to queries from the same host. One way to assure not
 responding to queries from other hosts is to make the address of
 the authoritative server one of the loopback addresses (that is,
 an address in the range 127/8 for IPv4 or ::1 in IPv6).

 A corollary of the above list is that authoritative data in the root
 zone used on the local authoritative server MUST be identical to the
 same data in the root zone for the DNS. It is possible to change the
 unsigned data (the glue records) in the copy of the root zone, but
 such changes could cause problems for the recursive server that
 accesses the local root zone, and therefore any changes to the glue
 records SHOULD NOT be made.

3. Operation of the Root Zone on the Local Server

 The operation of an authoritative server for the root in the system
 described here can be done separately from the operation of the
 recursive resolver, or it might be part of the configuration of the
 recursive resolver system.

 The steps to set up the root zone are:

 1. Retrieve a copy of the root zone. (See Appendix A for some
 current locations of sources.)

 2. Start the authoritative server with the root zone on an address
 on the host that is not in use. For IPv4, this could be
 127.0.0.1, but if that address is in use, any address in 127/8 is
 acceptable. For IPv6, this would be ::1. It can also be a
 publicly-visible address on the host, but only if the
 authoritative server software allows restricting the addresses
 that can access the authoritative server, and the software is
 configured to only allow access from addresses on this single
 host.

 The contents of the root zone MUST be refreshed using the timers from
 the SOA record in the root zone, as described in [RFC1035]. This
 inherently means that the contents of the local root zone will likely
 be a little behind those of the global root servers because those
 servers are updated when triggered by NOTIFY messages.

 If the contents of the root zone cannot be refreshed before the
 expire time in the SOA, the local root server MUST return a SERVFAIL
 error response for all queries sent to it until the zone can be
 successfully be set up again. Because this would cause a recursive
 resolver on the same host that is relying on this root server to also
 fail, a resolver might be configured to immediatly switch to using
 other (non-local) root servers if the resolver receives a SERVFAIL
 response from a local root server.

 In the event that refreshing the contents of the root zone fails, the
 results can be disastrous. For example, sometimes all the NS records
 for a TLD are changed in a short period of time (such as 2 days); if
 the refreshing of the local root zone is broken during that time, the
 recursive resolver will have bad data for the entire TLD zone.

 An administrator using the procedure in this document SHOULD have an
 automated method to check that the contents of the local root zone
 are being refreshed; this might be part of the resolver software.
 One way to do this is to have a separate process that periodically
 checks the SOA of the root zone from the local root zone and makes
 sure that it is changing. At the time that this document is
 published, the SOA for the root zone is the digital representation of
 the current date with a two-digit counter appended, and the SOA is
 changed every day even if the contents of the root zone are
 unchanged. For example, the SOA of the root zone on January 2, 2018
 was 2018010201. A process can use this fact to create a check for
 the contents of the local root zone (using a program not specified in
 this document).

4. Using the Root Zone Server on the Same Host

 A recursive resolver that wants to use a root zone server operating
 as described in Section 3 simply specifies the local address as the
 place to look when it is looking for information from the root. All
 responses from the root server MUST be validated using DNSSEC.

 Note that using this simplistic configuration will cause the
 recursive resolver to fail if the local root zone server fails. A
 more robust configuration would cause the resolver to start using the
 normal remote root servers when the local root server fails (such as
 if it does not respond or gives SERVFAIL responses).

 See Appendix B for more discussion of this for specific software.

 To test the proper operation of the recursive resolver with the local
 root server, use a DNS client to send a query for the SOA of the root
 to the recursive server. Make sure the response that comes back has
 the AA bit in the message header set to 0.

5. Security Considerations

 A system that does not follow the DNSSEC-related requirements given
 in Section 2 can be fooled into giving bad responses in the same way
 as any recursive resolver that does not do DNSSEC validation on
 responses from a remote root server. Anyone deploying the method
 described in this document should be familiar with the operational
 benefits and costs of deploying DNSSEC [RFC4033].

 As stated in Section 1, this design explicitly only allows the new
 root zone server to be run on the same host, answering queries only
 from resolvers on that host, in order to prevent the server from
 serving authoritative answers to any system other than the recursive
 resolver. This has the security property of limiting damage to any
 other system that might try to rely on an altered copy of the root.

6. References

6.1. Normative References

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

6.2. Informative References

 [Manning2013]

 Manning, W., "Client Based Naming", 2013,
 <http://www.sfc.wide.ad.jp/dissertation/bill_e.html>.

 [RFC8198]
 Fujiwara, K., Kato, A., and W. Kumari, "Aggressive Use of
 DNSSEC-Validated Cache", RFC 8198, DOI 10.17487/RFC8198,
 July 2017, <https://www.rfc-editor.org/info/rfc8198>.

Appendix A. Current Sources of the Root Zone

 The root zone can be retrieved from anywhere as long as it comes with
 all the DNSSEC records needed for validation. Currently, one can get
 the root zone from ICANN by zone transfer (AXFR) over TCP from DNS
 servers at xfr.lax.dns.icann.org and xfr.cjr.dns.icann.org.

 Currently, the root can also be retrieved by AXFR over TCP from the
 following root server operators:

 o b.root-servers.net

 o c.root-servers.net

 o d.root-servers.net

 o f.root-servers.net

 o g.root-servers.net

 o k.root-servers.net

 It is crucial to note that none of the above services are guaranteed
 to be available. It is possible that ICANN or some of the root
 server operators will turn off the AXFR capability on the servers
 listed above. Using AXFR over TCP to addresses that are likely to be
 anycast (as the ones above are) may conceivably have transfer
 problems due to anycast, but current practice shows that to be
 unlikely.

 To repeat the requirement from earlier in this document: if the
 contents of the zone cannot be refreshed before the expire time, the
 server MUST return a SERVFAIL error response for all queries until
 the zone can be successfully be set up again.

Appendix B. Example Configurations of Common Implementations

 This section shows fragments of configurations for some popular
 recursive server software that is believed to correctly implement the
 requirements given in this document. The examples have been updated
 since the publication of RFC 7706.

 The IPv4 and IPv6 addresses in this section were checked recently by
 testing for AXFR over TCP from each address for the known single-
 letter names in the root-servers.net zone.

B.1. Example Configuration: BIND 9.12

 BIND 9.12 acts both as a recursive resolver and an authoritative
 server. Because of this, there is "fate-sharing" between the two
 servers in the following configuration. That is, if the root server
 dies, it is likely that all of BIND is dead.

 Note that a future version of BIND will support a much more robust
 method for creating a local mirror of the root or other zones; see
 Appendix B.3.

 Using this configuration, queries for information in the root zone
 are returned with the AA bit not set.

 When slaving a zone, BIND 9.12 will treat zone data differently if
 the zone is slaved into a separate view (or a separate instance of
 the software) versus slaved into the same view or instance that is
 also performing the recursion.

Validation: When using separate views or separate instances, the DS
 records in the slaved zone will be validated as the zone data is
 accessed by the recursive server. When using the same view, this
 validation does not occur for the slaved zone.

Caching: When using separate views or instances, the recursive
 server will cache all of the queries for the slaved zone, just as
 it would using the traditional "root hints" method. Thus, as the
 zone in the other view or instance is refreshed or updated,
 changed information will not appear in the recursive server until
 the TTL of the old record times out. Currently, the TTL for DS
 and delegation NS records is two days. When using the same view,
 all zone data in the recursive server will be updated as soon as
 it receives its copy of the zone.

view root {
 match‑destinations { 127.12.12.12; };
 zone "." {
 type slave;
 file "rootzone.db";
 notify no;
 masters {
 199.9.14.201; # b.root‑servers.net
 192.33.4.12; # c.root‑servers.net
 199.7.91.13; # d.root‑servers.net
 192.5.5.241; # f.root‑servers.net
 192.112.36.4; # g.root‑servers.net
 193.0.14.129; # k.root‑servers.net
 192.0.47.132; # xfr.cjr.dns.icann.org
 192.0.32.132; # xfr.lax.dns.icann.org
 2001:500:200::b; # b.root‑servers.net
 2001:500:2::c; # c.root‑servers.net
 2001:500:2d::d; # d.root‑servers.net
 2001:500:2f::f; # f.root‑servers.net
 2001:500:12::d0d; # g.root‑servers.net
 2001:7fd::1; # k.root‑servers.net
 2620:0:2830:202::132; # xfr.cjr.dns.icann.org
 2620:0:2d0:202::132; # xfr.lax.dns.icann.org
 };
 };
};

view recursive {
 dnssec‑validation auto;
 allow‑recursion { any; };
 recursion yes;
 zone "." {
 type static‑stub;
 server‑addresses { 127.12.12.12; };
 };
};

B.2. Example Configuration: Unbound 1.8

 Similar to BIND, Unbound starting with version 1.8 can act both as a
 recursive resolver and an authoritative server.

auth‑zone:
 name: "."
 master: 199.9.14.201 # b.root‑servers.net
 master: 192.33.4.12 # c.root‑servers.net
 master: 199.7.91.13 # d.root‑servers.net
 master: 192.5.5.241 # f.root‑servers.net
 master: 192.112.36.4 # g.root‑servers.net
 master: 193.0.14.129 # k.root‑servers.net
 master: 192.0.47.132 # xfr.cjr.dns.icann.org
 master: 192.0.32.132 # xfr.lax.dns.icann.org
 master: 2001:500:200::b # b.root‑servers.net
 master: 2001:500:2::c # c.root‑servers.net
 master: 2001:500:2d::d # d.root‑servers.net
 master: 2001:500:2f::f # f.root‑servers.net
 master: 2001:500:12::d0d # g.root‑servers.net
 master: 2001:7fd::1 # k.root‑servers.net
 master: 2620:0:2830:202::132 # xfr.cjr.dns.icann.org
 master: 2620:0:2d0:202::132 # xfr.lax.dns.icann.org
 fallback‑enabled: yes
 for‑downstream: no
 for‑upstream: yes

B.3. Example Configuration: BIND 9.14

 BIND 9.14 (which, at the time of publication of this document is a
 future release) can set up a local mirror of the root zone with a
 small configuration option:

zone "." {
 type mirror;
};

 The simple "type mirror" configuration for the root zone works for
 the root zone because a default list of primary servers for the IANA
 root zone is built into BIND 9.14. In order to set up mirroring of
 any other zone, an explicit list of primary servers needs to be
 provided.

 See the documentation for BIND 9.14 (when it is released) for more
 detail about how to use this simplified configuration

B.4. Example Configuration: Unbound 1.9

 Recent versions of Unbound have a "auth-zone" feature that allows
 local mirroring of the root zone. Configuration looks like:

auth‑zone:
 name: "."
 master: "b.root‑servers.net"
 master: "c.root‑servers.net"
 master: "d.root‑servers.net"
 master: "f.root‑servers.net"
 master: "g.root‑servers.net"
 master: "k.root‑servers.net"
 fallback‑enabled: yes
 for‑downstream: no
 for‑upstream: yes
 zonefile: "root.zone"

B.5. Example Configuration: Knot Resolver

 Knot Resolver uses its "prefill" module to load the root zone
 information. This is described at <https://knot-
 resolver.readthedocs.io/en/stable/modules.html#root-on-loopback-rfc-
 7706>.

B.6. Example Configuration: Microsoft Windows Server 2012

 Windows Server 2012 contains a DNS server in the "DNS Manager"
 component. When activated, that component acts as a recursive
 server. DNS Manager can also act as an authoritative server.

 Using this configuration, queries for information in the root zone
 are returned with the AA bit set.

 The steps to configure DNS Manager to implement the requirements in
 this document are:

 1. Launch the DNS Manager GUI. This can be done from the command
 line ("dnsmgmt.msc") or from the Service Manager (the "DNS"
 command in the "Tools" menu).

 2. In the hierarchy under the server on which the service is
 running, right-click on the "Forward Lookup Zones", and select
 "New Zone". This brings up a succession of dialog boxes.

 3. In the "Zone Type" dialog box, select "Secondary zone".

 4. In the "Zone Name" dialog box, enter ".".

 5. In the "Master DNS Servers" dialog box, enter
 "b.root-servers.net". The system validates that it can do a zone
 transfer from that server. (After this configuration is
 completed, the DNS Manager will attempt to transfer from all of
 the root zone servers.)

 6. In the "Completing the New Zone Wizard" dialog box, click
 "Finish".

 7. Verify that the DNS Manager is acting as a recursive resolver.
 Right-click on the server name in the hierarchy, choosing the
 "Advanced" tab in the dialog box. See that "Disable recursion
 (also disables forwarders)" is not selected, and that "Enable
 DNSSEC validation for remote responses" is selected.

Acknowledgements

 The authors fully acknowledge that running a copy of the root zone on
 the loopback address is not a new concept, and that we have chatted
 with many people about that idea over time. For example, Bill
 Manning described a similar solution to the problems in his doctoral
 dissertation in 2013 [Manning2013].

 Evan Hunt contributed greatly to the logic in the requirements.
 Other significant contributors include Wouter Wijngaards, Tony Hain,
 Doug Barton, Greg Lindsay, and Akira Kato. The authors also received
 many offline comments about making the document clear that this is
 just a description of a way to operate a root zone on the same host,
 and not a recommendation to do so.

 People who contributed to this update to RFC 7706 include: Florian
 Obser, nusenu, Wouter Wijngaards, [[others go here]].

Authors' Addresses

Warren Kumari
Google

 Email: Warren@kumari.net

Paul Hoffman
ICANN

 Email: paul.hoffman@icann.org

draft-ietf-dnsop-algorithm-update-07 - Algorithm Implementation Requirements and Usage Guidance for DNSSEC

draft-ietf-dnsop-algorithm-update-07 - Algorithm Implementation Requirements and

Index
Prev
Next
Forward 5

dnsop

Internet-Draft

Obsoletes: 6944 (if approved)

Intended status: Standards Track

Expires: September 13, 2019

P. Wouters

Red Hat

O. Sury

Internet Systems Consortium

March 12, 2019

Algorithm Implementation Requirements and Usage Guidance for DNSSEC

draft-ietf-dnsop-algorithm-update-07

Abstract

 The DNSSEC protocol makes use of various cryptographic algorithms in
 order to provide authentication of DNS data and proof of non-
 existence. To ensure interoperability between DNS resolvers and DNS
 authoritative servers, it is necessary to specify a set of algorithm
 implementation requirements and usage guidelines to ensure that there
 is at least one algorithm that all implementations support. This
 document defines the current algorithm implementation requirements
 and usage guidance for DNSSEC. This document obsoletes [RFC6944].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Updating Algorithm Implementation Requirements and Usage Guidance

	 1.2. Updating Algorithm Requirement Levels

	 1.3. Document Audience

	2. Conventions Used in This Document

	3. Algorithm Selection
	 3.1. DNSKEY Algorithms

	 3.2. DNSKEY Algorithm Recommendation

	 3.3. DS and CDS Algorithms

	 3.4. DS and CDS Algorithm Recommendation

	4. Implementation Status
	 4.1. DNSKEY Algorithms

	5. Security Considerations

	6. Operational Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 The DNSSEC signing algorithms are defined by various RFCs, including
 [RFC4034], [RFC5155], [RFC5702], [RFC5933], [RFC6605], [RFC8080].
 DNSSEC is used to provide authentication of data. To ensure
 interoperability, a set of "mandatory-to-implement" DNSKEY algorithms
 are defined. This document obsoletes [RFC6944].

1.1. Updating Algorithm Implementation Requirements and Usage Guidance

 The field of cryptography evolves continuously. New stronger
 algorithms appear and existing algorithms are found to be less secure
 then originally thought. Therefore, algorithm implementation
 requirements and usage guidance need to be updated from time to time
 to reflect the new reality. The choices for algorithms must be
 conservative to minimize the risk of algorithm compromise.

1.2. Updating Algorithm Requirement Levels

 The mandatory-to-implement algorithm of tomorrow should already be
 available in most implementations of DNSSEC by the time it is made
 mandatory. This document attempts to identify and introduce those
 algorithms for future mandatory-to-implement status. There is no
 guarantee that algorithms in use today will become mandatory in the
 future. Published algorithms are continuously subjected to
 cryptographic attack and may become too weak, or even be completely
 broken, before this document is updated.

 This document only provides recommendations with respect to
 mandatory-to-implement algorithms or algorithms so weak that
 recommendation cannot be recommended. Any algorithm listed in the
 [DNSKEY-IANA] and [DS-IANA] registries, but not mentioned in this
 document, MAY be implemented. For clarification and consistency, an
 algorithm will be specified as MAY in this document only when it has
 been downgraded.

 Although this document's primary purpose is to update algorithm
 recommendations to keep DNSSEC authentication secure over time, it
 also aims to do so in such a way that DNSSEC implementations remain
 interoperable. DNSSEC interoperability is addressed by an
 incremental introduction or deprecation of algorithms.

 [RFC2119] considers the term SHOULD equivalent to RECOMMENDED, and
 SHOULD NOT equivalent to NOT RECOMMENDED. The authors of this
 document have chosen to use the terms RECOMMENDED and NOT
 RECOMMENDED, as this more clearly expresses the recommendations to
 implementers.

 It is expected that deprecation of an algorithm will be performed
 gradually. This provides time for various implementations to update
 their implemented algorithms while remaining interoperable. Unless
 there are strong security reasons, an algorithm is expected to be
 downgraded from MUST to NOT RECOMMENDED or MAY, instead of to MUST
 NOT. Similarly, an algorithm that has not been mentioned as
 mandatory-to-implement is expected to be introduced with a
 RECOMMENDED instead of a MUST.

 Since the effect of using an unknown DNSKEY algorithm is that the
 zone is treated as insecure, it is recommended that algorithms
 downgraded to NOT RECOMMENDED or lower not be used by authoritative
 nameservers and DNSSEC signers to create new DNSKEY's. This will
 allow for deprecated algorithms to become less and less common over
 time. Once an algorithm has reached a sufficiently low level of
 deployment, it can be marked as MUST NOT, so that recursive resolvers
 can remove support for validating it.

 Recursive nameservers are encouraged to retain support for all
 algorithms not marked as MUST NOT.

1.3. Document Audience

 The recommendations of this document mostly target DNSSEC
 implementers, as implementations need to meet both high security
 expectations as well as high interoperability between various vendors
 and with different versions. Interoperability requires a smooth
 transition to more secure algorithms. This perspective may differ
 from from that of a user who wishes to deploy and configure DNSSEC
 with only the safest algorithm. On the other hand, the comments and
 recommendations in this document are also expected to be useful for
 such users.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Algorithm Selection

3.1. DNSKEY Algorithms

 Implementation recommendations for DNSKEY algorithms [DNSKEY-IANA].

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Number | Mnemonics | DNSSEC Signing | DNSSEC Validation |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1	RSAMD5	MUST NOT	MUST NOT
3	DSA	MUST NOT	MUST NOT
5	RSASHA1	NOT RECOMMENDED	MUST
6	DSA‑NSEC3‑SHA1	MUST NOT	MUST NOT
7	RSASHA1‑NSEC3‑SHA1	NOT RECOMMENDED	MUST
8	RSASHA256	MUST	MUST
10	RSASHA512	NOT RECOMMENDED	MUST
12	ECC‑GOST	MUST NOT	MAY
13	ECDSAP256SHA256	MUST	MUST
14	ECDSAP384SHA384	MAY	RECOMMENDED
15	ED25519	RECOMMENDED	RECOMMENDED
16	ED448	MAY	RECOMMENDED
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 RSAMD5 is not widely deployed and there is an industry-wide trend to
 deprecate MD5 usage.

 RSASHA1 and RSASHA1-NSEC3-SHA1 are widely deployed, although zones
 deploying it are recommended to switch to ECDSAP256SHA256 as there is
 an industry-wide trend to move to elliptic curve cryptography.
 RSASHA1 does not support NSEC3. RSASHA1-NSEC3-SHA1 can be used with
 or without NSEC3.

 DSA and DSA-NSEC3-SHA1 are not widely deployed and vulnerable to
 private key compromise when generating signatures using a weak or
 compromised random number generator.

 RSASHA256 is in wide use and considered strong.

 RSASHA512 is NOT RECOMMENDED for DNSSEC Signing because it has not
 seen wide deployment, but there are some deployments hence DNSSEC
 Validation MUST implement RSASHA512 to ensure interoperability.
 There is no significant difference in cryptographics strength between
 RSASHA512 and RSASHA256, therefore it is discouraged to use
 RSASHA512, as it will only make deprecation of older algorithms
 harder. People that wish to use a cryptographically stronger
 algorithm should switch to elliptic curve cryptography algorithms.

 ECC-GOST (GOST R 34.10-2001) has been superseded by GOST R 34.10-2012
 in [RFC7091]. The GOST R 34.10-2012 hasn't been standardized for use
 in DNSSEC.

 ECDSAP256SHA256 provides more cryptographic strength with a shorter
 signature length than either RSASHA256 or RSASHA512. ECDSAP256SHA256
 has been widely deployed and therefore it is now at MUST level for
 both validation and signing. It is RECOMMENDED to use deterministic
 digital signature generation procedure of the ECDSA ([RFC6979]) when
 implementing ECDSAP256SHA256 (and ECDSAP384SHA384).

 ECDSAP384SHA384 shares the same properties as ECDSAP256SHA256, but
 offers a modest security advantage over ECDSAP256SHA256 (192 bits of
 strength versus 128 bits). For most DNSSEC applications,
 ECDSAP256SHA256 should be satisfactory and robust for the foreseeable
 future, and is therefore recommended for signing. While it is
 unlikely for a DNSSEC use case requiring 192-bit security strength to
 arise, ECDSA384SHA384 is provided for such applications and it MAY be
 used for signing in these cases.

 ED25519 and ED448 use Edwards-curve Digital Security Algorithm
 (EdDSA). There are three main advantages of the EdDSA algorithm: It
 does not require the use of a unique random number for each
 signature, there are no padding or truncation issues as with ECDSA,
 and it is more resilient to side-channel attacks. Furthermore, EdDSA
 cryptography is less prone to implementation errors ([RFC8032],
 [RFC8080]). It is expected that ED25519 will become the future
 RECOMMENDED default algorithm once there's enough support for this
 algorithm in the deployed DNSSEC validators.

3.2. DNSKEY Algorithm Recommendation

 Operation recommendation for new and existing deployments.

 Due to industry-wide trend to move to elliptic curve cryptography,
 the ECDSAP256SHA256 is RECOMMENDED DNSKEY algorithm for use by new
 DNSSEC deployments, and users of RSA based algorithms SHOULD upgrade
 to ECDSAP256SHA256.

3.3. DS and CDS Algorithms

 Recommendations for Delegation Signer Digest Algorithms [DNSKEY-IANA]
 These also apply to the CDS RRTYPE as specified in [RFC7344]

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Number | Mnemonics | DNSSEC Delegation | DNSSEC Validation |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0	NULL (CDS only)	MUST NOT [*]	MUST NOT [*]
1	SHA‑1	MUST NOT	MUST
2	SHA‑256	MUST	MUST
3	GOST R 34.11‑94	MUST NOT	MAY
4	SHA‑384	MAY	RECOMMENDED
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 [*] - This is a special type of CDS record signaling removal of DS at

 the parent in [RFC8078]

 NULL is a special case, see [RFC8078]

 SHA-1 is still in wide use for DS records, so validators MUST
 implement validation, but it MUST NOT be used to generate new DS and
 CDS records. (See Operational Considerations for caveats when
 upgrading from SHA-1 to SHA-256 DS Algorithm.)

 SHA-256 is in wide use and considered strong.

 GOST R 34.11-94 has been superseded by GOST R 34.11-2012 in
 [RFC6986]. The GOST R 34.11-2012 hasn't been standardized for use in
 DNSSEC.

 SHA-384 shares the same properties as SHA-256, but offers a modest
 security advantage over SHA-384 (384-bits of strength versus
 256-bits). For most applications of DNSSEC, SHA-256 should be
 satisfactory and robust for the foreseeable future, and is therefore
 recommended for DS and CDS records. While it is unlikely for a
 DNSSEC use case requiring 384-bit security strength to arise, SHA-384
 is provided for such applications and it MAY be used for generating
 DS and CDS records in these cases.

3.4. DS and CDS Algorithm Recommendation

 Operation recommendation for new and existing deployments.

 The SHA-256 is RECOMMENDED DS and CDS algorithm.

4. Implementation Status

 [RFC Editor Note: Please remove this entire seciton plus all
 references to [RFC7942] prior to publication as an RFC.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

4.1. DNSKEY Algorithms

 The following table contains the status of support in the open-source
 DNS signers and validators in the current released versions as of the
 time writing this document. Usually, the support for specific
 algorithm has to be also included in the cryptographic libraries that
 the software use.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| Mnemonics | BIND | Knot | OpenDNS | PowerDNS | Unbound |
| | | DNS | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
RSAMD5	Y	N	Y	N	N
DSA	Y	N	Y	N	Y
RSASHA1	Y	Y	Y	Y	Y
DSA‑NSEC3‑SHA1	Y	N	Y	N	Y
RSASHA1‑NSEC3‑SHA1	Y	Y	Y	Y	Y
RSASHA256	Y	Y	Y	Y	Y
RSASHA512	Y	Y	Y	Y	Y
ECC‑GOST	N	N	Y	N	Y
ECDSAP256SHA256	Y	Y	Y	Y	Y
ECDSAP384SHA384	Y	Y	Y	Y	Y
ED25519	Y	Y	N	Y	Y
ED448	N	N	N	Y	Y
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+

5. Security Considerations

 The security of cryptographic systems depends on both the strength of
 the cryptographic algorithms chosen and the strength of the keys used
 with those algorithms. The security also depends on the engineering
 of the protocol used by the system to ensure that there are no non-
 cryptographic ways to bypass the security of the overall system.

 This document concerns itself with the selection of cryptographic
 algorithms for the use of DNSSEC, specifically with the selection of
 "mandatory-to-implement" algorithms. The algorithms identified in
 this document as MUST or RECOMMENDED to implement are not known to be
 broken at the current time, and cryptographic research so far leads
 us to believe that they are likely to remain secure into the
 foreseeable future. However, this isn't necessarily forever, and it
 is expected that new revisions of this document will be issued from
 time to time to reflect the current best practices in this area.

 Retiring an algorithm too soon would result in a zone signed with the
 retired algorithm being downgraded to the equivalent of an unsigned
 zone. Therefore, algorithm deprecation must be done very slowly and
 only after careful consideration and measurement of its use.

6. Operational Considerations

 DNSKEY algorithm rollover in a live zone is a complex process. See
 [RFC6781] and [RFC7583] for guidelines on how to perform algorithm
 rollovers.

 DS algorithm rollover in a live zone is also a complex process.
 Upgrading algorithm at the same time as rolling the new KSK key will
 lead to DNSSEC validation failures, and users MUST upgrade the DS
 algorithm first before rolling the Key Signing Key.

7. IANA Considerations

 This document makes no requests of IANA.

8. Acknowledgements

 This document borrows text from RFC 4307 by Jeffrey I. Schiller of
 the Massachusetts Institute of Technology (MIT) and the 4307bis
 document by Yoav Nir, Tero Kivinen, Paul Wouters and Daniel Migault.
 Much of the original text has been copied verbatim.

 We wish to thank Michael Sinatra, Roland van Rijswijk-Deij, Olafur
 Gudmundsson, Paul Hoffman and Evan Hunt for their imminent feedback.

 Kudos to Roy Arends for bringing the DS rollover issue to the
 daylight.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC5155]
 Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC5702]
 Jansen, J., "Use of SHA-2 Algorithms with RSA in DNSKEY
 and RRSIG Resource Records for DNSSEC", RFC 5702,
 DOI 10.17487/RFC5702, October 2009, <https://www.rfc-
 editor.org/info/rfc5702>.

 [RFC5933]
 Dolmatov, V., Ed., Chuprina, A., and I. Ustinov, "Use of
 GOST Signature Algorithms in DNSKEY and RRSIG Resource
 Records for DNSSEC", RFC 5933, DOI 10.17487/RFC5933, July
 2010, <https://www.rfc-editor.org/info/rfc5933>.

 [RFC6605]
 Hoffman, P. and W. Wijngaards, "Elliptic Curve Digital
 Signature Algorithm (DSA) for DNSSEC", RFC 6605,
 DOI 10.17487/RFC6605, April 2012, <https://www.rfc-
 editor.org/info/rfc6605>.

 [RFC6781]
 Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC
 Operational Practices, Version 2", RFC 6781,
 DOI 10.17487/RFC6781, December 2012, <https://www.rfc-
 editor.org/info/rfc6781>.

 [RFC6944]
 Rose, S., "Applicability Statement: DNS Security (DNSSEC)
 DNSKEY Algorithm Implementation Status", RFC 6944,
 DOI 10.17487/RFC6944, April 2013, <https://www.rfc-
 editor.org/info/rfc6944>.

 [RFC6979]
 Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC6986]
 Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
 Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
 2013, <https://www.rfc-editor.org/info/rfc6986>.

 [RFC7091]
 Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.10-2012:
 Digital Signature Algorithm", RFC 7091,
 DOI 10.17487/RFC7091, December 2013, <https://www.rfc-
 editor.org/info/rfc7091>.

 [RFC7344]
 Kumari, W., Gudmundsson, O., and G. Barwood, "Automating
 DNSSEC Delegation Trust Maintenance", RFC 7344,
 DOI 10.17487/RFC7344, September 2014, <https://www.rfc-
 editor.org/info/rfc7344>.

 [RFC7583]
 Morris, S., Ihren, J., Dickinson, J., and W. Mekking,
 "DNSSEC Key Rollover Timing Considerations", RFC 7583,
 DOI 10.17487/RFC7583, October 2015, <https://www.rfc-
 editor.org/info/rfc7583>.

 [RFC7942]
 Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8032]
 Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017, <https://www.rfc-
 editor.org/info/rfc8032>.

 [RFC8078]
 Gudmundsson, O. and P. Wouters, "Managing DS Records from
 the Parent via CDS/CDNSKEY", RFC 8078,
 DOI 10.17487/RFC8078, March 2017, <https://www.rfc-
 editor.org/info/rfc8078>.

 [RFC8080]
 Sury, O. and R. Edmonds, "Edwards-Curve Digital Security
 Algorithm (EdDSA) for DNSSEC", RFC 8080,
 DOI 10.17487/RFC8080, February 2017, <https://www.rfc-
 editor.org/info/rfc8080>.

 [DNSKEY-IANA]

 "DNSKEY Algorithms", <http://www.iana.org/assignments/
 dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml>.

 [DS-IANA]
 "Delegation Signer Digest Algorithms",
 <http://www.iana.org/assignments/ds-rr-types/
 ds-rr-types.xhtml>.

Authors' Addresses

Paul Wouters
Red Hat
CA

 EMail: pwouters@redhat.com

Ondrej Sury
Internet Systems Consortium
CZ

 EMail: ondrej@isc.org

draft-ietf-dnsop-alt-tld-11 - The ALT Special Use Top Level Domain

draft-ietf-dnsop-alt-tld-11 - The ALT Special Use Top Level Domain

Index
Prev
Next
Forward 5

dnsop

Internet-Draft

Intended status: Informational

Expires: July 13, 2019

W. Kumari

Google

A. Sullivan

Oracle

January 9, 2019

The ALT Special Use Top Level Domain

draft-ietf-dnsop-alt-tld-11

Abstract

 This document reserves a string (ALT) to be used as a TLD label in
 non-DNS contexts. It also provides advice and guidance to developers
 developing alternative namespaces.

 [Ed note: Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in Github at: https://github.com/wkumari/draft-
 wkumari-dnsop-alt-tld. The most recent version of the document, open
 issues, etc should all be available here. The authors (gratefully)
 accept pull requests.]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 13, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements notation

	 1.2. Terminology

	2. Background

	3. The ALT namespace
	 3.1. Choice of the ALT Name

	4. IANA Considerations
	 4.1. Domain Name Reservation Considerations

	5. Privacy Considerations

	6. Security Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Changes / Author Notes

	Authors' Addresses

1. Introduction

 Many protocols and systems need to name entities. Names that look
 like DNS names (a series of labels separated with dots) have become
 common, even in systems that are not part of the global DNS
 administered by IANA. This document reserves the label "ALT" (short
 for "Alternative") as a Special Use Domain ([RFC6761]). This label
 is intended to be used as the final (rightmost) label to signify that
 the name is not rooted in the DNS, and that it should not be resolved
 using the DNS protocol.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terminology

 This document assumes familiarity with DNS terms and concepts.
 Please see [RFC1034] for background and concepts, and [RFC7719] for
 terminology. Readers are also expected to be familiar with the
 discussions in [I-D.ietf-dnsop-sutld-ps]

 o DNS name: Domain names that are intended to be used with DNS
 resolution, either in the global DNS or in some other context

 o DNS context: The namespace anchored at the globally-unique DNS
 root. This is the namespace or context that "normal" DNS uses.

 o non-DNS context: Any other (alternative) namespace.

 o pseudo-TLD: A label that appears in a fully-qualified domain name
 in the position of a TLD, but which is not registered in the
 global DNS. This term is not intended to be pejorative.

 o TLD: The last visible label in either a fully-qualified domain
 name or a name that is qualified relative to the root. See the
 discussion in Section 2.

2. Background

 The success of the DNS makes it a natural starting point for systems
 that need to name entities in a non-DNS context.

 In many cases, these systems build a DNS-style tree parallel to, but
 separate from, the global DNS. They often use a pseudo-TLD to cause
 resolution in the alternative namespace, using browser plugins, shims
 in the name resolution process, or simply applications that perform
 special handling of this particular alternative namespace. An
 example of such a system is the Tor network's [Dingledine2004] use of
 the ".onion" Special-Use Top-Level Domain Name (see [RFC7686]).

 In many cases, the creators of these alternative namespaces have
 chosen a convenient or descriptive string and started using it.
 These strings are not registered anywhere nor are they part of the
 DNS. However, to users and to some applications, they appear to be
 TLDs; and issues may arise if they are looked up in the DNS. This
 document suggests that name resolution libraries (stub resolvers)
 recognize names ending in ".alt" as special, and not attempt to look
 them up using the DNS protocol in order to limit the effects of
 queries accidentally leaking into the DNS.

 The techniques in this document are primarily intended to address the
 "Experimental Squatting Problem", the "Land Rush Problem" and "Name
 Collisions" issues discussed in [I-D.ietf-dnsop-sutld-ps] (which
 contains much additional background, etc).

3. The ALT namespace

 This document reserves the ALT label, using the [RFC6761] process,
 for use as an unmanaged pseudo-TLD namespace. The ALT label MAY be
 used in any domain name as a pseudo-TLD to signify that this is an
 alternative (non-DNS) namespace, and should not be looked up in a DNS
 context.

 Alternative namespaces should differentiate themselves from other
 alternative namespaces by choosing a name and using it in the label
 position just before the pseudo-TLD (ALT). For example, a group
 wishing to create a namespace for Friends Of Olaf might choose the
 string "foo" and use any set of labels under foo.alt.

 As names beneath ALT are in an alternative namespace, they have no
 significance in the regular DNS context and so should not be looked
 up in the DNS context.

 Groups wishing to create new alternative namespaces may create their
 alternative namespace under a label that names their namespace under
 the ALT label. They should attempt to choose a label that they
 expect to be unique and, ideally, descriptive. There is no IANA
 registry for names under the ALT TLD - it is an unmanaged namespace,
 and developers are responsible for dealing with any collisions that
 may occur under .alt. Informal lists of namespaces under .alt may be
 created to assist the developer community.

 Currently deployed projects and protocols that are using pseudo-TLDs
 may choose to move under the ALT TLD, but this is not a requirement.
 Rather, the ALT TLD is being reserved so that current and future
 projects of a similar nature have a designated place to create
 alternative resolution namespaces that will not conflict with the
 regular DNS context.

3.1. Choice of the ALT Name

 A number of names other than "ALT" were considered and discarded.
 While these are not DNS names, in order for this technique to be
 effective the names need to continue to follow both the DNS format
 and conventions (a prime consideration for alternative name formats
 is that they can be entered in places that normally take DNS context
 names); this rules out using suffixes that do not follow the usual
 letter, digit, and hyphen label convention.

 A short label was deemed desirable for a number of reasons,
 including:

 o this is a switch to other resolution contexts, some which may have
 long labels (for example derived from public keys).

 o some queries will undoubtedly leak into the DNS. As many of these
 alternate resolution systems are specifically designed for
 privacy, limiting how far they leak is desirable.

 o as there are not protocol police, the label needs to be attractive
 to implementors of alternate resolution contexts so that they are
 willing to use this.

4. IANA Considerations

 The IANA is requested to add the ALT string to the "Special-Use
 Domain Name" registry ([RFC6761], and reference this document.

4.1. Domain Name Reservation Considerations

 This section is to satisfy the requirement in Section 5 of RFC6761.

 The string ".alt." (and names ending with the string .alt) are
 special in the following ways:

 1. Users are expected to know that strings that end in .alt behave
 differently to normal DNS names. Users are expected to have
 applications running on their machines that intercept strings of
 the form <namespace>.alt and perform special handing of them, or
 that applications themselves will recognize the strings as
 special, and perform special handling. If the user tries to
 resolve a name of the form <namespace>.alt without the
 <namespace> plugin installed (or in the wrong application), the
 request will leak into the DNS, receive a negative response, and
 the resolution will fail.

 2. Writers of application software that implement a non-DNS
 namespace are expected to intercept names of the form
 <namespace>.alt and perform application specific handing with
 them. Other applications are not required to perform any special
 handing (but may choose to provide helpful informational messages
 if able).

 3. Writers of name resolution APIs and libraries which operate in
 the DNS context should not attempt to look these names up in the
 DNS. If developers of other namespaces implement their namespace
 through a "shim" or library, they will need to intercept and
 perform their own handling.

 4. Caching DNS servers SHOULD NOT recognize these names as special
 and should not perform any special handling with them.

 5. Authoritative DNS servers SHOULD NOT recognize these names as
 special and should not perform any special handling with them.

 6. DNS server operators SHOULD be aware that queries for names
 ending in .alt are not DNS names, and were leaked into the DNS
 context (for example, by a missing browser plugin). This
 information may be useful for support or debugging purposes.

 7. DNS Registries/Registrars MUST NOT grant requests to register
 ".alt" names in the normal way to any person or entity. These
 ".alt" names are defined by protocol specification to be
 nonexistent, and they fall outside the set of names available for
 allocation by registries/registrars.

 Earlier versions of this document requested that .ALT be added to the
 "Locally Served Zones" registry, and that a DNSSEC insecure
 delegation (a delegation with no DS record) be created at the root.
 Significant discussion on the DNSOP list (and an interim meeting)
 generated the consensus that these names are specifically not DNS
 names, and that them leaking into the DNS is an error. This means
 that the current (non-delegated) response of NXDOMAIN is correct as
 there is no DNS domain .alt, and so the document was updated to
 remove these requests.

5. Privacy Considerations

 This document reserves ALT to be used to indicate that a name is not
 a DNS name, and so should not attempt to be resolved using the DNS.
 Unfortunately, these queries will undoubtedly leak into the DNS - for
 example, a user may receive an email containing a hostname which
 should be resolved using a specific resolution context (implemented
 by a specific application or resolution mechanism). If the user does
 not have that particular application installed (and their stub
 resolver library has not been updated to ignore queries for names
 ending in .alt), it is likely that this will instead be resolved
 using the DNS. This DNS query will likely be sent to the configured
 iterative resolver. If this resolver does not have a cache entry for
 this name (or, if the resolver implements
 [I-D.ietf-dnsop-nsec-aggressiveuse], a entry for .alt) this query
 will likely be sent to the DNS root servers. This exposes the
 (leaked) query name to the operator of the resolver, the operator of
 the queried DNS root server, and anyone watching queries along the
 path. This is a general problem with alternative name spaces and not
 confined to names ending in .alt.

6. Security Considerations

 One of the motivations for the creation of the .alt pseudo-TLD is
 that unmanaged labels in the managed root name space are subject to
 unexpected takeover. This could occur if the manager of the root
 name space decides to delegate the unmanaged label.

 The unmanaged and "registration not required" nature of labels
 beneath .alt provides the opportunity for an attacker to re-use the
 chosen label and thereby possibly compromise applications dependent
 on the special host name.

7. Acknowledgements

 We would like to thank Joe Abley, Mark Andrews, Marc Blanchet, John
 Bond, Stephane Bortzmeyer, David Cake, David Conrad, Steve Crocker,
 Brian Dickson, Ralph Droms, Robert Edmonds, Patrik Faltstrom, Olafur
 Gudmundsson, Bob Harold, Paul Hoffman, Joel Jaeggli, Ted Lemon,
 Edward Lewis, John Levine, George Michaelson, Ed Pascoe, Jim Reid,
 Arturo Servin, Paul Vixie, Suzanne Woolf for feedback.

 Christian Grothoff was also very helpful.

8. References

8.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6303]
 Andrews, M., "Locally Served DNS Zones", BCP 163,
 RFC 6303, DOI 10.17487/RFC6303, July 2011,
 <https://www.rfc-editor.org/info/rfc6303>.

 [RFC6761]
 Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
 RFC 6761, DOI 10.17487/RFC6761, February 2013,
 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC7686]
 Appelbaum, J. and A. Muffett, "The ".onion" Special-Use
 Domain Name", RFC 7686, DOI 10.17487/RFC7686, October
 2015, <https://www.rfc-editor.org/info/rfc7686>.

 [RFC7719]
 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", RFC 7719, DOI 10.17487/RFC7719, December
 2015, <https://www.rfc-editor.org/info/rfc7719>.

8.2. Informative References

 [Dingledine2004]

 Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The
 Second-Generation Onion Router", , 8 2004,
 <<https://svn.torproject.org/svn/projects/design-paper/
 tor-design.html>>.

 [I-D.ietf-dnsop-nsec-aggressiveuse]

 Fujiwara, K., Kato, A., and W. Kumari, "Aggressive use of
 DNSSEC-validated Cache", draft-ietf-dnsop-nsec-
 aggressiveuse-10 (work in progress), May 2017.

 [I-D.ietf-dnsop-sutld-ps]

 Lemon, T., Droms, R., and W. Kumari, "Special-Use Domain
 Names Problem Statement", draft-ietf-dnsop-sutld-ps-08
 (work in progress), August 2017.

Appendix A. Changes / Author Notes.

 [RFC Editor: Please remove this section before publication]

 From -07 to -08:

 o Made it clear that this is only for non-DNS.

 o As per Interim consensus, removed the "add this to local zones"
 text.

 o Added a Privacy Considerations section

 o Grammar fix -- "alternative" is more correct than "alternate",
 replaced.

 From -06 to -07:

 o Rolled up the GItHub releases in to a full release.

 From -07.2 to -07.3 (GitHub point release):

 Removed 'sandbox' at Stephane's suggestion - https://www.ietf.org/
 mail-archive/web/dnsop/current/msg18495.html

 Suggested (in 4.1 bullet 3) that DNS libraries ignore these -- Bob
 Harold - https://mailarchive.ietf.org/arch/msg/dnsop/
 a_ruPf8osSzi_hCzCqOxYLXhYoA

 Added some pointers to the SUTLD document.

 From -07.1 to -07.2 (Github point release):

 o Reverted the <TBD> string (at request of chairs).

 o Added an editors note explaining the above.

 o Removed some more background, editorializing, etc.

 From -06 to -07.1 (https://github.com/wkumari/draft-wkumari-dnsop-
 alt-tld/tree/7988fcf06100f7a17f21e6993b781690b5774472):

 o Replaced ALT with <TBD> at the suggestions of George.

 From -05 to -06:

 o Removed a large amount of background - we now have the (adopted)
 tldr document for that.

 o Made it clear that pseudo-TLD is not intended to be pejorative.

 o Tried to make it cleat that this is something people can choose to
 use - or not.

 From -04 to -05:

 o Version bump - we are waiting in the queue for progress on SUN,
 bumping this to keep it alive.

 From -03 to -04:

 o 3 changes - the day, the month and the year (a bump to keep
 alive).

 From -02 to -03:

 o Incorporate suggestions from Stephane and Paul Hoffman.

 From -01 to -02:

 o Merged a bunch of changes from Paul Hoffman. Thanks for sending a
 git pull.

 From -00 to 01:

 o Removed the "delegated to new style AS112 servers" text -this was
 legacy from the omnicient AS112 days. (Joe Abley)

 o Removed the "Advice to implemntors" section. This used to
 recommend that people used a subdomain of a domain in the DNS. It
 was pointed out that this breaks things badly if the domain
 expires.

 o Added text about why we don't want to adminster a registry for
 ALT.

 From Individual-06 to DNSOP-00

 o Nothing changed, simply renamed draft-wkumari-dnsop-alt-tld to
 draft-ietf-dnsop-alt-tld

 From -05 to -06

 o Incorporated comments from a number of people, including a number
 of suggestion heard at the IETF meeting in Dallas, and the DNSOP
 Interim meeting in May, 2015.

 o Removed the "Let's have an (optional) IANA registry for people to
 (opportinistically) register their string, if they want that
 option" stuff. It was, um, optional....

 From -04 to -05

 o Went through and made sure that I'd captured the feedback
 received.

 o Comments from Ed Lewis.

 o Filled in the "Domain Name Reservation Considerations" section of
 RFC6761.

 o Removed examples from .Onion.

 From -03 to -04

 o Incorporated some comments from Paul Hoffman

 From -02 to -03

 o After discussions with chairs, made this much more generic (not
 purely non-DNS), and some cleanup.

 From -01 to -02

 o Removed some fluffy wording, tightened up the language some.

 From -00 to -01.

 o Fixed the abstract.

 o Recommended that folk root their non-DNS namespace under a DNS
 namespace that they control (Joe Abley)

Authors' Addresses

Warren Kumari
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043
US

 Email: warren@kumari.net

Andrew Sullivan
Oracle
150 Dow Street
Manchester, NH 03101
US

 Email: asullivan@dyn.com

draft-ietf-dnsop-aname-02 - Address-specific DNS aliases (ANAME)

draft-ietf-dnsop-aname-02 - Address-specific DNS aliases (ANAME)

Index
Prev
Next
Forward 5

DNS Operations

Internet-Draft

Intended status: Standards Track

Expires: April 22, 2019

T. Finch

University of Cambridge

E. Hunt

ISC

P. van Dijk

PowerDNS

A. Eden

DNSimple

October 19, 2018

Address-specific DNS aliases (ANAME)

draft-ietf-dnsop-aname-02

Abstract

 This document defines the "ANAME" DNS RR type, to provide similar
 functionality to CNAME, but only for type A and AAAA queries. Unlike
 CNAME, an ANAME can coexist with other record types. The ANAME RR
 allows zone owners to make an apex domain name into an alias in a
 standards compliant manner.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Overview

	 1.2. Terminology

	2. The ANAME resource record
	 2.1. Presentation and wire format

	 2.2. Coexistence with other types

	3. Additional section processing
	 3.1. Address queries

	 3.2. ANAME queries

	4. Substituting ANAME sibling address records

	5. ANAME processing by primary masters
	 5.1. Implications

	 5.2. Alternatives

	6. ANAME processing by resolvers

	7. IANA considerations

	8. Security considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgments

	Appendix B. Implementation status

	Appendix C. Historical note

	Appendix D. On preserving TTLs
	 D.1. Query bunching

	 D.2. Upstream caches

	 D.3. ANAME chains

	 D.4. TTLs and zone transfers

	Appendix E. Answer vs Additional sections

	Appendix F. Changes since the last revision

	Authors' Addresses

1. Introduction

 It can be desirable to provide web sites (and other services) at a
 bare domain name (such as "example.com") as well as a service-
 specific subdomain ("www.example.com").

 If the web site is hosted by a third-party provider, the ideal way to
 provision its name in the DNS is using a CNAME record, so that the
 third party provider retains control over the mapping from names to
 IP address(es). It is now common for name-to-address mappings to be
 highly dynamic, dependent on client location, server load, etc.

 However, CNAME records cannot coexist with other records. (The
 reason why is explored in Appendix C). This means they cannot appear
 at a zone apex (such as "example.com") because of the SOA, NS, and
 other records that have to be present there. CNAME records can also
 conflict at subdomains, for example if "department.example.edu" has
 separately hosted mail and web servers.

 Redirecting website lookups to an alternate domain name via SRV or
 URI resource records would be an effective solution from the DNS
 point of view, but to date this approach has not been accepted by
 browser implementations.

 As a result, the only widely supported and standards-compliant way to
 publish a web site at a bare domain is to place A and/or AAAA records
 at the zone apex. The flexibility afforded by CNAME is not
 available.

 This document specifies a new RR type "ANAME", which provides similar
 functionality to CNAME, but only for address queries (i.e., for type
 A or AAAA). The basic idea is that the address records next to an
 ANAME record are automatically copied from and kept in sync with the
 ANAME target's address records. The ANAME record can be present at
 any DNS node, and can coexist with most other RR types, enabling it
 to be present at a zone apex, or any other name where the presence of
 other records prevents the use of CNAME.

 Similar authoritative functionality has been implemented and deployed
 by a number of DNS software vendors and service providers, using
 names such as ALIAS, ANAME, apex CNAME, CNAME flattening, and top
 level redirection. These mechanisms are proprietary, which hinders
 the ability of zone owners to have the same data served from multiple
 providers, or to move from one provider to another. None of these
 proprietary implementations includes a mechanism for resolvers to
 follow the redirection chain themselves.

1.1. Overview

 The core functionality of this mechanism allows zone administrators
 to start using ANAME records unilaterally, without requiring
 secondary servers or resolvers to be upgraded.

 o The resource record definition in Section 2 is intended to provide
 zone data portability between standards-compliant DNS servers and
 the common core functionality of existing proprietary ANAME-like
 facilities.

 o The zone maintenance mechanism described in Section 5 behaves as
 if DNS UPDATE [RFC2136] were being used to keep an ANAME's sibling
 address records in sync with the ANAME target; this allows it to
 interoperate with existing DNSSEC signers, secondary servers, and
 resolvers.

 This is enough to be useful by itself. However, it can be less than
 optimal in certain situations: for instance, when the ANAME target
 uses clever tricks to provide different answers to different clients
 to improve latency or load balancing.

 o The Additional section processing rules in Section 3 inform
 resolvers that an ANAME record is in play.

 o Resolvers can use this ANAME information as described in Section 6
 to obtain answers that are tailored to the resolver rather than to
 the zone's primary master.

 Resolver support for ANAME is not necessary, since ANAME-oblivious
 resolvers will get working answers from authoritative servers. It's
 just an optimization that can be rolled out incrementally, and that
 will help ANAME to work better the more widely it is deployed.

1.2. Terminology

 An "address record" is a DNS resource record whose type is A or AAAA.
 These are referred to as "address types". "Address query" refers to
 a DNS query for any address type.

 When talking about "address records" we mean the entire RRset,
 including owner name and TTL. We treat missing address records (i.e.
 NXDOMAIN or NODATA) the same successfully resolving as a set of zero
 address records, and distinct from "failure" which covers error
 responses such as SERVFAIL or REFUSED.

 The "sibling address records" of an ANAME record are the address
 records at the same owner name as the ANAME, which are subject to
 ANAME substitution.

 The "target address records" of an ANAME record are the address
 records obtained by resolving the ultimate target of the ANAME (see
 Section 4).

 Other DNS-related terminology can be found in
 [I-D.ietf-dnsop-terminology-bis].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The ANAME resource record

 This document defines the "ANAME" DNS resource record type, with RR
 TYPE value [TBD].

2.1. Presentation and wire format

 The ANAME presentation format is identical to that of CNAME
 [RFC1033]:

 owner ttl class ANAME target

 The wire format is also identical to CNAME [RFC1035], except that
 name compression is not permitted in ANAME RDATA, per [RFC3597].

2.2. Coexistence with other types

 Only one ANAME <target> can be defined per <owner>. An ANAME RRset
 MUST NOT contain more than one resource record.

 An ANAME's sibling address records are under the control of ANAME
 processing (see Section 5) and are not first-class records in their
 own right. They MAY exist in zone files, but they can subsequently
 be altered by ANAME processing.

 ANAME records MAY freely coexist at the same owner name with other RR
 types, except they MUST NOT coexist with CNAME or any other RR type
 that restricts the types with which it can itself coexist.

 Like other types, ANAME records can coexist with DNAME records at the
 same owner name; in fact, the two can be used cooperatively to
 redirect both the owner name address records (via ANAME) and
 everything under it (via DNAME).

3. Additional section processing

 The requirements in this section apply to both recursive and
 authoritative servers.

 An ANAME target MAY resolve to address records via a chain of CNAME
 and/or ANAME records; any CNAME/ANAME chain MUST be included when
 adding target address records to a response's Additional section.

3.1. Address queries

 When a server receives an address query for a name that has an ANAME
 record, the response's Additional section:

 o MUST contain the ANAME record;

 o MAY contain the target address records that match the query type
 (or the corresponding proof of nonexistence), if they are
 available and the target address RDATA fields differ from the
 sibling address RRset.

 The ANAME record indicates to a client that it might wish to resolve
 the target address records itself. The target address records might
 not be available if the server is authoritative and does not include
 out-of-zone or non-authoritative data in its answers, or if the
 server is recursive and the records are not in the cache.

3.2. ANAME queries

 When a server receives an query for type ANAME, there are three
 possibilities:

 o The query resolved to an ANAME record, and the server has the
 target address records; any target address records SHOULD be added
 to the Additional section.

 o The query resolved to an ANAME record, and the server does not
 have the target address records; any sibling address records
 SHOULD be added to the Additional section.

 o The query did not resolve to an ANAME record; any address records
 with the same owner name SHOULD be added to the Additional section
 of the NOERROR response.

 When adding address records to the Additional section, if not all
 address types are present and the zone is signed, the server SHOULD
 include a DNSSEC proof of nonexistence for the missing address types.

4. Substituting ANAME sibling address records

 This process is used by both primary masters (see Section 5) and
 resolvers (see Section 6), though they vary in how they apply the
 edit described in the final step.

 The following steps MUST be performed for each address type:

 1. Starting at the ANAME owner, follow the chain of ANAME and/or
 CNAME records as far as possible to find the ultimate target.

 2. If a loop is detected, continue with an empty RRset, otherwise
 get the ultimate target's address records. (Ignore any sibling
 address records of intermediate ANAMEs.)

 3. Stop if resolution failed. (Note that NXDOMAIN and NODATA count
 as successfully resolving an empty RRset.)

 4. Replace the owner of the target address records with the owner of
 the ANAME record. Reduce the TTL to match the ANAME record if it
 is greater. Drop any RRSIG records.

 5. Stop if this modified RRset is the same as the sibling RRset
 (ignoring any RRSIG records). The comparison MAY treat nearly-
 equal TTLs as the same.

 6. Delete the sibling address RRset and replace it with the modified
 RRset.

 At this point, the substituted RRset is not signed. A primary master
 will proceed to sign the substituted RRset, whereas resolvers can
 only use the substituted RRset when an unsigned answer is
 appropriate. This is explained in more detail in the following
 sections.

5. ANAME processing by primary masters

 Each ANAME's sibling address records are kept up-to-date as if by the
 following process, for each address type:

 o Perform ANAME sibling address record substitution as described in
 Section 4. Any edit performed in the final step is applied to the
 ANAME's zone in the same manner as a DNS UPDATE [RFC2136].

 o If resolution failed, wait for a period before trying again. This
 retry time SHOULD be configurable.

 o Otherwise, wait until the target address record TTL has expired,
 then repeat.

 The following informative subsections explore the effects of this
 specification, to clarify how it can work in practice.

5.1. Implications

 A zone containing ANAME records has to be a dynamic zone, similar to
 automatic DNSSEC signature maintenance.

 DNSSEC signatures on sibling address records are generated in the
 same way as for normal DNS UPDATEs.

 Sibling address records are committed to the zone and stored in
 nonvolatile storage. This allows a server to restart without delays
 due to ANAME processing.

 A zone containing ANAME records that point to frequently-changing
 targets will itself change frequently, which can increase the number
 of zone transfers.

 Sibling address records are served from authoritative servers with a
 fixed TTL. Normally this TTL is expected to be the same as the
 target address records' TTL (or the ANAME TTL if that is smaller);
 however the exact mechanism for obtaining the target is unspecified,
 so cache effects or deliberate policies might make the sibling TTL
 smaller. There is a longer discussion of TTL handling in {#ttls}.

 Secondary servers rely on zone transfers to obtain sibling address
 records, just like the rest of the zone, and serve them in the usual
 way (with Section 3 Additional section processing if they support
 it). A working DNS NOTIFY [RFC1996] setup is necessary to avoid
 extra delays propagating updated sibling address records when they
 change.

5.2. Alternatives

 The process at the start of this section is specified using the
 mighty weasel words "as if", which are intended to allow a great deal
 of latitude to implementers so long as the observed behaviour is
 compatible.

 For instance, it is likely to be more efficient to manage the polling
 per ANAME target rather than per ANAME as specified.

 More radically, some existing ANAME-like implementations are based on
 a different DNS server architecture, in which a zone's published
 authoritative servers all perform the duties of a primary master in a
 distributed manner: provisioning records from a non-DNS back-end
 store, refreshing DNSSEC signatures, and so forth. This architecture
 does not use standard zone transfers, so there is no need for its
 ANAME implementation to poll the target address records to ensure
 that its secondary servers are up to date (because there are no
 secondary servers as such). Instead the authoritative servers can do
 ANAME sibling address substitution on demand.

 There are other variant architectures which use zone transfers within
 the provisioning system, but where the authoritative servers are able
 to independently vary the zone contents. They can conform to this
 specification provided their behaviour is consistent with it: unusual
 behaviour can appear "as if" there were a rapidly updating zone or
 multiple primary masters, etc.

 The exact mechanism for obtaining the target address records is
 unspecified; typically they will be resolved in the DNS in the usual
 way, but if an ANAME implementation has special knowledge of the
 target it can short-cut the substitution process, or use clever
 tricks such as client-dependant answers.

6. ANAME processing by resolvers

 When a resolver makes an address query in the usual way, it might
 receive a response containing ANAME information in the additional
 section, as described in Section 3. This informs the resolver that
 it MAY resolve the ANAME target address records to get answers that
 are tailored to the resolver rather than the ANAME's primary master.
 It SHOULD include the target address records in the Additional
 section of its responses as described in Section 3.

 In order to provide tailored answers to clients that are ANAME-
 oblivious, the resolver MAY do its own sibling address record
 substitution in the following situations:

 o The resolver's client queries with DO=0. (As discussed in
 Section 8, if the resolver finds it would downgrade a secure
 answer to insecure, it MAY choose not to substitute the sibling
 address records.)

 o The resolver's client queries with DO=1 and the ANAME and sibling
 address records are unsigned. (Note that this situation does not
 apply when the records are signed but insecure: the resolver might
 not be able to validate them because of a broken chain of trust,
 but its client could have an extra trust anchor that does allow it
 to validate them; if the resolver substitutes the sibling address
 records they will become bogus.)

 In these first two cases, the resolver MAY perform ANAME sibling
 address record substitution as described in Section 4. Any edit
 performed in the final step is applied to response's Answer section.
 The resolver SHOULD then perform Additional section processing as
 described in Section 3.

 If the resolver's client is querying using an API such as
 "getaddrinfo" [RFC3493] that does not support DNSSEC validation, the
 resolver MAY perform ANAME sibling address record substitution as
 described in Section 4. Any edits performed in the final step are
 applied to the addresses returned by the API. (This case is for
 validating stub resolvers that query an upstream recursive server
 with DO=1, so they cannot rely on the recursive server to do ANAME
 substitution for them.)

7. IANA considerations

 IANA is requested to assign a DNS RR TYPE value for ANAME resource
 records under the "Resource Record (RR) TYPEs" subregistry under the
 "Domain Name System (DNS) Parameters" registry.

 IANA might wish to consider the creation of a registry of address
 types; addition of new types to such a registry would then implicitly
 update this specification.

8. Security considerations

 When a primary master updates an ANAME's sibling address records to
 match its target address records, it is uses its own best information
 as to the correct answer. The updated records might be signed by the
 primary master, but that is not a guarantee of the actual correctness
 of the answer. This can have the effect of promoting an insecure
 response from the ANAME <target> to a signed response from the
 <owner>, which can then appear to clients to be more trustworthy than
 it should. To mitigate harm from this, DNSSEC validation SHOULD be
 used when resolving the ANAME <target>. Primary masters MAY refuse
 to substitute ANAME sibling address records unless the <target> node
 is both signed and validated.

 When a resolver substitutes an ANAME's sibling address records, it
 can find that the sibling address records are secure but the target
 address records are insecure. Going ahead with the substitution will
 downgrade a secure answer to an insecure one. But this is likely to
 be the counterpart of the situation described in the previous
 paragraph, so the resolver is downgrading an answer that the ANAME's
 primary master upgraded. A resolver will only downgrade an answer in
 this way when its client is security-oblivious; however the client's
 path to the resolver is likely to be practically safer than the
 resolver's path to the ANAME target's servers. Resolvers MAY choose
 not to substitute sibling address records when they are more secure
 than the target address records.

9. References

9.1. Normative References

 [I-D.ietf-dnsop-terminology-bis]

 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", draft-ietf-dnsop-terminology-bis-14 (work in
 progress), September 2018.

 [RFC1033]
 Lottor, M., "Domain Administrators Operations Guide",
 RFC 1033, DOI 10.17487/RFC1033, November 1987,
 <https://www.rfc-editor.org/info/rfc1033>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136]
 Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC3597]
 Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC0882]
 Mockapetris, P., "Domain names: Concepts and facilities",
 RFC 882, DOI 10.17487/RFC0882, November 1983,
 <https://www.rfc-editor.org/info/rfc882>.

 [RFC0973]
 Mockapetris, P., "Domain system changes and observations",
 RFC 973, DOI 10.17487/RFC0973, January 1986,
 <https://www.rfc-editor.org/info/rfc973>.

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1996]
 Vixie, P., "A Mechanism for Prompt Notification of Zone
 Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996,
 August 1996, <https://www.rfc-editor.org/info/rfc1996>.

 [RFC2065]
 Eastlake 3rd, D. and C. Kaufman, "Domain Name System
 Security Extensions", RFC 2065, DOI 10.17487/RFC2065,
 January 1997, <https://www.rfc-editor.org/info/rfc2065>.

 [RFC2308]
 Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC3493]
 Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <https://www.rfc-editor.org/info/rfc3493>.

9.3. URIs

 [1] https://github.com/each/draft-aname

Appendix A. Acknowledgments

 Thanks to Mark Andrews, Ray Bellis, Stefan Buehler, Paul Ebersman,
 Richard Gibson, Tatuya JINMEI, Hakan Lindqvist, Mattijs Mekking,
 Stephen Morris, Bjorn Mott, Richard Salts, Mukund Sivaraman, Job
 Snijders, Jan Vcelak, Paul Vixie, Duane Wessels, and Paul Wouters for
 discussion and feedback.

Appendix B. Implementation status

 PowerDNS currently implements a similar authoritative-only feature
 using "ALIAS" records, which are expanded by the primary server and
 transfered as address records to secondaries.

 [TODO: Add discussion of DNSimple, DNS Made Easy, EasyDNS,
 Cloudflare, Amazon, Dyn, and Akamai.]

Appendix C. Historical note

 In the early DNS [RFC0882], CNAME records were allowed to coexist
 with other records. However this led to coherency problems: if a
 resolver had no cache entries for a given name, it would resolve
 queries for un-cached records at that name in the usual way; once it
 had cached a CNAME record for a name, it would resolve queries for
 un-cached records using CNAME target instead.

 For example, given the zone contents below, the original CNAME
 behaviour meant that if you asked for "alias.example.com TXT" first,
 you would get the answer "owner", but if you asked for
 "alias.example.com A" then "alias.example.com TXT" you would get the
 answer "target".

alias.example.com. TXT "owner"
alias.example.com. CNAME canonical.example.com.
canonical.example.com. TXT "target"
canonical.example.com. A 192.0.2.1

 This coherency problem was fixed in [RFC0973] which introduced the
 inconvenient rule that a CNAME acts as an alias for all other RR
 types at a name, which prevents the coexistence of CNAME with other
 records.

 A better fix might have been to improve the cache's awareness of
 which records do and do not coexist with a CNAME record. However
 that would have required a negative cache mechanism which was not
 added to the DNS until later [RFC1034] [RFC2308].

 While [RFC2065] relaxed the restriction by allowing coexistence of
 CNAME with DNSSEC records, this exception is still not applicable to
 other resource records. RRSIG and NSEC exist to prove the integrity
 of the CNAME record; they are not intended to associate arbitrary
 data with the domain name. DNSSEC records avoid interoperability
 problems by being largely invisible to security-oblivious resolvers.

 Now that the DNS has negative caching, it is tempting to amend the
 algorithm for resolving with CNAME records to allow them to coexist
 with other types. Although an amended resolver will be compatible
 with the rest of the DNS, it will not be of much practical use
 because authoritative servers which rely on coexisting CNAMEs will
 not interoperate well with older resolvers. Practical experiments
 show that the problems are particularly acute when CNAME and MX try
 to coexist.

Appendix D. On preserving TTLs

 An ANAME's sibling address records are in an unusual situation: they
 are authoritative data in the owner's zone, so from that point of
 view the owner has the last say over what their TTL should be; on the
 other hand, ANAMEs are supposed to act as aliases, in which case the
 target should control the address record TTLs.

 However there are some technical constraints that make it difficult
 to preserve the target address record TTLs.

 The conclusion of the following subsections is that the end-to-end
 TTL (from the authoritative servers for the target address records to
 end-user DNS caches) will be the target address record TTL plus the
 sibling address record TTL.

 [MM: Discuss: I think it should be just the ANAME record TTL perhaps
 the minimum of ANAME and sibling address RRset TTL. We should
 provide some guidance on TTL settings for ANAME).

 [TF: see issue #30]

D.1. Query bunching

 If the times of end-user queries for a domain name are well
 distributed, then (normally) queries received by the authoritative
 servers for that domain are also well distributed. If the domain is
 popular, a recursive server will re-query for it once every TTL
 seconds, but the periodic queries from all the various recursive
 servers will not be aligned, so the queries remain well distributed.

 However, imagine that the TTLs of an ANAME's sibling address records
 are decremented in the same way as cache entries in recursive
 servers. Then all the recursive servers querying for the name will
 try to refresh their caches at the same time, when the TTL reaches
 zero. They will become synchronized and all the queries for the
 domain will be bunched into periodic spikes.

 This specification says that ANAME sibling address records have a
 normal fixed TTL derived from (e.g. equal or nearly equal to) the
 target address records' original TTL. There is no cache-like
 decrementing TTL, so there is no bunching of queries.

D.2. Upstream caches

 There are two straightforward ways to get an RRset's original TTL:

 o by directly querying an authoritative server;

 o using the original TTL field from the RRset's RRGIG record(s).

 However, not all zones are signed, and a primary master might not be
 able to directly query other authoritative servers (e.g. if it is a
 hidden primary behind a strict firewall). Instead it might have to
 obtain an ANAME's target address records via some other recursive
 server.

 Querying via a separate recursive server means the primary master
 cannot trivially obtain the target address records' original TTLs.
 Fortunately this is likely to be a self-correcting problem for
 similar reasons to the query-bunching discussed in the previous
 subsection. The primary master re-checks the target address records
 just after the TTL expires, when its upstream cache has just
 refreshed them, so the TTL will be nearly equal to the original TTL.

 A related consideration is that the primary master cannot in general
 refresh its copies of an ANAME's target address records more
 frequently than their TTL, without privileged control over its
 resolver cache.

 Combined with the requirement that sibling address records are served
 with a fixed TTL, this means that the end-to-end TTL will be the
 target address record TTL (which determines when the sibling address
 records are updated) plus the sibling address record TTL (which
 determines when end-user caches are updated).

D.3. ANAME chains

 ANAME sibling address record substitution is made slightly more
 complicated by the requirement to follow chains of ANAME and/or CNAME
 records. This stops the end-to-end TTL from being inflated by each
 ANAME in the chain.

D.4. TTLs and zone transfers

 When things are working properly (with secondary name servers
 responding to NOTIFY messages promptly) the authoritative servers
 will follow changes to ANAME target address records according to
 their TTLs. As a result the end-to-end TTL is unchanged from the
 previous subsection.

 If NOTIFY doesn't work, the TTLs can be stretched by the zone's SOA
 refresh timer. More serious breakage can stretch them up to the zone
 expiry time.

Appendix E. Answer vs Additional sections

 [MM: Discuss what should be in the additional section: ANAME makes
 sense, but differs from CNAME logic (where the CNAME is in the answer
 section). Additional target records that match the query type in my
 opinion should go in the answer section. Additional target address
 records that do not match the query type can go in the additional
 section].

 [TF: from experience with DNAME I think there's a risk of interop
 problems if we put unexpected records in the answer section, so I
 said everything should go in additional. We'll expand this appendix
 to explain the rationale.]

Appendix F. Changes since the last revision

 [This section is to be removed before publication as an RFC.]

 The full history of this draft and its issue tracker can be found at
 https://github.com/each/draft-aname [1]

 o "-02": Major revamp, so authoritative servers (other than primary
 masters) now do not do any special ANAME processing, just
 Additional section processing.

Authors' Addresses

Tony Finch
University of Cambridge
University Information Services
Roger Needham Building
7 JJ Thomson Avenue
Cambridge CB3 0RB
England

 Email: dot@dotat.at

Evan Hunt
ISC
950 Charter St
Redwood City, CA 94063
USA

 Email: each@isc.org

Peter van Dijk
PowerDNS.COM B.V.
Den Haag
The Netherlands

 Email: peter.van.dijk@powerdns.com

Anthony Eden
DNSimple
Boston, MA USA

Email: anthony.eden@dnsimple.com
URI: https://dnsimple.com/

draft-ietf-dnsop-attrleaf-16 - DNS Scoped Data Through "Underscore" Naming of Attribute Leaves

draft-ietf-dnsop-attrleaf-16 - DNS Scoped Data Through "Underscore" Na

Index
Prev
Next
Forward 5

dnsop

Internet-Draft

Intended status: Standards Track

Expires: May 20, 2019

D. Crocker

Brandenburg InternetWorking

November 16, 2018

DNS Scoped Data Through "Underscore" Naming of Attribute Leaves

draft-ietf-dnsop-attrleaf-16

Abstract

 Formally, any DNS resource record may occur under any domain name.
 However some services use an operational convention for defining
 specific interpretations of an RRset, by locating the records in a
 DNS branch, under the parent domain to which the RRset actually
 applies. The top of this subordinate branch is defined by a naming
 convention that uses a reserved node name, which begins with an
 _underscore. The underscored naming construct defines a semantic
 scope for DNS record types that are associated with the parent
 domain, above the underscored branch. This specification explores
 the nature of this DNS usage and defines the "DNS Global Underscore
 Scoped Entry Registry" with IANA. The purpose of the Underscore
 registry is to avoid collisions resulting from the use of the same
 underscore-based name, for different services.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 20, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Underscore Scoping

	 1.2. Scaling Benefits

	 1.3. "Global" Underscored Node Names

	 1.4. Interaction with DNS wildcards

	 1.5. History

	2. DNS Underscore Scoped Entry Registries Function

	3. RRset Use Registration Template

	4. IANA Considerations
	 4.1. DNS Underscore Global Scoped Entry Registry

	 4.2. DNS Underscore Global Scoped Entry Registry Definition

	 4.3. Initial entries

	 4.4. _ta

	 4.5. _example

	 4.6. Enumservices Registrations Registry

	5. Guidance for Expert Review

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. References - Informative

	 7.3. URIs

	Appendix A. Acknowledgements

	Author's Address

1. Introduction

 The core Domain Name System (DNS) technical specifications assign no
 semantics to domain names or their parts, and no constraints upon
 which resource record (RR) types are permitted to be stored under
 particular names [RFC1035], [RFC2181]. Over time, some leaf node
 names, such as "www" and "ftp" have come to imply support for
 particular services, but this is a matter of operational convention,
 rather than defined protocol semantics. This freedom in the basic
 technology has permitted a wide range of administrative and semantic
 policies to be used -- in parallel. DNS data semantics have been
 limited to the specification of particular resource record types, on
 the expectation that new resource record types would be added as
 needed. Unfortunately, the addition of new resource record types has
 proven extremely challenging, over the life of the DNS, with
 significant adoption and use barriers.

1.1. Underscore Scoping

 As an alternative to defining a new RR type, some DNS service
 enhancements call for using an existing resource record type, but
 specify a restricted scope for its occurrence. Scope is meant as a
 static property, not one dependent on the nature of the query. It is
 an artifact of the DNS name. That scope is a leaf node, containing
 the specific resource record sets can be formally defined and
 constrained.

 The leaf occurs in a branch having a distinguished naming
 convention: There is a parent domain name to which the scoped data
 applies. The branch is under this name. The sub-branch is
 indicated by a sequence of one or more reserved DNS node names; at
 least the first (highest) of these names begins with an underscore
 ("_").

 Because the DNS rules for a "host" (host name) do not allow use of
 the underscore character, this distinguishes the underscored name
 from all legal host names [RFC952]. Effectively, this convention for
 leaf node naming creates a space for the listing of "attributes" --
 in the form of resource record types -- that are associated with the
 parent domain, above the underscored sub-branch.

 The scoping feature is particularly useful when generalized resource
 record types are used -- notably "TXT", "SRV", and "URI" [RFC1035],
 [RFC2782], [RFC6335], [RFC7553]. It provides efficient separation of
 one use of them from others. Absent this separation, an
 undifferentiated mass of these RRsets is returned to the DNS client,
 which then must parse through the internals of the records in the
 hope of finding ones that are relevant. Worse, in some cases the
 results are ambiguous because a record type might not adequately
 self-identify its specific purpose. With underscore-based scoping,
 only the relevant RRsets are returned.

 A simple example is DKIM [RFC6376] , which uses "_domainkey" for
 defining a place to hold a TXT record containing signing information
 for the parent domain.

 This specification formally defines how underscored labels are used
 as "attribute" enhancements for their parent domain names. For
 example, domain name "_domainkey.example." acts as an attribute of
 the parent domain name "example." To avoid collisions resulting from
 the use of the same underscore-based labels for different
 applications using the same resource record type, this document
 establishes the DNS Underscore Global Scoped Entry IANA Registry.
 Use of such node names, which begin with underscore, are reserved
 when they are the underscored name closest to the DNS root; they are
 considered "global". Underscore-based names that are farther down
 the hierarchy are handled within the scope of the global underscore
 name.

Discussion Venue: Discussion about this draft should be directed
 to the dnsop@ietf.org [1] mailing list.

NOTE TO RFC EDITOR: Please remove "Discussion Venue" paragraph
 prior to publication.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Scaling Benefits

 Some resource record types are used in a fashion that can create
 scaling problems, if an entire RRset associated with a domain name is
 aggregated in the leaf node for that name. An increasingly-popular
 approach, with excellent scaling properties, places the RRset under a
 specially named branch, which is in turn under the node name that
 would otherwise contain the RRset. The rules for naming that branch
 define the context for interpreting the RRset. That is, rather than:

domain‑name.example
 /
 RRset

 the arrangement is:

_branch.domain‑name.example
 /
 RRset

 A direct lookup to the subordinate leaf node produces only the
 desired record types, at no greater cost than a typical DNS lookup.

1.3. "Global" Underscored Node Names

 As defined in [RFC1034] the DNS uses names organized in a tree-
 structured, or hierarchical fashion. A domain name might have
 multiple node names that begin with an _underscore. A "global"
 underscored node name is the one that is closest to the root of the
 DNS hierarchy, also called the highest-level or top-most. In the
 presentation convention described in Section 3.1 of [RFC1034] this is
 the right-most name beginning with an underscore. In other
 presentation environments it might be positioned differently. To
 avoid concern for the presentation variations, the qualifier "global"
 is used here.

1.4. Interaction with DNS wildcards

 DNS wildcards interact poorly with underscored names in two ways.
 Since wildcards only are interpreted as leaf names, one cannot create
 the equivalent of a wildcard name for prefixed names. A name such as
 label.*.example.com is not a wildcard.

 Conversely, a wildcard such as *.example.com can match any name
 including an underscored name. So, a wildcard might match an
 underscored name, returning a record that is the type controlled by
 the underscored name but is not intended to be used in the
 underscored context and does not conform to its rules.

1.5. History

 Originally different uses of underscore-based node names developed
 largely without coordination. For TXT records, there is no
 consistent, internal syntax that permits distinguishing among the
 different uses. In the case of the SRV RR and URI RR, distinguishing
 among different types of use was part of the design [RFC2782],
 [RFC7553]. The SRV and URI specifications serve as templates,
 defining RRs that might only be used for specific applications when
 there is an additional specification. The template definition
 included reference to two levels of tables of names from which
 underscore-names should be drawn. The lower-level (local scope) set
 of "_service" names is defined in terms of other IANA tables, namely
 any table with symbolic names. The upper-level (global scope) SRV
 naming field is "_proto", although its pool of names is not
 explicitly defined.

 The aggregate effect of these independent efforts was a long list of
 underscore-based names that were reserved without coordination, which
 invites an eventual name-assignment collision. The remedy is this
 base document, which defines a registry for these names, and attempts
 to register all those already in use, with a companion document
 [attrleaf-fix] developed to direct changes to the pre-registry
 specifications that used underscore-based (global) node names.

2. DNS Underscore Scoped Entry Registries Function

 A registry for "global" DNS node names that begin with an underscore
 is defined here. The purpose of the Underscore Global Registry is to
 avoid collisions resulting from the use of the same underscore-based
 name, for different applications.

 o If a public specification calls for use of an underscore-prefixed
 domain node name, the "global" underscored name -- the underscored
 name that is closest to the DNS root -- MUST be entered into this
 registry.

 An underscored name defines the scope of use for specific resource
 record types, which are associated with the domain name that is the
 "parent" to the branch defined by the underscored name. A given name
 defines a specific, constrained context for one or more RR types,
 where use of such record types conforms to the defined constraints.

 o Within an underscore scoped leaf, other RRsets that are not
 specified as part of the scope MAY be used.

 Structurally, the registry is defined as a single, flat table of RR
 types, under node names beginning with underscore. In some cases,
 such as for use of an SRV record, the full scoping name might be
 multi-part, as a sequence of underscored names. Semantically, that
 sequence represents a hierarchical model and it is theoretically
 reasonable to allow re-use of a subordinate underscored name in a
 different, global underscored context; that is, a subordinate name is
 meaningful only within the scope of the global underscored name.
 Therefore they are ignored by this DNS Underscore Global Scoped Entry
 Registry. This registry is for the definition of highest-level --
 ie, global -- underscored node name used.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NAME |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| _service1 |
| _protoB._service2 |
| _protoB._service3 |
| _protoC._service3 |
| _useX._protoD._service4 |
| _protoE._region._authority |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Examples of Underscored Names

 Only global underscored names are registered in the IANA Underscore
 Global table. From the example, that would mean registering
 "_service3", "_service4", and "_authority" are registered in the IANA
 _service1, _service2, _service3, _service 4, and _authority.

 o The use of underscored node names is specific to each RRTYPE that
 is being scoped. Each name defines a place, but does not define
 the rules for what appears underneath that place, either as
 additional underscored naming or as a leaf node with resource
 records. Details for those rules are provided by specifications
 for individual RRTYPEs. The sections below describe the way that
 existing underscore labels are used with the RRTYPEs that they
 name.

 o Definition and registration of subordinate, underscore node names
 is the responsibility of the specification that creates the global
 registry entry.

 That is, if a scheme using a global underscore node name has one or
 more subordinate levels of underscore node naming, the namespaces
 from which names for those lower levels are chosen are controlled by
 the parent underscore node name. Each globally-registered underscore
 name owns a distinct, subordinate name space.

3. RRset Use Registration Template

 This section provides a basic template that can be used to register
 new entries in the IANA DNS Underscore Global Scoped Entry Registry,
 if the global underscored name above the RRTYPE is not already
 registered. The text can be added to specifications using
 RRTYPE/_Node-name combinations that have not already been registered:

 Per {RFC Attrleaf} please add the following entry to the DNS
 Underscore Global Scoped Entry Registry:

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RR Type | _NODE NAME | REFERENCE |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| {RRTYPE} | _{DNS global node | {citation for the document making |
| | name} | the addition.} |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2: Underscore Global Registry Entry Template

Note to RFC Editor: Please replace the above "{RFC Attrleaf}" text
 with a reference to this document's RFC number. /d

4. IANA Considerations

 Per [RFC8126] IANA is requested to establish the:

 DNS Underscore Global Scoped Entry Registry

 This section describes actions requested of IANA. The guidance in
 [IANA] is used.

4.1. DNS Underscore Global Scoped Entry Registry

 The DNS Global Underscore Scoped Entry Registry is any DNS node name
 that begin with the underscore character ("_", ASCII 0x5F) and is the
 underscored node name closest to the root; that is it defines the
 highest-level of a DNS branch, under a "parent" domain name.

 o This registry is to operate under the IANA rules for "Expert
 Review" registration; see Section 5.

 o The contents of each entry in the Global registry are defined in
 Section 4.2.

 o Each entry in the registry MUST contain values for all of the
 fields specified in Section 4.2.

 o Within the registry, the combination of RR Type and _Node Name
 MUST be unique.

 o The table is to be maintained with entries sorted by the first
 column (RR Type) and, within that, the second column (_Node Name).

 o The required Reference for an entry MUST have a stable resolution
 to the organization controlling that registry entry.

4.2. DNS Underscore Global Scoped Entry Registry Definition

 A registry entry contains:

RR Type: Lists an RR type that is defined for use within this
 scope.

_Node Name: Specifies a single, underscored name that defines a
 reserved name; this name is the "global" entry name for
 the scoped resource record types that are associated

 with that name; for characters in the name that have an
 upper-case form and a lower-case form, the character
 MUST be recorded as lower-case, to simplify name
 comparisons.

References: Lists the specification that defines a record type
 and its use under this _Node Name. The organization
 producing the specification retains control over the
 registry entry for the _Node Name.

 Each RR type that is to be used with a _Node Name MUST have a
 separate registry entry.

4.3. Initial entries

 Initial entries in the registry are:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RR Type | _NODE NAME | REFERENCE |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
*	_example	Section 4.5
NULL	_ta‑* {Section 4.4}	[RFC8145]
OPENPGPKEY	_openpgpkey	[RFC7929]
SMIMEA	_smimecert	[RFC8162]
SRV	_dccp	[RFC2782]
SRV	_http	[RFC4386]
SRV	_ipv6	[RFC5026]
SRV	_ldap	[RFC4386]
SRV	_ocsp	[RFC4386]
SRV	_sctp	[RFC2782]
SRV	_sip	[RFC5509]
SRV	_tcp	[RFC2782]
SRV	_udp	[RFC2782]
SRV	_xmpp	[RFC3921]
TLSA	_dane	[RFC7671]
TLSA	_sctp	[RFC6698]
TLSA	_tcp	[RFC6698]
TLSA	_udp	[RFC6698]
TXT	_acme‑challenge	[ACME]
TXT	_dmarc	[RFC7489]
TXT	_domainkey	[RFC6376]
TXT	_mta‑sts	[MTA‑STS]
TXT	_spf	[RFC7208]
TXT	_tcp	[RFC6763]
TXT	_udp	[RFC6763]
TXT	_vouch	[RFC5518]
URI	_acct	[RFC6118]
URI	_dccp	[RFC7566]

URI	_email	[RFC6118]
URI	_ems	[RFC6118]
URI	_fax	[RFC6118]
URI	_ft	[RFC6118]
URI	_h323	[RFC6118]
URI	_iax	[RFC6118]
URI	_ical‑access	[RFC6118]
URI	_ical‑sched	[RFC6118]
URI	_ifax	[RFC6118]
URI	_im	[RFC6118]
URI	_mms	[RFC6118]
URI	_pres	[RFC6118]
URI	_pstn	[RFC6118]
URI	_sctp	[RFC6118]
URI	_sip	[RFC6118]
URI	_sms	[RFC6118]
URI	_tcp	[RFC6118]
URI	_udp	[RFC6118]
URI	_unifmsg	[RFC6118]
URI	_vcard	[RFC6118]
URI	_videomsg	[RFC6118]
URI	_voice	[RFC6118]
URI	_voicemsg	[RFC6118]
URI	_vpim	[RFC6118]
URI	_web	[RFC6118]
URI	_xmpp	[RFC6118]
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 3: Underscore Global Registry (initial entries)

NOTE: Under the NULL RR, the entry "_ta‑*" denotes all node names
 beginning with the string "_ta‑*". It does NOT refer to a DNS
 wildcard specification.

4.4. _ta

 Under the NULL RR, the entry "_ta-*" denotes all node names beginning
 with the string "_ta-*". It does NOT refer to a DNS wildcard
 specification.

4.5. _example

 The node name "_example" is reserved across all RRsets

4.6. Enumservices Registrations Registry

 Please add a note to the Enumservice Registrations registry with the
 following -- or similar -- language:

 "When adding an entry to this registry, strong consideration
 should be given to also adding an entry to the 'DNS Underscore
 Global Scoped Entry Registry'."

5. Guidance for Expert Review

 This section provides guidance for expert review of registration
 requests in the DNS Underscore Global Scoped Entry Registry.

 This review is solely to determine adequacy of a requested entry
 in this Registry, and does not include review of other aspects of
 the document specifying that entry. For example such a document
 might also contain a definition of the resource record type that
 is referenced by the requested entry. Any required review of that
 definition is separate from the expert review required here.

 The review is for the purposes of ensuring that:

 o The details for creating the registry entry are sufficiently
 clear, precise and complete

 o The combination of the underscored name, under which the listed
 resource record type is used, and the resource record type, is
 unique in the table

 For the purposes of this Expert Review, other matters of the
 specification's technical quality, adequacy or the like are outside
 of scope.

6. Security Considerations

 This memo raises no security issues.

7. References

7.1. Normative References

 [ACME]
 Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", I-D draft-ietf-acme-acme-11, March 2018.

 [IANA]
 M. Cotton, B. Leiba, and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", RFC 8126,
 June 2017.

 [MTA-STS]
 Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A.,
 and J. Jones, "SMTP MTA Strict Transport Security (MTA-
 STS)", I-D draft-ietf-uta-mta-sts.

 [RFC1034]
 Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1035]
 Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1035, November 1987.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2181]
 Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2782]
 Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC3921]
 Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Instant Messaging and Presence",
 RFC 3921, DOI 10.17487/RFC3921, October 2004,
 <https://www.rfc-editor.org/info/rfc3921>.

 [RFC4386]
 Boeyen, S. and P. Hallam-Baker, "Internet X.509 Public Key
 Infrastructure Repository Locator Service", RFC 4386,
 DOI 10.17487/RFC4386, February 2006,
 <https://www.rfc-editor.org/info/rfc4386>.

 [RFC5026]
 Giaretta, G., Ed., Kempf, J., and V. Devarapalli, Ed.,
 "Mobile IPv6 Bootstrapping in Split Scenario", RFC 5026,
 DOI 10.17487/RFC5026, October 2007,
 <https://www.rfc-editor.org/info/rfc5026>.

 [RFC5509]
 Loreto, S., "Internet Assigned Numbers Authority (IANA)
 Registration of Instant Messaging and Presence DNS SRV RRs
 for the Session Initiation Protocol (SIP)", RFC 5509,
 DOI 10.17487/RFC5509, April 2009,
 <https://www.rfc-editor.org/info/rfc5509>.

 [RFC5518]
 Hoffman, P., Levine, J., and A. Hathcock, "Vouch By
 Reference", RFC 5518, April 2009.

 [RFC6118]
 Hoeneisen, B. and A. Mayrhofer, "Update of Legacy IANA
 Registrations of Enumservices", RFC 6118,
 DOI 10.17487/RFC6118, March 2011,
 <https://www.rfc-editor.org/info/rfc6118>.

 [RFC6335]
 Cotton, M., Eggert, L., Tpuch, J., Westerlund, M., and S.
 Cheshire, "nternet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", RFC 6335, Aug
 2011.

 [RFC6376]
 Crocker, D., Hansen, T., and M. Kucherawy, "DomainKeys
 Identified Mail (DKIM) Signatures", RFC 6376, Sept 2011.

 [RFC6698]
 Hoffman, J. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, August .

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7208]
 Kitterman, S., "Sender Policy Framework (SPF) for
 Authorizing Use of Domains in E-Mail, Version 1",
 RFC 7208, April 2014.

 [RFC7489]
 Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
 Message Authentication, Reporting, and Conformance
 (DMARC)", RFC 7489, March 2015.

 [RFC7553]
 Falstrom, P. and O. Kolkman, "The Uniform Resource
 Identifier (URI) DNS Resource Record", RFC 7553,
 ISSN 2070-1721, June 2015.

 [RFC7566]
 Goix, L. and K. Li, "Enumservice Registration for 'acct'
 URI", RFC 7566, DOI 10.17487/RFC7566, June 2015,
 <https://www.rfc-editor.org/info/rfc7566>.

 [RFC7671]
 Dukhovni, V. and W. Hardaker, "The DNS-Based
 Authentication of Named Entities (DANE) Protocol: Updates
 and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
 October 2015, <https://www.rfc-editor.org/info/rfc7671>.

[RFC7929] Wouters, P., , RFC 7929, August 2016.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", RFC 8126,
 June 2017.

 [RFC8145]
 Wessels, D., Kumari, W., and P. Hoffman, "Signaling Trust
 Anchor Knowledge in DNS Security Extensions (DNSSEC)",
 RFC 8145, April 2017.

 [RFC8162]
 Hoffman, P. and J. Schlyter, "Using Secure DNS to
 Associate Certificates with Domain Names for S/MIME",
 RFC 8162, May 2017.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC952]
 Harrenstien, K., Stahl, M., and E. Feinler, "DOD Internet
 Host Table Specification", RFC 952, October 1985.

7.2. References - Informative

 [attrleaf-fix]

 Crocker, D., "Changes to Rationalize Underscore DNS Node
 Names", I-D draft-crocker-attrleaf-simplification-00,
 2017.

7.3. URIs

 [1] mailto:dnsop@ietf.org

Appendix A. Acknowledgements

 Thanks go to Bill Fenner, Dick Franks, Tony Hansen, Martin Hoffmann,
 Paul Hoffman, Peter Koch, Olaf Kolkman, Murray Kucherawy, John
 Levine, Benno Overeinder, and Andrew Sullivan for diligent review of
 the (much) earlier drafts. For the later enhancements, thanks to:
 Stephane Bortzmeyer, Alissa Cooper, Bob Harold, Benjamin Kaduk, Mirja
 Kuehlewind, Warren Kumari, John Levine, Joel Jaeggli, Benno
 Overeinder, Eric Rescorla, Adam Roach, Petr Špaček,
 Ondřej Sury, Paul Vixie, Tim Wicinski, and Paul Wouters.

 Special thanks to Ray Bellis for his persistent encouragement to
 continue this effort, as well as the suggestion for an essential
 simplification to the registration model.

NOTE TO RFC EDITOR: The listed names Petr Špaček,
 Ondřej Sury ‑‑ Petr Špaček, Ondřej Sury ‑‑
 render properly in xml‑to‑html conversion but the production
 xml2rfc engine does not render it properly to text. Making the
 xml version match the documented form for txt will mean that the
 names are not properly rendered for output formats that can
 support extended character sets. /d

Author's Address

Dave Crocker
Brandenburg InternetWorking
675 Spruce Dr.
Sunnyvale, CA 94086
USA

Phone: +1.408.246.8253
Email: dcrocker@bbiw.net
URI: http://bbiw.net/

draft-ietf-dnsop-attrleaf-fix-07 - DNS Attrleaf Changes: Fixing Specifications with Underscored Node Name Use

draft-ietf-dnsop-attrleaf-fix-07 - DNS Attrleaf Changes: Fixing Specifications w

Index
Back 5
Prev
Next
Forward 5

dnsop

Internet-Draft

Updates: 2782, 3263, 3529, 3620, 3832,

Intended status: Standards Track

Expires: May 24, 2019

D. Crocker

Brandenburg InternetWorking

November 20, 2018

3887, 3958, 4120, 4227, 4386,

4387, 4976, 5026, 5328, 5389,

5415, 5518, 5555, 5617, 5679,

5766, 5780, 5804, 5864, 5928,

6120, 6186, 6376, 6733, 6763,

7208, 7489, 8145 (if approved)

DNS Attrleaf Changes: Fixing Specifications with Underscored Node Name Use

draft-ietf-dnsop-attrleaf-fix-07

Abstract

 Original uses of an underscore character as a domain node name
 prefix, which creates a space for constrained interpretation of
 resource records, were specified without the benefit of an IANA
 registry. This produced an entirely uncoordinated set of name-
 creation activities, all drawing from the same namespace. A registry
 now has been defined. However the existing specifications that use
 underscore naming need to be modified, to be in line with the new
 registry. This document specifies those changes. The changes
 preserve existing software and operational practice, while adapting
 the specifications for those practices to the newer underscore
 registry model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 24, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Underscored RRset Use in Specifications
	 2.1. TXT RRset Use

	 2.2. SRV RRset Use

	 2.3. URI RRset Use

	3. Underscored Template Specifications
	 3.1. SRV Specification Changes

	 3.2. URI Specification Changes

	 3.3. DNSSEC Signaling Specification Changes

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. References -- Informative

	Appendix A. Acknowledgements

	Author's Address

1. Introduction

 Original uses of an underscore character as a domain node name
 [RFC1035] prefix, which creates a space for constrained
 interpretation of resource records, were specified without the
 benefit of an [IANA-reg] registry. This produced an entirely
 uncoordinated set of name-creation activities, all drawing from the
 same namespace. A registry has been now defined, and that document
 discusses the background for underscored domain name use [Attrleaf].

 The basic model for underscored name registration, as specified in
 [Attrleaf], is to have each registry entry be unique in terms of the
 combination of a resource record type and a 'global' (highest-level)
 underscored name; that is, the node name beginning with an
 underscore, which is the closest to the DNS root.

 The existing uses of underscored naming have specifications that do
 not reflect the existence of this integrated registry. For the new
 reader or the new editor of one of those documents, there is
 currently nothing signaling that the underscore name(s) defined in
 the document are now processed through an IANA registry. This
 document remedies that, by marking such a published document with an
 update, indicating the nature of the change.

 Further, the documents that define the SRV [RFC2782] and URI
 [RFC7553] DNS resource records provide a meta-template for
 underscored name assignments, partially based on separate registries
 [RFC6335]. For the portion that selects the global (highest-level)
 underscored name, this perpetuates uncoordinated assignment
 activities by separate technical specifications, out of the same name
 space. This document remedies that by providing detail for revisions
 to the SRV and URI specifications, to bring their use in line with
 the single, integrated global underscore registry.

 The result of these changes preserves existing software and
 operations practices, while adapting the technical specifications to
 the newer underscore registry model.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Underscored RRset Use in Specifications

 The use of underscored node names is specific to each RRTYPE that is
 being scoped. Each name defines a place, but does not define the
 rules for what appears underneath that place, either as additional
 underscored naming or as a leaf node with resource records. Details
 for those rules are provided by specifications for individual
 RRTYPEs. The sections below describe the way that existing
 underscore labels are used with the RRTYPEs that they name.

2.1. TXT RRset Use

NOTE ‑ Documents falling into this category include:

 [RFC6763], [RFC6120], [RFC5518], [RFC5617], [RFC6376],
 [RFC7208], and [RFC7489]

 This section provides a generic approach for changes to existing
 specifications that define straightforward use of underscored node
 names, when scoping the use of a "TXT" RRset. The approach provides
 the information needed for adapting such specifications to the use of
 the IANA DNS Underscore Global Scoped Entry Registry [Attrleaf].
 Hence the approach is meant both as an update to these existing
 specifications, and as guidance for changes when those documents are
 revised.

 For any document that specifies the use of a "TXT" RRset under one or
 more underscored names, the 'global' name is expected to be
 registered in the IANA DNS Underscore Global Scoped Entry Registry
 [Attrleaf]. An effort has been made to locate existing drafts that
 do this, register the global underscored names, and list them in the
 initial set of names added to the registry.

 If a public specification defines use of a TXT RRset and calls for
 the use of an underscore-prefixed domain name, here is a template of
 suggested text for registering the global underscored name -- the one
 closest to the root -- through the IANA Considerations section of the
 specification:

 "Per" [Attrleaf] "please add the following entry to the DNS
 Underscore Global Scoped Entry Registry:"

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| RR | _NODE NAME | REFERENCE |
| Type | | |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| TXT | _{DNS node | {citation for the document making the |
| | name} | addition.} |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Table 1: Underscore Global Registry Entry for TXT RR Use

2.2. SRV RRset Use

NOTE ‑ Documents falling into this category include:

 [RFC3263], [RFC3529], [RFC3620], [RFC3832], [RFC3887],
 [RFC3958], [RFC4120], [RFC4227], [RFC4386], [RFC4387],
 [RFC4976], [RFC5026], [RFC5328], [RFC5389], [RFC5415],
 [RFC5555], [RFC5679], [RFC5766], [RFC5780], [RFC5804],
 [RFC5864], [RFC5928], [RFC6186]

 Specification of the SRV [RFC2782] resource record provides a
 template for use of underscored node names. The global name is
 characterised as referencing the 'protocol' that is associated with
 "SRV" RRset usage.

 This section provides a generic approach for changes to existing
 specifications that define the use of an "SRV" RRset. The approach
 provides the information needed for adapting such specifications to
 the use of the IANA DNS Underscore Global Scoped Entry Registry
 [Attrleaf]. Hence the approach is meant both as an update to these
 existing specifications, and as guidance for changes when those
 documents are revised.

 For any document that specifies the use of an "SRV" RRset, the global
 ('protocol') underscored name is expected to be registered in the
 IANA DNS Underscore Global Scoped Entry Registry [Attrleaf]. An
 effort has been made to locate existing drafts that do this, register
 the global underscored names, and list them in the initial set of
 names added to the registry.

 If a public specification defines use of a SRV RRset and calls for
 the use of an underscore-prefixed domain name, here is a template of
 suggested text for registering the global underscored name -- the one
 closest to the root -- through the IANA Considerations section of the
 specification:

 "Per" [Attrleaf] "please add the following entry to the DNS
 Underscore Global Scoped Entry Registry:"

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RR | _NODE NAME | REFERENCE |
| Type | | |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SRV | _{DNS 'protocol' | {citation for the document making |
| | node name} | the addition.} |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2: Underscore Global Registry Entry for SRV RR Use

2.3. URI RRset Use

 Specification of the URI [RFC7553] resource record provides a
 template for use of underscored node names. The global name is
 characterised as naming the 'protocol' that is associated with "URI"
 RR usage or by reversing an Enumservice sequence [RFC6117].

 This section provides a generic approach for changes to existing
 specifications that define use of a "URI" RRset. The approach
 provides the information needed for adapting such specifications to
 the use of the IANA DNS Underscore Global Scoped Entry Registry
 [Attrleaf]. Hence the approach is meant both as an update to these
 existing specifications, and as guidance for changes when those
 documents are revised.

 For any document that specifies the use of a "URI" RRset, the global
 ('protocol' or highest-level enumservice) underscored name is
 expected to be registered in the IANA DNS Underscore Global Scoped
 Entry Registry [Attrleaf]. An effort has been made to locate
 existing drafts that do this, register the global underscored names,
 and list them in the initial set of names added to the registry.

 If a public specification defines use of a URI RRset and calls for
 the use of an underscore-prefixed domain name, here is a template of
 suggested text for registering the global underscored name -- the one
 closest to the root -- through the IANA Considerations section of the
 specification:

 "Per" [Attrleaf] "please add the following entry to the DNS
 Underscore Global Scoped Entry Registry:"

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RR | _NODE NAME | REFERENCE |
| Type | | |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| URI | _{DNS 'protocol' or | {citation for the document |
| | Enumservice node name} | making the addition.} |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 3: Underscore Global Registry Entry for URI RR Use

3. Underscored Template Specifications

3.1. SRV Specification Changes

 The specification for a domain name, under which an SRV [RFC2782]
 resource record appears, provides a template for use of underscored
 node names. The global underscored name is characterised as
 indicating the 'protocol' that is associated with "SRV" RR usage.

 Text of that existing specification is changed as follows:

 OLD:

 The format of the SRV RR

Here is the format of the SRV RR, whose DNS type code is 33:
 _Service._Proto.Name TTL Class SRV Priority Weight Port Target
...
Proto
 The symbolic name of the desired protocol, with an underscore
 (_) prepended to prevent collisions with DNS labels that occur
 in nature. _TCP and _UDP are at present the most useful values
 for this field, though any name defined by Assigned Numbers or
 locally may be used (as for Service). The Proto is case
 insensitive.

 NEW:

 The format of the SRV RR

 Here is the format of the SRV RR, whose DNS type code is 33:

 "_Service._Proto.Name TTL Class SRV Priority Weight Port
 Target"

 ...

 Proto

 The symbolic name of the desired protocol, with an
 underscore (_) prepended to prevent collisions with DNS
 labels that occur in nature. _TCP and _UDP are at present
 the most useful values for this field. The Proto is case
 insensitive.

 The SRV RRset protocol (global) underscored name SHOULD be
 registered in the IANA DNS Underscore Global Scoped Entry
 Registry [Attrleaf].

3.2. URI Specification Changes

 Specification for the domain name, under which a URI [RFC7553]
 resource record occurs, is similar to that for the SRV [RFC2782]
 resource record, although the text refers only to 'service' name,
 rather than distinguishing 'service' from 'protocol'. Further, the
 URI RR specification permits alternative underscored naming schemes:
 One matches what is used for "SRV", with the global underscored
 name called "protocol'.

 The other is based on a reversing of an Enumservice [RFC6117]
 sequence.

 Text of that existing specification is changed as follows:

 OLD:

 4.1. Owner Name, Class, and Type

 The URI owner name is subject to special conventions.

Just like the SRV RR [RFC2782], the URI RR has service information
encoded in its owner name. In order to encode the service for a
specific owner name, one uses service parameters. Valid service
parameters are those registered by IANA in the "Service Name and
Transport Protocol Port Number Registry" [RFC6335] or as "Enumservice
‑‑‑
Registrations [RFC6117]. The Enumservice Registration parameters are
reversed (i.e., subtype(s) before type), prepended with an underscore
(_), and prepended to the owner name in separate labels. The
underscore is prepended to the service parameters to avoid collisions
with DNS labels that occur in nature, and the order is reversed to
make it possible to do delegations, if needed, to different zones
(and therefore providers of DNS).

 For example, suppose we are looking for the URI for a service with
 ENUM Service Parameter "A:B:C" for host example.com. Then we would
 query for (QNAME,QTYPE)=("_C._B._A.example.com","URI").

 As another example, suppose we are looking for the URI for a service
 with Service Name "A" and Transport Protocol "B" for host
 example.com. Then we would query for
 (QNAME,QTYPE)=("_A._B.example.com","URI").

 NEW:

 4.1. Owner Name, Class, and Type

 The URI owner name is subject to special conventions.

 As for the SRV RRset [RFC2782], the URI RRset global (highest-
 level) underscored name SHOULD be registered in the IANA DNS
 Underscore Global Scoped Entry Registry [Attrleaf].

 Just like the SRV RRset, the URI RRset has service information
 encoded in its owner name. In order to encode the service for
 a specific owner name, one uses service parameters. Valid
 service parameters are:

 + Those registered by IANA in the "Service Name and Transport
 Protocol Port Number Registry" [RFC6335] . The underscore is
 prepended to the service parameters to avoid collisions with
 DNS labels that occur in nature, and the order is reversed
 to make it possible to do delegations, if needed, to
 different zones (and therefore providers of DNS).

 + Those listed in "Enumservice Registrations" [RFC6117]. The
 Enumservice Registration parameters are reversed (i.e.,
 subtype(s) before type), prepended with an underscore (_),
 and prepended to the owner name in separate labels. The
 highest-level (global) underscored Enumservice name becomes
 the global Attrleaf name to register.

 For example, suppose we are looking for the URI for a service
 with ENUM Service Parameter "A:B:C" for host example.com. Then
 we would query for
 (QNAME,QTYPE)=("_C._B._A.example.com","URI").

 As another example, suppose we are looking for the URI for a
 service with Service Name "A" and Transport Protocol "B" for
 host example.com. Then we would query for
 (QNAME,QTYPE)=("_A._B.example.com","URI").

3.3. DNSSEC Signaling Specification Changes

 "Signaling Trust Anchor Knowledge in DNS Security Extensions
 (DNSSEC)" [RFC8145] defines a use of DNS node names that effectively
 consumes all names beginning with the string ""_ta-"", when using the
 NULL RR in the query.

 Text of Section 5.1, "Query Format", of that existing specification,
 is changed as follows:

 OLD:

 For example, a validating DNS resolver ...

 QNAME=_ta-4444.

 NEW:

For example, a validating DNS resolver ... "QNAME=_ta‑4444".

 Under the NULL RR, an entry is registered in the IANA DNS
 Underscore Global Scoped Entry Registry [Attrleaf] for all node
 names beginning with ""_ta-"".

4. IANA Considerations

 Although this document makes reference to IANA registries, it
 introduces no new IANA registries or procedures.

5. Security Considerations

 This memo raises no security issues.

6. References

6.1. Normative References

 [Attrleaf]

 Crocker, D., "DNS Scoped Data Through 'Underscore' Naming
 of Attribute Leaves", I-D draft-ietf-dnsop-attrleaf, 2018.

 [RFC6117]
 Hoeneisen, B., Mayrhofer, A., and J. Livingood, "IANA
 Registration of Enumservices: Guide, Template, and IANA
 Considerations", RFC 6117, March 2011.

 [RFC6335]
 Cotton, M., Eggert, L., Tpuch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", RFC 6335, Aug
 2011.

 [RFC7553]
 Falstrom, P. and O. Kolkman, "The Uniform Resource
 Identifier (URI) DNS Resource Record", RFC 7553,
 ISSN 2070-1721, June 2015.

 [RFC8145]
 Wessels, D., Kumari, W., and P. Hoffman, "Signaling Trust
 Anchor Knowledge in DNS Security Extensions (DNSSEC)",
 RFC 8145, April 2017.

6.2. References -- Informative

 [IANA-reg]

 "Protocol Registries", URL https://www.iana.org/protocols,
 2018.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2782]
 Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC3263]
 Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263, June
 2002.

 [RFC3529]
 Harold, W., "Using Extensible Markup Language-Remote
 Procedure Calling (XML-RPC) in Blocks Extensible Exchange
 Protocol (BEEP)", RFC 3529, April 2003.

 [RFC3620]
 New, D., "The TUNNEL Profile", RFC 3620, October 2003.

 [RFC3832]
 Columbia University, Columbia University, Sun
 Microsystems, IBM, and IBM, "Remote Service Discovery in
 the Service Location Protocol (SLP) via DNS SRV",
 RFC 3832, July 2004.

 [RFC3887]
 "Message Tracking Query Protocol", RFC 3887, September
 2007.

 [RFC3958]
 Daigle, L. and A. Newton, "Domain-Based Application
 Service Location Using SRV RRs and the Dynamic Delegation
 Discovery Service (DDDS)", RFC 3958, January 2005.

 [RFC4120]
 USC-ISI, MIT, MIT, and MIT, "The Kerberos Network
 Authentication Service (V5)", RFC 4120, July 2005.

 [RFC4227]
 O'Tuathail, E. and M. Rose, "Using the Simple Object
 Access Protocol (SOAP) in Blocks Extensible Exchange
 Protocol (BEEP)", RFC 4227, January 2006.

 [RFC4386]
 Boeyen, S. and P. Hallam-Baker, "Internet X.509 Public Key
 Infrastructure: Repository Locator Service", RFC 4386,
 February 2006.

 [RFC4387]
 Gutmann, P., Ed., "Internet X.509 Public Key
 Infrastructure Operational Protocols: Certificate Store
 Access via HTTP", RFC 4387, February 2006.

 [RFC4976]
 Jennings, C., Mahy, R., and Roach, "Relay Extensions for
 the Message Session Relay Protocol (MSRP)", RFC 4976,
 September 2007.

 [RFC5026]
 Giaretta, G., Ed., Kempf, J., and V. Devarapalli, Ed.,
 "Mobile IPv6 Bootstrapping in Split Scenario", RFC 5026,
 DOI 10.17487/RFC5026, October 2007,
 <https://www.rfc-editor.org/info/rfc5026>.

 [RFC5328]
 Adolf, A. and P. MacAvock, "A Uniform Resource Name (URN)
 Namespace for the Digital Video Broadcasting Project
 (DVB)", RFC 5328, September 2008.

 [RFC5389]
 Rosenberg, Mahy, Matthews, and Wing, "Session Traversal
 Utilities for NAT (STUN)", RFC 5389, October 2008.

 [RFC5415]
 Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,
 Ed., "Control And Provisioning of Wireless Access Points
 (CAPWAP) Protocol Specification", RFC 5415, March 2009.

 [RFC5518]
 Hoffman, P., Levine, J., and A. Hathcock, "Vouch By
 Reference", RFC 5518, April 2009.

 [RFC5555]
 Soliman, H., Ed., "Mobile IPv6 Support for Dual Stack
 Hosts and Routers", RFC 5555, June 2009.

 [RFC5617]
 Sendmail, Inc., Cisco Systems, Inc., Yahoo! Inc., and
 Taughannock Networks, "DomainKeys Identified Mail (DKIM)
 Author Domain Signing Practices (ADSP)", RFC 5617, August
 2009.

 [RFC5679]
 Bajko, G., "Locating IEEE 802.21 Mobility Services Using
 DNS", RFC 5679, December 2009.

 [RFC5766]
 Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5780]
 MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
 Using Session Traversal Utilities for NAT (STUN)",
 RFC 5780, May 2010.

 [RFC5804]
 Melnikov, A., Ed. and T. Martin, "A Protocol for Remotely
 Managing Sieve Scripts", RFC 5804, July 2010.

 [RFC5864]
 Allbery, R., "NS SRV Resource Records for AFS", RFC 5864,
 April 2010.

 [RFC5928]
 Petit-Huguenin, M., "Traversal Using Relays around NAT
 (TURN) Resolution Mechanism", RFC 5928, August 2010.

 [RFC6120]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6186]
 Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186, March 2011.

 [RFC6376]
 Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <https://www.rfc-editor.org/info/rfc6376>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7208]
 Kitterman, S., "Sender Policy Framework (SPF) for
 Authorizing Use of Domains in E-Mail, Version 1",
 RFC 7208, April 2014.

 [RFC7489]
 Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
 Message Authentication, Reporting, and Conformance
 (DMARC)", RFC 7489, March 2015.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Acknowledgements

 Thanks go to Bill Fenner, Dick Franks, Tony Hansen, Peter Koch, Olaf
 Kolkman, and Andrew Sullivan for diligent review of the (much)
 earlier drafts. For the later enhancements, thanks to: Tim Wicinski,
 John Levine, Bob Harold, Joel Jaeggli, Ondřej Sury and Paul
 Wouters.

 Special thanks to Ray Bellis for his persistent encouragement to
 continue this effort, as well as the suggestion for an essential
 simplification to the registration model.

Author's Address

Dave Crocker
Brandenburg InternetWorking
675 Spruce Dr.
Sunnyvale, CA 94086
USA

Phone: +1.408.246.8253
Email: dcrocker@bbiw.net
URI: http://bbiw.net/

draft-ietf-dnsop-dns-capture-format-10 - C-DNS: A DNS Packet Capture Format

draft-ietf-dnsop-dns-capture-format-10 - C-DNS: A DNS Packet Capture Format

Index
Back 5
Prev
Next
Forward 5

dnsop

Internet-Draft

Intended status: Standards Track

Expires: June 15, 2019

J. Dickinson

J. Hague

S. Dickinson

Sinodun IT

T. Manderson

J. Bond

ICANN

December 12, 2018

C-DNS: A DNS Packet Capture Format

draft-ietf-dnsop-dns-capture-format-10

Abstract

 This document describes a data representation for collections of DNS
 messages. The format is designed for efficient storage and
 transmission of large packet captures of DNS traffic; it attempts to
 minimize the size of such packet capture files but retain the full
 DNS message contents along with the most useful transport metadata.
 It is intended to assist with the development of DNS traffic
 monitoring applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 15, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Data collection use cases

	4. Design considerations

	5. Choice of CBOR

	6. C-DNS format conceptual overview
	 6.1. Block Parameters

	 6.2. Storage Parameters
	 6.2.1. Optional data items

	 6.2.2. Optional RRs and OPCODEs

	 6.2.3. Storage flags

	 6.2.4. IP Address storage

	7. C-DNS format detailed description
	 7.1. Map quantities and indexes

	 7.2. Tabular representation

	 7.3. "File"

	 7.4. "FilePreamble"
	 7.4.1. "BlockParameters"

	 7.4.2. "CollectionParameters"

	 7.5. "Block"
	 7.5.1. "BlockPreamble"

	 7.5.2. "BlockStatistics"

	 7.5.3. "BlockTables"

	 7.6. "QueryResponse"
	 7.6.1. "ResponseProcessingData"

	 7.6.2. "QueryResponseExtended"

	 7.7. "AddressEventCount"

	 7.8. "MalformedMessage"

	8. Versioning

	9. C-DNS to PCAP
	 9.1. Name compression

	10. Data collection
	 10.1. Matching algorithm

	 10.2. Message identifiers
	 10.2.1. Primary ID (required)

	 10.2.2. Secondary ID (optional)

	 10.3. Algorithm parameters

	 10.4. Algorithm requirements

	 10.5. Algorithm limitations

	 10.6. Workspace

	 10.7. Output

	 10.8. Post processing

	11. Implementation guidance
	 11.1. Optional data

	 11.2. Trailing bytes

	 11.3. Limiting collection of RDATA

	 11.4. Timestamps

	12. Implementation status
	 12.1. DNS-STATS Compactor

	13. IANA considerations
	 13.1. Transport types

	 13.2. Data storage flags

	 13.3. Response processing flags

	 13.4. AddressEvent types

	14. Security considerations

	15. Privacy considerations

	16. Acknowledgements

	17. Changelog

	18. References
	 18.1. Normative References

	 18.2. Informative References

	 18.3. URIs

	Appendix A. CDDL

	Appendix B. DNS Name compression example
	 B.1. NSD compression algorithm

	 B.2. Knot Authoritative compression algorithm

	 B.3. Observed differences

	Appendix C. Comparison of Binary Formats
	 C.1. Comparison with full PCAP files

	 C.2. Simple versus block coding

	 C.3. Binary versus text formats

	 C.4. Performance

	 C.5. Conclusions

	 C.6. Block size choice

	Authors' Addresses

1. Introduction

 There has long been a need for server operators to collect DNS
 queries and responses on authoritative and recursive name servers for
 monitoring and analysis. This data is used in a number of ways
 including traffic monitoring, analyzing network attacks and "day in
 the life" (DITL) [ditl] analysis.

 A wide variety of tools already exist that facilitate the collection
 of DNS traffic data, such as DSC [dsc], packetq [packetq], dnscap
 [dnscap] and dnstap [dnstap]. However, there is no standard exchange
 format for large DNS packet captures. The PCAP [pcap] or PCAP-NG
 [pcapng] formats are typically used in practice for packet captures,
 but these file formats can contain a great deal of additional
 information that is not directly pertinent to DNS traffic analysis
 and thus unnecessarily increases the capture file size. Additionally
 these tools and formats typically have no filter mechanism to
 selectively record only certain fields at capture time, requiring
 post-processing for anonymization or pseudonymization of data to
 protect user privacy.

 There has also been work on using text based formats to describe DNS
 packets such as [I-D.daley-dnsxml], [RFC8427], but these are largely
 aimed at producing convenient representations of single messages.

 Many DNS operators may receive hundreds of thousands of queries per
 second on a single name server instance so a mechanism to minimize
 the storage and transmission size (and therefore upload overhead) of
 the data collected is highly desirable.

 The format described in this document, C-DNS (Compacted-DNS),
 focusses on the problem of capturing and storing large packet capture
 files of DNS traffic with the following goals in mind:

 o Minimize the file size for storage and transmission.

 o Minimize the overhead of producing the packet capture file and the
 cost of any further (general purpose) compression of the file.

 This document contains:

 o A discussion of some common use cases in which DNS data is
 collected, see Section 3.

 o A discussion of the major design considerations in developing an
 efficient data representation for collections of DNS messages, see
 Section 4.

 o A description of why CBOR [RFC7049] was chosen for this format,
 see Section 5.

 o A conceptual overview of the C-DNS format, see Section 6.

 o The definition of the C-DNS format for the collection of DNS
 messages, see Section 7.

 o Notes on converting C-DNS data to PCAP format, see Section 9.

 o Some high level implementation considerations for applications
 designed to produce C-DNS, see Section 10.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 "Packet" refers to an individual IPv4 or IPv6 packet. Typically
 packets are UDP datagrams, but may also be part of a TCP data stream.
 "Message", unless otherwise qualified, refers to a DNS payload
 extracted from a UDP datagram or a TCP data stream.

 The parts of DNS messages are named as they are in [RFC1035].
 Specifically, the DNS message has five sections: Header, Question,
 Answer, Authority, and Additional.

 Pairs of DNS messages are called a Query and a Response.

3. Data collection use cases

 From a purely server operator perspective, collecting full packet
 captures of all packets going in or out of a name server provides the
 most comprehensive picture of network activity. However, there are
 several design choices or other limitations that are common to many
 DNS installations and operators.

 o DNS servers are hosted in a variety of situations:

 * Self-hosted servers

 * Third party hosting (including multiple third parties)

 * Third party hardware (including multiple third parties)

 o Data is collected under different conditions:

 * On well-provisioned servers running in a steady state

 * On heavily loaded servers

 * On virtualized servers

 * On servers that are under DoS attack

 * On servers that are unwitting intermediaries in DoS attacks

 o Traffic can be collected via a variety of mechanisms:

 * Within the name server implementation itself

 * On the same hardware as the name server itself

 * Using a network tap on an adjacent host to listen to DNS
 traffic

 * Using port mirroring to listen from another host

 o The capabilities of data collection (and upload) networks vary:

 * Out-of-band networks with the same capacity as the in-band
 network

 * Out-of-band networks with less capacity than the in-band
 network

 * Everything being on the in-band network

 Thus, there is a wide range of use cases from very limited data
 collection environments (third party hardware, servers that are under
 attack, packet capture on the name server itself and no out-of-band
 network) to "limitless" environments (self hosted, well provisioned
 servers, using a network tap or port mirroring with an out-of-band
 networks with the same capacity as the in-band network). In the
 former, it is infeasible to reliably collect full packet captures,
 especially if the server is under attack. In the latter case,
 collection of full packet captures may be reasonable.

 As a result of these restrictions, the C-DNS data format is designed
 with the most limited use case in mind such that:

 o data collection will occur on the same hardware as the name server
 itself

 o collected data will be stored on the same hardware as the name
 server itself, at least temporarily

 o collected data being returned to some central analysis system will
 use the same network interface as the DNS queries and responses

 o there can be multiple third party servers involved

 Because of these considerations, a major factor in the design of the
 format is minimal storage size of the capture files.

 Another significant consideration for any application that records
 DNS traffic is that the running of the name server software and the
 transmission of DNS queries and responses are the most important jobs
 of a name server; capturing data is not. Any data collection system
 co-located with the name server needs to be intelligent enough to
 carefully manage its CPU, disk, memory and network utilization. This
 leads to designing a format that requires a relatively low overhead
 to produce and minimizes the requirement for further potentially
 costly compression.

 However, it is also essential that interoperability with less
 restricted infrastructure is maintained. In particular, it is highly
 desirable that the collection format should facilitate the re-
 creation of common formats (such as PCAP) that are as close to the
 original as is realistic given the restrictions above.

4. Design considerations

 This section presents some of the major design considerations used in
 the development of the C-DNS format.

 1. The basic unit of data is a combined DNS Query and the associated
 Response (a "Q/R data item"). The same structure will be used
 for unmatched Queries and Responses. Queries without Responses
 will be captured omitting the response data. Responses without
 queries will be captured omitting the Query data (but using the
 Question section from the response, if present, as an identifying
 QNAME).

 * Rationale: A Query and Response represents the basic level of
 a client's interaction with the server. Also, combining the
 Query and Response into one item often reduces storage
 requirements due to commonality in the data of the two
 messages.

 In the context of generating a C-DNS file it is assumed that only
 those DNS payloads which can be parsed to produce a well-formed
 DNS message are stored in the C-DNS format and that all other
 messages will be (optionally) recorded as malformed messages.
 Parsing a well-formed message means as a minimum:

 * The packet has a well-formed 12 byte DNS Header with a
 recognised OPCODE.

 * The section counts are consistent with the section contents.

 * All of the resource records can be fully parsed.

 2. All top level fields in each Q/R data item will be optional.

 * Rationale: Different operators will have different
 requirements for data to be available for analysis. Operators
 with minimal requirements should not have to pay the cost of
 recording full data, though this will limit the ability to
 perform certain kinds of data analysis and also to reconstruct
 packet captures. For example, omitting the resource records
 from a Response will reduce the C-DNS file size; in principle
 responses can be synthesized if there is enough context.
 Operators may have different policies for collecting user data
 and can choose to omit or anonymize certain fields at capture
 time e.g. client address.

 3. Multiple Q/R data items will be collected into blocks in the
 format. Common data in a block will be abstracted and referenced
 from individual Q/R data items by indexing. The maximum number
 of Q/R data items in a block will be configurable.

 * Rationale: This blocking and indexing provides a significant
 reduction in the volume of file data generated. Although this
 introduces complexity, it provides compression of the data
 that makes use of knowledge of the DNS message structure.

* It is anticipated that the files produced can be subject to
 further compression using general purpose compression tools.
 Measurements show that blocking significantly reduces the CPU
 required to perform such strong compression. See
 Appendix C.2.

 * Examples of commonality between DNS messages are that in most
 cases the QUESTION RR is the same in the query and response,
 and that there is a finite set of query signatures (based on a
 subset of attributes). For many authoritative servers there
 is very likely to be a finite set of responses that are
 generated, of which a large number are NXDOMAIN.

 4. Traffic metadata can optionally be included in each block.
 Specifically, counts of some types of non-DNS packets (e.g.
 ICMP, TCP resets) sent to the server may be of interest.

 5. The wire format content of malformed DNS messages may optionally
 be recorded.

 * Rationale: Any structured capture format that does not capture
 the DNS payload byte for byte will be limited to some extent

 in that it cannot represent malformed DNS messages. Only
 those messages that can be fully parsed and transformed into
 the structured format can be fully represented. Note,
 however, this can result in rather misleading statistics. For
 example, a malformed query which cannot be represented in the
 C-DNS format will lead to the (well formed) DNS responses with
 error code FORMERR appearing as 'unmatched'. Therefore it can
 greatly aid downstream analysis to have the wire format of the
 malformed DNS messages available directly in the C-DNS file.

5. Choice of CBOR

 This document presents a detailed format description using CBOR, the
 Concise Binary Object Representation defined in [RFC7049].

 The choice of CBOR was made taking a number of factors into account.

 o CBOR is a binary representation, and thus is economical in storage
 space.

 o Other binary representations were investigated, and whilst all had
 attractive features, none had a significant advantage over CBOR.
 See Appendix C for some discussion of this.

 o CBOR is an IETF specification and familiar to IETF participants.
 It is based on the now-common ideas of lists and objects, and thus
 requires very little familiarization for those in the wider
 industry.

 o CBOR is a simple format, and can easily be implemented from
 scratch if necessary. More complex formats require library
 support which may present problems on unusual platforms.

 o CBOR can also be easily converted to text formats such as JSON
 ([RFC8259]) for debugging and other human inspection requirements.

 o CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl].

6. C-DNS format conceptual overview

 The following figures show purely schematic representations of the
 C-DNS format to convey the high-level structure of the C-DNS format.
 Section 7 provides a detailed discussion of the CBOR representation
 and individual elements.

 Figure 1 shows the C-DNS format at the top level including the file
 header and data blocks. The Query/Response data items, Address/Event
 Count data items and Malformed Message data items link to various
 Block tables.

+‑‑‑‑‑‑‑+
+ C‑DNS |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| File type identifier |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| File preamble |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Format version info |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block parameters |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Block |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block preamble |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block statistics |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block tables |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Query/Response data items |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Address/Event Count data items |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Malformed Message data items |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Block |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block preamble |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block statistics |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Block tables |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Query/Response data items |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Address/Event Count data items |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | Malformed Message data items |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Further Blocks... |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: The C-DNS format.

 Figure 2 shows some more detailed relationships within each block,
 specifically those between the Query/Response data item and the
 relevant Block tables.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Query/Response |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Time offset |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Client address |‑‑‑‑‑‑‑‑‑‑‑‑>| IP address array |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Client port |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transaction ID | +‑‑‑‑‑‑>| Name/RDATA array |<‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Query signature |‑‑+ | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Client hoplimit (q) | +‑‑)‑‑‑‑‑‑>| Query Signature | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+ |
| Response delay (r) | | | Server address | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Query name |‑‑+‑‑+ | Server port | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Query size (q) | | | Transport flags | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Response size (r) | | | QR type | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
Response processing (r)			QR signature flags	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			
	Bailiwick index	‑‑+	Query OPCODE (q)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Flags		QR DNS flags	
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
Extra query info (q)		Query RCODE (q)		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
	Question	‑‑+‑‑‑+ +‑‑+‑Query Class/Type (q)		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
	Answer	‑‑+		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
	Authority	‑‑+		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
	Additional	‑‑+		
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
Extra response info (r)		‑+		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	Answer	‑‑+		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	Authority	‑‑+		

| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | Additional |‑‑+ | | | | Response RCODE (r) | |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | | |
 | | | |
+ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑+ |
| | | | | | |
| + ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
| | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ | |
| +‑>| Question list |‑>| Question | | |
| | array | | array | | |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+‑‑+ | |
| | Name |‑‑+‑‑‑‑‑‑)‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| +‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑+
| | Class/type |‑‑)‑‑‑+‑‑+‑>| Class/Type |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | array |
| | | +‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| | | | Class |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑>| RR list array |‑>| RR array | | | | Type |
 +‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Name |‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | Class/type |‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: The Query/Response data item and subsidiary tables.

 In Figure 2 data items annotated (q) are only present when a query/
 response has a query, and those annotated (r) are only present when a
 query/response response is present.

 A C-DNS file begins with a file header containing a File Type
 Identifier and a File Preamble. The File Preamble contains
 information on the file Format Version and an array of Block
 Parameters items (the contents of which include Collection and
 Storage Parameters used for one or more blocks).

 The file header is followed by a series of data Blocks.

 A Block consists of a Block Preamble item, some Block Statistics for
 the traffic stored within the Block and then various arrays of common
 data collectively called the Block Tables. This is then followed by
 an array of the Query/Response data items detailing the queries and
 responses stored within the Block. The array of Query/Response data
 items is in turn followed by the Address/Event Counts data items (an
 array of per-client counts of particular IP events) and then
 Malformed Message data items (an array of malformed messages that
 stored in the Block).

The exact nature of the DNS data will affect what block size is the
best fit, however sample data for a root server indicated that block
sizes up to 10,000 Q/R data items give good results. See
Appendix C.6 for more details.

 This design exploits data commonality and block based storage to
 minimise the C-DNS file size. As a result C-DNS cannot be streamed
 below the level of a block.

6.1. Block Parameters

 The details of the Block Parameters items are not shown in the
 diagrams but are discussed here for context.

 An array of Block Parameters items is stored in the File Preamble
 (with a minimum of one item at index 0); a Block Parameters item
 consists of a collection of Storage and Collection Parameters that
 applies to any given Block. An array is used in order to support use
 cases such as wanting to merge C-DNS files from different sources.
 The Block Preamble item then contains an optional index for the Block
 Parameters item that applies for that Block; if not present the index
 defaults to 0. Hence, in effect, a global Block Parameters item is
 defined which can then be overridden per Block.

6.2. Storage Parameters

 The Block Parameters item includes a Storage Parameters item - this
 contains information about the specific data fields stored in the
 C-DNS file.

 These parameters include:

 o The sub-second timing resolution used by the data.

 o Information (hints) on which optional data are omitted. See
 Section 6.2.1.

 o Recorded OPCODES [opcodes] and RR types [rrtypes]. See
 Section 6.2.2.

 o Flags indicating, for example, whether the data is sampled or
 anonymized. See Section 6.2.3 and Section 15.

 o Client and server IPv4 and IPv6 address prefixes. See
 Section 6.2.4

6.2.1. Optional data items

 To enable implementations to store data to their precise requirements
 in as space-efficient manner as possible, all fields in the following
 arrays are optional:

 o Query/Response

 o Query Signature

 o Malformed messages

 In other words, an implementation can choose to omit any data item
 that is not required for its use case. In addition, implementations
 may be configured to not record all RRs, or only record messages with
 certain OPCODES.

 This does, however, mean that a consumer of a C-DNS file faces two
 problems:

 1. How can it quickly determine if a file definitely does not
 contain the data items it requires to complete a particular task
 (e.g. reconstructing query traffic or performing a specific piece
 of data analysis)?

 2. How can it determine if a data item is not present because it
 was:

 * explicitly not recorded or

 * the data item was not available/present.

 For example, capturing C-DNS data from within a nameserver
 implementation makes it unlikely that the Client Hoplimit can be
 recorded. Or, if there is no query ARCount recorded and no query OPT
 RDATA [RFC6891] recorded, is that because no query contained an OPT
 RR, or because that data was not stored?

 The Storage Parameters therefore also contains a Storage Hints item
 which specifies which items the encoder of the file omits from the
 stored data and will therefore never be present. (This approach is
 taken because a flag that indicated which items were included for
 collection would not guarantee that the item was present, only that
 it might be.) An implementation decoding that file can then use
 these to quickly determine whether the input data is rich enough for
 its needs.

6.2.2. Optional RRs and OPCODEs

 Also included in the Storage Parameters are explicit arrays listing
 the RR types and the OPCODEs to be recorded. These remove any
 ambiguity over whether messages containing particular OPCODEs or are
 not present because they did not occur, or because the implementation
 is not configured to record them.

 In the case of OPCODEs, for a message to be fully parsable, the
 OPCODE must be known to the collecting implementation. Any message
 with an OPCODE unknown to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.
 Messages with OPCODES known to the recording application but not
 listed in the Storage Parameters are discarded by the recording
 application during C-DNS capture (regardless of whether they are
 malformed or not).

 In the case of RR records, each record in a message must be fully
 parsable, including parsing the record RDATA, as otherwise the
 message cannot be validated as correctly formed. Any RR record with
 an RR type not known to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.

 Once a message is correctly parsed, an implementation is free to
 record only a subset of the RR records present.

6.2.3. Storage flags

 The Storage Parameters contains flags that can be used to indicate
 if:

 o the data is anonymized,

 o the data is produced from sample data, or

 o names in the data have been normalized (converted to uniform
 case).

 The Storage Parameters also contains optional fields holding details
 of the sampling method used and the anonymization method used. It is
 RECOMMENDED these fields contain URIs [RFC3986] pointing to resources
 describing the methods used. See Section 15 for further discussion
 of anonymization and normalization.

6.2.4. IP Address storage

 The format can store either full IP addresses or just IP prefixes,
 the Storage Parameters contains fields to indicate if only IP
 prefixes were stored.

 If the IP address prefixes are absent, then full addresses are
 stored. In this case the IP version can be directly inferred from
 the stored address length and the fields "qr-transport-flags" in
 QueryResponseSignature and "mm-transport-flags" in
 MalformedMessageData (which contain the IP version bit) are optional.

 If IP address prefixes are given, only the prefix bits of addresses
 are stored. In this case the fields "qr-transport-flags" in
 QueryResponseSignature and "mm-transport-flags" in
 MalformedMessageData MUST be present, so that the IP version can be
 determined. See Section 7.5.3.2 and Section 7.5.3.5.

 As an example of storing only IP prefixes, if a client IPv6 prefix of
 48 is specified, a client address of 2001:db8:85a3::8a2e:370:7334
 will be stored as 0x20010db885a3, reducing address storage space
 requirements. Similarly, if a client IPv4 prefix of 16 is specified,
 a client address of 192.0.2.1 will be stored as 0xc000 (192.0).

7. C-DNS format detailed description

 The CDDL definition for the C-DNS format is given in Appendix A.

7.1. Map quantities and indexes

 All map keys are integers with values specified in the CDDL. String
 keys would significantly bloat the file size.

 All key values specified are positive integers under 24, so their
 CBOR representation is a single byte. Positive integer values not
 currently used as keys in a map are reserved for use in future
 standard extensions.

 Implementations may choose to add additional implementation-specific
 entries to any map. Negative integer map keys are reserved for these
 values. Key values from -1 to -24 also have a single byte CBOR
 representation, so such implementation-specific extensions are not at
 any space efficiency disadvantage.

 An item described as an index is the index of the data item in the
 referenced array. Indexes are 0-based.

7.2. Tabular representation

 The following sections present the C-DNS specification in tabular
 format with a detailed description of each item.

 In all quantities that contain bit flags, bit 0 indicates the least
 significant bit, i.e. flag "n" in quantity "q" is on if "(q & (1 <<
 n)) != 0".

 For the sake of readability, all type and field names defined in the
 CDDL definition are shown in double quotes. Type names are by
 convention camel case (e.g. "BlockTable"), field names are lower-
 case with hyphens (e.g. "block-tables").

 For the sake of brevity, the following conventions are used in the
 tables:

 o The column M marks whether items in a map are mandatory.

 * X - Mandatory items.

 * C - Conditionally mandatory item. Such items are usually
 optional but may be mandatory in some configurations.

 * If the column is empty, the item is optional.

 o The column T gives the CBOR data type of the item.

 * U - Unsigned integer

 * I - Signed integer (i.e. CBOR unsigned or negative integer)

 * B - Boolean

 * S - Byte string

 * T - Text string

 * M - Map

 * A - Array

 In the case of maps and arrays, more information on the type of each
 value, include the CDDL definition name if applicable, is given in
 the description.

7.3. "File"

 A C-DNS file has an outer structure "File", a map that contains the
 following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
file‑type‑id	X	T	String "C‑DNS" identifying the file type.
file‑preamble	X	M	Version and parameter information for the
			whole file. Map of type "FilePreamble",
			see Section 7.4.
file‑blocks	X	A	Array of items of type "Block", see
			Section 7.5. The array may be empty if
			the file contains no data.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+

7.4. "FilePreamble"

 Information about data in the file. A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
major‑format‑version	X	U	Unsigned integer '1'. The major
			version of format used in file.
			See Section 8.
minor‑format‑version	X	U	Unsigned integer '0'. The minor
			version of format used in file.
			See Section 8.
private‑version		U	Version indicator available for
			private use by implementations.
block‑parameters	X	A	Array of items of type
			"BlockParameters", see Section
			7.4.1. The array must contain at
			least one entry. (The "block‑
			parameters‑index" item in each
			"BlockPreamble" indicates which
			array entry applies to that
			"Block".)
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.4.1. "BlockParameters"

 Parameters relating to data storage and collection which apply to one
 or more items of type "Block". A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
storage‑parameters	X	M	Parameters relating to data
			storage in a "Block" item. Map
			of type "StorageParameters", see
			Section 7.4.1.1.
collection‑parameters		M	Parameters relating to collection
			of the data in a "Block" item.
			Map of type
			"CollectionParameters", see
			Section 7.4.2.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.4.1.1. "StorageParameters"

 Parameters relating to how data is stored in the items of type
 "Block". A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
ticks‑per‑second	X	U	Sub‑second timing is recorded in
			ticks. This specifies the number of
			ticks in a second.
max‑block‑items	X	U	The maximum number of items stored in
			any of the arrays in a "Block" item
			(Q/R items, address event counts or
			malformed messages). An indication to
			a decoder of the resources needed to
			process the file.
storage‑hints	X	M	Collection of hints as to which fields
			are omitted in the arrays that have
			optional fields. Map of type
			"StorageHints", see Section 7.4.1.1.1.
opcodes	X	A	Array of OPCODES [opcodes] (unsigned
			integers, each in the range 0 to 15
			inclusive) recorded by the collection
			implementation. See Section 6.2.2.

rr‑types	X	A	Array of RR types [rrtypes] (unsigned
			integers, each in the range 0 to 65535
			inclusive) recorded by the collection
			implementation. See Section 6.2.2.
storage‑flags		U	Bit flags indicating attributes of
			stored data.
			Bit 0. 1 if the data has been
			anonymized.
			Bit 1. 1 if the data is sampled data.
			Bit 2. 1 if the names have been
			normalized (converted to uniform
			case).
client‑address		U	IPv4 client address prefix length, in
‑prefix‑ipv4			the range 1 to 32 inclusive. If
			specified, only the address prefix
			bits are stored.
client‑address		U	IPv6 client address prefix length, in
‑prefix‑ipv6			the range 1 to 128 inclusive. If
			specified, only the address prefix
			bits are stored.
server‑address		U	IPv4 server address prefix length, in
‑prefix‑ipv4			the range 1 to 32 inclusive. If
			specified, only the address prefix
			bits are stored.
server‑address		U	IPv6 server address prefix length, in
‑prefix‑ipv6			the range 1 to 128 inclusive. If
			specified, only the address prefix
			bits are stored.
sampling‑method		T	Information on the sampling method
			used. See Section 6.2.3.
anonymization		T	Information on the anonymization
‑method			method used. See Section 6.2.3.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.4.1.1.1. "StorageHints"

 An indicator of which fields the collecting implementation omits in
 the maps with optional fields. A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
query‑response	X	U	Hints indicating which "QueryResponse"
‑hints			fields are candidates for capture or
			omitted, see section Section 7.6. If a
			bit is unset, the field is omitted
			from the capture.
			Bit 0. time‑offset
			Bit 1. client‑address‑index
			Bit 2. client‑port
			Bit 3. transaction‑id
			Bit 4. qr‑signature‑index
			Bit 5. client‑hoplimit
			Bit 6. response‑delay
			Bit 7. query‑name‑index
			Bit 8. query‑size
			Bit 9. response‑size
			Bit 10. response‑processing‑data
			Bit 11. query‑question‑sections
			Bit 12. query‑answer‑sections
			Bit 13. query‑authority‑sections
			Bit 14. query‑additional‑sections
			Bit 15. response‑answer‑sections
			Bit 16. response‑authority‑sections
			Bit 17. response‑additional‑sections
query‑response	X	U	Hints indicating which
‑signature‑hints			"QueryResponseSignature" fields are
			candidates for capture or omitted, see
			section Section 7.5.3.2. If a bit is
			unset, the field is omitted from the
			capture.
			Bit 0. server‑address
			Bit 1. server‑port
			Bit 2. qr‑transport‑flags
			Bit 3. qr‑type
			Bit 4. qr‑sig‑flags
			Bit 5. query‑opcode
			Bit 6. dns‑flags
			Bit 7. query‑rcode
			Bit 8. query‑class‑type
			Bit 9. query‑qdcount
			Bit 10. query‑ancount
			Bit 11. query‑nscount
			Bit 12. query‑arcount
			Bit 13. query‑edns‑version
			Bit 14. query‑udp‑size
			Bit 15. query‑opt‑rdata

			Bit 16. response‑rcode
rr‑hints	X	U	Hints indicating which optional "RR"
			fields are candidates for capture or
			omitted, see Section 7.5.3.4. If a bit
			is unset, the field is omitted from
			the capture.
			Bit 0. ttl
			Bit 1. rdata‑index
other‑data‑hints	X	U	Hints indicating which other data
			types are omitted. If a bit is unset,
			the the data type is omitted from the
			capture.
			Bit 0. malformed‑messages
			Bit 1. address‑event‑counts
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.4.2. "CollectionParameters"

 Parameters providing information to how data in the file was
 collected (applicable for some, but not all collection environments).
 The values are informational only and serve as hints to downstream
 analysers as to the configuration of a collecting implementation.
 They can provide context when interpreting what data is present/
 absent from the capture but cannot necessarily be validated against
 the data captured.

 These parameters have no default. If they do not appear, nothing can
 be inferred about their value.

 A map containing the following items:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
query‑timeout		U	To be matched with a query, a response
			must arrive within this number of
			seconds.
skew‑timeout		U	The network stack may report a
			response before the corresponding
			query. A response is not considered to
			be missing a query until after this
			many micro‑seconds.
snaplen		U	Collect up to this many bytes per
			packet.
promisc		B	"true" if promiscuous mode
			[pcap‑options] was enabled on the
			interface, "false" otherwise.
interfaces		A	Array of identifiers (of type text
			string) of the interfaces used for
			collection.
server‑addresses		A	Array of server collection IP
			addresses (of type byte string). Hint
			for downstream analysers; does not
			affect collection.
vlan‑ids		A	Array of identifiers (of type unsigned
			integer, each in the range 1 to 4094
			inclusive) of VLANs [IEEE802.1Q]
			selected for collection. VLAN IDs are
			unique only within an administrative
			domain.
filter		T	"tcpdump" [pcap‑filter] style filter
			for input.
generator‑id		T	Implementation specific human‑readable
			string identifying the collection
			method.
host‑id		T	String identifying the collecting
			host. Empty if converting an existing
			packet capture file.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.5. "Block"

 Container for data with common collection and storage parameters. A
 map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
block‑preamble	X	M	Overall information for the "Block"
			item. Map of type "BlockPreamble",
			see Section 7.5.1.
block‑statistics		M	Statistics about the "Block" item.
			Map of type "BlockStatistics", see
			Section 7.5.2.
block‑tables		M	The arrays containing data
			referenced by individual
			"QueryResponse" or
			"MalformedMessage" items. Map of
			type "BlockTables", see Section
			7.5.3.
query‑responses		A	Details of individual DNS Q/R data
			items. Array of items of type
			"QueryResponse", see Section 7.6. If
			present, the array must not be
			empty.
address‑event		A	Per client counts of ICMP messages
‑counts			and TCP resets. Array of items of
			type "AddressEventCount", see
			Section 7.7. If present, the array
			must not be empty.
malformed‑messages		A	Details of malformed DNS messages.
			Array of items of type
			"MalformedMessage", see Section 7.8.
			If present, the array must not be
			empty.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.5.1. "BlockPreamble"

 Overall information for a "Block" item. A map containing the
 following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
earliest‑time	C	A	A timestamp (2 unsigned integers,
			"Timestamp") for the earliest record
			in the "Block" item. The first integer
			is the number of seconds since the
			POSIX epoch [posix‑time] ("time_t"),
			excluding leap seconds. The second
			integer is the number of ticks (see
			Section 7.4.1.1) since the start of
			the second. This field is mandatory
			unless all block items containing a
			time offset from the start of the
			block also omit that time offset.
block‑parameters		U	The index of the item in the "block‑
‑index			parameters" array (in the "file‑
			premable" item) applicable to this
			block. If not present, index 0 is
			used. See Section 7.4.1.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.5.2. "BlockStatistics"

 Basic statistical information about a "Block" item. A map containing
 the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
processed‑messages		U	Total number of DNS messages
			processed from the input traffic
			stream during collection of data in
			this "Block" item.
qr‑data‑items		U	Total number of Q/R data items in
			this "Block" item.
unmatched‑queries		U	Number of unmatched queries in this
			"Block" item.
unmatched‑responses		U	Number of unmatched responses in
			this "Block" item.
discarded‑opcode		U	Number of DNS messages processed
			from the input traffic stream
			during collection of data in this
			"Block" item but not recorded
			because their OPCODE is not in the
			list to be collected.
malformed‑items		U	Number of malformed messages found
			in input for this "Block" item.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.5.3. "BlockTables"

 Map of arrays containing data referenced by individual
 "QueryResponse" or "MalformedMessage" items in this "Block". Each
 element is an array which, if present, must not be empty.

 An item in the "qlist" array contains indexes to values in the "qrr"
 array. Therefore, if "qlist" is present, "qrr" must also be present.
 Similarly, if "rrlist" is present, "rr" must also be present.

 The map contains the following items:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
ip‑address		A	Array of IP addresses, in network
			byte order (of type byte string). If
			client or server address prefixes are
			set, only the address prefix bits are
			stored. Each string is therefore up

			to 4 bytes long for an IPv4 address,
			or up to 16 bytes long for an IPv6
			address. See Section 7.4.1.1.
classtype		A	Array of RR class and type
			information. Type is "ClassType", see
			Section 7.5.3.1.
name‑rdata		A	Array where each entry is the
			contents of a single NAME or RDATA in
			wire format (of type byte string).
			Note that NAMEs, and labels within
			RDATA contents, are full domain names
			or labels; no [RFC1035] name
			compression is used on the individual
			names/labels within the format.
qr‑sig		A	Array Q/R data item signatures. Type
			is "QueryResponseSignature", see
			Section 7.5.3.2.
qlist		A	Array of type "QuestionList". A
			"QuestionList" is an array of
			unsigned integers, indexes to
			"Question" items in the "qrr" array.
qrr		A	Array of type "Question". Each entry
			is the contents of a single question,
			where a question is the second or
			subsequent question in a query. See
			Section 7.5.3.3.
rrlist		A	Array of type "RRList". An "RRList"
			is an array of unsigned integers,
			indexes to "RR" items in the "rr"
			array.
rr		A	Array of type "RR". Each entry is the
			contents of a single RR. See Section
			7.5.3.4.
malformed‑message		A	Array of the contents of malformed
‑data			messages. Array of type
			"MalformedMessageData", see Section
			7.5.3.5.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.5.3.1. "ClassType"

 RR class and type information. A map containing the following:

+‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
type	X	U	TYPE value [rrtypes].
class	X	U	CLASS value [rrclasses].
+‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.5.3.2. "QueryResponseSignature"

 Elements of a Q/R data item that are often common between multiple
 individual Q/R data items. A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
server‑address		U	The index in the item in the "ip‑
‑index			address" array of the server IP
			address. See Section 7.5.3.
server‑port		U	The server port.
qr‑transport‑flags	C	U	Bit flags describing the transport
			used to service the query. Same
			definition as "mm‑transport‑flags"
			in Section 7.5.3.5, with an
			additional indicator for trailing
			bytes, see Appendix A.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6. See Section 6.2.4.
			Bit 1‑4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS [RFC7858], 4 = DoH
			[RFC8484]. Values 5‑15 are reserved
			for future use.
			Bit 5. 1 if trailing bytes in query
			packet. See Section 11.2.
qr‑type		U	Type of Query/Response transaction.
			0 = Stub. A query from a stub
			resolver.
			1 = Client. An incoming query to a
			recursive resolver.
			2 = Resolver. A query sent from a

			recursive resolver to an authorative
			resolver.
			3 = Authorative. A query to an
			authorative resolver.
			4 = Forwarder. A query sent from a
			recursive resolver to an upstream
			recursive resolver.
			5 = Tool. A query sent to a server
			by a server tool.
qr‑sig‑flags		U	Bit flags explicitly indicating
			attributes of the message pair
			represented by this Q/R data item
			(not all attributes may be recorded
			or deducible).
			Bit 0. 1 if a Query was present.
			Bit 1. 1 if a Response was present.
			Bit 2. 1 if a Query was present and
			it had an OPT Resource Record.
			Bit 3. 1 if a Response was present
			and it had an OPT Resource Record.
			Bit 4. 1 if a Query was present but
			had no Question.
			Bit 5. 1 if a Response was present
			but had no Question (only one query‑
			name‑index is stored per Q/R item).
query‑opcode		U	Query OPCODE.
qr‑dns‑flags		U	Bit flags with values from the Query
			and Response DNS flags. Flag values
			are 0 if the Query or Response is
			not present.
			Bit 0. Query Checking Disabled (CD).
			Bit 1. Query Authenticated Data
			(AD).
			Bit 2. Query reserved (Z).
			Bit 3. Query Recursion Available
			(RA).
			Bit 4. Query Recursion Desired (RD).
			Bit 5. Query TrunCation (TC).
			Bit 6. Query Authoritative Answer
			(AA).
			Bit 7. Query DNSSEC answer OK (DO).
			Bit 8. Response Checking Disabled
			(CD).
			Bit 9. Response Authenticated Data
			(AD).

			Bit 10. Response reserved (Z).
			Bit 11. Response Recursion Available
			(RA).
			Bit 12. Response Recursion Desired
			(RD).
			Bit 13. Response TrunCation (TC).
			Bit 14. Response Authoritative
			Answer (AA).
query‑rcode		U	Query RCODE. If the Query contains
			OPT [RFC6891], this value
			incorporates any
			EXTENDED_RCODE_VALUE [rcodes].
query‑classtype		U	The index to the item in the the
‑index			"classtype" array of the CLASS and
			TYPE of the first Question. See
			Section 7.5.3.
query‑qd‑count		U	The QDCOUNT in the Query, or
			Response if no Query present.
query‑an‑count		U	Query ANCOUNT.
query‑ns‑count		U	Query NSCOUNT.
query‑ar‑count		U	Query ARCOUNT.
edns‑version		U	The Query EDNS version.
udp‑buf‑size		U	The Query EDNS sender's UDP payload
			size.
opt‑rdata‑index		U	The index in the "name‑rdata" array
			of the OPT RDATA. See Section 7.5.3.
response‑rcode		U	Response RCODE. If the Response
			contains OPT [RFC6891], this value
			incorporates any
			EXTENDED_RCODE_VALUE [rcodes].
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.5.3.3. "Question"

 Details on individual Questions in a Question section. A map
 containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
name‑index	X	U	The index in the "name‑rdata" array of
			the QNAME. See Section 7.5.3.
classtype‑index	X	U	The index in the "classtype" array of
			the CLASS and TYPE of the Question. See
			Section 7.5.3.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+

7.5.3.4. "RR"

 Details on individual Resource Records in RR sections. A map
 containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+
name‑index	X	U	The index in the "name‑rdata" array of
			the NAME. See Section 7.5.3.
classtype‑index	X	U	The index in the "classtype" array of
			the CLASS and TYPE of the RR. See
			Section 7.5.3.
ttl		U	The RR Time to Live.
rdata‑index		U	The index in the "name‑rdata" array of
			the RR RDATA. See Section 7.5.3.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑+

7.5.3.5. "MalformedMessageData"

 Details on malformed message items in this "Block" item. A map
 containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
server‑address		U	The index in the "ip‑address" array
‑index			of the server IP address. See
			Section 7.5.3.
server‑port		U	The server port.
mm‑transport‑flags	C	U	Bit flags describing the transport
			used to service the query, see
			Section 6.2.4.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6
			Bit 1‑4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS [RFC7858], 4 = DoH
			[RFC8484]. Values 5‑15 are reserved
			for future use.
mm‑payload		S	The payload (raw bytes) of the DNS
			message.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.6. "QueryResponse"

 Details on individual Q/R data items.

 Note that there is no requirement that the elements of the "query-
 responses" array are presented in strict chronological order.

 A map containing the following items:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
time‑offset		U	Q/R timestamp as an offset in
			ticks (see Section 7.4.1.1) from
			"earliest‑time". The timestamp is
			the timestamp of the Query, or the
			Response if there is no Query.
client‑address‑index		U	The index in the "ip‑address"
			array of the client IP address.
			See Section 7.5.3.
client‑port		U	The client port.

transaction‑id		U	DNS transaction identifier.
qr‑signature‑index		U	The index in the "qr‑sig" array of
			the "QueryResponseSignature" item.
			See Section 7.5.3.
client‑hoplimit		U	The IPv4 TTL or IPv6 Hoplimit from
			the Query packet.
response‑delay		I	The time difference between Query
			and Response, in ticks (see
			Section 7.4.1.1). Only present if
			there is a query and a response.
			The delay can be negative if the
			network stack/capture library
			returns packets out of order.
query‑name‑index		U	The index in the "name‑rdata"
			array of the item containing the
			QNAME for the first Question. See
			Section 7.5.3.
query‑size		U	DNS query message size (see
			below).
response‑size		U	DNS response message size (see
			below).
response‑processing		M	Data on response processing. Map
‑data			of type "ResponseProcessingData",
			see Section 7.6.1.
query‑extended		M	Extended Query data. Map of type
			"QueryResponseExtended", see
			Section 7.6.2.
response‑extended		M	Extended Response data. Map of
			type "QueryResponseExtended", see
			Section 7.6.2.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The "query-size" and "response-size" fields hold the DNS message
 size. For UDP this is the size of the UDP payload that contained the
 DNS message. For TCP it is the size of the DNS message as specified
 in the two-byte message length header. Trailing bytes in UDP queries
 are routinely observed in traffic to authoritative servers and this
 value allows a calculation of how many trailing bytes were present.

7.6.1. "ResponseProcessingData"

 Information on the server processing that produced the response. A
 map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
bailiwick‑index		U	The index in the "name‑rdata" array of
			the owner name for the response
			bailiwick. See Section 7.5.3.
processing‑flags		U	Flags relating to response processing.
			Bit 0. 1 if the response came from
			cache.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.6.2. "QueryResponseExtended"

 Extended data on the Q/R data item.

 Each item in the map is present only if collection of the relevant
 details is configured.

 A map containing the following items:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
question‑index		U	The index in the "qlist" array of the
			entry listing any second and
			subsequent Questions in the Question
			section for the Query or Response. See
			Section 7.5.3.
answer‑index		U	The index in the "rrlist" array of the
			entry listing the Answer Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
authority‑index		U	The index in the "rrlist" array of the
			entry listing the Authority Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
additional‑index		U	The index in the "rrlist" array of the
			entry listing the Additional Resource
			Record sections for the Query or
			Response. See Section 7.5.3. Note that
			Query OPT RR data can be optionally
			stored in the QuerySignature.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.7. "AddressEventCount"

 Counts of various IP related events relating to traffic with
 individual client addresses. A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+
ae‑type	X	U	The type of event. The following
			events types are currently defined:
			0. TCP reset.
			1. ICMP time exceeded.
			2. ICMP destination unreachable.
			3. ICMPv6 time exceeded.
			4. ICMPv6 destination unreachable.
			5. ICMPv6 packet too big.
ae‑code		U	A code relating to the event. For ICMP
			or ICMPv6 events, this MUST be the
			ICMP [RFC0792] or ICMPv6 [RFC4443]
			code. For other events the contents
			are undefined.
ae‑address‑index	X	U	The index in the "ip‑address" array of
			the client address. See Section 7.5.3.
ae‑count	X	U	The number of occurrences of this
			event during the block collection
			period.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑+

7.8. "MalformedMessage"

 Details of malformed messages. A map containing the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field | M | T | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
time‑offset		U	Message timestamp as an offset in
			ticks (see Section 7.4.1.1) from
			"earliest‑time".
client‑address‑index		U	The index in the "ip‑address"
			array of the client IP address.
			See Section 7.5.3.
client‑port		U	The client port.
message‑data‑index		U	The index in the "malformed‑
			message‑data" array of the message
			data for this message. See Section
			7.5.3.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Versioning

 The C-DNS file preamble includes a file format version; a major and
 minor version number are required fields. The document defines
 version 1.0 of the C-DNS specification. This section describes the
 intended use of these version numbers in future specifications.

 It is noted that version 1.0 includes many optional fields and
 therefore consumers of version 1.0 should be inherently robust to
 parsing files with variable data content.

 Within a major version, a new minor version MUST be a strict superset
 of the previous minor version, with no semantic changes to existing
 fields. New keys MAY be added to existing maps, and new maps MAY be
 added. A consumer capable of reading a particular major.minor
 version MUST also be capable of reading all previous minor versions
 of the same major version. It SHOULD also be capable of parsing all
 subsequent minor versions ignoring any keys or maps that it does not
 recognise.

 A new major version indicates changes to the format that are not
 backwards compatible with previous major versions. A consumer
 capable of only reading a particular major version (greater than 1)
 is not required to and has no expectation to be capable of reading a
 previous major version.

9. C-DNS to PCAP

 It is possible to re-construct PCAP files from the C-DNS format in a
 lossy fashion. Some of the issues with reconstructing both the DNS
 payload and the full packet stream are outlined here.

 The reconstruction depends on whether or not all the optional
 sections of both the query and response were captured in the C-DNS
 file. Clearly, if they were not all captured, the reconstruction
 will be imperfect.

 Even if all sections of the response were captured, one cannot
 reconstruct the DNS response payload exactly due to the fact that
 some DNS names in the message on the wire may have been compressed.
 Section 9.1 discusses this is more detail.

 Some transport information is not captured in the C-DNS format. For
 example, the following aspects of the original packet stream cannot
 be re-constructed from the C-DNS format:

 o IP fragmentation

 o TCP stream information:

 * Multiple DNS messages may have been sent in a single TCP
 segment

 * A DNS payload may have been split across multiple TCP segments

 * Multiple DNS messages may have been sent on a single TCP
 session

 o Malformed DNS messages if the wire format is not recorded

 o Any Non-DNS messages that were in the original packet stream e.g.
 ICMP

 Simple assumptions can be made on the reconstruction: fragmented and
 DNS-over-TCP messages can be reconstructed into single packets and a
 single TCP session can be constructed for each TCP packet.

 Additionally, if malformed messages and Non-DNS packets are captured
 separately, they can be merged with packet captures reconstructed
 from C-DNS to produce a more complete packet stream.

9.1. Name compression

 All the names stored in the C-DNS format are full domain names; no
 [RFC1035] name compression is used on the individual names within the
 format. Therefore when reconstructing a packet, name compression
 must be used in order to reproduce the on the wire representation of
 the packet.

 [RFC1035] name compression works by substituting trailing sections of
 a name with a reference back to the occurrence of those sections
 earlier in the message. Not all name server software uses the same
 algorithm when compressing domain names within the responses. Some
 attempt maximum recompression at the expense of runtime resources,
 others use heuristics to balance compression and speed and others use
 different rules for what is a valid compression target.

 This means that responses to the same question from different name
 server software which match in terms of DNS payload content (header,
 counts, RRs with name compression removed) do not necessarily match
 byte-for-byte on the wire.

 Therefore, it is not possible to ensure that the DNS response payload
 is reconstructed byte-for-byte from C-DNS data. However, it can at
 least, in principle, be reconstructed to have the correct payload
 length (since the original response length is captured) if there is
 enough knowledge of the commonly implemented name compression
 algorithms. For example, a simplistic approach would be to try each
 algorithm in turn to see if it reproduces the original length,
 stopping at the first match. This would not guarantee the correct
 algorithm has been used as it is possible to match the length whilst
 still not matching the on the wire bytes but, without further
 information added to the C-DNS data, this is the best that can be
 achieved.

 Appendix B presents an example of two different compression
 algorithms used by well-known name server software.

10. Data collection

 This section describes a non-normative proposed algorithm for the
 processing of a captured stream of DNS queries and responses and
 production of a stream of query/response items, matching queries/
 responses where possible.

 For the purposes of this discussion, it is assumed that the input has
 been pre-processed such that:

 1. All IP fragmentation reassembly, TCP stream reassembly, and so
 on, has already been performed.

 2. Each message is associated with transport metadata required to
 generate the Primary ID (see Section 10.2.1).

 3. Each message has a well-formed DNS header of 12 bytes and (if
 present) the first Question in the Question section can be parsed
 to generate the Secondary ID (see below). As noted earlier, this
 requirement can result in a malformed query being removed in the
 pre-processing stage, but the correctly formed response with
 RCODE of FORMERR being present.

 DNS messages are processed in the order they are delivered to the
 implementation.

 It should be noted that packet capture libraries do not necessarily
 provide packets in strict chronological order. This can, for
 example, arise on multi-core platforms where packets arriving at a
 network device are processed by different cores. On systems where
 this behaviour has been observed, the timestamps associated with each
 packet are consistent; queries always have a timestamp prior to the
 response timestamp. However, the order in which these packets appear
 in the packet capture stream is not necessarily strictly
 chronological; a response can appear in the capture stream before the
 query that provoked the response. For this discussion, this non-
 chronological delivery is termed "skew".

 In the presence of skew, a response packets can arrive for matching
 before the corresponding query. To avoid generating false instances
 of responses without a matching query, and queries without a matching
 response, the matching algorithm must take account of the possibility
 of skew.

10.1. Matching algorithm

 A schematic representation of the algorithm for matching Q/R data
 items is shown in Figure 3. It takes individual DNS query or
 response messages as input, and outputs matched Q/R items. The
 numbers in the figure identify matching operations listed in Table 1.
 Specific details of the algorithm, for example queues, timers and
 identifiers, are given in the following sections.

 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | Process next message |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 `‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | Generate message identifiers | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | |
 Response | Query |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑< >‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | Find earliest QR | | Create QR item [2] | |
 | item in OFIFO [1] | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 Match | No match | Append new QR | |
 +‑‑‑‑‑‑‑‑< >‑‑‑‑‑‑+ | item to OFIFO | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | |
| Update QR | | Add to | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| item [3] | | RFIFO | | Find earliest QR | |
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | item in RFIFO [1] | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Match | No match |
 | | Remove R |‑‑‑‑‑‑‑< >‑‑‑‑‑+ |
 | | from RFIFO [3] | | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | |
 +‑‑+ |
 | Update all timed out (QT) OFIFO QR items [4] | |
 +‑‑+ |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | Remove all timed out (ST) R | |
 | from RFIFO, create QR item [5] | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 ____________________|_______________________ |
 / / |
 / Remove all consecutive done entries from /‑‑‑‑‑‑‑+
 / front of OFIFO for further processing /
 /__/

 Figure 3: Query/Response matching algorithm

+‑‑‑‑‑+‑‑‑+
| Ref | Operation |
+‑‑‑‑‑+‑‑‑+
[1]	Find earliest QR item in FIFO where:
	* QR.done = false
	* QR.Q.PrimaryID == R.PrimaryID
	and, if both QR.Q and R have SecondaryID:
	* QR.Q.SecondaryID == R.SecondaryID
[2]	Set:
	QR.Q := Q
	QR.R := nil
	QR.done := false
[3]	Set:
	QR.R := R
	QR.done := true
[4]	Set:
	QR.done := true
[5]	Set:
	QR.Q := nil
	QR.R := R
	QR.done := true
+‑‑‑‑‑+‑‑‑+

 Table 1: Operations used in the matching algorithm

10.2. Message identifiers

10.2.1. Primary ID (required)

 A Primary ID is constructed for each message. It is composed of the
 following data:

 1. Source IP Address

 2. Destination IP Address

 3. Source Port

 4. Destination Port

 5. Transport

 6. DNS Message ID

10.2.2. Secondary ID (optional)

 If present, the first Question in the Question section is used as a
 secondary ID for each message. Note that there may be well formed
 DNS queries that have a QDCOUNT of 0, and some responses may have a
 QDCOUNT of 0 (for example, responses with RCODE=FORMERR or NOTIMP).
 In this case the secondary ID is not used in matching.

10.3. Algorithm parameters

 1. Query timeout, QT. A query arrives with timestamp t1. If no
 response matching that query has arrived before other input
 arrives timestamped later than (t1 + QT), a query/response item
 containing only a query item is recorded. The query timeout
 value is typically of the order of 5 seconds.

 2. Skew timeout, ST. A response arrives with timestamp t2. If a
 response has not been matched by a query before input arrives
 timestamped later than (t2 + ST), a query/response item
 containing only a response is recorded. The skew timeout value
 is typically a few microseconds.

10.4. Algorithm requirements

 The algorithm is designed to handle the following input data:

 1. Multiple queries with the same Primary ID (but different
 Secondary ID) arriving before any responses for these queries are
 seen.

 2. Multiple queries with the same Primary and Secondary ID arriving
 before any responses for these queries are seen.

 3. Queries for which no later response can be found within the
 specified timeout.

 4. Responses for which no previous query can be found within the
 specified timeout.

10.5. Algorithm limitations

 For cases 1 and 2 listed in the above requirements, it is not
 possible to unambiguously match queries with responses. This
 algorithm chooses to match to the earliest query with the correct
 Primary and Secondary ID.

10.6. Workspace

 The algorithm employs two FIFO queues:

 o OFIFO, an output FIFO containing Q/R items in chronological order,

 o RFIFO, a FIFO holding responses without a matching query in order
 of arrival.

10.7. Output

 The output is a list of Q/R data items. Both the Query and Response
 elements are optional in these items, therefore Q/R data items have
 one of three types of content:

 1. A matched pair of query and response messages

 2. A query message with no response

 3. A response message with no query

 The timestamp of a list item is that of the query for cases 1 and 2
 and that of the response for case 3.

10.8. Post processing

 When ending capture, all items in the responses FIFO are timed out
 immediately, generating response-only entries to the Q/R data item
 FIFO. These and all other remaining entries in the Q/R data item
 FIFO should be treated as timed out queries.

11. Implementation guidance

 Whilst this document makes no specific recommendations with respect
 to Canonical CBOR (see Section 3.9 of [RFC7049]) the following
 guidance may be of use to implementors.

 Adherence to the first two rules given in Section 3.9 of [RFC7049]
 will minimise file sizes.

 Adherence to the last two rules given in Section 3.9 of [RFC7049] for
 all maps and arrays would unacceptably constrain implementations, for
 example, in the use case of real-time data collection in constrained
 environments where outputting block tables after query/response data
 and allowing indefinite length maps and arrays could reduce memory
 requirements.

11.1. Optional data

 When decoding C-DNS data some of the items required for a particular
 function that the consumer wishes to perform may be missing.
 Consumers should consider providing configurable default values to be
 used in place of the missing values in their output.

11.2. Trailing bytes

 A DNS query message in a UDP or TCP payload can be followed by some
 additional (spurious) bytes, which are not stored in C-DNS.

 When DNS traffic is sent over TCP, each message is prefixed with a
 two byte length field which gives the message length, excluding the
 two byte length field. In this context, trailing bytes can occur in
 two circumstances with different results:

 1. The number of bytes consumed by fully parsing the message is less
 than the number of bytes given in the length field (i.e. the
 length field is incorrect and too large). In this case, the
 surplus bytes are considered trailing bytes in an analogous
 manner to UDP and recorded as such. If only this case occurs it
 is possible to process a packet containing multiple DNS messages
 where one or more has trailing bytes.

 2. There are surplus bytes between the end of a well-formed message
 and the start of the length field for the next message. In this
 case the first of the surplus bytes will be processed as the
 first byte of the next length field, and parsing will proceed
 from there, almost certainly leading to the next and any
 subsequent messages in the packet being considered malformed.
 This will not generate a trailing bytes record for the processed
 well-formed message.

11.3. Limiting collection of RDATA

 Implementations should consider providing a configurable maximum
 RDATA size for capture, for example, to avoid memory issues when
 confronted with large XFR records.

11.4. Timestamps

 The preamble to each block includes a timestamp of the earliest
 record in the block. As described in Section 7.5.1, the timestamp is
 an array of 2 unsigned integers. The first is a POSIX "time_t"
 [posix-time]. Consumers of C-DNS should be aware of this as it
 excludes leap seconds and therefore may cause minor anomalies in the
 data e.g. when calculating query throughput.

12. Implementation status

 [Note to RFC Editor: please remove this section and reference to
 [RFC7942] prior to publication.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

12.1. DNS-STATS Compactor

 ICANN/Sinodun IT have developed an open source implementation called
 DNS-STATS Compactor. The Compactor is a suite of tools which can
 capture DNS traffic (from either a network interface or a PCAP file)
 and store it in the Compacted-DNS (C-DNS) file format. PCAP files
 for the captured traffic can also be reconstructed. See Compactor
 [1].

 This implementation:

 o covers the whole of the specification described in the -03 draft
 with the exception of support for malformed messages and pico
 second time resolution. (Note: this implementation does allow
 malformed messages to be recorded separately in a PCAP file).

 o is released under the Mozilla Public License Version 2.0.

 o has a users mailing list available, see dns-stats-users [2].

 There is also some discussion of issues encountered during
 development available at Compressing Pcap Files [3] and Packet
 Capture [4].

 This information was last updated on 3rd of May 2018.

13. IANA considerations

 IANA is requested to create a registry "C-DNS DNS Capture Format"
 containing the subregistries defined in sections Section 13.1 to
 Section 13.4 inclusive.

 In all cases, new entries may be added to the subregistries by Expert
 Review as defined in [RFC8126]. Experts are expected to exercise
 their own expert judgement, and should consider the following general
 guidelines in addition to any guidelines given particular to a
 subregistry.

 o There should be a real and compelling use for any new value.

 o Values assigned should be carefully chosen to minimise storage
 requirements for common cases.

13.1. Transport types

 IANA is requested to create a registry "C-DNS Transports" of C-DNS
 transport type identifiers. The primary purpose of this registry is
 to provide unique identifiers for all transports used for DNS
 queries.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field to identify the type of DNS
 transport. This field is 4 bits in size."

 The initial contents of the registry are as follows - see sections
 Section 7.5.3.2 and Section 7.5.3.5 of [[this RFC]]:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Identifier | Name | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0	UDP	[[this RFC]]
1	TCP	[[this RFC]]
2	TLS	[[this RFC]]
3	DTLS	[[this RFC]]
4	DoH	[[this RFC]]
5‑15	Unassigned	
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Expert reviewers should take the following points into consideration:

 o Is the requested DNS transport described by a Standards Track RFC?

13.2. Data storage flags

 IANA is requested to create a registry "C-DNS Storage Flags" of C-DNS
 data storage flags. The primary purpose of this registry is to
 provide indicators giving hints on processing of the data stored.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field describing attributes of the
 data recorded. The field is a CBOR [RFC7049] unsigned integer
 holding bit flags."

 The initial contents of the registry are as follows - see section
 Section 7.4.1.1 of [[this RFC]]:

+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Bit | Name | Description | Reference |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
0	anonymised‑data	The data has been	[[this
		anonymised.	RFC]]
1	sampled‑data	The data is sampled data.	[[this
			RFC]]
2	normalized‑names	Names in the data have been	[[this
		normalized.	RFC]]
3‑63	Unassigned		
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

13.3. Response processing flags

 IANA is requested to create a registry "C-DNS Response Flags" of
 C-DNS response processing flags. The primary purpose of this
 registry is to provide indicators giving hints on the generation of a
 particular response.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field describing attributes of the
 responses recorded. The field is a CBOR [RFC7049] unsigned integer
 holding bit flags."

 The initial contents of the registry are as follows - see section
 Section 7.6.1 of [[this RFC]]:

+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Bit | Name | Description | Reference |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0 | from‑cache | The response came from cache. | [[this RFC]] |
| 1‑63 | Unassigned | | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

13.4. AddressEvent types

 IANA is requested to create a registry "C-DNS Address Event Types" of
 C-DNS AddressEvent types. The primary purpose of this registry is to
 provide unique identifiers of different types of C-DNS address
 events, and so specify the contents of the optional companion field
 "ae-code" for each type.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field identify types of the events
 related to client addresses. This field is a CBOR [RFC7049] unsigned
 integer. There is a related optional field "ae-code", which, if
 present, holds an additional CBOR unsigned integer giving additional
 information specific to the event type."

 The initial contents of the registry are as follows - see section
 Section 7.7:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Identifier | Event Type | ae‑code contents | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
0	TCP reset	None	[[this
			RFC]]
1	ICMP time exceeded	ICMP code	[[this
		[icmpcodes]	RFC]]
2	ICMP destination	ICMP code	[[this
	unreachable	[icmpcodes]	RFC]]
3	ICMPv6 time exceeded	ICMPv6 code	[[this
		[icmp6codes]	RFC]]
4	ICMPv6 destination	ICMPv6 code	[[this
	unreachable	[icmp6codes]	RFC]]
5	ICMPv6 packet too	ICMPv6 code	[[this
	big	[icmp6codes]	RFC]]
>5	Unassigned		
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 Expert reviewers should take the following points into consideration:

 o "ae-code" contents must be defined for a type, or if not
 appropriate specified as "None". A specification of "None"
 requires less storage, and is therefore preferred.

14. Security considerations

 Any control interface MUST perform authentication and encryption.

 Any data upload MUST be authenticated and encrypted.

15. Privacy considerations

 Storage of DNS traffic by operators in PCAP and other formats is a
 long standing and widespread practice. Section 2.5 of
 [I-D.bortzmeyer-dprive-rfc7626-bis] is an analysis of the risks to
 Internet users of the storage of DNS traffic data in servers
 (recursive resolvers, authoritative and rogue servers).

 Section 5.2 of [I-D.dickinson-dprive-bcp-op] describes mitigations
 for those risks for data stored on recursive resolvers (but which
 could by extension apply to authoritative servers). These include
 data handling practices and methods for data minimization, IP address
 pseudonymization and anonymization. Appendix B of that document
 presents an analysis of 7 published anonymization processes. In
 addition, RSSAC have recently published RSSAC04: [5] "
 Recommendations on Anonymization Processes for Source IP Addresses
 Submitted for Future Analysis".

 The above analyses consider full data capture (e.g using PCAP) as a
 baseline for privacy considerations and therefore this format
 specification introduces no new user privacy issues beyond those of
 full data capture (which are quite severe). It does provides
 mechanisms to selectively record only certain fields at the time of
 data capture to improve user privacy and to explicitly indicate that
 data is sampled and or anonymized. It also provide flags to indicate
 if data normalization has been performed; data normalization
 increases user privacy by reducing the potential for fingerprinting
 individuals, however, a trade-off is potentially reducing the
 capacity to identify attack traffic via query name signatures.
 Operators should carefully consider their operational requirements
 and privacy policies and SHOULD capture at source the minimum user
 data required to meet their needs.

16. Acknowledgements

 The authors wish to thank CZ.NIC, in particular Tomas Gavenciak, for
 many useful discussions on binary formats, compression and packet
 matching. Also Jan Vcelak and Wouter Wijngaards for discussions on
 name compression and Paul Hoffman for a detailed review of the
 document and the C-DNS CDDL.

 Thanks also to Robert Edmonds, Jerry Lundstroem, Richard Gibson,
 Stephane Bortzmeyer and many other members of DNSOP for review.

 Also, Miek Gieben for mmark [6]

17. Changelog

 draft-ietf-dnsop-dns-capture-format-10

 o Add IANA Considerations

 o Convert graph in C.6 to table

 draft-ietf-dnsop-dns-capture-format-09

 o Editorial changes arising from IESG review

 o *-transport-flags and may be mandatory in some configurations

 o Mark fields that are conditionally mandatory

 o Change `promisc' flag CDDL data type to boolean

 o Add ranges to configuration quantities where appropriate

 draft-ietf-dnsop-dns-capture-format-08

 o Convert diagrams to ASCII

 o Describe versioning

 o Fix unused group warning in CDDL

 draft-ietf-dnsop-dns-capture-format-07

 o Resolve outstanding questions and TODOs

 o Make RR RDATA optional

 o Update matching diagram and explain skew

 o Add count of discarded messages to block statistics

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-06

 o Correct BlockParameters type to map

 o Make RR ttl optional

 o Add storage flag indicating name normalization

 o Add storage parameter fields for sampling and anonymization
 methods

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-05

 o Make all data items in Q/R, QuerySignature and Malformed Message
 arrays optional

 o Re-structure the FilePreamble and ConfigurationParameters into
 BlockParameters

 o BlockParameters has separate Storage and Collection Parameters

 o Storage Parameters includes information on what optional fields
 are present, and flags specifying anonymization or sampling

 o Addresses can now be stored as prefixes.

 o Switch to using a variable sub-second timing granularity

 o Add response bailiwick and query response type

 o Add specifics of how to record malformed messages

 o Add implementation guidance

 o Improve terminology and naming consistency

 draft-ietf-dnsop-dns-capture-format-04

 o Correct query-d0 to query-do in CDDL

 o Clarify that map keys are unsigned integers

 o Add Type to Class/Type table

 o Clarify storage format in section 7.12

 draft-ietf-dnsop-dns-capture-format-03

 o Added an Implementation Status section

 draft-ietf-dnsop-dns-capture-format-02

 o Update qr_data_format.png to match CDDL

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-01

 o Many editorial improvements by Paul Hoffman

 o Included discussion of malformed message handling

 o Improved Appendix C on Comparison of Binary Formats

 o Now using C-DNS field names in the tables in section 8

 o A handful of new fields included (CDDL updated)

 o Timestamps now include optional picoseconds

 o Added details of block statistics

 draft-ietf-dnsop-dns-capture-format-00

 o Changed dnstap.io to dnstap.info

 o qr_data_format.png was cut off at the bottom

 o Update authors address

 o Improve wording in Abstract

 o Changed DNS-STAT to C-DNS in CDDL

 o Set the format version in the CDDL

 o Added a TODO: Add block statistics

 o Added a TODO: Add extend to support pico/nano. Also do this for
 Time offset and Response delay

 o Added a TODO: Need to develop optional representation of malformed
 messages within C-DNS and what this means for packet matching.
 This may influence which fields are optional in the rest of the
 representation.

 o Added section on design goals to Introduction

 o Added a TODO: Can Class be optimised? Should a class of IN be
 inferred if not present?

 draft-dickinson-dnsop-dns-capture-format-00

 o Initial commit

18. References

18.1. Normative References

 [I-D.ietf-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-06 (work in progress), November 2018.

 [pcap-filter]

 tcpdump.org, "Manpage of PCAP-FILTER", 2017,
 <http://www.tcpdump.org/manpages/pcap-filter.7.html>.

 [pcap-options]

 tcpdump.org, "Manpage of PCAP", 2018,
 <http://www.tcpdump.org/manpages/pcap.3pcap.html>.

 [posix-time]

 The Open Group, "Section 4.16, Base Definitions, Standard
 for Information Technology - Portable Operating System
 Interface (POSIX(R)) Base Specifications, Issue 7", IEEE
 Standard 1003.1 2017 Edition,
 DOI 10.1109/IEEESTD.2018.8277153, 2017.

 [RFC0792]
 Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <https://www.rfc-editor.org/info/rfc792>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4443]
 Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7858]
 Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8484]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

18.2. Informative References

 [ditl]
 DNS-OARC, "DITL", 2016,
 <https://www.dns-oarc.net/oarc/data/ditl>.

 [dnscap]
 DNS-OARC, "DNSCAP", 2016,
 <https://www.dns-oarc.net/tools/dnscap>.

 [dnstap]
 dnstap.info, "dnstap", 2016, <http://dnstap.info/>.

 [dsc]
 Wessels, D. and J. Lundstrom, "DSC", 2016,
 <https://www.dns-oarc.net/tools/dsc>.

 [I-D.bortzmeyer-dprive-rfc7626-bis]

 Bortzmeyer, S. and S. Dickinson, "DNS Privacy
 Considerations", draft-bortzmeyer-dprive-rfc7626-bis-01
 (work in progress), July 2018.

 [I-D.daley-dnsxml]

 Daley, J., Morris, S., and J. Dickinson, "dnsxml - A
 standard XML representation of DNS data", draft-daley-
 dnsxml-00 (work in progress), July 2013.

 [I-D.dickinson-dprive-bcp-op]

 Dickinson, S., Overeinder, B., Rijswijk-Deij, R., and A.
 Mankin, "Recommendations for DNS Privacy Service
 Operators", draft-dickinson-dprive-bcp-op-01 (work in
 progress), July 2018.

 [icmp6codes]

 IANA, "ICMPv6 "Code" Fields", 2018,
 <https://www.iana.org/assignments/icmpv6-parameters/
 icmpv6-parameters.xhtml#icmpv6-parameters-3>.

 [icmpcodes]

 IANA, "Code Fields", 2018,
 <https://www.iana.org/assignments/icmp-parameters/
 icmp-parameters.xhtml#icmp-parameters-codes>.

 [IEEE802.1Q]

 IEEE, "IEEE Standard for Local and metropolitan area
 networks -- Bridges and Bridged Networks",
 DOI 10.1109/IEEESTD.2014.6991462, 2014.

 [opcodes]
 IANA, "DNS OpCodes", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-5>.

 [packetq]
 .SE - The Internet Infrastructure Foundation, "PacketQ",
 2014, <https://github.com/dotse/PacketQ>.

 [pcap]
 tcpdump.org, "PCAP", 2016, <http://www.tcpdump.org/>.

 [pcapng]
 Tuexen, M., Risso, F., Bongertz, J., Combs, G., and G.
 Harris, "pcap-ng", 2016,
 <https://github.com/pcapng/pcapng>.

 [rcodes]
 IANA, "DNS RCODEs", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-6>.

 [RFC7942]
 Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8259]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8427]
 Hoffman, P., "Representing DNS Messages in JSON",
 RFC 8427, DOI 10.17487/RFC8427, July 2018,
 <https://www.rfc-editor.org/info/rfc8427>.

 [rrclasses]

 IANA, "DNS CLASSes", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-2>.

 [rrtypes]
 IANA, "Resource Record (RR) TYPEs", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-4>.

18.3. URIs

 [1] https://github.com/dns-stats/compactor/wiki

 [2] https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

 [3] https://www.sinodun.com/2017/06/compressing-pcap-files/

 [4] https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-

 trusty-packet-capture-woes/

 [5] https://www.icann.org/en/system/files/files/rssac-

 040-07aug18-en.pdf

 [6] https://github.com/miekg/mmark

 [7] https://www.nlnetlabs.nl/projects/nsd/

 [8] https://www.knot-dns.cz/

 [9] https://avro.apache.org/

 [10] https://developers.google.com/protocol-buffers/

 [11] http://cbor.io

 [12] https://github.com/kubo/snzip

 [13] http://google.github.io/snappy/

 [14] http://lz4.github.io/lz4/

 [15] http://www.gzip.org/

 [16] http://facebook.github.io/zstd/

 [17] http://tukaani.org/xz/

Appendix A. CDDL

 This appendix gives a CDDL [I-D.ietf-cbor-cddl] specification for
 C-DNS.

 CDDL does not permit a range of allowed values to be specified for a
 bitfield. Where necessary, those values are given as a CDDL group,
 but the group definition is commented out to prevent CDDL tooling
 from warning that the group is unused.

; CDDL specification of the file format for C‑DNS,
; which describes a collection of DNS messages and
; traffic meta‑data.

;
; The overall structure of a file.
;
File = [
 file‑type‑id : "C‑DNS",
 file‑preamble : FilePreamble,
 file‑blocks : [* Block],
]

;
; The file preamble.
;
FilePreamble = {
 major‑format‑version => 1,
 minor‑format‑version => 0,
 ? private‑version => uint,
 block‑parameters => [+ BlockParameters],
}
major‑format‑version = 0
minor‑format‑version = 1
private‑version = 2
block‑parameters = 3

BlockParameters = {
 storage‑parameters => StorageParameters,
 ? collection‑parameters => CollectionParameters,
}
storage‑parameters = 0
collection‑parameters = 1

 IPv6PrefixLength = 1..128
 IPv4PrefixLength = 1..32
 OpcodeRange = 0..15
 RRTypeRange = 0..65535

 StorageParameters = {
 ticks‑per‑second => uint,
 max‑block‑items => uint,
 storage‑hints => StorageHints,
 opcodes => [+ OpcodeRange],
 rr‑types => [+ RRTypeRange],
 ? storage‑flags => StorageFlags,
 ? client‑address‑prefix‑ipv4 => IPv4PrefixLength,
 ? client‑address‑prefix‑ipv6 => IPv6PrefixLength,
 ? server‑address‑prefix‑ipv4 => IPv4PrefixLength,
 ? server‑address‑prefix‑ipv6 => IPv6PrefixLength,
 ? sampling‑method => tstr,
 ? anonymisation‑method => tstr,
 }
 ticks‑per‑second = 0
 max‑block‑items = 1
 storage‑hints = 2
 opcodes = 3
 rr‑types = 4
 storage‑flags = 5
 client‑address‑prefix‑ipv4 = 6
 client‑address‑prefix‑ipv6 = 7
 server‑address‑prefix‑ipv4 = 8
 server‑address‑prefix‑ipv6 = 9
 sampling‑method = 10
 anonymisation‑method = 11

 ; A hint indicates if the collection method will output the
 ; item or will ignore the item if present.
 StorageHints = {
 query‑response‑hints => QueryResponseHints,
 query‑response‑signature‑hints =>
 QueryResponseSignatureHints,
 rr‑hints => RRHints,
 other‑data‑hints => OtherDataHints,
 }

 query‑response‑hints = 0
 query‑response‑signature‑hints = 1
 rr‑hints = 2
 other‑data‑hints = 3

 QueryResponseHintValues = &(
 time‑offset : 0,
 client‑address‑index : 1,
 client‑port : 2,
 transaction‑id : 3,
 qr‑signature‑index : 4,
 client‑hoplimit : 5,
 response‑delay : 6,
 query‑name‑index : 7,
 query‑size : 8,
 response‑size : 9,
 response‑processing‑data : 10,
 query‑question‑sections : 11, ; Second & subsequent
 ; questions
 query‑answer‑sections : 12,
 query‑authority‑sections : 13,
 query‑additional‑sections : 14,
 response‑answer‑sections : 15,
 response‑authority‑sections : 16,
 response‑additional‑sections : 17,
)
 QueryResponseHints = uint .bits QueryResponseHintValues

 QueryResponseSignatureHintValues = &(
 server‑address : 0,
 server‑port : 1,
 qr‑transport‑flags : 2,
 qr‑type : 3,
 qr‑sig‑flags : 4,
 query‑opcode : 5,
 dns‑flags : 6,
 query‑rcode : 7,
 query‑class‑type : 8,
 query‑qdcount : 9,
 query‑ancount : 10,
 query‑arcount : 11,
 query‑nscount : 12,
 query‑edns‑version : 13,
 query‑udp‑size : 14,
 query‑opt‑rdata : 15,
 response‑rcode : 16,
)
 QueryResponseSignatureHints =

 uint .bits QueryResponseSignatureHintValues

 RRHintValues = &(
 ttl : 0,
 rdata‑index : 1,
)
 RRHints = uint .bits RRHintValues

 OtherDataHintValues = &(
 malformed‑messages : 0,
 address‑event‑counts : 1,
)
 OtherDataHints = uint .bits OtherDataHintValues

 StorageFlagValues = &(
 anonymised‑data : 0,
 sampled‑data : 1,
 normalized‑names : 2,
)
 StorageFlags = uint .bits StorageFlagValues

; Hints for later analysis.
VLANIdRange = 1..4094

CollectionParameters = {
 ? query‑timeout => uint,
 ? skew‑timeout => uint,
 ? snaplen => uint,
 ? promisc => bool,
 ? interfaces => [+ tstr],
 ? server‑addresses => [+ IPAddress],
 ? vlan‑ids => [+ VLANIdRange],
 ? filter => tstr,
 ? generator‑id => tstr,
 ? host‑id => tstr,
 }
 query‑timeout = 0
 skew‑timeout = 1
 snaplen = 2
 promisc = 3
 interfaces = 4
 server‑addresses = 5
 vlan‑ids = 6
 filter = 7
 generator‑id = 8
 host‑id = 9

 ;

; Data in the file is stored in Blocks.
;
Block = {
 block‑preamble => BlockPreamble,
 ? block‑statistics => BlockStatistics, ; Much of this
 ; could be derived
 ? block‑tables => BlockTables,
 ? query‑responses => [+ QueryResponse],
 ? address‑event‑counts => [+ AddressEventCount],
 ? malformed‑messages => [+ MalformedMessage],
}
block‑preamble = 0
block‑statistics = 1
block‑tables = 2
query‑responses = 3
address‑event‑counts = 4
malformed‑messages = 5

;
; The (mandatory) preamble to a block.
;
BlockPreamble = {
 ? earliest‑time => Timestamp,
 ? block‑parameters‑index => uint .default 0,
}
earliest‑time = 0
block‑parameters‑index = 1

; Ticks are subsecond intervals. The number of ticks in a second is
; file/block metadata. Signed and unsigned tick types are defined.
ticks = int
uticks = uint

Timestamp = [
 timestamp‑secs : uint,
 timestamp‑uticks : uticks,
]

;
; Statistics about the block contents.
;
BlockStatistics = {
 ? processed‑messages => uint,
 ? qr‑data‑items => uint,
 ? unmatched‑queries => uint,
 ? unmatched‑responses => uint,
 ? discarded‑opcode => uint,
 ? malformed‑items => uint,

}
processed‑messages = 0
qr‑data‑items = 1
unmatched‑queries = 2
unmatched‑responses = 3
discarded‑opcode = 4
malformed‑items = 5

;
; Tables of common data referenced from records in a block.
;
BlockTables = {
 ? ip‑address => [+ IPAddress],
 ? classtype => [+ ClassType],
 ? name‑rdata => [+ bstr], ; Holds both Names
 ; and RDATA
 ? qr‑sig => [+ QueryResponseSignature],
 ? QuestionTables,
 ? RRTables,
 ? malformed‑message‑data => [+ MalformedMessageData],
}
ip‑address = 0
classtype = 1
name‑rdata = 2
qr‑sig = 3
qlist = 4
qrr = 5
rrlist = 6
rr = 7
malformed‑message‑data = 8

IPv4Address = bstr .size 4
IPv6Address = bstr .size 16
IPAddress = IPv4Address / IPv6Address

ClassType = {
 type => uint,
 class => uint,
}
type = 0
class = 1

QueryResponseSignature = {
 ? server‑address‑index => uint,
 ? server‑port => uint,
 ? qr‑transport‑flags => QueryResponseTransportFlags,
 ? qr‑type => QueryResponseType,
 ? qr‑sig‑flags => QueryResponseFlags,

 ? query‑opcode => uint,
 ? qr‑dns‑flags => DNSFlags,
 ? query‑rcode => uint,
 ? query‑classtype‑index => uint,
 ? query‑qd‑count => uint,
 ? query‑an‑count => uint,
 ? query‑ns‑count => uint,
 ? query‑ar‑count => uint,
 ? edns‑version => uint,
 ? udp‑buf‑size => uint,
 ? opt‑rdata‑index => uint,
 ? response‑rcode => uint,
}
server‑address‑index = 0
server‑port = 1
qr‑transport‑flags = 2
qr‑type = 3
qr‑sig‑flags = 4
query‑opcode = 5
qr‑dns‑flags = 6
query‑rcode = 7
query‑classtype‑index = 8
query‑qd‑count = 9
query‑an‑count = 10
query‑ns‑count = 12
query‑ar‑count = 12
edns‑version = 13
udp‑buf‑size = 14
opt‑rdata‑index = 15
response‑rcode = 16

 ; Transport gives the values that may appear in bits 1..4 of
 ; TransportFlags. There is currently no way to express this in
 ; CDDL, so Transport is unused. To avoid confusion when used
 ; with CDDL tools, it is commented out.
 ;
 ; Transport = &(
 ; udp : 0,
 ; tcp : 1,
 ; tls : 2,
 ; dtls : 3,
 ; doh : 4,
 ;)

 TransportFlagValues = &(
 ip‑version : 0, ; 0=IPv4, 1=IPv6
) / (1..4)
 TransportFlags = uint .bits TransportFlagValues

 QueryResponseTransportFlagValues = &(
 query‑trailingdata : 5,
) / TransportFlagValues
 QueryResponseTransportFlags =
 uint .bits QueryResponseTransportFlagValues

 QueryResponseType = &(
 stub : 0,
 client : 1,
 resolver : 2,
 auth : 3,
 forwarder : 4,
 tool : 5,
)

 QueryResponseFlagValues = &(
 has‑query : 0,
 has‑reponse : 1,
 query‑has‑opt : 2,
 response‑has‑opt : 3,
 query‑has‑no‑question : 4,
 response‑has‑no‑question: 5,
)
 QueryResponseFlags = uint .bits QueryResponseFlagValues

 DNSFlagValues = &(
 query‑cd : 0,
 query‑ad : 1,
 query‑z : 2,
 query‑ra : 3,
 query‑rd : 4,
 query‑tc : 5,
 query‑aa : 6,
 query‑do : 7,
 response‑cd: 8,
 response‑ad: 9,
 response‑z : 10,
 response‑ra: 11,
 response‑rd: 12,
 response‑tc: 13,
 response‑aa: 14,
)
 DNSFlags = uint .bits DNSFlagValues

QuestionTables = (
 qlist => [+ QuestionList],
 qrr => [+ Question]
)

 QuestionList = [+ uint] ; Index of Question

 Question = { ; Second and subsequent questions
 name‑index => uint, ; Index to a name in the
 ; name‑rdata table
 classtype‑index => uint,
 }
 name‑index = 0
 classtype‑index = 1

RRTables = (
 rrlist => [+ RRList],
 rr => [+ RR]
)

 RRList = [+ uint] ; Index of RR

 RR = {
 name‑index => uint, ; Index to a name in the
 ; name‑rdata table
 classtype‑index => uint,
 ? ttl => uint,
 ? rdata‑index => uint, ; Index to RDATA in the
 ; name‑rdata table
 }
 ; Other map key values already defined above.
 ttl = 2
 rdata‑index = 3

MalformedMessageData = {
 ? server‑address‑index => uint,
 ? server‑port => uint,
 ? mm‑transport‑flags => TransportFlags,
 ? mm‑payload => bstr,
}
; Other map key values already defined above.
mm‑transport‑flags = 2
mm‑payload = 3

;
; A single query/response pair.
;
QueryResponse = {
 ? time‑offset => uticks, ; Time offset from
 ; start of block
 ? client‑address‑index => uint,
 ? client‑port => uint,
 ? transaction‑id => uint,

 ? qr‑signature‑index => uint,
 ? client‑hoplimit => uint,
 ? response‑delay => ticks,
 ? query‑name‑index => uint,
 ? query‑size => uint, ; DNS size of query
 ? response‑size => uint, ; DNS size of response
 ? response‑processing‑data => ResponseProcessingData,
 ? query‑extended => QueryResponseExtended,
 ? response‑extended => QueryResponseExtended,
}
time‑offset = 0
client‑address‑index = 1
client‑port = 2
transaction‑id = 3
qr‑signature‑index = 4
client‑hoplimit = 5
response‑delay = 6
query‑name‑index = 7
query‑size = 8
response‑size = 9
response‑processing‑data = 10
query‑extended = 11
response‑extended = 12

ResponseProcessingData = {
 ? bailiwick‑index => uint,
 ? processing‑flags => ResponseProcessingFlags,
}
bailiwick‑index = 0
processing‑flags = 1

 ResponseProcessingFlagValues = &(
 from‑cache : 0,
)
 ResponseProcessingFlags = uint .bits ResponseProcessingFlagValues

QueryResponseExtended = {
 ? question‑index => uint, ; Index of QuestionList
 ? answer‑index => uint, ; Index of RRList
 ? authority‑index => uint,
 ? additional‑index => uint,
}
question‑index = 0
answer‑index = 1
authority‑index = 2
additional‑index = 3

 ;

; Address event data.
;
AddressEventCount = {
 ae‑type => &AddressEventType,
 ? ae‑code => uint,
 ae‑address‑index => uint,
 ae‑count => uint,
}
ae‑type = 0
ae‑code = 1
ae‑address‑index = 2
ae‑count = 3

AddressEventType = (
 tcp‑reset : 0,
 icmp‑time‑exceeded : 1,
 icmp‑dest‑unreachable : 2,
 icmpv6‑time‑exceeded : 3,
 icmpv6‑dest‑unreachable: 4,
 icmpv6‑packet‑too‑big : 5,
)

;
; Malformed messages.
;
MalformedMessage = {
 ? time‑offset => uticks, ; Time offset from
 ; start of block
 ? client‑address‑index => uint,
 ? client‑port => uint,
 ? message‑data‑index => uint,
}
; Other map key values already defined above.
message‑data‑index = 3

Appendix B. DNS Name compression example

 The basic algorithm, which follows the guidance in [RFC1035], is
 simply to collect each name, and the offset in the packet at which it
 starts, during packet construction. As each name is added, it is
 offered to each of the collected names in order of collection,
 starting from the first name. If labels at the end of the name can
 be replaced with a reference back to part (or all) of the earlier
 name, and if the uncompressed part of the name is shorter than any
 compression already found, the earlier name is noted as the
 compression target for the name.

 The following tables illustrate the process. In an example packet,
 the first name is foo.example.

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| N | Name | Uncompressed | Compression Target |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | foo.example | | |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The next name added is bar.example. This is matched against
 foo.example. The example part of this can be used as a compression
 target, with the remaining uncompressed part of the name being bar.

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| N | Name | Uncompressed | Compression Target |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | foo.example | | |
| 2 | bar.example | bar | 1 + offset to example |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The third name added is www.bar.example. This is first matched
 against foo.example, and as before this is recorded as a compression
 target, with the remaining uncompressed part of the name being
 www.bar. It is then matched against the second name, which again can
 be a compression target. Because the remaining uncompressed part of
 the name is www, this is an improved compression, and so it is
 adopted.

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| N | Name | Uncompressed | Compression Target |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1	foo.example		
2	bar.example	bar	1 + offset to example
3	www.bar.example	www	2
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 As an optimization, if a name is already perfectly compressed (in
 other words, the uncompressed part of the name is empty), then no
 further names will be considered for compression.

B.1. NSD compression algorithm

 Using the above basic algorithm the packet lengths of responses
 generated by NSD [7] can be matched almost exactly. At the time of
 writing, a tiny number (<.01%) of the reconstructed packets had
 incorrect lengths.

B.2. Knot Authoritative compression algorithm

 The Knot Authoritative [8] name server uses different compression
 behavior, which is the result of internal optimization designed to
 balance runtime speed with compression size gains. In brief, and
 omitting complications, Knot Authoritative will only consider the
 QNAME and names in the immediately preceding RR section in an RRSET
 as compression targets.

 A set of smart heuristics as described below can be implemented to
 mimic this and while not perfect it produces output nearly, but not
 quite, as good a match as with NSD. The heuristics are:

 1. A match is only perfect if the name is completely compressed AND
 the TYPE of the section in which the name occurs matches the TYPE
 of the name used as the compression target.

 2. If the name occurs in RDATA:

 * If the compression target name is in a query, then only the
 first RR in an RRSET can use that name as a compression
 target.

 * The compression target name MUST be in RDATA.

 * The name section TYPE must match the compression target name
 section TYPE.

 * The compression target name MUST be in the immediately
 preceding RR in the RRSET.

 Using this algorithm less than 0.1% of the reconstructed packets had
 incorrect lengths.

B.3. Observed differences

 In sample traffic collected on a root name server around 2-4% of
 responses generated by Knot had different packet lengths to those
 produced by NSD.

Appendix C. Comparison of Binary Formats

 Several binary serialisation formats were considered, and for
 completeness were also compared to JSON.

 o Apache Avro [9]. Data is stored according to a pre-defined
 schema. The schema itself is always included in the data file.

 Data can therefore be stored untagged, for a smaller serialisation
 size, and be written and read by an Avro library.

 * At the time of writing, Avro libraries are available for C,
 C++, C#, Java, Python, Ruby and PHP. Optionally tools are
 available for C++, Java and C# to generate code for encoding
 and decoding.

 o Google Protocol Buffers [10]. Data is stored according to a pre-
 defined schema. The schema is used by a generator to generate
 code for encoding and decoding the data. Data can therefore be
 stored untagged, for a smaller serialisation size. The schema is
 not stored with the data, so unlike Avro cannot be read with a
 generic library.

 * Code must be generated for a particular data schema to read and
 write data using that schema. At the time of writing, the
 Google code generator can currently generate code for encoding
 and decoding a schema for C++, Go, Java, Python, Ruby, C#,
 Objective-C, Javascript and PHP.

 o CBOR [11]. Defined in [RFC7049], this serialisation format is
 comparable to JSON but with a binary representation. It does not
 use a pre-defined schema, so data is always stored tagged.
 However, CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl] and tools exist to verify data files conform
 to the schema.

 * CBOR is a simple format, and simple to implement. At the time
 of writing, the CBOR website lists implementations for 16
 languages.

 Avro and Protocol Buffers both allow storage of untagged data, but
 because they rely on the data schema for this, their implementation
 is considerably more complex than CBOR. Using Avro or Protocol
 Buffers in an unsupported environment would require notably greater
 development effort compared to CBOR.

 A test program was written which reads input from a PCAP file and
 writes output using one of two basic structures; either a simple
 structure, where each query/response pair is represented in a single
 record entry, or the C-DNS block structure.

 The resulting output files were then compressed using a variety of
 common general-purpose lossless compression tools to explore the
 compressibility of the formats. The compression tools employed were:

 o snzip [12]. A command line compression tool based on the Google
 Snappy [13] library.

 o lz4 [14]. The command line compression tool from the reference C
 LZ4 implementation.

 o gzip [15]. The ubiquitous GNU zip tool.

 o zstd [16]. Compression using the Zstandard algorithm.

 o xz [17]. A popular compression tool noted for high compression.

 In all cases the compression tools were run using their default
 settings.

 Note that this draft does not mandate the use of compression, nor any
 particular compression scheme, but it anticipates that in practice
 output data will be subject to general-purpose compression, and so
 this should be taken into consideration.

 "test.pcap", a 662Mb capture of sample data from a root instance was
 used for the comparison. The following table shows the formatted
 size and size after compression (abbreviated to Comp. in the table
 headers), together with the task resident set size (RSS) and the user
 time taken by the compression. File sizes are in Mb, RSS in kb and
 user time in seconds.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Format | File size | Comp. | Comp. size | RSS | User time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
PCAP	661.87	snzip	212.48	2696	1.26
		lz4	181.58	6336	1.35
		gzip	153.46	1428	18.20
		zstd	87.07	3544	4.27
		xz	49.09	97416	160.79
JSON simple	4113.92	snzip	603.78	2656	5.72
		lz4	386.42	5636	5.25
		gzip	271.11	1492	73.00
		zstd	133.43	3284	8.68
		xz	51.98	97412	600.74
Avro simple	640.45	snzip	148.98	2656	0.90
		lz4	111.92	5828	0.99
		gzip	103.07	1540	11.52
		zstd	49.08	3524	2.50
		xz	22.87	97308	90.34

CBOR simple	764.82	snzip	164.57	2664	1.11
		lz4	120.98	5892	1.13
		gzip	110.61	1428	12.88
		zstd	54.14	3224	2.77
		xz	23.43	97276	111.48
PBuf simple	749.51	snzip	167.16	2660	1.08
		lz4	123.09	5824	1.14
		gzip	112.05	1424	12.75
		zstd	53.39	3388	2.76
		xz	23.99	97348	106.47
JSON block	519.77	snzip	106.12	2812	0.93
		lz4	104.34	6080	0.97
		gzip	57.97	1604	12.70
		zstd	61.51	3396	3.45
		xz	27.67	97524	169.10
Avro block	60.45	snzip	48.38	2688	0.20
		lz4	48.78	8540	0.22
		gzip	39.62	1576	2.92
		zstd	29.63	3612	1.25
		xz	18.28	97564	25.81
CBOR block	75.25	snzip	53.27	2684	0.24
		lz4	51.88	8008	0.28
		gzip	41.17	1548	4.36
		zstd	30.61	3476	1.48
		xz	18.15	97556	38.78
PBuf block	67.98	snzip	51.10	2636	0.24
		lz4	52.39	8304	0.24
		gzip	40.19	1520	3.63
		zstd	31.61	3576	1.40
		xz	17.94	97440	33.99
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 The above results are discussed in the following sections.

C.1. Comparison with full PCAP files

 An important first consideration is whether moving away from PCAP
 offers significant benefits.

 The simple binary formats are typically larger than PCAP, even though
 they omit some information such as Ethernet MAC addresses. But not
 only do they require less CPU to compress than PCAP, the resulting
 compressed files are smaller than compressed PCAP.

C.2. Simple versus block coding

 The intention of the block coding is to perform data de-duplication
 on query/response records within the block. The simple and block
 formats above store exactly the same information for each query/
 response record. This information is parsed from the DNS traffic in
 the input PCAP file, and in all cases each field has an identifier
 and the field data is typed.

 The data de-duplication on the block formats show an order of
 magnitude reduction in the size of the format file size against the
 simple formats. As would be expected, the compression tools are able
 to find and exploit a lot of this duplication, but as the de-
 duplication process uses knowledge of DNS traffic, it is able to
 retain a size advantage. This advantage reduces as stronger
 compression is applied, as again would be expected, but even with the
 strongest compression applied the block formatted data remains around
 75% of the size of the simple format and its compression requires
 roughly a third of the CPU time.

C.3. Binary versus text formats

 Text data formats offer many advantages over binary formats,
 particularly in the areas of ad-hoc data inspection and extraction.
 It was therefore felt worthwhile to carry out a direct comparison,
 implementing JSON versions of the simple and block formats.

 Concentrating on JSON block format, the format files produced are a
 significant fraction of an order of magnitude larger than binary
 formats. The impact on file size after compression is as might be
 expected from that starting point; the stronger compression produces
 files that are 150% of the size of similarly compressed binary
 format, and require over 4x more CPU to compress.

C.4. Performance

 Concentrating again on the block formats, all three produce format
 files that are close to an order of magnitude smaller that the
 original "test.pcap" file. CBOR produces the largest files and Avro
 the smallest, 20% smaller than CBOR.

 However, once compression is taken into account, the size difference
 narrows. At medium compression (with gzip), the size difference is
 4%. Using strong compression (with xz) the difference reduces to 2%,
 with Avro the largest and Protocol Buffers the smallest, although
 CBOR and Protocol Buffers require slightly more compression CPU.
 The measurements presented above do not include data on the CPU
 required to generate the format files. Measurements indicate that
 writing Avro requires 10% more CPU than CBOR or Protocol Buffers. It
 appears, therefore, that Avro's advantage in compression CPU usage is
 probably offset by a larger CPU requirement in writing Avro.

C.5. Conclusions

 The above assessments lead us to the choice of a binary format file
 using blocking.

 As noted previously, this draft anticipates that output data will be
 subject to compression. There is no compelling case for one
 particular binary serialisation format in terms of either final file
 size or machine resources consumed, so the choice must be largely
 based on other factors. CBOR was therefore chosen as the binary
 serialisation format for the reasons listed in Section 5.

C.6. Block size choice

 Given the choice of a CBOR format using blocking, the question arises
 of what an appropriate default value for the maximum number of query/
 response pairs in a block should be. This has two components; what
 is the impact on performance of using different block sizes in the
 format file, and what is the impact on the size of the format file
 before and after compression.

 The following table addresses the performance question, showing the
 impact on the performance of a C++ program converting "test.pcap" to
 C-DNS. File size is in Mb, resident set size (RSS) in kb.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Block size | File size | RSS | User time |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
1000	133.46	612.27	15.25
5000	89.85	676.82	14.99
10000	76.87	752.40	14.53
20000	67.86	750.75	14.49
40000	61.88	736.30	14.29
80000	58.08	694.16	14.28
160000	55.94	733.84	14.44
320000	54.41	799.20	13.97
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 Increasing block size, therefore, tends to increase maximum RSS a
 little, with no significant effect (if anything a small reduction) on
 CPU consumption.

 The following table demonstrates the effect of increasing block size
 on output file size for different compressions.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| Block size | None | snzip | lz4 | gzip | zstd | xz |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
1000	133.46	90.52	90.03	74.65	44.78	25.63
5000	89.85	59.69	59.43	46.99	37.33	22.34
10000	76.87	50.39	50.28	38.94	33.62	21.09
20000	67.86	43.91	43.90	33.24	32.62	20.16
40000	61.88	39.63	39.69	29.44	28.72	19.52
80000	58.08	36.93	37.01	27.05	26.25	19.00
160000	55.94	35.10	35.06	25.44	24.56	19.63
320000	54.41	33.87	33.74	24.36	23.44	18.66
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+

 There is obviously scope for tuning the default block size to the
 compression being employed, traffic characteristics, frequency of
 output file rollover etc. Using a strong compression scheme, block
 sizes over 10,000 query/response pairs would seem to offer limited
 improvements.

Authors' Addresses

John Dickinson
Sinodun IT
Magdalen Centre
Oxford Science Park
Oxford OX4 4GA
United Kingdom

 Email: jad@sinodun.com

Jim Hague
Sinodun IT
Magdalen Centre
Oxford Science Park
Oxford OX4 4GA
United Kingdom

 Email: jim@sinodun.com

Sara Dickinson
Sinodun IT
Magdalen Centre
Oxford Science Park
Oxford OX4 4GA
United Kingdom

 Email: sara@sinodun.com

Terry Manderson
ICANN
12025 Waterfront Drive
Suite 300
Los Angeles CA 90094‑2536

 Email: terry.manderson@icann.org

John Bond
ICANN
12025 Waterfront Drive
Suite 300
Los Angeles CA 90094‑2536

 Email: john.bond@icann.org

draft-ietf-dnsop-dns-tcp-requirements-03 - DNS Transport over TCP - Operational Requirements

draft-ietf-dnsop-dns-tcp-requirements-03 - DNS Transport over TCP - Operational

Index
Back 5
Prev
Next
Forward 5

Domain Name System Operations

Internet-Draft

Updates: 1123 (if approved)

Intended status: Best Current Practice

Expires: July 6, 2019

J. Kristoff

DePaul University

D. Wessels

Verisign

January 2, 2019

DNS Transport over TCP - Operational Requirements

draft-ietf-dnsop-dns-tcp-requirements-03

Abstract

 This document encourages the practice of permitting DNS messages to
 be carried over TCP on the Internet. It also considers the
 consequences with this form of DNS communication and the potential
 operational issues that can arise when this best common practice is
 not upheld.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Background
	 2.1. Uneven Transport Usage and Preference

	 2.2. Waiting for Large Messages and Reliability

	 2.3. EDNS0

	 2.4. Fragmentation and Truncation

	 2.5. "Only Zone Transfers Use TCP"

	3. DNS over TCP Requirements

	4. Network and System Considerations
	 4.1. Connection Admission

	 4.2. Connection Management

	 4.3. Connection Termination

	5. DNS over TCP Filtering Risks
	 5.1. DNS Wedgie

	 5.2. DNS Root Zone KSK Rollover

	 5.3. DNS-over-TLS

	6. Logging and Monitoring

	7. Acknowledgments

	8. IANA Considerations

	9. Security Considerations

	10. Privacy Considerations

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Standards Related to DNS Transport over TCP
	 A.1. TODO - additional, relevant RFCs

	 A.2. IETF RFC 5936 - DNS Zone Transfer Protocol (AXFR)

	 A.3. IETF RFC 6304 - AS112 Nameserver Operations

	 A.4. IETF RFC 6762 - Multicast DNS

	 A.5. IETF RFC 6950 - Architectural Considerations on Application Features in the DNS

	 A.6. IETF RFC 7477 - Child-to-Parent Synchronization in DNS

	 A.7. IETF RFC 7720 - DNS Root Name Service Protocol and Deployment Requirements

	 A.8. IETF RFC 7766 - DNS Transport over TCP - Implementation Requirements

	 A.9. IETF RFC 7828 - The edns-tcp-keepalive EDNS0 Option

	 A.10. IETF RFC 7858 - Specification for DNS over Transport Layer Security (TLS)

	 A.11. IETF RFC 7873 - Domain Name System (DNS) Cookies

	 A.12. IETF RFC 7901 - CHAIN Query Requests in DNS

	 A.13. IETF RFC 8027 - DNSSEC Roadblock Avoidance

	 A.14. IETF RFC 8094 - DNS over Datagram Transport Layer Security (DTLS)

	 A.15. IETF RFC 8162 - Using Secure DNS to Associate Certificates with Domain Names for S/MIME

	 A.16. IETF RFC 8324 - DNS Privacy, Authorization, Special Uses, Encoding, Characters, Matching, and Root Structure: Time for Another Look?

	 A.17. IETF RFC 8467 - Padding Policies for Extension Mechanisms for DNS (EDNS(0))

	 A.18. IETF RFC 8483 - Yeti DNS Testbed

	 A.19. IETF RFC 8484 - DNS Queries over HTTPS (DoH)

	Authors' Addresses

1. Introduction

 DNS messages may be delivered using UDP or TCP communications. While
 most DNS transactions are carried over UDP, some operators have been
 led to believe that any DNS over TCP traffic is unwanted or
 unnecessary for general DNS operation. As usage and features have
 evolved, TCP transport has become increasingly important for correct
 and safe operation of the Internet DNS. Reflecting modern usage, the
 DNS standards were recently updated to declare support for TCP is now
 a required part of the DNS implementation specifications in
 [RFC7766]. This document is the formal requirements equivalent for
 the operational community, encouraging operators to ensure DNS over
 TCP communications support is on par with DNS over UDP
 communications.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Background

 The curious state of disagreement in operational best practices and
 guidance for DNS transport protocols derives from conflicting
 messages operators have gotten from other operators, implementors,
 and even the IETF. Sometimes these mixed signals have been explicit,
 on other occasions they have suspiciously implicit. Here we
 summarize our interpretation of the storied and conflicting history
 that has brought us to this document.

2.1. Uneven Transport Usage and Preference

 In the original suite of DNS specifications, [RFC1034] and [RFC1035]
 clearly specified that DNS messages could be carried in either UDP or
 TCP, but they also made clear a preference for UDP as the transport
 for queries in the general case. As stated in [RFC1035]:

 "While virtual circuits can be used for any DNS activity,
 datagrams are preferred for queries due to their lower overhead
 and better performance."

 Another early, important, and influential document, [RFC1123],
 detailed the preference for UDP more explicitly:

 "DNS resolvers and recursive servers MUST support UDP, and SHOULD
 support TCP, for sending (non-zone-transfer) queries."

 and further stipulated:

 "A name server MAY limit the resources it devotes to TCP queries,
 but it SHOULD NOT refuse to service a TCP query just because it
 would have succeeded with UDP."

 Culminating in [RFC1536], DNS over TCP came to be associated
 primarily with the zone transfer mechanism, while most DNS queries
 and responses were seen as the dominion of UDP.

2.2. Waiting for Large Messages and Reliability

 In the original specifications, the maximum DNS over UDP message size
 was enshrined at 512 bytes. However, even while [RFC1123] made a
 clear preference for UDP, it foresaw DNS over TCP becoming more
 popular in the future to overcome this limitation:

 "[...] it is also clear that some new DNS record types defined in
 the future will contain information exceeding the 512 byte limit
 that applies to UDP, and hence will require TCP.

 At least two new, widely anticipated developments were set to elevate
 the need for DNS over TCP transactions. The first was dynamic
 updates defined in [RFC2136] and the second was the set of extensions
 collectively known as DNSSEC originally specified in [RFC2541]. The
 former suggested "requestors who require an accurate response code
 must use TCP", while the later warned "[...] larger keys increase the
 size of KEY and SIG RRs. This increases the chance of DNS UDP packet
 overflow and the possible necessity for using higher overhead TCP in
 responses."

 Yet defying some expectations, DNS over TCP remained little used in
 real traffic across the Internet. Dynamic updates saw little
 deployment between autonomous networks. Around the time DNSSEC was
 first defined, another new feature helped solidify UDP's transport
 dominance for message transactions.

2.3. EDNS0

 In 1999 the IETF published the Extension Mechanisms for DNS (EDNS0)
 in [RFC2671] (superseded in 2013 by an update in [RFC6891]). This
 document standardized a way for communicating DNS nodes to perform
 rudimentary capabilities negotiation. One such capability written
 into the base specification and present in every ENDS0 compatible
 message is the value of the maximum UDP payload size the sender can
 support. This unsigned 16-bit field specifies in bytes the maximum
 (possibly fragmented) DNS message size a node is capable of
 receiving. In practice, typical values are a subset of the 512 to
 4096 byte range. EDNS0 became widely deployed over the next several
 years and numerous surveys have shown many systems currently support
 larger UDP MTUs [CASTRO2010], [NETALYZR] with EDNS0.

 The natural effect of EDNS0 deployment meant DNS messages larger than
 512 bytes would be less reliant on TCP than they might otherwise have
 been. While a non-negligible population of DNS systems lack EDNS0 or
 may still fall back to TCP for some transactions, DNS over TCP
 transactions remain a very small fraction of overall DNS traffic
 [VERISIGN].

2.4. Fragmentation and Truncation

 Although EDNS0 provides a way for endpoints to signal support for DNS
 messages exceeding 512 bytes, the realities of a diverse and
 inconsistently deployed Internet may result in some large messages
 being unable to reach their destination. Any IP datagram whose size
 exceeds the MTU of a link it transits will be fragmented and then
 reassembled by the receiving host. Unfortunately, it is not uncommon
 for middleboxes and firewalls to block IP fragments. If one or more
 fragments do not arrive, the application does not receive the message
 and the request times out.

 For IPv4-connected hosts, the de-facto MTU is often the Ethernet
 payload size of 1500 bytes. This means that the largest unfragmented
 UDP DNS message that can be sent over IPv4 is likely 1472 bytes. For
 IPv6, the situation is a little more complicated. First, IPv6
 headers are 40 bytes (versus 20 without option in IPv4). Second, it
 seems as though some people have mis-interpreted IPv6's required
 minimum MTU of 1280 as a required maximum. Third, fragmentation in
 IPv6 can only be done by the host originating the datagram. The need
 to fragment is conveyed in an ICMPv6 "packet too big" message. The
 originating host indicates a fragmented datagram with IPv6 extension
 headers. Unfortunately, it is quite common for both ICMPv6 and IPv6
 extension headers to be blocked by middleboxes. According to
 [HUSTON] some 35% of IPv6-capable recursive resolvers are unable to
 receive a fragmented IPv6 packet.

 The practical consequence of all this is that DNS requestors must be
 prepared to retry queries with different EDNS0 maximum message size
 values. Administrators of BIND are likely to be familiar with seeing
 "success resolving ... after reducing the advertised EDNS0 UDP packet
 size to 512 octets" messages in their system logs.

 Often, reducing the EDNS0 UDP packet size leads to a successful
 response. That is, the necessary data fits within the smaller
 message size. However, when the data does not fit, the server sets
 the truncated flag in its response, indicating the client should
 retry over TCP to receive the whole response. This is undesirable
 from the client's point of view because it adds more latency, and
 potentially undesirable from the server's point of view due to the
 increased resource requirements of TCP.

 The issues around fragmentation, truncation, and TCP are driving
 certain implementation and policy decisions in the DNS. Notably,
 Cloudflare implemented what it calls "DNSSEC black lies" [CLOUDFLARE]
 and uses ECDSA algorithms, such that their signed responses fit
 easily in 512 bytes. The KSK Rollover design team [DESIGNTEAM] spent
 a lot of time thinking and worrying about response sizes. There is
 growing sentiment in the DNSSEC community that RSA key sizes beyond
 2048-bits are impractical and that critical infrastructure zones
 should transition to elliptic curve algorithms to keep response sizes
 manageable.

2.5. "Only Zone Transfers Use TCP"

 Today, the majority of the DNS community expects, or at least has a
 desire, to see DNS over TCP transactions to occur without
 interference. However there has also been a long held belief by some
 operators, particularly for security-related reasons, that DNS over
 TCP services should be purposely limited or not provided at all
 [CHES94], [DJBDNS]. A popular meme has also held the imagination of
 some that DNS over TCP is only ever used for zone transfers and is
 generally unnecessary otherwise, with filtering all DNS over TCP
 traffic even described as a best practice.

 The position on restricting DNS over TCP had some justification given
 that historic implementations of DNS nameservers provided very little
 in the way of TCP connection management (for example see
 Section 6.1.2 of [RFC7766] for more details). However modern
 standards and implementations are moving to align with the more
 sophisticated TCP management techniques employed by, for example,
 HTTP(S) servers and load balancers.

3. DNS over TCP Requirements

 An average increase in DNS message size, the continued development of
 new DNS features and a denial of service mitigation technique (see
 Section 9) have suggested that DNS over TCP transactions are as
 important to the correct and safe operation of the Internet DNS as
 ever, if not more so. Furthermore, there has been serious research
 that has suggested connection-oriented DNS transactions may provide
 security and privacy advantages over UDP transport [TDNS]. In fact,
 [RFC7858], a Standards Track document is just this sort of
 specification. Therefore, we now believe it is undesirable for
 network operators to artificially inhibit the potential utility and
 advances in the DNS such as these.

 TODO: I think the text below needs some work/discussion because 7766
 already updated 1123 in a very similar way except that 7766 speaks of
 "implement" and this one speaks of "service". 1123 speaks of
 "support" and doesn't distinguish between implement/service.

 Section 6.1.3.2 in [RFC1123] is updated: All general-purpose DNS
 servers MUST be able to service both UDP and TCP queries.

 o Authoritative servers MUST service TCP queries so that they do not
 limit the size of responses to what fits in a single UDP packet.

 o Recursive servers (or forwarders) MUST service TCP queries so that
 they do not prevent large responses from a TCP-capable server from
 reaching its TCP-capable clients.

 Regarding the choice of limiting the resources a server devotes to
 queries, Section 6.1.3.2 in [RFC1123] also says:

 "A name server MAY limit the resources it devotes to TCP queries,
 but it SHOULD NOT refuse to service a TCP query just because it
 would have succeeded with UDP."

 This requirement is hereby updated: A name server MAY limit the the
 resources it devotes to queries, but it MUST NOT refuse to service a
 query just because it would have succeeded with another transport
 protocol.

 Filtering of DNS over TCP is considered harmful in the general case.
 DNS resolver and server operators MUST provide DNS service over both
 UDP and TCP transports. Likewise, network operators MUST allow DNS
 service over both UDP and TCP transports. It must be acknowledged
 that DNS over TCP service can pose operational challenges that are
 not present when running DNS over UDP alone, and vice-versa.
 However, it is the aim of this document to argue that the potential
 damage incurred by prohibiting DNS over TCP service is more
 detrimental to the continued utility and success of the DNS than when
 its usage is allowed.

4. Network and System Considerations

 This section describes measures that systems and applications can
 take to optimize performance over TCP and to protect themselves from
 TCP-based resource exhaustion and attacks.

4.1. Connection Admission

 The SYN flooding attack is a denial-of-service method affecting hosts
 that run TCP server processes [RFC4987]. This attack can be very
 effective if not mitigated. One of the most effective mitigation
 techniques is SYN cookies, which allows the server to avoid
 allocating any state until the successful completion of the three-way
 handshake.

 Services not intended for use by the public Internet, such as most
 recursive name servers, SHOULD be protected with access controls.
 Ideally these controls are placed in the network, well before before
 any unwanted TCP packets can reach the DNS server host or
 application. If this is not possible, the controls can be placed in
 the application itself. In some situations (e.g. attacks) it may be
 necessary to deploy access controls for DNS services that should
 otherwise be globally reachable.

 The FreeBSD operating system has an "accept filter" feature that
 postpones delivery of TCP connections to applications until a
 complete, valid request has been received. The dns_accf(9) filter
 ensures that a valid DNS message is received. If not, the bogus
 connection never reaches the application. Applications must be coded
 and configured to make use of this filter.

 Per [RFC7766], applications and administrators are advised to
 remember that TCP MAY be used before sending any UDP queries.
 Networks and applications MUST NOT be configured to refuse TCP
 queries that were not preceded by a UDP query.

 TCP Fast Open [RFC7413] (TFO) allows TCP clients to shorten the
 handshake for subsequent connections to the same server. TFO saves
 one round-trip time in the connection setup. DNS servers SHOULD
 enable TFO when possible. Furthermore, DNS servers clustered behind
 a single service address (e.g., anycast or load-balancing), SHOULD
 use the same TFO server key on all instances.

 DNS clients SHOULD also enable TFO when possible. Currently, on some
 operating systems it is not implemented or disabled by default.
 [WIKIPEDIA_TFO] describes applications and operating systems that
 support TFO.

4.2. Connection Management

 Since host memory for TCP state is a finite resource, DNS servers
 MUST actively manage their connections. Applications that do not
 actively manage their connections can encounter resource exhaustion
 leading to denial of service. For DNS, as in other protocols, there
 is a tradeoff between keeping connections open for potential future
 use and the need to free up resources for new connections that will
 arrive.

 DNS server software SHOULD provide a configurable limit on the total
 number of established TCP connections. If the limit is reached, the
 application is expected to either close existing (idle) connections
 or refuse new connections. Operators SHOULD ensure the limit is
 configured appropriately for their particular situation.

 DNS server software MAY provide a configurable limit on the number of
 established connections per source IP address or subnet. This can be
 used to ensure that a single or small set of users can not consume
 all TCP resources and deny service to other users. Operators SHOULD
 ensure this limit is configured appropriately, based on their number
 of diversity of users.

 DNS server software SHOULD provide a configurable timeout for idle
 TCP connections. For very busy name servers this might be set to a
 low value, such as a few seconds. For less busy servers it might be
 set to a higher value, such as tens of seconds. DNS clients and
 servers SHOULD signal their timeout values using the edns-tcp-
 keepalive option [RFC7828].

 DNS server software MAY provide a configurable limit on the number of
 transactions per TCP connection. This document does not offer advice
 on particular values for such a limit.

 Similarly, DNS server software MAY provide a configurable limit on
 the total duration of a TCP connection. This document does not offer
 advice on particular values for such a limit.

 Since clients may not be aware of server-imposed limits, clients
 utilizing TCP for DNS need to always be prepared to re-establish
 connections or otherwise retry outstanding queries.

4.3. Connection Termination

 In general, it is preferable for clients to initiate the close of a
 TCP connection. The TCP peer that initiates a connection close
 retains the socket in the TIME_WAIT state for some amount of time,
 possibly a few minutes. On a busy server, the accumulation of many
 sockets in TIME_WAIT can cause performance problems or even denial of
 service.

 On systems where large numbers of sockets in TIME_WAIT are observed,
 it may be beneficial to tune the local TCP parameters. For example,
 the Linux kernel provides a number of "sysctl" parameters related to
 TIME_WAIT, such as net.ipv4.tcp_fin_timeout, net.ipv4.tcp_tw_recycle,
 and net.ipv4.tcp_tw_reuse. In extreme cases, implementors and
 operators of very busy servers may find it necessary to utilize the
 SO_LINGER socket option ([Stevens] Section 7.5) with a value of zero
 so that the server doesn't accumulate TIME_WAIT sockets.

5. DNS over TCP Filtering Risks

 Networks that filter DNS over TCP risk losing access to significant
 or important pieces of the DNS name space. For a variety of reasons
 a DNS answer may require a DNS over TCP query. This may include
 large message sizes, lack of EDNS0 support, DDoS mitigation
 techniques, or perhaps some future capability that is as yet
 unforeseen will also demand TCP transport.

 For example, [RFC7901] describes a latency-avoiding technique that
 sends extra data in DNS responses. This makes responses larger and
 potentially increases the risk of DDoS reflection attacks. The
 specification mandates the use of TCP or DNS Cookies ([RFC7873]).

 Even if any or all particular answers have consistently been returned
 successfully with UDP in the past, this continued behavior cannot be
 guaranteed when DNS messages are exchanged between autonomous
 systems. Therefore, filtering of DNS over TCP is considered harmful
 and contrary to the safe and successful operation of the Internet.
 This section enumerates some of the known risks we know about at the
 time of this writing when networks filter DNS over TCP.

5.1. DNS Wedgie

 Networks that filter DNS over TCP may inadvertently cause problems
 for third party resolvers as experienced by [TOYAMA]. If for
 instance a resolver receives a truncated answer from a server, but
 when the resolver resends the query using TCP and the TCP response
 never arrives, not only will full answer be unavailable, but the
 resolver will incur the full extent of TCP retransmissions and time
 outs. This situation might place extreme strain on resolver
 resources. If the number and frequency of these truncated answers
 are sufficiently high, we refer to the steady-state of lost resources
 as a result a "DNS" wedgie". A DNS wedgie is often not easily or
 completely mitigated by the affected DNS resolver operator.

5.2. DNS Root Zone KSK Rollover

 Recent plans for a new root zone DNSSEC KSK have highlighted a
 potential problem in retrieving the keys [LEWIS]. Some packets in
 the KSK rollover process will be larger than 1280 bytes, the IPv6
 minimum MTU for links carrying IPv6 traffic.[RFC2460] While studies
 have shown that problems due to fragment filtering or an inability to
 generate and receive these larger messages are negligible, any DNS
 server that is unable to receive large DNS over UDP messages or
 perform DNS over TCP may experience severe disruption of DNS service
 if performing DNSSEC validation.

 TODO: Is this "overcome by events" now? We've had 1414 byte DNSKEY
 responses at the three ZSK rollover periods since KSK-2017 became
 published in the root zone.

5.3. DNS-over-TLS

 DNS messages may be sent over TLS to provide privacy between stubs
 and recursive resolvers. [RFC7858] is a standards track document
 describing how this works. Although it utilizes TCP port 853 instead
 of port 53, this document applies equally well to DNS-over-TLS.
 Note, however, DNS-over-TLS is currently only defined between stubs
 and recursives.

 The use of TLS places even strong operational burdens on DNS clients
 and servers. Cryptographic functions for authentication and
 encryption require additional processing. Unoptimized connection
 setup takes two additional round-trips compared to TCP, but can be
 reduced with Fast TLS connection resumption [RFC5077] and TLS False
 Start [RFC7918].

6. Logging and Monitoring

 Developers of applications that log or monitor DNS are advised to not
 ignore TCP because it is rarely used or because it is hard to
 process. Operators are advised to ensure that their monitoring and
 logging applications properly capture DNS-over-TCP messages.
 Otherwise, attacks, exfiltration attempts, and normal traffic may go
 undetected.

 DNS messages over TCP are in no way guaranteed to arrive in single
 segments. In fact, a clever attacker may attempt to hide certain
 messages by forcing them over very small TCP segments. Applications
 that capture network packets (e.g., with libpcap) should be prepared
 to implement and perform full TCP segment reassembly. dnscap
 [dnscap] is an open-source example of a DNS logging program that
 implements TCP reassembly.

 Developers should also keep in mind connection reuse, pipelining, and
 out-of-order responses when building and testing DNS monitoring
 applications.

7. Acknowledgments

 This document was initially motivated by feedback from students who
 pointed out that they were hearing contradictory information about
 filtering DNS over TCP messages. Thanks in particular to a teaching
 colleague, JPL, who perhaps unknowingly encouraged the initial
 research into the differences of what the community has historically
 said and did. Thanks to all the NANOG 63 attendees who provided
 feedback to an early talk on this subject.

 The following individuals provided an array of feedback to help
 improve this document: Sara Dickinson, Bob Harold, Tatuya Jinmei, and
 Paul Hoffman. The authors are indebted to their contributions. Any
 remaining errors or imperfections are the sole responsibility of the
 document authors.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 Ironically, returning truncated DNS over UDP answers in order to
 induce a client query to switch to DNS over TCP has become a common
 response to source address spoofed, DNS denial-of-service attacks
 [RRL]. Historically, operators have been wary of TCP-based attacks,
 but in recent years, UDP-based flooding attacks have proven to be the
 most common protocol attack on the DNS. Nevertheless, a high rate of
 short-lived DNS transactions over TCP may pose challenges. While
 many operators have provided DNS over TCP service for many years
 without duress, past experience is no guarantee of future success.

 DNS over TCP is not unlike many other Internet TCP services. TCP
 threats and many mitigation strategies have been well documented in a
 series of documents such as [RFC4953], [RFC4987], [RFC5927], and
 [RFC5961].

10. Privacy Considerations

 TODO: Does this document warrant privacy considerations?

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

11.2. Informative References

 [CASTRO2010]

 Castro, S., Zhang, M., John, W., Wessels, D., and k.
 claffy, "Understanding and preparing for DNS evolution",
 2010.

 [CHES94]
 Cheswick, W. and S. Bellovin, "Firewalls and Internet
 Security: Repelling the Wily Hacker", 1994.

 [CLOUDFLARE]

 Grant, D., "Economical With The Truth: Making DNSSEC
 Answers Cheap", June 2016,
 <https://blog.cloudflare.com/black-lies/>.

 [DESIGNTEAM]

 Design Team Report, "Root Zone KSK Rollover Plan",
 December 2015, <https://www.iana.org/reports/2016/
 root-ksk-rollover-design-20160307.pdf>.

 [DJBDNS]
 D.J. Bernstein, "When are TCP queries sent?", 2002,
 <https://cr.yp.to/djbdns/tcp.html#why>.

 [dnscap]
 DNS-OARC, "DNSCAP", May 2018,
 <https://www.dns-oarc.net/tools/dnscap>.

 [HUSTON]
 Huston, G., "Dealing with IPv6 fragmentation in the DNS",
 August 2017, <https://blog.apnic.net/2017/08/22/
 dealing-ipv6-fragmentation-dns/>.

 [LEWIS]
 Lewis, E., "2017 DNSSEC KSK Rollover", RIPE 74 Budapest,
 Hungary, May 2017, <https://ripe74.ripe.net/
 presentations/25-RIPE74-lewis-submission.pdf>.

 [NETALYZR]

 Kreibich, C., Weaver, N., Nechaev, B., and V. Paxson,
 "Netalyzr: Illuminating The Edge Network", 2010.

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1123]
 Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC1536]
 Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
 Miller, "Common DNS Implementation Errors and Suggested
 Fixes", RFC 1536, DOI 10.17487/RFC1536, October 1993,
 <https://www.rfc-editor.org/info/rfc1536>.

 [RFC2136]
 Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2460]
 Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC2541]
 Eastlake 3rd, D., "DNS Security Operational
 Considerations", RFC 2541, DOI 10.17487/RFC2541, March
 1999, <https://www.rfc-editor.org/info/rfc2541>.

 [RFC2671]
 Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
 RFC 2671, DOI 10.17487/RFC2671, August 1999,
 <https://www.rfc-editor.org/info/rfc2671>.

 [RFC4953]
 Touch, J., "Defending TCP Against Spoofing Attacks",
 RFC 4953, DOI 10.17487/RFC4953, July 2007,
 <https://www.rfc-editor.org/info/rfc4953>.

 [RFC4987]
 Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5077]
 Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5927]
 Gont, F., "ICMP Attacks against TCP", RFC 5927,
 DOI 10.17487/RFC5927, July 2010,
 <https://www.rfc-editor.org/info/rfc5927>.

 [RFC5936]
 Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol
 (AXFR)", RFC 5936, DOI 10.17487/RFC5936, June 2010,
 <https://www.rfc-editor.org/info/rfc5936>.

 [RFC5961]
 Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010,
 <https://www.rfc-editor.org/info/rfc5961>.

 [RFC6304]
 Abley, J. and W. Maton, "AS112 Nameserver Operations",
 RFC 6304, DOI 10.17487/RFC6304, July 2011,
 <https://www.rfc-editor.org/info/rfc6304>.

 [RFC6762]
 Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC6950]
 Peterson, J., Kolkman, O., Tschofenig, H., and B. Aboba,
 "Architectural Considerations on Application Features in
 the DNS", RFC 6950, DOI 10.17487/RFC6950, October 2013,
 <https://www.rfc-editor.org/info/rfc6950>.

 [RFC7413]
 Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7477]
 Hardaker, W., "Child-to-Parent Synchronization in DNS",
 RFC 7477, DOI 10.17487/RFC7477, March 2015,
 <https://www.rfc-editor.org/info/rfc7477>.

 [RFC7720]
 Blanchet, M. and L-J. Liman, "DNS Root Name Service
 Protocol and Deployment Requirements", BCP 40, RFC 7720,
 DOI 10.17487/RFC7720, December 2015,
 <https://www.rfc-editor.org/info/rfc7720>.

 [RFC7766]
 Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7828]
 Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
 edns-tcp-keepalive EDNS0 Option", RFC 7828,
 DOI 10.17487/RFC7828, April 2016,
 <https://www.rfc-editor.org/info/rfc7828>.

 [RFC7858]
 Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC7873]
 Eastlake 3rd, D. and M. Andrews, "Domain Name System (DNS)
 Cookies", RFC 7873, DOI 10.17487/RFC7873, May 2016,
 <https://www.rfc-editor.org/info/rfc7873>.

 [RFC7901]
 Wouters, P., "CHAIN Query Requests in DNS", RFC 7901,
 DOI 10.17487/RFC7901, June 2016,
 <https://www.rfc-editor.org/info/rfc7901>.

 [RFC7918]
 Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", RFC 7918,
 DOI 10.17487/RFC7918, August 2016,
 <https://www.rfc-editor.org/info/rfc7918>.

 [RFC8027]
 Hardaker, W., Gudmundsson, O., and S. Krishnaswamy,
 "DNSSEC Roadblock Avoidance", BCP 207, RFC 8027,
 DOI 10.17487/RFC8027, November 2016,
 <https://www.rfc-editor.org/info/rfc8027>.

 [RFC8094]
 Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/info/rfc8094>.

 [RFC8162]
 Hoffman, P. and J. Schlyter, "Using Secure DNS to
 Associate Certificates with Domain Names for S/MIME",
 RFC 8162, DOI 10.17487/RFC8162, May 2017,
 <https://www.rfc-editor.org/info/rfc8162>.

 [RFC8324]
 Klensin, J., "DNS Privacy, Authorization, Special Uses,
 Encoding, Characters, Matching, and Root Structure: Time
 for Another Look?", RFC 8324, DOI 10.17487/RFC8324,
 February 2018, <https://www.rfc-editor.org/info/rfc8324>.

 [RFC8467]
 Mayrhofer, A., "Padding Policies for Extension Mechanisms
 for DNS (EDNS(0))", RFC 8467, DOI 10.17487/RFC8467,
 October 2018, <https://www.rfc-editor.org/info/rfc8467>.

 [RFC8483]
 Song, L., Ed., Liu, D., Vixie, P., Kato, A., and S. Kerr,
 "Yeti DNS Testbed", RFC 8483, DOI 10.17487/RFC8483,
 October 2018, <https://www.rfc-editor.org/info/rfc8483>.

 [RFC8484]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

 [RRL]
 Vixie, P. and V. Schryver, "DNS Response Rate Limiting
 (DNS RRL)", ISC-TN 2012-1 Draft1, April 2012.

 [Stevens]
 Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network
 Programming Volume 1, Third Edition: The Sockets
 Networking API", November 2003.

 [TDNS]
 Zhu, L., Heidemann, J., Wessels, D., Mankin, A., and N.
 Somaiya, "Connection-oriented DNS to Improve Privacy and
 Security", 2015.

 [TOYAMA]
 Toyama, K., Ishibashi, K., Ishino, M., Yoshimura, C., and
 K. Fujiwara, "DNS Anomalies and Their Impacts on DNS Cache
 Servers", NANOG 32 Reston, VA USA, 2004.

 [VERISIGN]

 Thomas, M. and D. Wessels, "An Analysis of TCP Traffic in
 Root Server DITL Data", DNS-OARC 2014 Fall Workshop Los
 Angeles, 2014.

 [WIKIPEDIA_TFO]

 Wikipedia, "TCP Fast Open", May 2018,
 <https://en.wikipedia.org/wiki/TCP_Fast_Open>.

Appendix A. Standards Related to DNS Transport over TCP

 This section enumerates all known IETF RFC documents that are
 currently of status standard, informational, best common practice or
 experimental and either implicitly or explicitly make assumptions or
 statements about the use of TCP as a transport for the DNS germane to
 this document.

A.1. TODO - additional, relevant RFCs

A.2. IETF RFC 5936 - DNS Zone Transfer Protocol (AXFR)

 The [RFC5936] standards track document provides a detailed
 specification for the zone transfer protocol, as originally outlined
 in the early DNS standards. AXFR operation is limited to TCP and not
 specified for UDP. This document discusses TCP usage at length.

A.3. IETF RFC 6304 - AS112 Nameserver Operations

 [RFC6304] is an informational document enumerating the requirements
 for operation of AS112 project DNS servers. New AS112 nodes are
 tested for their ability to provide service on both UDP and TCP
 transports, with the implication that TCP service is an expected part
 of normal operations.

A.4. IETF RFC 6762 - Multicast DNS

 This standards track document [RFC6762] the TC bit is deemed to have
 essentially the same meaning as described in the original DNS
 specifications. That is, if a response with the TCP bit set is
 receiver "[...] the querier SHOULD reissue its query using TCP in
 order to receive the larger response."

A.5. IETF RFC 6950 - Architectural Considerations on Application
 Features in the DNS

 An informational document [RFC6950] that draws attention to large
 data in the DNS. TCP is referenced in the context as a common
 fallback mechnanism and counter to some spoofing attacks.

A.6. IETF RFC 7477 - Child-to-Parent Synchronization in DNS

 This standards track document [RFC7477] specifies a RRType and
 protocol to signal and synchronize NS, A, and AAAA resource record
 changes from a child to parent zone. Since this protocol may require
 multiple requests and responses, it recommends utilizing DNS over TCP
 to ensure the conversation takes place between a consistent pair of
 end nodes.

A.7. IETF RFC 7720 - DNS Root Name Service Protocol and Deployment
 Requirements

 This best current practice[RFC7720] declares root name service "MUST
 support UDP [RFC768] and TCP [RFC793] transport of DNS queries and
 responses."

A.8. IETF RFC 7766 - DNS Transport over TCP - Implementation
 Requirements

 The standards track document [RFC7766] might be considered the direct
 ancestor of this operational requirements document. The
 implementation requirements document codifies mandatory support for
 DNS over TCP in compliant DNS software.

A.9. IETF RFC 7828 - The edns-tcp-keepalive EDNS0 Option

 This standards track document [RFC7828] defines an EDNS0 option to
 negotiate an idle timeout value for long-lived DNS over TCP
 connections. Consequently, this document is only applicable and
 relevant to DNS over TCP sessions and between implementations that
 support this option.

A.10. IETF RFC 7858 - Specification for DNS over Transport Layer
 Security (TLS)

 This standards track document [RFC7858] defines a method for putting
 DNS messages into a TCP-based encrypted channel using TLS. This
 specification is noteworthy for explicitly targetting the stub-to-
 recursive traffic, but does not preclude its application from
 recursive-to-authoritative traffic.

A.11. IETF RFC 7873 - Domain Name System (DNS) Cookies

 This standards track document [RFC7873] describes an EDNS0 option to
 provide additional protection against query and answer forgery. This
 specification mentions DNS over TCP as a reasonable fallback
 mechanism when DNS Cookies are not available. The specification does
 make mention of DNS over TCP processing in two specific situations.
 In one, when a server receives only a client cookie in a request, the
 server should consider whether the request arrived over TCP and if
 so, it should consider accepting TCP as sufficient to authenticate
 the request and respond accordingly. In another, when a client
 receives a BADCOOKIE reply using a fresh server cookie, the client
 should retry using TCP as the transport.

A.12. IETF RFC 7901 - CHAIN Query Requests in DNS

 This experimental specification [RFC7901] describes an EDNS0 option
 that can be used by a security-aware validating resolver to request
 and obtain a complete DNSSEC validation path for any single query.
 This document requires the use of DNS over TCP or a source IP address
 verified transport mechanism such as EDNS-COOKIE.[RFC7873]

A.13. IETF RFC 8027 - DNSSEC Roadblock Avoidance

 This document [RFC8027] details observed problems with DNSSEC
 deployment and mitigation techniques. Network traffic blocking and
 restrictions, including DNS over TCP messages, are highlighted as one
 reason for DNSSEC deployment issues. While this document suggests
 these sorts of problems are due to "non-compliant infrastructure" and
 is of type BCP, the scope of the document is limited to detection and
 mitigation techniques to avoid so-called DNSSEC roadblocks.

A.14. IETF RFC 8094 - DNS over Datagram Transport Layer Security (DTLS)

 This experimental specification [RFC8094] details a protocol that
 uses a datagram transport (UDP), but stipulates that "DNS clients and
 servers that implement DNS over DTLS MUST also implement DNS over TLS
 in order to provide privacy for clients that desire Strict Privacy
 [...]". This requirement implies DNS over TCP must be supported in
 case the message size is larger than the path MTU.

A.15. IETF RFC 8162 - Using Secure DNS to Associate Certificates with
 Domain Names for S/MIME

 This experimental specification [RFC8162] describes a technique to
 authenticate user X.509 certificates in an S/MIME system via the DNS.
 The document points out that the new experimental resource record
 types are expected to carry large payloads, resulting in the
 suggestion that "applications SHOULD use TCP -- not UDP -- to perform
 queries for the SMIMEA resource record."

A.16. IETF RFC 8324 - DNS Privacy, Authorization, Special Uses,
 Encoding, Characters, Matching, and Root Structure: Time for
 Another Look?

 An informational document [RFC8324] that briefly discusses the common
 role and challenges of DNS over TCP throughout the history of DNS.

A.17. IETF RFC 8467 - Padding Policies for Extension Mechanisms for DNS
 (EDNS(0))

 An experimental document [RFC8467] reminds implementers to consider
 the underlying transport protocol (e.g. TCP) when calculating the
 padding length when artificially increasing the DNS message size with
 an EDNS(0) padding option.

A.18. IETF RFC 8483 - Yeti DNS Testbed

 This informational document [RFC8483] describes a testbed environment
 that highlights some DNS over TCP behaviors, including issues
 involving packet fragmentation and operational requirements for TCP
 stream assembly in order to conduct DNS measurement and analysis.

A.19. IETF RFC 8484 - DNS Queries over HTTPS (DoH)

 This standards track document [RFC8484] defines a protocol for
 sending DNS queries and responses over HTTPS. This specification
 assumes TLS and TCP for the underlying security and transport layers
 respectively. Self-described as a a technique that more closely
 resembles a tunneling mechanism, DoH nevertheless likely implies DNS
 over TCP in some sense if not directly.

Authors' Addresses

John Kristoff
DePaul University
Chicago, IL 60604
US

Phone: +1 312 493 0305
Email: jtk@depaul.edu
URI: https://aharp.iorc.depaul.edu

Duane Wessels
Verisign
12061 Bluemont Way
Reston, VA 20190
US

Phone: +1 703 948 3200
Email: dwessels@verisign.com
URI: http://verisigninc.com

draft-ietf-dnsop-extended-error-05 - Extended DNS Errors

draft-ietf-dnsop-extended-error-05 - Extended DNS Errors

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 12, 2019

W. Kumari

Google

E. Hunt

ISC

R. Arends

ICANN

W. Hardaker

USC/ISI

D. Lawrence

Oracle + Dyn

March 11, 2019

Extended DNS Errors

draft-ietf-dnsop-extended-error-05

Abstract

 This document defines an extensible method to return additional
 information about the cause of DNS errors. Though created primarily
 to extend SERVFAIL to provide additional information about the cause
 of DNS and DNSSEC failures, the Extended DNS Errors option defined in
 this document allows all response types to contain extended error
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction and background
	 1.1. Requirements notation

	2. Extended Error EDNS0 option format

	3. Use of the Extended DNS Error option
	 3.1. The R (Retry) flag

	 3.2. The RESPONSE-CODE field

	 3.3. The INFO-CODE field

	 3.4. The EXTRA-TEXT field

	4. Defined Extended DNS Errors
	 4.1. INFO-CODEs for use with RESPONSE-CODE: NOERROR(0)
	 4.1.1. NOERROR Extended DNS Error Code 1 - Unsupported DNSKEY Algorithm

	 4.1.2. NOERROR Extended DNS Error Code 2 - Unsupported DS Algorithm

	 4.1.3. INFO-CODEs for use with RESPONSE-CODE: NOERROR(3)

	 4.1.4. NOERROR Extended DNS Error Code 4 - Forged answer

	 4.1.5. SERVFAIL Extended DNS Error Code 5 - DNSSEC Indeterminate

	 4.2. INFO-CODEs for use with RESPONSE-CODE: SERVFAIL(2)
	 4.2.1. SERVFAIL Extended DNS Error Code 1 - DNSSEC Bogus

	 4.2.2. SERVFAIL Extended DNS Error Code 2 - Signature Expired

	 4.2.3. SERVFAIL Extended DNS Error Code 3 - Signature Not Yet Valid

	 4.2.4. SERVFAIL Extended DNS Error Code 4 - DNSKEY missing

	 4.2.5. SERVFAIL Extended DNS Error Code 5 - RRSIGs missing

	 4.2.6. SERVFAIL Extended DNS Error Code 6 - No Zone Key Bit Set

	 4.2.7. SERVFAIL Extended DNS Error Code 7 - No Reachable Authority

	 4.2.8. SERVFAIL Extended DNS Error Code 8 - NSEC Missing

	 4.2.9. SERVFAIL Extended DNS Error Code 9 - Cached Error

	 4.2.10. SERVFAIL Extended DNS Error Code 10 - Not Ready

	 4.3. INFO-CODEs for use with RESPONSE-CODE: NOTIMP(4)
	 4.3.1. NOTIMP Extended DNS Error Code 1 - Deprecated

	 4.4. INFO-CODEs for use with RESPONSE-CODE: REFUSED(5)
	 4.4.1. REFUSED Extended DNS Error Code 1 - Lame

	 4.4.2. REFUSED Extended DNS Error Code 2 - Prohibited

	 4.5. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)
	 4.5.1. NXDOMAIN Extended DNS Error Code 1 - Blocked

	 4.6. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)
	 4.6.1. NXDOMAIN Extended DNS Error Code 2 - Censored

	 4.7. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)
	 4.7.1. NXDOMAIN Extended DNS Error Code 3 - Stale Answer

	5. IANA Considerations
	 5.1. A New Extended Error Code EDNS Option

	 5.2. New Double-Index Registry Table for Extended Error Codes

	6. Security Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Changes / Author Notes

	Authors' Addresses

1. Introduction and background

 There are many reasons that a DNS query may fail, some of them
 transient, some permanent; some can be resolved by querying another
 server, some are likely best handled by stopping resolution.
 Unfortunately, the error signals that a DNS server can return are
 very limited, and are not very expressive. This means that
 applications and resolvers often have to "guess" at what the issue is
 - e.g. was the answer marked REFUSED because of a lame delegation, or
 because the nameserver is still starting up and loading zones? Is a
 SERVFAIL a DNSSEC validation issue, or is the nameserver experiencing
 a bad hair day?

 A good example of issues that would benefit by additional error
 information are errors caused by DNSSEC validation issues. When a
 stub resolver queries a DNSSEC bogus name (using a validating
 resolver), the stub resolver receives only a SERVFAIL in response.
 Unfortunately, SERVFAIL is used to signal many sorts of DNS errors,
 and so the stub resolver simply asks the next configured DNS
 resolver. The result of trying the next resolver is one of two
 outcomes: either the next resolver also validates, a SERVFAIL is
 returned again, and the user gets an (largely) incomprehensible error
 message; or the next resolver is not a validating resolver, and the
 user is returned a potentially harmful result.

 This document specifies a mechanism to extend (or annotate) DNS
 errors to provide additional information about the cause of the
 error. When properly authenticated, this information can be used by
 the resolver to make a decision regarding whether or not to retry or
 it can be used or by technical users attempting to debug issues.

 These extended error codes are specially useful when received by
 resolvers, to return to stub resolvers or to downstream resolvers.
 Authoritative servers MAY parse and use them, but most error codes
 would make no sense for them. Authoritative servers may need to
 generate extended error codes though.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Extended Error EDNS0 option format

 This draft uses an EDNS0 ([RFC2671]) option to include Extended DNS
 Error (EDE) information in DNS messages. The option is structured as
 follows:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
0: | OPTION‑CODE |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
2: | OPTION‑LENGTH |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
4: | R | RESERVED |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
6: | RESPONSE‑CODE | INFO‑CODE |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
8: | EXTRA‑TEXT |
 +‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

 Field definition details:

o OPTION‑CODE, 2 octets (defined in [RFC6891]), for EDE is TBD.
 [RFC Editor: change TBD to the proper code once assigned by IANA.]
o OPTION‑LENGTH, 2 octets ((defined in [RFC6891]) contains the
 length of the payload (everything after OPTION‑LENGTH) in octets
 and should be 4 plus the length of the EXTRA‑TEXT section (which
 may be a zero‑length string).
o The RETRY flag, 1 bit; the RETRY bit (R) indicates a flag defined
 for use in this specification.
o The RESERVED bits, 15 bits: these bits are reserved for future
 use, potentially as additional flags. The RESERVED bits MUST be
 set to 0 by the sender and MUST be ignored by the receiver.

o RESPONSE‑CODE, 4 bits.
o INFO‑CODE, 12‑bits.
o EXTRA‑TEXT, a variable length, UTF‑8 encoded, text field that may
 hold additional textual information.

3. Use of the Extended DNS Error option

 The Extended DNS Error (EDE) is an EDNS option. It can be included
 in any response (SERVFAIL, NXDOMAIN, REFUSED, etc) to a query that
 includes OPT Pseudo-RR [RFC6891]. This document includes a set of
 initial codepoints (and requests to the IANA to add them to the
 registry), but is extensible via the IANA registry to allow
 additional error and information codes to be defined in the future.

 The fields of the Extended DNS Error option are defined further in
 the following sub-sections.

3.1. The R (Retry) flag

 The R (Retry) flag provides a hint as to what the receiver may want
 to do with this annotated error. Specifically, the R (or Retry) flag
 provides a hint to the receiver that it should retry the query to
 another server. If the R bit is set (1), the sender believes that
 retrying the query may provide a successful answer next time; if the
 R bit is clear (0), the sender believes that the resolver should not
 ask another server.

 The mechanism is specifically designed to be extensible, and so
 implementations may receive EDE codes that it does not understand.
 The R flag allows implementations to make a decision as to what to do
 if it receives a response with an unknown code - retry or drop the
 query. Note that this flag is only a suggestion. Unless a
 protective transport mechanism (like TSIG [RFC2845] or (D)TLS xref
 target="RFC7858"/>, [RFC8094]) is used, the bit's value could have
 have been altered by a person-in-the-middle. Receivers can choose to
 ignore this hint. See the security considerations for additional
 considerations.

3.2. The RESPONSE-CODE field

 This 4-bit value SHOULD be a copy of the RCODE from the primary DNS
 packet. RESPONSE-CODEs MAY use a different RCODE to provide
 additional or better information. For example, multiple EDNS0/EDE
 records may be included in the response and the supplemental EDNS0/
 EDE records may wish to include other RESPONSE-CODE values based on
 communication results with other DNS servers.

3.3. The INFO-CODE field

 This 12-bit value provides the additional context for the RESPONSE-
 CODE value. This combination of the RESPONSE-CODE and the INFO-CODE
 serve as a joint-index into the IANA "Extended DNS Errors" registry.

 Note to implementers: the combination of the RESPONSE-CODE and INFO-
 CODE fits within a 16-bit field, allowing implementers the choice of
 treating the combination as either two separate values, as defined in
 this document, or as a single 16-bit integer as long as the results
 are deterministic.

3.4. The EXTRA-TEXT field

 The UTF-8-encoded, EXTRA-TEXT field may be zero-length, or may hold
 additional information useful to network operators.

4. Defined Extended DNS Errors

 This document defines some initial EDE codes. The mechanism is
 intended to be extensible, and additional code-points can be
 registered in the "Extended DNS Errors" registry. This document
 provides suggestions for the R flag, but the originating server may
 ignore these recommendations if it knows better.

 The RESPONSE-CODE and the INFO-CODE from the EDE EDNS option is used
 to serve as a double index into the "Extended DNS Error codes" IANA
 registry, the initial values for which are defined in the following
 sub-sections.

4.1. INFO-CODEs for use with RESPONSE-CODE: NOERROR(0)

4.1.1. NOERROR Extended DNS Error Code 1 - Unsupported DNSKEY Algorithm

 The resolver attempted to perform DNSSEC validation, but a DNSKEY
 RRSET contained only unknown algorithms. The R flag should be set.

4.1.2. NOERROR Extended DNS Error Code 2 - Unsupported DS Algorithm

 The resolver attempted to perform DNSSEC validation, but a DS RRSET
 contained only unknown algorithms. The R flag should be set.

4.1.3. INFO-CODEs for use with RESPONSE-CODE: NOERROR(3)

4.1.3.1. NOERROR Extended DNS Error Code 3 - Stale Answer

 The resolver was unable to resolve answer within its time limits and
 decided to answer with a previously cached data instead of answering
 with an error. This is typically caused by problems on authoritative
 side, possibly as result of a DoS attack. The R flag should not be
 set, since retrying is likely to create additional load without
 yielding a more fresh answer.

4.1.4. NOERROR Extended DNS Error Code 4 - Forged answer

 For policy reasons (legal obligation, or malware filtering, for
 instance), an answer was forged. The R flag should not be set.

4.1.5. SERVFAIL Extended DNS Error Code 5 - DNSSEC Indeterminate

 The resolver attempted to perform DNSSEC validation, but validation
 ended in the Indeterminate state. The R flag should not be set.

4.2. INFO-CODEs for use with RESPONSE-CODE: SERVFAIL(2)

4.2.1. SERVFAIL Extended DNS Error Code 1 - DNSSEC Bogus

 The resolver attempted to perform DNSSEC validation, but validation
 ended in the Bogus state. The R flag should not be set.

4.2.2. SERVFAIL Extended DNS Error Code 2 - Signature Expired

 The resolver attempted to perform DNSSEC validation, a signature in
 the validation chain was expired. The R flag should not be set.

4.2.3. SERVFAIL Extended DNS Error Code 3 - Signature Not Yet Valid

 The resolver attempted to perform DNSSEC validation, but the
 signatures received were not yet valid. The R flag should not be
 set.

4.2.4. SERVFAIL Extended DNS Error Code 4 - DNSKEY missing

 A DS record existed at a parent, but no supported matching DNSKEY
 record could be found for the child. The R flag should not be set.

4.2.5. SERVFAIL Extended DNS Error Code 5 - RRSIGs missing

 The resolver attempted to perform DNSSEC validation, but no RRSIGs
 could be found for at least one RRset where RRSIGs were expected.

4.2.6. SERVFAIL Extended DNS Error Code 6 - No Zone Key Bit Set

 The resolver attempted to perform DNSSEC validation, but no Zone Key
 Bit was set in a DNSKEY.

4.2.7. SERVFAIL Extended DNS Error Code 7 - No Reachable Authority

 The resolver could not reach any of the authoritative name servers
 (or they refused to reply). The R flag should be set.

4.2.8. SERVFAIL Extended DNS Error Code 8 - NSEC Missing

 The resolver attempted to perform DNSSEC validation, but the
 requested data was missing and a covering NSEC or NSEC3 was not
 provided. The R flag should be set.

4.2.9. SERVFAIL Extended DNS Error Code 9 - Cached Error

 The resolver has cached SERVFAIL for this query without additional
 information. Th R flag should be set.

4.2.10. SERVFAIL Extended DNS Error Code 10 - Not Ready

 The server is unable to answer the query as it is not fully up and
 functional yet.

4.3. INFO-CODEs for use with RESPONSE-CODE: NOTIMP(4)

4.3.1. NOTIMP Extended DNS Error Code 1 - Deprecated

 The requested operation or query is not supported as its use has been
 deprecated. Implementations should not set the R flag. (Retrying
 request elsewhere is unlikely to yield any other results.)

4.4. INFO-CODEs for use with RESPONSE-CODE: REFUSED(5)

4.4.1. REFUSED Extended DNS Error Code 1 - Lame

 An authoritative server that receives a query (with the RD bit clear)
 for a domain for which it is not authoritative SHOULD include this
 EDE code in the SERVFAIL response. A resolver that receives a query
 (with the RD bit clear) SHOULD include this EDE code in the REFUSED
 response. Implementations should set the R flag in this case
 (another nameserver or resolver might not be lame).

4.4.2. REFUSED Extended DNS Error Code 2 - Prohibited

 An authoritative or recursive resolver that receives a query from an
 "unauthorized" client can annotate its REFUSED message with this
 code. Examples of "unauthorized" clients are recursive queries from
 IP addresses outside the network, blacklisted IP addresses, local
 policy, etc.

 Implementations SHOULD allow operators to define what to set the R
 flag to in this case.

4.5. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)

4.5.1. NXDOMAIN Extended DNS Error Code 1 - Blocked

 The resolver attempted to perfom a DNS query but the domain is
 blacklisted due to a security policy implemented on the server being
 directly talked to. The R flag should be set.

4.6. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)

4.6.1. NXDOMAIN Extended DNS Error Code 2 - Censored

 The resolver attempted to perfom a DNS query but the domain was
 blacklisted by a security policy imposed upon the server being talked
 to. Note that how the imposed policy is applied is irrelevant (in-
 band DNS somehow, court order, etc). The R flag should be set.

4.7. INFO-CODEs for use with RESPONSE-CODE: NXDOMAIN(3)

4.7.1. NXDOMAIN Extended DNS Error Code 3 - Stale Answer

 The resolver was unable to resolve answer within its time limits and
 decided to answer with a previously cached NXDOMAIN answer instead of
 answering with an error. This is typically caused by problems on
 authoritative side, possibly as result of a DoS attack. The R flag
 should not be set, since retrying is likely to create additional load
 without yielding a more fresh answer.

5. IANA Considerations

5.1. A New Extended Error Code EDNS Option

 This document defines a new EDNS(0) option, entitled "Extended DNS
 Error", assigned a value of TBD1 from the "DNS EDNS0 Option Codes
 (OPT)" registry [to be removed upon publication:
 [http://www.iana.org/assignments/dns-parameters/dns-
 parameters.xhtml#dns-parameters-11]

Value Name Status Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 TBD Extended DNS Error TBD [This document]

5.2. New Double-Index Registry Table for Extended Error Codes

 This document defines a new double-index IANA registry table, where
 the first index value is the RCODE value and the second index value
 is the INFO-CODE from the Extended DNS Error EDNS option defined in
 this document. The IANA is requested to create and maintain this
 "Extended DNS Error codes" registry. The codepoint space for each
 INFO-CODE index is to be broken into 3 ranges:

o 0 ‑ 3583: Specification required.
o 3584 ‑ 3839: First Come First Served.
o 3840 ‑ 4095: Experimental / Private use

 A starting set of entries, based on the contents of this document, is
 as follows:

RESPONSE‑CODE: 0 (NOERROR)
INFO‑CODE: 1
Purpose: Unsupported DNSKEY
Reference: Section 4.1.1

RESPONSE‑CODE: 0 (NOERROR)
INFO‑CODE: 2
Purpose: Unsupported DS Algorithm
Reference: Section 4.1.2

RESPONSE‑CODE: 3 (NOERROR)
INFO‑CODE: 3
Purpose: Answering with stale/cached data
Reference: Section 4.1.3.1

RESPONSE‑CODE: 0 (NOERROR)
INFO‑CODE: 4
Purpose: Forged answer
Reference: Section 4.1.4

RESPONSE‑CODE: 0 (NOERROR)
INFO‑CODE: 5
Purpose: DNSSEC Indeterminate
Reference: Section 4.1.5

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 1
Purpose: DNSSEC Bogus

Reference: Section 4.2.1

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 2
Purpose: Signature Expired
Reference: Section 4.2.2

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 3
Purpose: Signature Not Yet Valid
Reference: Section 4.2.3

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 4
Purpose: DNSKEY missing
Reference: Section 4.2.4

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 5
Purpose: RRSIGs missing
Reference: Section 4.2.5

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 6
Purpose: No Zone Key Bit Set
Reference: Section 4.2.6

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 7
Purpose: No NSEC records could be obtained
Reference: Section 4.2.8

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 9
Purpose: The SERVFAIL error comes from the cache
Reference: Section 4.2.9

RESPONSE‑CODE: 2 (SERVFAIL)
INFO‑CODE: 10
Purpose: Not Ready.
Reference: Section 4.2.10

RESPONSE‑CODE: 3 (NXDOMAIN)
INFO‑CODE: 1
Purpose: Blocked
Reference: Section 4.5.1

RESPONSE‑CODE: 3 (NXDOMAIN)

INFO‑CODE: 2
Purpose: Censored
Reference: Section 4.6.1

RESPONSE‑CODE: 3 (NXDOMAIN)
INFO‑CODE: 3
Purpose: Answering with stale/cached NXDOMAIN data
Reference: Section 4.7.1

RESPONSE‑CODE: 4 (NOTIMP)
INFO‑CODE: 1
Purpose:
Reference: Section 4.4.2

RESPONSE‑CODE: 5 (REFUSED)
INFO‑CODE: 1
Purpose: Lame
Reference: Section 4.4.1

RESPONSE‑CODE: 5 (REFUSED)
INFO‑CODE: 2
Purpose: Prohibited
Reference: Section 4.4.2

6. Security Considerations

 Though DNSSEC continues to be deployed, unfortunately a significant
 number of clients (~11% according to [GeoffValidation]) that receive
 a SERVFAIL from a validating resolver because of a DNSSEC validaion
 issue will simply ask the next (potentially non-validating) resolver
 in their list, and thus don't get any of the protections which DNSSEC
 should provide. This is very similar to a kid asking his mother if
 he can have another cookie. When the mother says "No, it will ruin
 your dinner!", going off and asking his (more permissive) father and
 getting a "Yes, sure, have a cookie!".

 This information is unauthenticated information, and an attacker (e.g
 MITM or malicious recursive server) could insert an extended error
 response into already untrusted data -- ideally clients and resolvers
 would not trust any unauthenticated information, but until we live in
 an era where all DNS answers are authenticated via DNSSEC or other
 mechanisms, there are some tradeoffs. As an example, an attacker who
 is able to insert the DNSSEC Bogus Extended Error into a packet could
 instead simply reply with a fictitious address (A or AAAA) record.
 The R bit hint and extended error information are informational -
 implementations can choose how much to trust this information and
 validating resolvers / stubs may choose to put a different weight on
 it.

7. Acknowledgements

 The authors wish to thank Joe Abley, Mark Andrews, Stephane
 Bortzmeyer, Vladimir Cunat, Peter DeVries, Peter van Dijk, Donald
 Eastlake, Bob Harold, Evan Hunt, Geoff Huston, Shane Kerr, Edward
 Lewis, Carlos M. Martinez, George Michelson, Michael Sheldon, Petr
 Spacek, Ondrej Sury, Loganaden Velvindron, and Paul Vixie. They also
 vaguely remember discussing this with a number of people over the
 years, but have forgotten who all they were -- if you were one of
 them, and are not listed, please let us know and we'll acknowledge
 you.

 I also want to thank the band "Infected Mushroom" for providing a
 good background soundtrack (and to see if I can get away with this!)
 Another author would like to thank the band "Mushroom Infectors".
 This was funny at the time we wrote it, but I cannot remember why...

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013, <https://www.rfc-
 editor.org/info/rfc6891>.

8.2. Informative References

 [GeoffValidation]

 IANA, "A quick review of DNSSEC Validation in today's
 Internet", June 2016, <http://www.potaroo.net/
 presentations/2016-06-27-dnssec.pdf>.

 [RFC2845]
 Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000,
 <https://www.rfc-editor.org/info/rfc2845>.

 [RFC8094]
 Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017, <https://www.rfc-
 editor.org/info/rfc8094>.

Appendix A. Changes / Author Notes.

 [RFC Editor: Please remove this section before publication]

 From -00 to -01:

o Address comments from IETF meeting.
o document copying the response code
o mention zero length fields are ok
o clarify lookup procedure
o mention that table isn't done

 From -03 to -IETF 00:

 o Renamed to draft-ietf-dnsop-extended-error

 From -02 to -03:

 o Added David Lawrence -- I somehow missed that in last version.

 From -00 to -01;

 o Fixed up some of the text, minor clarifications.

Authors' Addresses

Warren Kumari
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043
US

 Email: warren@kumari.net

Evan Hunt
ISC
950 Charter St
Redwood City, CA 94063
US

 Email: each@isc.org

Roy Arends
ICANN

 Email: roy.arends@icann.org

Wes Hardaker
USC/ISI
P.O. Box 382
Davis, CA 95617
US

 Email: ietf@hardakers.net

David C Lawrence
Oracle + Dyn
150 Dow St
Manchester, NH 03101
US

 Email: tale@dd.org

draft-ietf-dnsop-multi-provider-dnssec-01 - Multi Provider DNSSEC models

draft-ietf-dnsop-multi-provider-dnssec-01 - Multi Provider DNSSEC models

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Informational

Expires: September 12, 2019

S. Huque

P. Aras

Salesforce

J. Dickinson

Sinodun

J. Vcelak

NS1

D. Blacka

Verisign

March 11, 2019

Multi Provider DNSSEC models

draft-ietf-dnsop-multi-provider-dnssec-01

Abstract

 Many enterprises today employ the service of multiple DNS providers
 to distribute their authoritative DNS service. Deploying DNSSEC in
 such an environment may present some challenges depending on the
 configuration and feature set in use. This document will present
 several deployment models that may be suitable.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction and Motivation

	2. Deployment Models
	 2.1. Multiple Signer models
	 2.1.1. Model 1: Common KSK, Unique ZSK per provider

	 2.1.2. Model 2: Unique KSK and ZSK per provider

	3. Validating Resolver Behavior

	4. Signing Algorithm Considerations

	5. Authenticated Denial Considerations
	 5.1. Single Method

	 5.2. Mixing Methods

	6. Key Rollover Considerations
	 6.1. Model 1: Common KSK, Unique ZSK per provider

	 6.2. Model 2: Unique KSK and ZSK per provider

	7. Inter Provider Handoff

	8. Key Management Mechanism Requirements

	9. IANA Considerations

	10. Security Considerations

	11. Acknowledgments

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Authors' Addresses

1. Introduction and Motivation

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH BEFORE PUBLISHING:
 The source for this draft is maintained in GitHub at:
 https://github.com/shuque/multi-provider-dnssec

 Many enterprises today employ the service of multiple DNS providers
 to distribute their authoritative DNS service. This allows the DNS
 service to survive a complete failure of any single provider.
 Additionally, enterprises or providers occasionally have requirements
 that preclude standard zone transfer techniques [RFC1995] [RFC5936] :
 either non-standardized DNS features are in use that are incompatible
 with zone transfer, or operationally a provider must be able to
 (re)sign DNS records using their own keys. This document outlines
 some possible models of DNSSEC [RFC4033] [RFC4034] [RFC4035]
 deployment in such an environment.

2. Deployment Models

 If a zone owner is able to use standard zone transfer techniques,
 then the presence of multiple providers does not present any need to
 substantially modify normal deployment models. In these deployments
 there is a single signing entity (which may be the zone owner, one of
 the providers, or a separate entity), while the providers act as
 secondary authoritative servers for the zone.

 Occasionally, however, standard zone transfer techniques cannot be
 used. This could be due to the use of non-standard DNS features, or
 due to operational requirements of a given provider (e.g., a provider
 that only supports "online signing".) In these scenarios, the
 multiple providers each act like primary servers, independently
 signing data received from the zone owner and serving it to DNS
 queriers. This configuration presents some novel challenges and
 requirements.

2.1. Multiple Signer models

 In this category of models, multiple providers each independently
 sign and serve the same zone. The zone owner typically uses
 provider-specific APIs to update zone content at each of the
 providers, and relies on the provider to perform signing of the data.
 A key requirement here is to manage the contents of the DNSKEY and DS
 RRset in such a way that validating resolvers always have a viable
 path to authenticate the DNSSEC signature chain no matter which
 provider is queried. This requirement is achieved by having each
 provider import the public Zone Signing Keys (ZSKs) of all other
 providers into their DNSKEY RRsets.

 These models can support DNSSEC even for the non-standard features
 mentioned previously, if the DNS providers have the capability of
 signing the response data generated by those features. Since these
 responses are often generated dynamically at query time, one method
 is for the provider to perform online signing (also known as on-the-
 fly signing). However, another possible approach is to pre-compute
 all the possible response sets and associated signatures and then
 algorithmically determine at query time which response set needs to
 be returned.

 In the models presented, the function of coordinating the DNSKEY or
 DS RRset does not involve the providers communicating directly with
 each other. Feedback from several commercial managed DNS providers
 indicates that they may be unlikely to directly communicate since
 they typically have a contractual relationship only with the zone
 owner. However, if the parties involved are agreeable, it may be
 possible to devise a protocol mechanism by which the providers
 directly communicate to share keys.

 The following descriptions consider the case of two DNS providers,
 but the model is generalizable to any number.

2.1.1. Model 1: Common KSK, Unique ZSK per provider

 o Zone owner holds the KSK, manages the DS record, and is
 responsible for signing the DNSKEY RRset and distributing the
 signed DNSKEY RRset to the providers.

 o Each provider has their own ZSK which is used to sign data.

 o Providers have an API that owner uses to query the ZSK public key,
 and insert a combined DNSKEY RRset that includes both ZSKs and the
 KSK, signed by the KSK.

 o Note that even if the contents of the DNSKEY RRset don't change,
 the Zone owner of course needs to periodically re-sign it as
 signature expiration approaches. The provider API is also used to
 thus periodically redistribute the refreshed DNSKEY RRset.

 o Key rollovers need coordinated participation of the zone owner to
 update the DNSKEY RRset (for KSK or ZSK), and the DS RRset (for
 KSK).

2.1.2. Model 2: Unique KSK and ZSK per provider

 o Each provider has their own KSK and ZSK.

 o Each provider offers an API that the Zone Owner uses to import the
 ZSK of the other provider into their DNSKEY RRset.

 o DNSKEY RRset is signed independently by each provider using their
 own KSK.

 o Zone Owner manages the DS RRset that includes both KSKs.

 o Key rollovers need coordinated participation of the zone owner to
 update the DS RRset (for KSK), and the DNSKEY RRset (for ZSK).

3. Validating Resolver Behavior

 The central requirement for both of the Multiple Signer models
 (Section 2.1) is to ensure that the ZSKs from all providers are
 present in each provider's apex DNSKEY RRset, and is vouched for by
 either the single KSK (in model 1) or each provider's KSK (in model
 2.) If this is not done, the following situation can arise (assuming
 two providers A and B):

 o The validating resolver follows a referral (delegation) to the
 zone in question.

 o It retrieves the zone's DNSKEY RRset from one of provider A's
 nameservers.

 o At some point in time, the resolver attempts to resolve a name in
 the zone, while the DNSKEY RRset received from provider A is still
 viable in its cache.

 o It queries one of provider B's nameservers to resolve the name,
 and obtains a response that is signed by provider B's ZSK, which
 it cannot authenticate because this ZSK is not present in its
 cached DNSKEY RRset for the zone that it received from provider A.

 o The resolver will not accept this response. It may still be able
 to ultimately authenticate the name by querying other nameservers
 for the zone until it elicits a response from one of provider A's
 nameservers. But it has incurred the penalty of additional
 roundtrips with other nameservers, with the corresponding latency
 and processing costs. The exact number of additional roundtrips
 depends on details of the resolver's nameserver selection
 algorithm and the number of nameservers configured at provider B.

 o It may also be the case that a resolver is unable to provide an
 authenticated response because it gave up after a certain number
 of retries or a certain amount of delay. Or that downstream
 clients of the resolver that originated the query timed out
 waiting for a response.

 Zone owners will want to deploy a DNS service that responds as
 efficiently as possible with validatable answers only, and hence it
 is important that the DNSKEY RRset at each provider is maintained
 with the active ZSKs of all participating providers. This ensures
 that resolvers can validate a response no matter which provider's
 nameservers it came from.

 Details of how the DNSKEY RRset itself is validated differs. In
 model 1 (Section 2.1.1), one unique KSK managed by the Zone Owner
 signs an identical DNSKEY RRset deployed at each provider, and the
 signed DS record in the parent zone refers to this KSK. In model 2
 (Section 2.1.2), each provider has a distinct KSK and signs the
 DNSKEY RRset with it. The Zone Owner deploys a DS RRset at the
 parent zone that contains multiple DS records, each referring to a
 distinct provider's KSK. Hence it does not matter which provider's
 nameservers the resolver obtains the DNSKEY RRset from, the signed DS
 record in each model can authenticate the associated KSK.

4. Signing Algorithm Considerations

 It is RECOMMENDED that the providers use a common signing algorithm
 (and common keysizes for algorithms that support variable key sizes).
 This ensures that the multiple providers have identical security
 postures and no provider is more vulnerable to cryptanalytic attack
 than the others.

 It may however be possible to deploy a configuration where different
 providers use different signing algorithms. The main impediment is
 that current DNSSEC specifications require that if there are multiple
 algorithms in the DNSKEY RRset, then RRsets in the zone need to be
 signed with at least one DNSKEY of each algorithm, as described in
 RFC 4035 [RFC4035], Section 2.2. However RFC 6781 [RFC6781],
 Section 4.1.4, also describes both a conservative and liberal
 interpretation of this requirement. When validating DNS resolvers
 follow the liberal approach, they do not expect that zone RRsets are
 signed by every signing algorithm in the DNSKEY RRset, and responses
 with single algorithm signatures can be validated corectly assuming a
 valid chain of trust exists. In fact, testing by the .BR Top Level
 domain for their recent algorithm rollover [BR-ROLLOVER],
 demonstrates that the liberal approach does in fact work with current
 resolvers deployed on the Internet.

5. Authenticated Denial Considerations

 Authentiated denial of existence enables a resolver to validate that
 a record does not exist. For this purpose, an authoritative server
 presents, in a response to the resolver, NSEC (Section 3.1.3 of
 [RFC4035]) or NSEC3 (Section 7.2 of [RFC5155]) records. The NSEC3
 method enhances NSEC by providing opt-out for signing insecure
 delegations and also adds limited protection against zone enumeration
 attacks.

 An authoritative server response carrying records for authenticated
 denial is always self-contained and the receiving resolver doesn't
 need to send additional queries to complete the denial proof data.
 For this reason, no rollover is needed when switching between NSEC
 and NSEC3 for a signed zone.

 Since authenticated denial responses are self-contained, NSEC and
 NSEC3 can be used by different providers to serve the same zone.
 Doing so however defeats the protection against zone enumeration
 provided by NSEC3. A better configuration involves multiple
 providers using different authenticated denial of existence
 mechanisms that all provide zone enumeration defense, such as pre-
 computed NSEC3, NSEC3 White Lies [RFC7129], NSEC Black Lies
 [BLACKLIES], etc. Note however that having multiple providers
 offering different authenticated denial mechanisms may impact how
 effectively resolvers are able to make use of the caching of negative
 responses.

5.1. Single Method

 Usually, the NSEC and NSEC3 methods are used exclusively (i.e. the
 methods are not used at the same time by different servers). This
 configuration is prefered because the behavior is well-defined and
 it's closest to the current operational practice.

5.2. Mixing Methods

 Compliant resolvers should be able to validate zone data when
 different authoritative servers for the same zone respond with
 different authentiated denial methods because this is normally
 observed when NSEC and NSEC3 are being switched or when NSEC3PARAM is
 updated.

 Resolver software may be however designed to handle a single
 transition between two authenticated denial configurations more
 optimally than permanent setup with mixed authenticated denial
 methods. This could make caching on the resolver side less efficient
 and the authoritative servers may observe higher number of queries.
 This aspect should be considered especially in context of Aggresive
 Use of DNSSEC-Validated Cache [RFC8198].

 In case all providers cannot be configured for a matching
 authentiated denial, it is advised to find lowest number of possible
 configurations possible across all used providers.

 Note that NSEC3 configuration on all providers with different
 NSEC3PARAM values is considered a mixed setup.

6. Key Rollover Considerations

 The Multiple Signer (Section 2.1) models introduce some new
 requirements for DNSSEC key rollovers. Since this process
 necessarily involves coordinated actions on the part of providers and
 the Zone Owner, one reasonable strategy is for the Zone Owner to
 initiate key rollover operations. But other operationally plausible
 models may also suit, such as a DNS provider initiating a key
 rollover and signaling their intent to the Zone Owner in some manner.
 The descriptions in this section assume that KSK rollovers employ the
 commonly used Double Signature KSK Rollover Method, and that ZSK
 rollovers employ the Pre-Publish ZSK Rollover Method, as described in
 detail in [RFC6781]. With minor modifications, they can also be
 easily adapted to other models, such as Double DS KSK Rollover or
 Double Signature ZSK rollover, if desired.

6.1. Model 1: Common KSK, Unique ZSK per provider

 o Key Signing Key Rollover: In this model, the two managed DNS
 providers share a common KSK which is held by the Zone Owner. To
 initiate the rollover, the Zone Owner generates a new KSK and
 obtains the DNSKEY RRset of each DNS provider using their
 respective APIs. The new KSK is added to each provider's DNSKEY
 RRset and the RRset is re-signed with both the new and the old
 KSK. This new DNSKEY RRset is then transferred to each provider.
 The Zone Owner then updates the DS RRset in the parent zone to
 point to the new KSK, and after the necessary DS record TTL period
 has expired, proceeds with updating the DNSKEY RRSet to remove the
 old KSK.

 o Zone Signing Key Rollover: In this model, each DNS provider has
 separate Zone Signing Keys. Each provider can choose to roll
 their ZSK independently by co-ordinating with the Zone Owner.
 Provider A would generate a new ZSK and communicate their intent
 to perform a rollover (note that Provider A cannot immediately
 insert this new ZSK into their DNSKEY RRset because the RRset has
 to be signed by the Zone Owner). The Zone Owner obtains the new
 ZSK from Provider A. It then obtains the current DNSKEY RRset
 from each provider (including Provider A), inserts the new ZSK
 into each DNSKEY RRset, re-signs the DNSKEY RRset, and sends it
 back to each provider for deployment via their respective key
 management APIs. Once the necessary time period is elapsed (i.e.
 all zone data has been re-signed by the new ZSK and propagated to
 all authoritative servers for the zone, plus the maximum zone TTL
 value of any of the data in the zone signed by the old ZSK),
 Provider A and the zone owner can initiate the next phase of
 removing the old ZSK.

6.2. Model 2: Unique KSK and ZSK per provider

 o Key Signing Key Rollover: In Model 2, each managed DNS provider
 has their own KSK. A KSK roll for provider A does not require any
 change in the DNSKEY RRset of provider B, but does require co-
 ordination with the Zone Owner in order to get the DS record set
 in the parent zone updated. The KSK roll starts with Provider A
 generating a new KSK and including it in their DNSKEY RRSet. The
 DNSKey RRset would then be signed by both the new and old KSK.

 The new KSK is communicated to the Zone Owner, after which the
 Zone Owner updates the DS RRset to replace the DS record for the
 old KSK with a DS record for the new KSK. After the necessary DS
 RRset TTL period has elapsed, the old KSK can be removed from
 provider A's DNSKEY RRset.

 o Zone Signing Key Rollover: In Model 2, each managed DNS provider
 has their own ZSK. The ZSK roll for provider A would start with
 them generating new ZSK and including it in their DNSKEY RRset and
 re-signing the new DNSKEY RRset with their KSK. The new ZSK of
 provider A would then be communicated to the Zone Owner, who will
 initiate the process of importing this ZSK into the DNSKEY RRsets
 of the other providers, using their respective APIs. Once the
 necessary Pre-Publish key rollover time periods have elapsed,
 provider A and the Zone Owner can initiate the process of removing
 the old ZSK from the DNSKEY RRset of all providers.

7. Inter Provider Handoff

 The primary use case for the models presented in this draft are for
 steady state operation of multiple concurrent signing providers. But
 they can also be leveraged in a fairly straightforward manner to
 perform non-disruptive transfer of a signed DNS domain from one
 provider to another. This involves initially bringing the new
 provider into a multi-provider configuration, and then at a later
 time detaching the old provider. [TBD: flesh out this use case in
 more detail.]

8. Key Management Mechanism Requirements

 Managed DNS providers often have their own proprietary zone
 configuration and data management APIs, typically utilizing HTTPS/
 REST interfaces. So, rather than outlining a new API for key
 management here, we describe the specific functions that the provider
 API needs to support in order to enable the multi-signer models. The
 Zone owner is expected to use these API functions to perform key
 management tasks. Other mechanisms that can offer these functions,
 if supported by the providers, include the DNS UPDATE protocol
 [RFC2136] and EPP [RFC5731].

 o The API must offer a way to query the current DNSKEY RRset of the
 provider

 o For model 1, the API must offer a way to import a signed DNSKEY
 RRset and replace the current one at the provider.

 o For model 2, the API must offer a way to import a DNSKEY record
 from an external provider into the current DNSKEY RRset

 In model 2, once initially bootstrapped with each others zone signing
 keys via these API mechanisms, providers could, if desired,
 periodically query each others DNSKEY RRsets and automatically import
 or withdraw ZSKs in the keyset as key rollover events happen.

9. IANA Considerations

 This document includes no request to IANA.

10. Security Considerations

 The Zone key import APIs required by these models need to be strongly
 authenticated to prevent tampering of key material by malicious third
 parties. Many providers today offer REST/HTTPS APIs that utilize a
 number of authentication mechanisms (username/password, API keys
 etc). If DNS protocol mechanisms like UPDATE are being used for key
 insertion and deletion, they should similarly be strongly
 authenticated, e.g. by employing Transaction Signatures (TSIG)
 [RFC2845].

11. Acknowledgments

 The initial version of this document benefited from discussions with
 and review from Duane Wessels. Additional helpful comments were
 provided by Steve Crocker, Ulrich Wisser, Tony Finch, and Olafur
 Gudmundsson.

12. References

12.1. Normative References

 [RFC2136]
 Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2845]
 Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000,
 <https://www.rfc-editor.org/info/rfc2845>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5155]
 Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC5731]
 Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Domain Name Mapping", STD 69, RFC 5731,
 DOI 10.17487/RFC5731, August 2009, <https://www.rfc-
 editor.org/info/rfc5731>.

 [RFC6781]
 Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC
 Operational Practices, Version 2", RFC 6781,
 DOI 10.17487/RFC6781, December 2012, <https://www.rfc-
 editor.org/info/rfc6781>.

 [RFC8198]
 Fujiwara, K., Kato, A., and W. Kumari, "Aggressive Use of
 DNSSEC-Validated Cache", RFC 8198, DOI 10.17487/RFC8198,
 July 2017, <https://www.rfc-editor.org/info/rfc8198>.

12.2. Informative References

 [BLACKLIES]

 Valsorda, F. and O. Gudmundsson, "Compact DNSSEC Denial of
 Existence or Black Lies", <https://tools.ietf.org/html/
 draft-valsorda-dnsop-black-lies>.

 [BR-ROLLOVER]

 Neves, F., ".br DNSSEC Algorithm Rollover Update",
 in ICANN 62 DNSSEC Workshop, June 2018,
 <https://static.ptbl.co/static/
 attachments/179548/1529933472.pdf>.

 [RFC1995]
 Ohta, M., "Incremental Zone Transfer in DNS", RFC 1995,
 DOI 10.17487/RFC1995, August 1996, <https://www.rfc-
 editor.org/info/rfc1995>.

 [RFC5936]
 Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol
 (AXFR)", RFC 5936, DOI 10.17487/RFC5936, June 2010,
 <https://www.rfc-editor.org/info/rfc5936>.

 [RFC7129]
 Gieben, R. and W. Mekking, "Authenticated Denial of
 Existence in the DNS", RFC 7129, DOI 10.17487/RFC7129,
 February 2014, <https://www.rfc-editor.org/info/rfc7129>.

Authors' Addresses

Shumon Huque
Salesforce

 Email: shuque@gmail.com

Pallavi Aras
Salesforce

 Email: paras@salesforce.com

John Dickinson
Sinodun

 Email: jad@sinodun.com

Jan Vcelak
NS1

 Email: jvcelak@ns1.com

David Blacka
Verisign

 Email: davidb@verisign.com

draft-ietf-dnsop-no-response-issue-13 - A Common Operational Problem in DNS Servers - Failure To Communicate.

draft-ietf-dnsop-no-response-issue-13 - A Common Operational Problem in DNS Serv

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Best Current Practice

Expires: August 29, 2019

M. Andrews

R. Bellis

ISC

February 25, 2019

A Common Operational Problem in DNS Servers - Failure To Communicate.

draft-ietf-dnsop-no-response-issue-13

Abstract

 The DNS is a query / response protocol. Failing to respond to
 queries, or responding incorrectly, causes both immediate operational
 problems and long term problems with protocol development.

 This document identifies a number of common kinds of queries to which
 some servers either fail to respond or else respond incorrectly.
 This document also suggests procedures for TLD and other zone
 operators to apply to mitigate the problem.

 The document does not look at the DNS data itself, just the structure
 of the responses.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Consequences

	3. Common queries kinds that result in no or bad responses
	 3.1. Basic DNS Queries
	 3.1.1. Zone Existence

	 3.1.2. Unknown / Unsupported Type Queries

	 3.1.3. DNS Flags

	 3.1.4. Unknown DNS opcodes

	 3.1.5. TCP Queries

	 3.2. EDNS Queries
	 3.2.1. EDNS Queries - Version Independent

	 3.2.2. EDNS Queries - Version Specific

	 3.2.3. EDNS Options

	 3.2.4. EDNS Flags

	 3.2.5. Truncated EDNS Responses

	 3.2.6. DO=1 Handling

	 3.2.7. EDNS over TCP

	4. Firewalls and Load Balancers

	5. Scrubbing Services

	6. Whole Answer Caches

	7. Response Code Selection

	8. Testing
	 8.1. Testing - Basic DNS
	 8.1.1. Is The Server Configured For The Zone?

	 8.1.2. Testing Unknown Types

	 8.1.3. Testing Header Bits

	 8.1.4. Testing Unknown Opcodes

	 8.1.5. Testing TCP

	 8.2. Testing - Extended DNS
	 8.2.1. Testing Minimal EDNS

	 8.2.2. Testing EDNS Version Negotiation

	 8.2.3. Testing Unknown EDNS Options

	 8.2.4. Testing Unknown EDNS Flags

	 8.2.5. Testing EDNS Version Negotiation With Unknown EDNS Flags

	 8.2.6. Testing EDNS Version Negotiation With Unknown EDNS Options

	 8.2.7. Testing Truncated Responses

	 8.2.8. Testing DO=1 Handling

	 8.2.9. Testing EDNS Version Negotiation With DO=1

	 8.2.10. Testing With Multiple Defined EDNS Options

	 8.3. When EDNS Is Not Supported

	9. Remediation

	10. Security Considerations

	11. IANA Considerations

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Authors' Addresses

1. Introduction

 The DNS [RFC1034], [RFC1035] is a query / response protocol. Failing
 to respond to queries, or responding incorrectly, causes both
 immediate operational problems and long term problems with protocol
 development.

 Failure to respond to a query is indistinguishable from packet loss
 without doing an analysis of query-response patterns. Additionally
 failure to respond results in unnecessary queries being made by DNS
 clients, and introduces delays to the resolution process.

 Due to the inability to distinguish between packet loss and
 nameservers dropping EDNS [RFC6891] queries, packet loss is sometimes
 misclassified as lack of EDNS support which can lead to DNSSEC
 validation failures.

 The existence of servers which fail to respond to queries results in
 developers being hesitant to deploy new standards. Such servers need
 to be identified and remediated.

 The DNS has response codes that cover almost any conceivable query
 response. A nameserver should be able to respond to any conceivable
 query using them. There should be no need to drop queries because a
 nameserver does not understand them.

 Unless a nameserver is under attack, it should respond to all DNS
 requests directed to it. When a nameserver is under attack it may
 wish to drop packets. A common attack is to use a nameserver as an
 amplifier by sending spoofed packets. This is done because response
 packets are bigger than the queries and large amplification factors
 are available especially if EDNS is supported. Limiting the rate of
 responses is reasonable when this is occurring and the client should
 retry. This however only works if legitimate clients are not being
 forced to guess whether EDNS queries are accepted or not. While
 there is still a pool of servers that don't respond to EDNS requests,
 clients have no way to know if the lack of response is due to packet
 loss, or EDNS packets not being supported, or rate limiting due to
 the server being under attack. Misclassification of server behaviour
 is unavoidable when rate limiting is used until the population of
 servers which fail to respond to well-formed queries drops to near
 zero.

 Nameservers should respond to queries even if the queried name is not
 for any name the server is configured to answer for. Misconfigured
 nameservers are a common occurrence in the DNS and receiving queries
 for zones that the server is not configured for is not necessarily an
 indication that the server is under attack. Parent zone operators
 are advised to regularly check that the delegating NS records are
 consistent with those of the delegated zone and to correct them when
 they are not [RFC1034]. Doing this regularly should reduce the
 instances of broken delegations.

 This document does not try to identify all possible errors nor does
 it supply a exhaustive list of tests.

2. Consequences

 Failure to follow the relevant DNS RFCs has multiple adverse
 consequences. Some are caused directly from the non-compliant
 behaviour and others as a result of work-arounds forced on recursive
 servers. Addressing known issues now will reduce future
 interoperability issues as the DNS protocol continues to evolve and
 clients make use of newly-introduced DNS features. In particular the
 base DNS specification [RFC1034], [RFC1035] and the EDNS
 specification [RFC6891], when implemented, need to be followed.

 Some examples of known consequences include:

 o The AD flag bit in a response cannot be trusted to mean anything
 as some servers incorrectly copy the flag bit from the request to
 the response [RFC1035], [RFC4035].

 o Widespread non-response to EDNS queries has lead to recursive
 servers having to assume that EDNS is not supported and that
 fallback to plain DNS is required, potentially causing DNSSEC
 validation failures.

 o Widespread non-response to EDNS options, requires recursive
 servers to have to decide whether to probe to see if it is the
 EDNS option or just EDNS that is causing the non response. In the
 limited amount of time required to resolve a query before the
 client times out this is not possible.

 o Incorrectly returning FORMERR to a EDNS option being present,
 leads to the recursive server not being able to determine if the
 server is just broken in the handling of the EDNS option or
 doesn't support EDNS at all.

 o Mishandling of unknown query types has contributed to the
 abandonment of the transition of the SPF type.

 o Mishandling of unknown query types has slowed up the development
 of DANE and resulted in additional rules being specified to reduce
 the probability of interacting with a broken server when making
 TLSA queries.

 The consequences of servers not following the RFCs will only grow if
 measures are not put in place to remove non compliant servers from
 the ecosystem. Working around issues due to non-compliance with RFCs
 is not sustainable.

 Most (if not all) of these consequences could have been avoided if
 action had been taken to remove non-compliant servers as soon as
 people were aware of them, i.e. to actively seek out broken
 implementations and servers and inform their developers and operators
 that they need to fix their servers.

3. Common queries kinds that result in no or bad responses.

 This section is broken down into Basic DNS requests and EDNS
 requests.

3.1. Basic DNS Queries

3.1.1. Zone Existence

 Initially, to test existence of the zone, an SOA query should be
 made. If the SOA record is not returned but some other response is
 returned, this is an indication of a bad delegation.

3.1.2. Unknown / Unsupported Type Queries

 Identifying servers that fail to respond to unknown or unsupported
 types can be done by making an initial DNS query for an A record,
 making a number of queries for an unallocated type, then making a
 query for an A record again. IANA maintains a registry of allocated
 types.

 If the server responds to the first and last queries but fails to
 respond to the queries for the unallocated type, it is probably
 faulty. The test should be repeated a number of times to eliminate
 the likelihood of a false positive due to packet loss.

3.1.3. DNS Flags

 Some servers fail to respond to DNS queries with various DNS flags
 set, regardless of whether they are defined or still reserved. At
 the time of writing there are servers that fail to respond to queries
 with the AD bit set to 1 and servers that fail to respond to queries
 with the last reserved flag bit set.

3.1.3.1. Recursive Queries

 A non-recursive server is supposed to respond to recursive queries as
 if the RD bit is not set [RFC1034].

3.1.4. Unknown DNS opcodes

 The use of previously undefined opcodes is to be expected. Since the
 DNS was first defined two new opcodes have been added, UPDATE and
 NOTIFY.

 NOTIMP is the expected rcode to an unknown or unimplemented opcode.

 Note: while new opcodes will most probably use the current layout
 structure for the rest of the message there is no requirement that
 anything other than the DNS header match.

3.1.5. TCP Queries

 All DNS servers are supposed to respond to queries over TCP
 [RFC7766]. While firewalls should not block TCP connection attempts
 if they do they should cleanly terminate the connection by sending
 TCP RESET or sending ICMP/ICMPv6 Administratively Prohibited
 messages. Dropping TCP connections introduces excessive delays to
 the resolution process.

 Whether a server accepts TCP connections can be tested by first
 checking that it responds to UDP queries to confirm that it is up and
 operating, then attempting the same query over TCP. An additional
 query should be made over UDP if the TCP connection attempt fails to
 confirm that the server under test is still operating.

3.2. EDNS Queries

 EDNS queries are specified in [RFC6891].

3.2.1. EDNS Queries - Version Independent

 Identifying servers that fail to respond to EDNS queries can be done
 by first confirming that the server responds to regular DNS queries,
 followed by a series of otherwise identical queries using EDNS, then
 making the original query again. A series of EDNS queries is needed
 as at least one DNS implementation responds to the first EDNS query
 with FORMERR but fails to respond to subsequent queries from the same
 address for a period until a regular DNS query is made. The EDNS
 query should specify a UDP buffer size of 512 bytes to avoid false
 classification of not supporting EDNS due to response packet size.

 If the server responds to the first and last queries but fails to
 respond to most or all of the EDNS queries, it is probably faulty.
 The test should be repeated a number of times to eliminate the
 likelihood of a false positive due to packet loss.

 Firewalls may also block larger EDNS responses but there is no easy
 way to check authoritative servers to see if the firewall is mis-
 configured.

3.2.2. EDNS Queries - Version Specific

 Some servers respond correctly to EDNS version 0 queries but fail to
 respond to EDNS queries with version numbers that are higher than
 zero. Servers should respond with BADVERS to EDNS queries with
 version numbers that they do not support.

 Some servers respond correctly to EDNS version 0 queries but fail to
 set QR=1 when responding to EDNS versions they do not support. Such
 answers are discarded or treated as requests.

3.2.3. EDNS Options

 Some servers fail to respond to EDNS queries with EDNS options set.
 Unknown EDNS options are supposed to be ignored by the server
 [RFC6891], the original EDNS specification left this behaviour
 undefined [RFC2671].

3.2.4. EDNS Flags

 Some servers fail to respond to EDNS queries with EDNS flags set.
 Servers should ignore EDNS flags they do not understand and must not
 add them to the response [RFC6891].

3.2.5. Truncated EDNS Responses

 Some EDNS aware servers fail to include an OPT record when a
 truncated response is sent. An OPT record is supposed to be included
 in a truncated response [RFC6891].

 Some EDNS aware server fail to honour the advertised EDNS buffer size
 and send over-sized responses [RFC6891].

3.2.6. DO=1 Handling

 Some nameservers incorrectly only return an EDNS response when the DO
 bit [RFC3225] is 1 in the query. Additionally some nameservers fail
 to copy the DO bit to the response despite clearly supporting DNSSEC
 by returning an RRSIG records to EDNS queries with DO=1.

3.2.7. EDNS over TCP

 Some EDNS aware servers incorrectly limit the TCP response sizes to
 the advertised UDP response size.

4. Firewalls and Load Balancers

 Firewalls and load balancers can affect the externally visible
 behaviour of a nameserver. Tests for conformance should to be done
 from outside of any firewall so that the system is tested as a whole.

 Firewalls and load balancers should not drop DNS packets that they
 don't understand. They should either pass the packets or generate an
 appropriate error response.

 Requests for unknown query types are normal client behaviour and
 should not be construed as an attack. Nameservers have always been
 expected to be able to handle such queries.

 Requests for unknown query classes are normal client behaviour and
 should not be construed as an attack. Nameservers have always been
 expected to be able to handle such queries.

 Requests with unknown opcodes are normal client behaviour and should
 not be construed as an attack. Nameservers have always been expected
 to be able to handle such queries.

 Requests with unassigned flags set (DNS or EDNS) are expected client
 behaviour and should not be construed as an attack. The behaviour
 for unassigned flags is to ignore them in the request and to not set
 them in the response. Dropping DNS / EDNS packets with unassigned
 flags makes it difficult to deploy extensions that make use of them
 due to the need to reconfigure and update firewalls.

 Requests with unknown EDNS options are expected client behaviour and
 should not be construed as an attack. The correct behaviour for
 unknown EDNS options is to ignore their presence when constructing a
 reply.

 Requests with unknown EDNS versions are expected client behaviour and
 should not be construed as an attack. The correct behaviour for
 unknown EDNS versions is to return BADVERS along with the highest
 EDNS version the server supports. Dropping EDNS packets breaks EDNS
 version negotiation.

 Firewalls should not assume that there will only be a single response
 message to a request. There have been proposals to use EDNS to
 signal that multiple DNS messages be returned rather than a single
 UDP message that is fragmented at the IP layer.

 DNS, and EDNS in particular, are designed to allow clients to be able
 to use new features against older servers without having to validate
 every option. Indiscriminate blocking of messages breaks that
 design.

 However, there may be times when a nameserver mishandles messages
 with a particular flag, EDNS option, EDNS version field, opcode, type
 or class field or combination thereof to the point where the
 integrity of the nameserver is compromised. Firewalls should offer
 the ability to selectively reject messages using an appropriately
 constructed response based on all these fields while awaiting a fix
 from the nameserver vendor.

5. Scrubbing Services

 Scrubbing services can affect the externally visible behaviour of a
 nameserver in a similar way to firewalls. If a operator uses a
 scrubbing service, they should check that legitimate queries are not
 being blocked.

 Scrubbing services, unlike firewalls, are also turned on and off in
 response to denial of service attacks. One needs to take care when
 choosing a scrubbing service.

 Ideally, Operators should run these tests against a scrubbing service
 to ensure that these tests are not seen as attack vectors.

6. Whole Answer Caches

 Whole answer caches take a previously constructed answer and return
 it to a subsequent query for the same question. However, they can
 return the wrong response if they do not take all of the relevant
 attributes of the query into account.

 In addition to the standard tuple of <qname,qtype,qclass> a non-
 exhaustive set of attributes that must be considered include: RD, AD,
 CD, OPT record, DO, EDNS buffer size, EDNS version, EDNS options, and
 transport.

7. Response Code Selection

 Choosing the correct response code when responding to DNS queries is
 important. Response codes should be chosen considering how clients
 will handle them.

 For unimplemented opcodes NOTIMP is the expected response code. For
 example, a new opcode could change the message format by extending
 the header or changing the structure of the records etc.

 For unimplemented type codes, and in the absence of other errors, the
 only valid response is NoError if the qname exists, and NameError
 (NXDOMAIN) otherwise. For Meta-RRs NOTIMP may be returned instead.

 If a zone cannot be loaded because it contains unimplemented type
 codes that are not encoded as unknown record types according to
 [RFC3597] then the expected response is SERVFAIL as the whole zone
 should be rejected Section 5.2 [RFC1035]. If a zone loads then
 Section 4.3.2 [RFC1034] applies.

 If the server supports EDNS and receives a query with an unsupported
 EDNS version, the correct response is BADVERS [RFC6891].

 If the server does not support EDNS at all, FORMERR is the expected
 error code. That said a minimal EDNS server implementation requires
 parsing the OPT records and responding with an empty OPT record in
 the additional section in most cases. There is no need to interpret
 any EDNS options present in the request as unsupported EDNS options
 are expected to be ignored [RFC6891]. Additionally EDNS flags can be
 ignored. The only part of the OPT record that needs to be examined
 is the version field to determine if BADVERS needs to be sent or not.

8. Testing

 Testing is divided into two sections. "Basic DNS", which all servers
 should meet, and "Extended DNS", which should be met by all servers
 that support EDNS (a server is deemed to support EDNS if it gives a
 valid EDNS response to any EDNS query). If a server does not support
 EDNS it should still respond to all the tests.

 These tests query for records at the apex of a zone that the server
 is nominally configured to serve. All tests should use the same
 zone.

 It is advisable to run all of the tests below in parallel so as to
 minimise the delays due to multiple timeouts when the servers do not
 respond. There are 16 queries directed to each nameserver (assuming
 no packet loss) testing different aspects of Basic DNS and Extended
 DNS.

 The tests below use dig from BIND 9.11.0.

8.1. Testing - Basic DNS

 This first set of tests cover basic DNS server behaviour and all
 servers should pass these tests.

8.1.1. Is The Server Configured For The Zone?

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set and without EDNS.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We do not expect
 an OPT record to be returned [RFC6891].

 Verify the server is configured for the zone:

 dig +noedns +noad +norec soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

8.1.2. Testing Unknown Types

 Ask for the TYPE1000 RRset at the configured zone's name. This query
 is made with no DNS flag bits set and without EDNS. TYPE1000 has
 been chosen for this purpose as IANA is unlikely to allocate this
 type in the near future and it is not in a range reserved for private
 use [RFC6895]. Any unallocated type code could be chosen for this
 test.

 We expect no records to be returned in the answer section with the
 rcode set to NOERROR and the AA and QR bits to be set in the
 response; RA may also be set [RFC1034]. We do not expect an OPT
 record to be returned [RFC6891].

 Check that queries for an unknown type work:

 dig +noedns +noad +norec type1000 $zone @$server

expect: status: NOERROR
expect: an empty answer section.
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

8.1.3. Testing Header Bits

8.1.3.1. Testing CD=1 Queries

 Ask for the SOA record of the configured zone. This query is made
 with only the CD DNS flag bit set and all other DNS bits clear and
 without EDNS.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response. We do not expect an OPT record to be returned.

 If the server supports DNSSEC, CD should be set in the response
 [RFC4035] otherwise CD should be clear [RFC1034].

 Check that queries with CD=1 work:

 dig +noedns +noad +norec +cd soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

8.1.3.2. Testing AD=1 Queries

 Ask for the SOA record of the configured zone. This query is made
 with only the AD DNS flag bit set and all other DNS bits clear and
 without EDNS.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response. We do not expect an OPT record to be returned.
 The purpose of this query is to detect blocking of queries with the
 AD bit present, not the specific value of AD in the response.

 Check that queries with AD=1 work:

 dig +noedns +norec +ad soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: the OPT record to NOT be present

 AD use in queries is defined in [RFC6840].

8.1.3.3. Testing Reserved Bit

 Ask for the SOA record of the configured zone. This query is made
 with only the final reserved DNS flag bit set and all other DNS bits
 clear and without EDNS.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may be set. The final reserved bit must not
 be set [RFC1034]. We do not expect an OPT record to be returned
 [RFC6891].

 Check that queries with the last unassigned DNS header flag work and
 that the flag bit is not copied to the response:

 dig +noedns +noad +norec +zflag soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: MBZ to NOT be in the response (see below)
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

 MBZ (Must Be Zero) is a dig-specific indication that the flag bit has
 been incorrectly copied. See Section 4.1.1, [RFC1035] "Z Reserved
 for future use. Must be zero in all queries and responses."

8.1.3.4. Testing Recursive Queries

 Ask for the SOA record of the configured zone. This query is made
 with only the RD DNS flag bit set and without EDNS.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA, QR and RD bits to
 be set in the response; RA may also be set [RFC1034]. We do not
 expect an OPT record to be returned [RFC6891].

 Check that recursive queries work:

 dig +noedns +noad +rec soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: flag: aa to be present
expect: flag: rd to be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

8.1.4. Testing Unknown Opcodes

 Construct a DNS message that consists of only a DNS header with
 opcode set to 15 (currently not allocated), no DNS header bits set
 and empty question, answer, authority and additional sections.
 Check that new opcodes are handled:

 dig +noedns +noad +opcode=15 +norec +header-only @$server

expect: status: NOTIMP
expect: opcode: 15
expect: all sections to be empty
expect: flag: aa to NOT be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

8.1.5. Testing TCP

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set and without EDNS. This query is to be sent
 using TCP.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We do not expect
 an OPT record to be returned [RFC6891].

 Check that TCP queries work:

 dig +noedns +noad +norec +tcp soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: flag: aa to be present
expect: flag: rd to NOT be present
expect: flag: ad to NOT be present
expect: the OPT record to NOT be present

 The requirement that TCP be supported is defined in [RFC7766].

8.2. Testing - Extended DNS

 The next set of tests cover various aspects of EDNS behaviour. If
 any of these tests succeed (indicating at least some EDNS support)
 then all of them should succeed. There are servers that support EDNS
 but fail to handle plain EDNS queries correctly so a plain EDNS query
 is not a good indicator of lack of EDNS support.

8.2.1. Testing Minimal EDNS

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 0 is used without any EDNS
 options or EDNS flags set.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We expect an OPT
 record to be returned. There should be no EDNS flags present in the
 response. The EDNS version field should be 0 and there should be no
 EDNS options present [RFC6891].

 Check that plain EDNS queries work:

 dig +nocookie +edns=0 +noad +norec soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: an OPT record to be present in the additional section
expect: EDNS Version 0 in response
expect: flag: aa to be present
expect: flag: ad to NOT be present

 +nocookie disables sending a EDNS COOKIE option which is otherwise
 enabled by default in BIND 9.11.0 (and later).

8.2.2. Testing EDNS Version Negotiation

 Ask for the SOA record of a zone the server is nominally configured
 to serve. This query is made with no DNS flag bits set. EDNS
 version 1 is used without any EDNS options or EDNS flags set.

 We expect the SOA record for the zone to NOT be returned in the
 answer section with the extended rcode set to BADVERS and the QR bit
 to be set in the response; RA may also be set [RFC1034]. We expect
 an OPT record to be returned. There should be no EDNS flags present
 in the response. The EDNS version field should be 0 in the response
 as no other EDNS version has as yet been specified [RFC6891].

 Check that EDNS version 1 queries work (EDNS supported):

 dig +nocookie +edns=1 +noednsneg +noad +norec soa $zone @$server

expect: status: BADVERS
expect: the SOA record to NOT be present in the answer section
expect: an OPT record to be present in the additional section
expect: EDNS Version 0 in response
expect: flag: aa to NOT be present
expect: flag: ad to NOT be present

 +noednsneg has been set as dig supports EDNS version negotiation and
 we want to see only the response to the initial EDNS version 1 query.

8.2.3. Testing Unknown EDNS Options

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 0 is used without any EDNS
 flags. An EDNS option is present with a value that has not yet been
 assigned by IANA. We have picked an unassigned code of 100 for the
 example below. Any unassigned EDNS option code could have be choose
 for this test.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We expect an OPT
 record to be returned. There should be no EDNS flags present in the
 response. The EDNS version field should be 0 as EDNS versions other
 than 0 are yet to be specified and there should be no EDNS options
 present as unknown EDNS options are supposed to be ignored by the
 server [RFC6891] Section 6.1.2.

 Check that EDNS queries with an unknown option work (EDNS supported):

 dig +nocookie +edns=0 +noad +norec +ednsopt=100 soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: an OPT record to be present in the additional section
expect: OPT=100 to NOT be present
expect: EDNS Version 0 in response
expect: flag: aa to be present
expect: flag: ad to NOT be present

8.2.4. Testing Unknown EDNS Flags

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 0 is used without any EDNS
 options. An unassigned EDNS flag bit is set (0x40 in this case).

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We expect an OPT
 record to be returned. There should be no EDNS flags present in the
 response as unknown EDNS flags are supposed to be ignored. The EDNS
 version field should be 0 and there should be no EDNS options present
 [RFC6891].

 Check that EDNS queries with unknown flags work (EDNS supported):

 dig +nocookie +edns=0 +noad +norec +ednsflags=0x40 soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: an OPT record to be present in the additional section
expect: MBZ not to be present
expect: EDNS Version 0 in response
expect: flag: aa to be present
expect: flag: ad to NOT be present

 MBZ (Must Be Zero) is a dig-specific indication that a flag bit has
 been incorrectly copied as per Section 6.1.4, [RFC6891].

8.2.5. Testing EDNS Version Negotiation With Unknown EDNS Flags

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 1 is used without any EDNS
 options. An unassigned EDNS flag bit is set (0x40 in this case).

 We expect the SOA record for the zone to NOT be returned in the
 answer section with the extended rcode set to BADVERS and the QR bit
 to be set in the response; RA may also be set [RFC1034]. We expect
 an OPT record to be returned. There should be no EDNS flags present
 in the response as unknown EDNS flags are supposed to be ignored.
 The EDNS version field should be 0 as EDNS versions other than 0 are
 yet to be specified and there should be no EDNS options present
 [RFC6891].

 Check that EDNS version 1 queries with unknown flags work (EDNS
 supported):

 dig +nocookie +edns=1 +noednsneg +noad +norec +ednsflags=0x40 soa \

 $zone @$server

expect: status: BADVERS
expect: SOA record to NOT be present
expect: an OPT record to be present in the additional section
expect: MBZ not to be present
expect: EDNS Version 0 in response
expect: flag: aa to NOT be present
expect: flag: ad to NOT be present

8.2.6. Testing EDNS Version Negotiation With Unknown EDNS Options

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 1 is used. An unknown EDNS
 option is present. We have picked an unassigned code of 100 for the
 example below. Any unassigned EDNS option code could be chosen for
 this test.

 We expect the SOA record for the zone to NOT be returned in the
 answer section with the extended rcode set to BADVERS and the QR bit
 to be set in the response; RA may also be set [RFC1034]. We expect
 an OPT record to be returned. There should be no EDNS flags present
 in the response. The EDNS version field should be 0 as EDNS versions
 other than 0 are yet to be specified and there should be no EDNS
 options present [RFC6891].

 Check that EDNS version 1 queries with unknown options work (EDNS
 supported):

 dig +nocookie +edns=1 +noednsneg +noad +norec +ednsopt=100 soa \

 $zone @$server

expect: status: BADVERS
expect: SOA record to NOT be present
expect: an OPT record to be present in the additional section
expect: OPT=100 to NOT be present
expect: EDNS Version 0 in response
expect: flag: aa to NOT be present
expect: flag: ad to NOT be present

8.2.7. Testing Truncated Responses

 Ask for the DNSKEY records of the configured zone, which must be a
 DNSSEC signed zone. This query is made with no DNS flag bits set.
 EDNS version 0 is used without any EDNS options. The only EDNS flag
 set is DO. The EDNS UDP buffer size is set to 512. The intention of
 this query is to elicit a truncated response from the server. Most
 signed DNSKEY responses are bigger than 512 bytes. This test will
 not give a valid result if the zone is not signed.

 We expect a response with the rcode set to NOERROR and the AA and QR
 bits to be set, AD may be set in the response if the server supports
 DNSSEC otherwise it should be clear; TC and RA may also be set
 [RFC1035] [RFC4035]. We expect an OPT record to be present in the
 response. There should be no EDNS flags other than DO present in the
 response. The EDNS version field should be 0 and there should be no
 EDNS options present [RFC6891].

 If TC is not set it is not possible to confirm that the server
 correctly adds the OPT record to the truncated responses or not.

dig +norec +dnssec +bufsize=512 +ignore dnskey $zone @$server
expect: NOERROR
expect: OPT record with version set to 0

8.2.8. Testing DO=1 Handling

 Ask for the SOA record of the configured zone, which does not need to
 be DNSSEC signed. This query is made with no DNS flag bits set.
 EDNS version 0 is used without any EDNS options. The only EDNS flag
 set is DO.

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response, AD may be set in the response if the server
 supports DNSSEC otherwise it should be clear; RA may also be set
 [RFC1034]. We expect an OPT record to be returned. There should be
 no EDNS flags other than DO present in the response which should be
 present if the server supports DNSSEC. The EDNS version field should
 be 0 and there should be no EDNS options present [RFC6891].

 Check that DO=1 queries work (EDNS supported):

 dig +nocookie +edns=0 +noad +norec +dnssec soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: an OPT record to be present in the additional section
expect: DO=1 to be present if a RRSIG is in the response
expect: EDNS Version 0 in response
expect: flag: aa to be present

8.2.9. Testing EDNS Version Negotiation With DO=1

 Ask for the SOA record of the configured zone, which does not need to
 be DNSSEC signed. This query is made with no DNS flag bits set.
 EDNS version 1 is used without any EDNS options. The only EDNS flag
 set is DO.

 We expect the SOA record for the zone to NOT be returned in the
 answer section with the rcode set to BADVERS; the QR bit and possibly
 the RA bit to be set [RFC1034]. We expect an OPT record to be
 returned. There should be no EDNS flags other than DO present in the
 response which should be there if the server supports DNSSEC. The
 EDNS version field should be 0 and there should be no EDNS options
 present [RFC6891].

 Check that EDNS version 1, DO=1 queries work (EDNS supported):

 dig +nocookie +edns=1 +noednsneg +noad +norec +dnssec soa \

 $zone @$server

expect: status: BADVERS
expect: SOA record to NOT be present
expect: an OPT record to be present in the additional section
expect: DO=1 to be present if the EDNS version 0 DNSSEC query test
 returned DO=1
expect: EDNS Version 0 in response
expect: flag: aa to NOT be present

8.2.10. Testing With Multiple Defined EDNS Options

 Ask for the SOA record of the configured zone. This query is made
 with no DNS flag bits set. EDNS version 0 is used. A number of
 defined EDNS options are present (NSID [RFC5001], DNS COOKIE
 [RFC7873], EDNS Client Subnet [RFC7871] and EDNS Expire [RFC7314]).

 We expect the SOA record for the zone to be returned in the answer
 section with the rcode set to NOERROR and the AA and QR bits to be
 set in the response; RA may also be set [RFC1034]. We expect an OPT
 record to be returned. There should be no EDNS flags present in the
 response. The EDNS version field should be 0. Any of the requested
 EDNS options supported by the server and permitted server
 configuration may be returned [RFC6891].

 Check that EDNS queries with multiple defined EDNS options work:

 dig +edns=0 +noad +norec +cookie +nsid +expire +subnet=0.0.0.0/0 \

 soa $zone @$server

expect: status: NOERROR
expect: the SOA record to be present in the answer section
expect: an OPT record to be present in the additional section
expect: EDNS Version 0 in response
expect: flag: aa to be present
expect: flag: ad to NOT be present

8.3. When EDNS Is Not Supported

 If EDNS is not supported by the nameserver, we expect a response to
 each of the above queries. That response may be a FORMERR error
 response or the OPT record may just be ignored.

 Some nameservers only return a EDNS response when a particular EDNS
 option or flag (e.g. DO=1) is present in the request. This
 behaviour is not compliant behaviour and may hide other incorrect
 behaviour from the above tests. Re-testing with the triggering
 option / flag present will expose this misbehaviour.

9. Remediation

 Name server operators are generally expected to test their own
 infrastructure for compliance to standards. The above tests should
 be run when new systems are brought online, and should be repeated
 periodically to ensure continued interoperability.

 Domain registrants who do not maintain their own DNS infrastructure
 are entitled to a DNS service that conforms to standards and
 interoperates well. Registrants who become aware that their DNS
 operator does not have a well maintained or compliant infrastructure
 should insist that their service provider correct issues, and switch
 providers if they do not.

 In the event that an operator experiences problems due to the
 behaviour of name servers outside their control, the above tests will
 help in narrowing down the precise issue(s) which can then be
 reported to the relevant party.

 If contact information for the operator of a misbehaving name server
 is not already known, the following methods of communication could be
 considered:

 o the RNAME of the zone authoritative for the name of the
 misbehaving server

 o the RNAME of zones for which the offending server is authoritative

o administrative or technical contacts listed in the registration
 information for the parent domain of the name of the misbehaving
 server, or for zones for which the name server is authoritative

 o the registrar or registry for such zones

 o DNS-specific operational fora (e.g. mailing lists)

 Operators of parent zones may wish to regularly test the
 authoritative name servers of their child zones. However, parent
 operators can have widely varying capabilities in terms of
 notification or remediation depending on whether they have a direct
 relationship with the child operator. Many TLD registries, for
 example, cannot directly contact their registrants and may instead
 need to communicate through the relevant registrar. In such cases
 it may be most efficient for registrars to take on the responsibility
 for testing the name servers of their registrants, since they have a
 direct relationship.

 When notification is not effective at correcting problems with a
 misbehaving name server, parent operators can choose to remove NS
 record sets (and glue records below) that refer to the faulty server
 until the servers are fixed. This should only be done as a last
 resort and with due consideration, as removal of a delegation can
 have unanticipated side effects. For example, other parts of the DNS
 tree may depend on names below the removed zone cut, and the parent
 operator may find themselves responsible for causing new DNS failures
 to occur.

10. Security Considerations

 Testing protocol compliance can potentially result in false reports
 of attempts to break services from Intrusion Detection Services and
 firewalls. All of the tests are well-formed (though not necessarily
 common) DNS queries. None the tests listed above should cause any
 harm to a protocol-compliant server.

 Relaxing firewall settings to ensure EDNS compliance could
 potentially expose a critical implementation flaw in the nameserver.
 Nameservers should be tested for conformance before relaxing firewall
 settings.

 When removing delegations for non-compliant servers there can be a
 knock on effect on other zones that require these zones to be
 operational for the nameservers addresses to be resolved.

11. IANA Considerations

 There are no actions for IANA.

12. References

12.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC3225]
 Conrad, D., "Indicating Resolver Support of DNSSEC",
 RFC 3225, DOI 10.17487/RFC3225, December 2001,
 <https://www.rfc-editor.org/info/rfc3225>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC6840]
 Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and
 Implementation Notes for DNS Security (DNSSEC)", RFC 6840,
 DOI 10.17487/RFC6840, February 2013,
 <https://www.rfc-editor.org/info/rfc6840>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC6895]
 Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,
 April 2013, <https://www.rfc-editor.org/info/rfc6895>.

 [RFC7766]
 Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

12.2. Informative References

 [RFC2671]
 Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
 RFC 2671, DOI 10.17487/RFC2671, August 1999,
 <https://www.rfc-editor.org/info/rfc2671>.

 [RFC3597]
 Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC5001]
 Austein, R., "DNS Name Server Identifier (NSID) Option",
 RFC 5001, DOI 10.17487/RFC5001, August 2007,
 <https://www.rfc-editor.org/info/rfc5001>.

 [RFC7314]
 Andrews, M., "Extension Mechanisms for DNS (EDNS) EXPIRE
 Option", RFC 7314, DOI 10.17487/RFC7314, July 2014,
 <https://www.rfc-editor.org/info/rfc7314>.

 [RFC7871]
 Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <https://www.rfc-editor.org/info/rfc7871>.

 [RFC7873]
 Eastlake 3rd, D. and M. Andrews, "Domain Name System (DNS)
 Cookies", RFC 7873, DOI 10.17487/RFC7873, May 2016,
 <https://www.rfc-editor.org/info/rfc7873>.

Authors' Addresses

M. Andrews
Internet Systems Consortium
950 Charter Street
Redwood City, CA 94063
US

 Email: marka@isc.org

Ray Bellis
Internet Systems Consortium
950 Charter Street
Redwood City, CA 94063
US

 Email: ray@isc.org

draft-ietf-dnsop-rfc2845bis-03 - Secret Key Transaction Authentication for DNS (TSIG)

draft-ietf-dnsop-rfc2845bis-03 - Secret Key Transaction Authentication for DNS (

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Obsoletes: 2845, 4635 (if approved)

Intended status: Standards Track

Expires: September 8, 2019

F. Dupont

S. Morris

ISC

P. Vixie

Farsight

D. Eastlake 3rd

Huawei

O. Gudmundsson

CloudFlare

B. Wellington

Akamai

March 7, 2019

Secret Key Transaction Authentication for DNS (TSIG)

draft-ietf-dnsop-rfc2845bis-03

Abstract

 This document describes a protocol for transaction level
 authentication using shared secrets and one way hashing. It can be
 used to authenticate dynamic updates as coming from an approved
 client, or to authenticate responses as coming from an approved name
 server.

 No recommendation is made here for distributing the shared secrets:
 it is expected that a network administrator will statically configure
 name servers and clients using some out of band mechanism.

 This document obsoletes RFC2845 and RFC4635.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Key Words

	3. New Assigned Numbers

	4. TSIG RR Format
	 4.1. TSIG RR Type

	 4.2. TSIG Calculation

	 4.3. TSIG Record Format

	 4.4. Example

	5. Protocol Operation
	 5.1. Effects of Adding TSIG to Outgoing Messages

	 5.2. TSIG Processing on Incoming Messages

	 5.3. Time Values Used in TSIG Calculations

	 5.4. TSIG Variables and Coverage
	 5.4.1. DNS Message

	 5.4.2. TSIG Variables

	 5.4.3. Request MAC

	 5.5. Component Padding

	6. Protocol Details
	 6.1. TSIG Generation on Requests

	 6.2. TSIG on Answers

	 6.3. TSIG on TSIG Error Returns

	 6.4. TSIG on Zone Transfer Over a TCP Connection

	 6.5. Server TSIG checks
	 6.5.1. Key Check and Error Handling

	 6.5.2. MAC Check and Error Handling

	 6.5.3. Time Check and Error Handling

	 6.5.4. Truncation Check and Error Handling

	 6.6. Client Processing of Answer
	 6.6.1. Key Error Handling

	 6.6.2. MAC Error Handling

	 6.6.3. Time Error Handling

	 6.6.4. Truncation Error Handling

	 6.7. Special Considerations for Forwarding Servers

	7. Algorithms and Identifiers

	8. TSIG Truncation Policy

	9. Shared Secrets

	10. IANA Considerations

	11. Security Considerations
	 11.1. Issue Fixed in this Document

	 11.2. Why not DNSSEC?

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. Acknowledgments

	Appendix B. Change History (to be removed before publication)

	Authors' Addresses

1. Introduction

 The Domain Name System (DNS) [RFC1034], [RFC1035] is a replicated
 hierarchical distributed database system that provides information
 fundamental to Internet operations, such as name <=> address
 translation and mail handling information.

 In 2017, two nameservers strictly following [RFC2845] and [RFC4635]
 (i.e., TSIG and its HMAC-SHA extension) specifications were
 discovered to have security problems related to this feature. The
 implementations were fixed but, to avoid similar problems in the
 future, the two documents were updated and merged, producing this
 revised specification for TSIG.

 This document specifies use of a message authentication code (MAC),
 generated using certain keyed hash functions, to provide an efficient
 means of point-to-point authentication and integrity checking for DNS
 transactions. Such transactions include DNS update requests and
 responses for which this can provide a lightweight alternative to the
 protocol described by [RFC3007].

 A further use of this mechanism is to protect zone transfers. In
 this case the data covered would be the whole zone transfer including
 any glue records sent. The protocol described by DNSSEC does not
 protect glue records and unsigned records unless SIG(0) (transaction
 signature) is used.

 The authentication mechanism proposed in this document uses shared
 secret keys to establish a trust relationship between two entities.
 Such keys must be protected in a manner similar to private keys, lest
 a third party masquerade as one of the intended parties (by forging
 the MAC). There is an urgent need to provide simple and efficient
 authentication between clients and local servers and this proposal
 addresses that need. The proposal is unsuitable for general server
 to server authentication for servers which speak with many other
 servers, since key management would become unwieldy with the number
 of shared keys going up quadratically. But it is suitable for many
 resolvers on hosts that only talk to a few recursive servers.

 A server acting as an indirect caching resolver -- a "forwarder" in
 common usage -- might use transaction-based authentication when
 communicating with its small number of preconfigured "upstream"
 servers. Other uses of DNS secret key authentication and possible
 systems for automatic secret key distribution may be proposed in
 separate future documents.

 Note that use of TSIG presumes prior agreement between the two
 parties involved (e.g., resolver and server) as to any algorithm and
 key to be used.

 Since the publication of first version of this document ([RFC2845]) a
 mechanism based on asymmetric signatures using the SIG RR was
 specified (SIG(0) [RFC2931]) whereas this document uses symmetric
 authentication codes calculated by HMAC [RFC2104] using strong hash
 functions.

2. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. New Assigned Numbers

RRTYPE = TSIG (250)
ERROR = 0..15 (a DNS RCODE)
ERROR = 16 (BADSIG)

ERROR = 17 (BADKEY)
ERROR = 18 (BADTIME)
ERROR = 22 (BADTRUNC)

 (See [RFC6895] Section 2.3 concerning the assignment of the value 16
 to BADSIG.)

4. TSIG RR Format

4.1. TSIG RR Type

 To provide secret key authentication, we use a new RR type whose
 mnemonic is TSIG and whose type code is 250. TSIG is a meta-RR and
 MUST NOT be cached. TSIG RRs are used for authentication between DNS
 entities that have established a shared secret key. TSIG RRs are
 dynamically computed to cover a particular DNS transaction and are
 not DNS RRs in the usual sense.

4.2. TSIG Calculation

 As the TSIG RRs are related to one DNS request/response, there is no
 value in storing or retransmitting them, thus the TSIG RR is
 discarded once it has been used to authenticate a DNS message.
 Recommendations concerning the message digest algorithm can be found
 in Section 7. All multi-octet integers in the TSIG record are sent
 in network byte order (see [RFC1035] 2.3.2).

4.3. TSIG Record Format

NAME The name of the key used in domain name syntax. The name
 should reflect the names of the hosts and uniquely identify the
 key among a set of keys these two hosts may share at any given
 time. If hosts A.site.example and B.example.net share a key,
 possibilities for the key name include <id>.A.site.example,
 <id>.B.example.net, and <id>.A.site.example.B.example.net. It
 should be possible for more than one key to be in simultaneous
 use among a set of interacting hosts. The name only needs to
 be meaningful to the communicating hosts but a meaningful
 mnemonic name as above is strongly recommended.

 The name may be used as a local index to the key involved and
 it is recommended that it be globally unique. Where a key is
 just shared between two hosts, its name actually need only be
 meaningful to them but it is recommended that the key name be
 mnemonic and incorporates the names of participating agents or
 resources.

TYPE This MUST be TSIG (250: Transaction SIGnature)

 CLASS This MUST be ANY

TTL This MUST be 0

 RdLen (variable)

 RDATA The RDATA for a TSIG RR consists of an octet stream Algorithm

 Name field, a uint48_t Time Signed field, a uint16_t Fudge
 field, a uint16_t MAC Size field, a octet stream MAC field, a
 uint16_t Original ID, a uint16_t Error field, a uint16_t Other
 Len field and an octet stream of Other Data.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
/ Algorithm Name /
+‑+
| |
| Time Signed +‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
| | Fudge |
+‑+
| MAC Size | /
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+ MAC /
/ /
+‑+
| Original ID | Error |
+‑+
| Other Len | /
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+ Other Data /
/ /
+‑+

 The contents of the RDATA fields are:

 * Algorithm Name - identifies the TSIG algorithm name in the
 domain name syntax. (Allowed names are listed in Table 1.)
 The name is stored in the DNS name wire format as described
 in [RFC1034]. As per [RFC3597], this name MUST NOT be
 compressed.

 * Time Signed - time signed as seconds since 00:00 on
 1970-01-01 UTC ignoring leap seconds.

 * Fudge - specifies the allowed time difference in seconds
 permitted in the Time Signed field.

 * MAC Size - the length of MAC field in octets. Truncation is
 indicated by a MAC size less than the size of the keyed hash
 produced by the algorithm specified by the Algorithm Name.

 * MAC - the contents of this field are defined by the TSIG
 algorithm used, possibly truncated as specified by MAC Size.

 * Error - contains the expanded RCODE covering TSIG
 processing.

 * Other Len - specifies the length of the "Other Data" field
 in octets.

 * Other Data - this field will be empty unless the content of
 the Error field is BADTIME, in which case it will contain
 the server's current time (see Section 6.5.3).

4.4. Example

NAME HOST.EXAMPLE.

TYPE TSIG

 CLASS ANY

TTL 0

 RdLen As appropriate

 RDATA

Field Name Contents
‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Algorithm Name HMAC‑MD5.SIG‑ALG.REG.INT
Time Signed 853804800
Fudge 300
MAC Size As appropriate
MAC As appropriate
Original ID As appropriate
Error 0 (NOERROR)
Other Len 0
Other Data Empty

5. Protocol Operation

5.1. Effects of Adding TSIG to Outgoing Messages

 Once the outgoing message has been constructed, the HMAC computation
 can be performed. The resulting MAC will then be stored in a TSIG
 which is appended to the additional data section (the ARCOUNT is
 incremented to reflect the extra RR). If the TSIG record cannot be
 added without causing the message to be truncated, the server MUST
 alter the response so that a TSIG can be included. This response
 consists of only the question and a TSIG record, and has the TC bit
 set and RCODE 0 (NOERROR). The client SHOULD at this point retry the
 request using TCP (per [RFC1035] 4.2.2).

5.2. TSIG Processing on Incoming Messages

 If an incoming message contains a TSIG record, it MUST be the last
 record in the additional section. Multiple TSIG records are not
 allowed. If a TSIG record is present in any other position, the DNS
 message is dropped and a response with RCODE 1 (FORMERR) MUST be
 returned. Upon receipt of a message with exactly one correctly
 placed TSIG RR, the TSIG RR is copied to a safe location, removed
 from the DNS Message, and decremented out of the DNS message header's
 ARCOUNT. At this point the keyed hash (HMAC) computation is
 performed.

 If the algorithm name or key name is unknown to the recipient, or if
 the MACs do not match, the whole DNS message MUST be discarded. If
 the message is a query, a response with RCODE 9 (NOTAUTH) MUST be
 sent back to the originator with TSIG ERROR 17 (BADKEY) or TSIG ERROR
 16 (BADSIG). If no key is available to sign this message it MUST be
 sent unsigned (MAC size == 0 and empty MAC). The algorithm name,
 time signed, and fudge fields SHOULD be copied to the response to
 provide off path spoof protection. A message to the system
 operations log SHOULD be generated, to warn the operations staff of a
 possible security incident in progress. Care should be taken to
 ensure that logging of this type of event does not open the system to
 a denial of service attack.

 Until these error checks are successfully passed, concluding that the
 signature is valid, the signature MUST be considered to be invalid.

5.3. Time Values Used in TSIG Calculations

 The data digested includes the two timer values in the TSIG header in
 order to defend against replay attacks. If this were not done, an
 attacker could replay old messages but update the "Time Signed" and
 "Fudge" fields to make the message look new. This data is named
 "TSIG Timers", and for the purpose of MAC calculation, they are
 hashed in their "on the wire" format, in the following order: first
 Time Signed, then Fudge. For example:

Field Name Value Wire Format Meaning
‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Time Signed 853804800 00 00 32 e4 07 00 Tue Jan 21 00:00:00 1997
Fudge 300 01 2C 5 minutes

5.4. TSIG Variables and Coverage

 When generating or verifying the contents of a TSIG record, the
 following data are passed as input to MAC computation, in network
 byte order or wire format, as appropriate:

5.4.1. DNS Message

 A whole and complete DNS message in wire format, before the TSIG RR
 has been added to the additional data section and before the DNS
 Message Header's ARCOUNT field has been incremented to contain the
 TSIG RR. If the message ID differs from the original message ID, the
 original message ID is substituted for the message ID. This could
 happen when forwarding a dynamic update request, for example.

5.4.2. TSIG Variables

Source Field Name Notes
‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑
TSIG RR NAME Key name, in canonical wire format
TSIG RR CLASS (Always ANY in the current specification)
TSIG RR TTL (Always 0 in the current specification)
TSIG RDATA Algorithm Name in canonical wire format
TSIG RDATA Time Signed in network byte order
TSIG RDATA Fudge in network byte order
TSIG RDATA Error in network byte order
TSIG RDATA Other Len in network byte order
TSIG RDATA Other Data exactly as transmitted

 The RR RDLEN and RDATA MAC Length are not included in the input to
 MAC computation since they are not guaranteed to be knowable before
 the MAC is generated.

 The Original ID field is not included in this section, as it has
 already been substituted for the message ID in the DNS header and
 hashed.

 For each label type, there must be a defined "Canonical wire format"
 that specifies how to express a label in an unambiguous way. For
 label type 00, this is defined in [RFC4034], for label type 01, this
 is defined in [RFC6891]. The use of label types other than 00 and 01
 is not defined for this specification.

5.4.3. Request MAC

 When generating the MAC to be included in a response, the validated
 request MAC MUST be included in the MAC computation. If the request
 MAC failed to validate, an unsigned error message MUST be returned
 instead. (Section 6.3).

 The request's MAC is digested in wire format, including the following
 fields:

Field Type Description
‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
MAC Length uint16_t in network byte order
MAC Data octet stream exactly as transmitted

5.5. Component Padding

 Digested components (i.e., inputs to the keyed hash computation) are
 fed into the hashing function as a continuous octet stream with no
 interfield separator or padding.

6. Protocol Details

6.1. TSIG Generation on Requests

 The client performs the keyed hash (HMAC) computation and appends a
 TSIG record to the additional data section and transmits the request
 to the server. The client MUST store the MAC from the request while
 awaiting an answer. The digest components for a request are:

DNS Message (request)
TSIG Variables (request)

 Note that some older name servers will not accept requests with a
 nonempty additional data section. Clients SHOULD only attempt signed
 transactions with servers who are known to support TSIG and share
 some algorithm and secret key with the client -- so, this is not a
 problem in practice.

6.2. TSIG on Answers

 When a server has generated a response to a signed request, it signs
 the response using the same algorithm and key. The server MUST NOT
 generate a signed response to a request if either the KEY is invalid
 or the MAC fails validation. It also MUST NOT not generate a signed
 response to an unsigned request, except in the case of a response to
 a client's unsigned TKEY request if the secret key is established on
 the server side after the server processed the client's request.
 Signing responses to unsigned TKEY requests MUST be explicitly
 specified in the description of an individual secret key
 establishment algorithm [RFC3645].

 The digest components are:

Request MAC
DNS Message (response)
TSIG Variables (response)

6.3. TSIG on TSIG Error Returns

 When a server detects an error relating to the key or MAC, the server
 SHOULD send back an unsigned error message (MAC size == 0 and empty
 MAC). It MUST NOT send back a signed error message.

 If an error is detected relating to the TSIG validity period or the
 MAC is too short for the local policy, the server SHOULD send back a
 signed error message. The digest components are:

Request MAC (if the request MAC validated)
DNS Message (response)
TSIG Variables (response)

 The reason that the request is not included in this MAC in some cases
 is to make it possible for the client to verify the error. If the
 error is not a TSIG error the response MUST be generated as specified
 in Section 6.2.

6.4. TSIG on Zone Transfer Over a TCP Connection

 A zone transfer over a DNS TCP session can include multiple DNS
 messages. Using TSIG on such a connection can protect the connection
 from hijacking and provide data integrity. The TSIG MUST be included
 on the first and last DNS messages, and SHOULD be placed on all
 intermediary messages. For backward compatibility, a client which
 receives DNS messages and verifies TSIG MUST accept up to 99
 intermediary messages without a TSIG. The first message is processed
 as a standard answer (see Section 6.2) and subsequent messages have
 the following digest components:

Prior MAC (running)
DNS Messages (any unsigned messages since the last TSIG)
TSIG Timers (current message)

 This allows the client to rapidly detect when the session has been
 altered; at which point it can close the connection and retry. If a
 client TSIG verification fails, the client MUST close the connection.
 If the client does not receive TSIG records frequently enough (as
 specified above) it SHOULD assume the connection has been hijacked
 and it SHOULD close the connection. The client SHOULD treat this the
 same way as they would any other interrupted transfer (although the
 exact behavior is not specified here).

6.5. Server TSIG checks

 Upon receipt of a message, server will check if there is a TSIG RR.
 If one exists, the server is REQUIRED to return a TSIG RR in the
 response. The server MUST perform the following checks in the
 following order, check KEY, check MAC, check TIME values, check
 Truncation policy.

6.5.1. Key Check and Error Handling

 If a non-forwarding server does not recognize the key used by the
 client, the server MUST generate an error response with RCODE 9
 (NOTAUTH) and TSIG ERROR 17 (BADKEY). This response MUST be unsigned
 as specified in Section 6.3. The server SHOULD log the error.
 (Special considerations apply to forwarding servers, see
 Section 6.7.)

6.5.2. MAC Check and Error Handling

 If a TSIG fails to verify, the server MUST generate an error response
 as specified in Section 6.3 with RCODE 9 (NOTAUTH) and TSIG ERROR 16
 (BADSIG). This response MUST be unsigned as specified in
 Section 6.3. The server SHOULD log the error.

6.5.2.1. Specifying Truncation

 When space is at a premium and the strength of the full length of a
 MAC is not needed, it is reasonable to truncate the keyed hash and
 use the truncated value for authentication. HMAC SHA-1 truncated to
 96 bits is an option available in several IETF protocols, including
 IPsec and TLS.

 Processing of a truncated MAC follows these rules

 1. If "MAC size" field is greater than keyed hash output length:

 This case MUST NOT be generated and, if received, MUST cause the
 DNS message to be dropped and RCODE 1 (FORMERR) to be returned.

 2. If "MAC size" field equals keyed hash output length:

 The entire output keyed hash output is present and used.

 3. "MAC size" field is less than keyed hash output length but
 greater than that specified in case 4, below:

 This is sent when the signer has truncated the keyed hash output
 to an allowable length, as described in [RFC2104], taking initial
 octets and discarding trailing octets. TSIG truncation can only
 be to an integral number of octets. On receipt of a DNS message
 with truncation thus indicated, the locally calculated MAC is
 similarly truncated and only the truncated values are compared
 for authentication. The request MAC used when calculating the
 TSIG MAC for a reply is the truncated request MAC.

 4. "MAC size" field is less than the larger of 10 (octets) and half
 the length of the hash function in use:

 With the exception of certain TSIG error messages described in
 Section 6.3, where it is permitted that the MAC size be zero,
 this case MUST NOT be generated and, if received, MUST cause the
 DNS message to be dropped and RCODE 1 (FORMERR) to be returned.

6.5.3. Time Check and Error Handling

 If the server time is outside the time interval specified by the
 request (which is: Time Signed, plus/minus Fudge), the server MUST
 generate an error response with RCODE 9 (NOTAUTH) and TSIG ERROR 18
 (BADTIME). The server SHOULD also cache the most recent time signed
 value in a message generated by a key, and SHOULD return BADTIME if a
 message received later has an earlier time signed value. A response
 indicating a BADTIME error MUST be signed by the same key as the
 request. It MUST include the client's current time in the time
 signed field, the server's current time (a uint48_t) in the other
 data field, and 6 in the other data length field. This is done so
 that the client can verify a message with a BADTIME error without the
 verification failing due to another BADTIME error. The data signed
 is specified in Section 6.3. The server SHOULD log the error.

6.5.4. Truncation Check and Error Handling

 If a TSIG is received with truncation that is permitted under
 Section 6.5.2.1 above but the MAC is too short for the local policy
 in force, an RCODE 9 (NOTAUTH) and TSIG ERROR 22 (BADTRUNC) MUST be
 returned. The server SHOULD log the error.

6.6. Client Processing of Answer

 When a client receives a response from a server and expects to see a
 TSIG, it first checks if the TSIG RR is present in the response.
 Otherwise, the response is treated as having a format error and
 discarded. The client then extracts the TSIG, adjusts the ARCOUNT,
 and calculates the MAC in the same way as the server, applying the
 same rules to decide if truncated MAC is valid. If the TSIG does not
 validate, that response MUST be discarded, unless the RCODE is 9
 (NOTAUTH), in which case the client SHOULD attempt to verify the
 response as if it were a TSIG Error response, as specified in
 Section 6.3. A message containing an unsigned TSIG record or a TSIG
 record which fails verification SHOULD NOT be considered an
 acceptable response; the client SHOULD log an error and continue to
 wait for a signed response until the request times out.

6.6.1. Key Error Handling

 If an RCODE on a response is 9 (NOTAUTH), and the response TSIG
 validates, and the TSIG key is different from the key used on the
 request, then this is a Key error. The client MAY retry the request
 using the key specified by the server. This should never occur, as a
 server MUST NOT sign a response with a different key than signed the
 request.

6.6.2. MAC Error Handling

 If the response RCODE is 9 (NOTAUTH) and TSIG ERROR is 16 (BADSIG),
 this is a MAC error, and client MAY retry the request with a new
 request ID but it would be better to try a different shared key if
 one is available. Clients SHOULD keep track of how many MAC errors
 are associated with each key. Clients SHOULD log this event.

6.6.3. Time Error Handling

 If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR is 18
 (BADTIME), or the current time does not fall in the range specified
 in the TSIG record, then this is a Time error. This is an indication
 that the client and server clocks are not synchronized. In this case
 the client SHOULD log the event. DNS resolvers MUST NOT adjust any
 clocks in the client based on BADTIME errors, but the server's time
 in the other data field SHOULD be logged.

6.6.4. Truncation Error Handling

 If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR is 22
 (BADTRUNC) then this is a Truncation error. The client MAY retry
 with a lesser truncation up to the full HMAC output (no truncation),
 using the truncation used in the response as a hint for what the
 server policy allowed (Section 8). Clients SHOULD log this event.

6.7. Special Considerations for Forwarding Servers

 A server acting as a forwarding server of a DNS message SHOULD check
 for the existence of a TSIG record. If the name on the TSIG is not
 of a secret that the server shares with the originator the server
 MUST forward the message unchanged including the TSIG. If the name
 of the TSIG is of a key this server shares with the originator, it
 MUST process the TSIG. If the TSIG passes all checks, the forwarding
 server MUST, if possible, include a TSIG of its own, to the
 destination or the next forwarder. If no transaction security is
 available to the destination and the message is a query then, if the
 corresponding response has the AD flag (see [RFC4035]) set, the
 forwarder MUST clear the AD flag before adding the TSIG to the
 response and returning the result to the system from which it
 received the query.

7. Algorithms and Identifiers

 The only message digest algorithm specified in the first version of
 these specifications [RFC2845] was "HMAC-MD5" (see [RFC1321],
 [RFC2104]). The "HMAC-MD5" algorithm is mandatory to implement for
 interoperability.

 The use of SHA-1 [FIPS180-4], [RFC3174], (which is a 160-bit hash as
 compared to the 128 bits for MD5), and additional hash algorithms in
 the SHA family [FIPS180-4], [RFC3874], [RFC6234] with 224, 256, 384,
 and 512 bits may be preferred in some cases. This is because
 increasingly successful cryptanalytic attacks are being made on the
 shorter hashes.

 Use of TSIG between two DNS agents is by mutual agreement. That
 agreement can include the support of additional algorithms and
 criteria as to which algorithms and truncations are acceptable,
 subject to the restriction and guidelines in Section 6.5.2.1 above.
 Key agreement can be by the TKEY mechanism [RFC2930] or some other
 mutually agreeable method.

 The current HMAC-MD5.SIG-ALG.REG.INT and gss-tsig [RFC3645]
 identifiers are included in the table below for convenience.
 Implementations that support TSIG MUST also implement HMAC SHA1 and
 HMAC SHA256 and MAY implement gss-tsig and the other algorithms
 listed below.

Requirement Name
‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Mandatory HMAC‑MD5.SIG‑ALG.REG.INT
Optional gss‑tsig
Mandatory hmac‑sha1
Optional hmac‑sha224
Mandatory hmac‑sha256
Optional hmac‑sha384
Optional hmac‑sha512

 Table 1

 SHA-1 truncated to 96 bits (12 octets) SHOULD be implemented.

8. TSIG Truncation Policy

 As noted above, two DNS agents (e.g., resolver and server) must
 mutually agree to use TSIG. Implicit in such an "agreement" are
 criteria as to acceptable keys and algorithms and, with the
 extensions in this document, truncations. Note that it is common for
 implementations to bind the TSIG secret key or keys that may be in
 place at two parties to particular algorithms. Thus, such
 implementations only permit the use of an algorithm if there is an
 associated key in place. Receipt of an unknown, unimplemented, or
 disabled algorithm typically results in a BADKEY error.

 Local policies MAY require the rejection of TSIGs, even though they
 use an algorithm for which implementation is mandatory.

 When a local policy permits acceptance of a TSIG with a particular
 algorithm and a particular non-zero amount of truncation, it SHOULD
 also permit the use of that algorithm with lesser truncation (a
 longer MAC) up to the full keyed hash output.

 Regardless of a lower acceptable truncated MAC length specified by
 local policy, a reply SHOULD be sent with a MAC at least as long as
 that in the corresponding request. Note if the request specified a
 MAC length longer than the keyed hash output it will be rejected by
 processing rules Section 6.5.2.1 case 1.

 Implementations permitting multiple acceptable algorithms and/or
 truncations SHOULD permit this list to be ordered by presumed
 strength and SHOULD allow different truncations for the same
 algorithm to be treated as separate entities in this list. When so
 implemented, policies SHOULD accept a presumed stronger algorithm and
 truncation than the minimum strength required by the policy.

9. Shared Secrets

 Secret keys are very sensitive information and all available steps
 should be taken to protect them on every host on which they are
 stored. Generally such hosts need to be physically protected. If
 they are multi-user machines, great care should be taken that
 unprivileged users have no access to keying material. Resolvers
 often run unprivileged, which means all users of a host would be able
 to see whatever configuration data is used by the resolver.

 A name server usually runs privileged, which means its configuration
 data need not be visible to all users of the host. For this reason,
 a host that implements transaction-based authentication should
 probably be configured with a "stub resolver" and a local caching and
 forwarding name server. This presents a special problem for
 [RFC2136] which otherwise depends on clients to communicate only with
 a zone's authoritative name servers.

 Use of strong random shared secrets is essential to the security of
 TSIG. See [RFC4086] for a discussion of this issue. The secret
 SHOULD be at least as long as the keyed hash output [RFC2104].

10. IANA Considerations

 IANA maintains a registry of algorithm names to be used as "Algorithm
 Names" as defined in Section 4.3. Algorithm names are text strings
 encoded using the syntax of a domain name. There is no structure
 required other than names for different algorithms must be unique
 when compared as DNS names, i.e., comparison is case insensitive.
 Previous specifications [RFC2845] and [RFC4635] defined values for
 HMAC MD5 and SHA. IANA has also registered "gss-tsig" as an
 identifier for TSIG authentication where the cryptographic operations
 are delegated to the Generic Security Service (GSS) [RFC3645].

 New algorithms are assigned using the IETF Consensus policy defined
 in [RFC8126]. The algorithm name HMAC-MD5.SIG-ALG.REG.INT looks like
 a fully-qualified domain name for historical reasons; other algorithm
 names are simple (i.e., single-component) names.

 IANA maintains a registry of RCODES (error codes), including "TSIG
 Error values" to be used for "Error" values as defined in
 Section 4.3. New error codes are assigned and specified as in
 [RFC6895].

11. Security Considerations

 The approach specified here is computationally much less expensive
 than the signatures specified in DNSSEC. As long as the shared
 secret key is not compromised, strong authentication is provided
 between two DNS systems, e.g., for the last hop from a local name
 server to the user resolver, or between primary and secondary
 nameservers.

 Recommendations for choosing and maintaining secret keys can be found
 in [RFC2104]. If the client host has been compromised, the server
 should suspend the use of all secrets known to that client. If
 possible, secrets should be stored in encrypted form. Secrets should
 never be transmitted in the clear over any network. This document
 does not address the issue on how to distribute secrets except that
 it mentions the possibilities of manual configuration and the use of
 TKEY [RFC2930]. Secrets SHOULD NOT be shared by more than two
 entities.

 This mechanism does not authenticate source data, only its
 transmission between two parties who share some secret. The original
 source data can come from a compromised zone master or can be
 corrupted during transit from an authentic zone master to some
 "caching forwarder." However, if the server is faithfully performing
 the full DNSSEC security checks, then only security checked data will
 be available to the client.

 A fudge value that is too large may leave the server open to replay
 attacks. A fudge value that is too small may cause failures if
 machines are not time synchronized or there are unexpected network
 delays. The RECOMMENDED value in most situations is 300 seconds.

 For all of the message authentication code algorithms listed in this
 document, those producing longer values are believed to be stronger;
 however, while there have been some arguments that mild truncation
 can strengthen a MAC by reducing the information available to an
 attacker, excessive truncation clearly weakens authentication by
 reducing the number of bits an attacker has to try to break the
 authentication by brute force [RFC2104].

 Significant progress has been made recently in cryptanalysis of hash
 functions of the types used here. While the results so far should
 not affect HMAC, the stronger SHA-1 and SHA-256 algorithms are being
 made mandatory as a precaution.

 See also the Security Considerations section of [RFC2104] from which
 the limits on truncation in this RFC were taken.

11.1. Issue Fixed in this Document

 When signing a DNS reply message using TSIG, the MAC computation uses
 the request message's MAC as an input to cryptographically relate the
 reply to the request. The original TSIG specification [RFC2845]
 required that the TIME values be checked before the request's MAC.
 If the TIME was invalid, some implementations failed to carry out
 further checks and could use an invalid request MAC in the signed
 reply.

 This document makes it a madatory that the request MAC is considered
 to be invalid until it has been validated: until then, any answer
 must be unsigned. For this reason, the request MAC is now checked
 before the TIME value.

11.2. Why not DNSSEC?

 This section from the original document [RFC2845] analyzes DNSSEC in
 order to justify the introduction of TSIG.

 DNS has recently been extended by DNSSEC ([RFC4033], [RFC4034] and
 [RFC4035]) to provide for data origin authentication, and public key
 distribution, all based on public key cryptography and public key
 based digital signatures. To be practical, this form of security
 generally requires extensive local caching of keys and tracing of
 authentication through multiple keys and signatures to a pre-trusted
 locally configured key.

 One difficulty with the DNSSEC scheme is that common DNS
 implementations include simple "stub" resolvers which do not have
 caches. Such resolvers typically rely on a caching DNS server on
 another host. It is impractical for these stub resolvers to perform
 general DNSSEC authentication and they would naturally depend on
 their caching DNS server to perform such services for them. To do so
 securely requires secure communication of queries and responses.
 DNSSEC provides public key transaction signatures to support this,
 but such signatures are very expensive computationally to generate.
 In general, these require the same complex public key logic that is
 impractical for stubs.

 A second area where use of straight DNSSEC public key based
 mechanisms may be impractical is authenticating dynamic update
 [RFC2136] requests. DNSSEC provides for request signatures but with
 DNSSEC they, like transaction signatures, require computationally
 expensive public key cryptography and complex authentication logic.
 Secure Domain Name System Dynamic Update ([RFC3007]) describes how
 different keys are used in dynamically updated zones.

12. References

12.1. Normative References

 [FIPS180-4]

 National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, August 2015.

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2845]
 Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000,
 <https://www.rfc-editor.org/info/rfc2845>.

 [RFC3597]
 Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC4635]
 Eastlake 3rd, D., "HMAC SHA (Hashed Message Authentication
 Code, Secure Hash Algorithm) TSIG Algorithm Identifiers",
 RFC 4635, DOI 10.17487/RFC4635, August 2006,
 <https://www.rfc-editor.org/info/rfc4635>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2104]
 Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2136]
 Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2930]
 Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY
 RR)", RFC 2930, DOI 10.17487/RFC2930, September 2000,
 <https://www.rfc-editor.org/info/rfc2930>.

 [RFC2931]
 Eastlake 3rd, D., "DNS Request and Transaction Signatures
 (SIG(0)s)", RFC 2931, DOI 10.17487/RFC2931, September
 2000, <https://www.rfc-editor.org/info/rfc2931>.

 [RFC3007]
 Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <https://www.rfc-editor.org/info/rfc3007>.

 [RFC3174]
 Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/info/rfc3174>.

 [RFC3645]
 Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J.,
 and R. Hall, "Generic Security Service Algorithm for
 Secret Key Transaction Authentication for DNS (GSS-TSIG)",
 RFC 3645, DOI 10.17487/RFC3645, October 2003,
 <https://www.rfc-editor.org/info/rfc3645>.

 [RFC3874]
 Housley, R., "A 224-bit One-way Hash Function: SHA-224",
 RFC 3874, DOI 10.17487/RFC3874, September 2004,
 <https://www.rfc-editor.org/info/rfc3874>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC6234]
 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC6895]
 Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,
 April 2013, <https://www.rfc-editor.org/info/rfc6895>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. Acknowledgments

 This document consolidates and updates the earlier documents by the
 authors of [RFC2845] (Paul Vixie, Olafur Gudmundsson, Donald E.
 Eastlake 3rd and Brian Wellington) and [RFC4635] (Donald E. Eastlake
 3rd).

 The security problem addressed by this document was reported by
 Clement Berthaux from Synacktiv.

 Note for the RFC Editor (to be removed before publication): the first
 'e' in Clement is a fact a small 'e' with acute, unicode code U+00E9.
 I do not know if xml2rfc supports non ASCII characters so I prefer to
 not experiment with it. BTW I am French too so I can help if you
 have questions like correct spelling...

 Peter van Dijk, Benno Overeinder, Willem Toroop, Ondrej Sury, Mukund
 Sivaraman and Ralph Dolmans participated in the discussions that
 prompted this document.

Appendix B. Change History (to be removed before publication)

 draft-dupont-dnsop-rfc2845bis-00

 [RFC4635] was merged.

 Authors of original documents were moved to Acknowledgments
 (Appendix A).

 Section 2 was updated to [RFC8174] style.

 Spit references into normative and informative references and
 updated them.

 Added a text explaining why this document was written in the
 Abstract and at the beginning of the introduction.

 Clarified the layout of TSIG RDATA.

 Moved the text about using DNSSEC from the Introduction to the end
 of Security Considerations.

 Added the security clarifications:

 1. Emphasized that MAC is invalid until it is successfully
 validated.

 2. Added requirement that a request MAC that has not been
 successfully validated MUST NOT be included into a response.

 3. Added requirement that a request that has not been validated
 MUST NOT generate a signed response.

 4. Added note about MAC too short for the local policy to
 Section 6.3.

 5. Changed the order of server checks and swapped corresponding
 sections.

 6. Removed the truncation size limit "also case" as it does not
 apply and added confusion.

 7. Relocated the error provision for TSIG truncation to the new
 Section 6.5.4. Moved from RCODE 22 to RCODE 9 and TSIG ERROR
 22, i.e., aligned with other TSIG error cases.

 8. Added Section 6.6.4 about truncation error handling by
 clients.

 9. Removed the limit to HMAC output in replies as a request
 which specified a MAC length longer than the HMAC output is
 invalid according to the first processing rule in
 Section 6.5.2.1.

 10. Promoted the requirement that a secret length should be at
 least as long as the HMAC output to a SHOULD [RFC2119] key
 word.

 11. Added a short text to explain the security issue.

 draft-dupont-dnsop-rfc2845bis-01

 Improved wording (post-publication comments).

 Specialized and renamed the "TSIG on TCP connection" (Section 6.4)
 to "TSIG on zone transfer over a TCP connection". Added a SHOULD
 for a TSIG in each message (was envelope) for new implementations.

 draft-ietf-dnsop-rfc2845bis-00

 Adopted by the IETF DNSOP working group: title updated and version
 counter reset to 00.

 draft-ietf-dnsop-rfc2845bis-01

 Relationship between protocol change and principle of assuming the
 request MAC is invalid until validated clarified. (Jinmei Tatuya)

 Cross reference to considerations for forwarding servers added.
 (Bob Harold)

 Added text from [RFC3645] concerning the signing behavior if a
 secret key is added during a multi-message exchange.

 Added reference to [RFC6895].

 Many improvements in the wording.

 Added RFC 2845 authors as co-authors of this document.

 draft-ietf-dnsop-rfc2845bis-02

 Added a recommendation to copy time fields in BADKEY errors.
 (Mark Andrews)

 draft-ietf-dnsop-rfc2845bis-03

 Further changes as a result of comments by Mukund Sivaraman.

 Miscellaneous changes to wording.

Authors' Addresses

Francis Dupont
Internet Software Consortium
950 Charter Street
Redwood City, CA 94063
United States of America

 Email: Francis.Dupont@fdupont.fr

Stephen Morris
Internet Software Consortium
950 Charter Street
Redwood City, CA 94063
United States of America

 Email: stephen@isc.org

Paul Vixie
Farsight Security Inc
177 Bovet Road, Suite 180
San Mateo, CA 94402
United States of America

 Email: paul@redbarn.org

Donald E. Eastlake 3rd
Huawei Technologies
155 Beaver Street
Milford, MA 01753
United States of America

 Email: d3e3e3@gmail.com

Olafur Gudmundsson
CloudFlare
San Francisco, CA 94107
United States of America

 Email: olafur+ietf@cloudflare.com

Brian Wellington
Akamai
United States of America

 Email: bwelling@akamai.com

draft-ietf-dnsop-rfc7816bis-01 - DNS Query Name Minimisation to Improve Privacy

draft-ietf-dnsop-rfc7816bis-01 - DNS Query Name Minimisation to Improve Privacy

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Obsoletes: 7816 (if approved)

Intended status: Standards Track

Expires: March 26, 2019

S. Bortzmeyer

AFNIC

P. Hoffman

ICANN

September 22, 2018

DNS Query Name Minimisation to Improve Privacy

draft-ietf-dnsop-rfc7816bis-01

Abstract

 This document describes techniques called "QNAME minimisation" to
 improve DNS privacy, where the DNS resolver no longer always sends
 the full original QNAME to the upstream name server. This document
 obsoletes RFC 7816.

 This document is part of the IETF DNSOP (DNS Operations) Working
 Group. The source of the document, as well as a list of open issues,
 is at <https://framagit.org/bortzmeyer/rfc7816-bis>

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction and Background
	 1.1. Terminology

	2. General Description of QNAME Minimisation
	 2.1. Algorithm to Perform Aggressive Method QNAME Minimisation

	3. Operational Considerations

	4. Performance Considerations

	5. Alternative Methods for QNAME Minimisation

	6. Results of the Experimentation

	7. Security Considerations

	8. Implementation Status

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgments

	Changes from RFC 7816

	Authors' Addresses

1. Introduction and Background

 The problem statement for this document and its predecessor [RFC7816]
 is described in [I-D.bortzmeyer-dprive-rfc7626-bis]. The terminology
 ("QNAME", "resolver", etc.) is defined in
 [I-D.ietf-dnsop-terminology-bis]. This specific solution is not
 intended to fully solve the DNS privacy problem; instead, it should
 be viewed as one tool amongst many.

 QNAME minimisation follows the principle explained in Section 6.1 of
 [RFC6973]: the less data you send out, the fewer privacy problems
 you have.

 Before QNAME minimisation, when a resolver received the query "What
 is the AAAA record for www.example.com?", it sent to the root
 (assuming a resolver whose cache is empty) the very same question.
 Sending the full QNAME to the authoritative name server was a
 tradition, not a protocol requirement. In a conversation with the
 author in January 2015, Paul Mockapetris explained that this
 tradition comes from a desire to optimise the number of requests,
 when the same name server is authoritative for many zones in a given
 name (something that was more common in the old days, where the same
 name servers served .com and the root) or when the same name server
 is both recursive and authoritative (something that is strongly
 discouraged now). Whatever the merits of this choice at this time,
 the DNS is quite different now.

 QNAME minimisation is compatible with the current DNS system and
 therefore can easily be deployed. Because it is only a change to the
 way that the resolver operates, it does not change the protocol. The
 behaviour suggested here (minimising the amount of data sent in
 QNAMEs from the resolver) is allowed by Section 5.3.3 of [RFC1034] or
 Section 7.2 of [RFC1035].

1.1. Terminology

 A "cold" cache is one that is empty, having literally no entries in
 it. A "warm" cache is one that has some entries in it.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. General Description of QNAME Minimisation

 The idea behind QNAME minimisation is to minimise the amount of data
 sent from the DNS resolver to the authoritative name server. This
 section describes the RECOMMENDED way to do QNAME minimisation -- the
 way that maximises privacy benefits. That algorithm is summarized in
 Section 2.1.

 Instead of sending the full QNAME and the original QTYPE upstream, a
 resolver that implements QNAME minimisation and does not already have
 the answer in its cache sends a request to the name server
 authoritative for the closest known ancestor of the original QNAME.
 The request is done with:

 o the QTYPE NS

 o the QNAME that is the original QNAME, stripped to just one label
 more than the zone for which the server is authoritative

 This method is called the "aggressive method" in this document
 because the resolver only sends NS queries until it knows the
 nameserver responsible for the desired name. This method is the
 safest from a privacy point of view, and is thus the RECOMMENDED
 method for this document. Other methods are described in Section 5.

 For example, a resolver receives a request to resolve
 foo.bar.baz.example. Assume that the resolver already knows that
 ns1.nic.example is authoritative for .example, and that the resolver
 does not know a more specific authoritative name server. It will
 send the query QTYPE=NS, QNAME=baz.example to ns1.nic.example.

 The minimising resolver works perfectly when it knows the zone cut
 (zone cuts are described in Section 6 of [RFC2181]). But zone cuts
 do not necessarily exist at every label boundary. In the name
 www.foo.bar.example, it is possible that there is a zone cut between
 "foo" and "bar" but not between "bar" and "example". So, assuming
 that the resolver already knows the name servers of .example, when it
 receives the query "What is the AAAA record of www.foo.bar.example?",
 it does not always know where the zone cut will be. To find the
 zone cut, it will query the .example name servers for the NS records
 for bar.example. It will get a NODATA response, indicating that
 there is no zone cut at that point, so it has to query the .example
 name servers again with one more label, and so on. (Section 2.1
 describes this algorithm in deeper detail.)

 Here are more detailed examples of queries with the aggressive method
 of QNAME minimisation:

 Cold cache, aggressive method, request for www.isc.org:

QTYPE QNAME TARGET NOTE
NS org root nameserver
NS isc.org .org nameserver
NS www.isc.org isc.org nameserver "www" may be delegated
A www.isc.org isc.org nameserver

Cold cache, lazy algorithm (for a cold cache, it is the
same algorithm as now), request for www.isc.org:

QTYPE QNAME TARGET NOTE
A www.isc.org root nameserver
A www.isc.org .org nameserver
A www.isc.org isc.org nameserver

 Warm cache (all NS RRsets are known), both algorithms, request for
 www.isc.org:

QTYPE QNAME TARGET NOTE
A www.isc.org isc.org nameserver

 Warm cache with only isc.org, (example.org's NS RRset is not known),
 aggressive method, request for www.example.org:

QTYPE QNAME TARGET NOTE
NS example.org .org nameserver
NS www.example.org .example nameserver
A www.example.org .example nameserver

 Since the information about the zone cuts will be stored in the
 resolver's cache, the performance overhead for using the aggressive
 method is probably reasonable. Section 4 discusses this performance
 discrepancy further.

 Note that DNSSEC-validating resolvers already have access to the zone
 cut information because the DNSKEY record set is just below a zone
 cut and the DS record set is just above it.

2.1. Algorithm to Perform Aggressive Method QNAME Minimisation

 This algorithm performs name resolution with aggressive method QNAME
 minimisation in the presence of zone cuts that are not yet known.

 Although a validating resolver already has the logic to find the
 zone cuts, implementers of other resolvers may want to use this
 algorithm to locate the zone cuts.

 (0) If the query can be answered from the cache, do so; otherwise,

 iterate as follows:

 (1) Find the closest enclosing NS RRset in your cache. The owner of

 this NS RRset will be a suffix of the QNAME -- the longest suffix
 of any NS RRset in the cache. Call this ANCESTOR.

 (2) Initialise CHILD to the same as ANCESTOR.

 (3) If CHILD is the same as the QNAME, resolve the original query

 using ANCESTOR's name servers, and finish.

 (4) Otherwise, add a label from the QNAME to the start of CHILD.

 (5) If you have a negative cache entry for the NS RRset at CHILD, go

 back to step 3.

 (6) Query for CHILD IN NS using ANCESTOR's name servers. The

 response can be:

 (6a) A referral. Cache the NS RRset from the authority section,

 and go back to step 1.

 (6b) An authoritative answer. Cache the NS RRset from the

 answer section, and go back to step 1.

 (6c) An NXDOMAIN answer. Return an NXDOMAIN answer in response

 to the original query, and stop.

 (6d) A NOERROR/NODATA answer. Cache this negative answer, and

 go back to step 3.

3. Operational Considerations

 TODO may be remove the whole section now that it is no longer
 experimental?

 QNAME minimisation is legal, since the original DNS RFCs do not
 mandate sending the full QNAME. So, in theory, it should work
 without any problems. However, in practice, some problems may occur
 (see [Huque-QNAME-Min] for an analysis and [Huque-QNAME-Discuss] for
 an interesting discussion on this topic).

 Note that the aggressive method described in this document prevents
 authoritative servers other than the server for a full name from
 seeing information about the relative use of the various QTYPEs.
 That information may be interesting for researchers (for instance, if
 they try to follow IPv6 deployment by counting the percentage of AAAA
 vs. A queries).

 Some broken name servers do not react properly to QTYPE=NS requests.
 For instance, some authoritative name servers embedded in load
 balancers reply properly to A queries but send REFUSED to NS queries.
 This behaviour is a protocol violation, and there is no need to stop
 improving the DNS because of such behaviour. However, QNAME
 minimisation may still work with such domains, since they are only
 leaf domains (no need to send them NS requests). Such a setup breaks
 more than just QNAME minimisation. It breaks negative answers, since
 the servers don't return the correct SOA, and it also breaks anything
 dependent upon NS and SOA records existing at the top of the zone.

Another way to deal with such incorrect name servers would be to try
with QTYPE=A requests (A being chosen because it is the most common
and hence a QTYPE that will always be accepted, while a QTYPE NS may
ruffle the feathers of some middleboxes). Instead of querying
name servers with a query "NS example.com", a resolver could use
"A _.example.com" and see if it gets a referral. TODO this is what
Unbound does

 A problem can also appear when a name server does not react properly
 to ENTs (Empty Non-Terminals). If ent.example.com has no resource
 records but foobar.ent.example.com does, then ent.example.com is an
 ENT. Whatever the QTYPE, a query for ent.example.com must return
 NODATA (NOERROR / ANSWER: 0). However, some name servers incorrectly
 return NXDOMAIN for ENTs. If a resolver queries only
 foobar.ent.example.com, everything will be OK, but if it implements
 QNAME minimisation, it may query ent.example.com and get an NXDOMAIN.
 See also Section 3 of [DNS-Res-Improve] for the other bad
 consequences of this bad behaviour.

 A possible solution, currently implemented in Knot or Unbound, is to
 retry with the full query when you receive an NXDOMAIN. It works,
 but it is not ideal for privacy.

 Other practices that do not conform to the DNS protocol standards may
 pose a problem: there is a common DNS trick used by some web hosters
 that also do DNS hosting that exploits the fact that the DNS protocol
 (pre-DNSSEC) allows certain serious misconfigurations, such as parent
 and child zones disagreeing on the location of a zone cut.
 Basically, they have a single zone with wildcards for each TLD, like:

*.example. 60 IN A 192.0.2.6

 (They could just wildcard all of "*.", which would be sufficient. It
 is impossible to tell why they don't do it.)

 This lets them have many web-hosting customers without having to
 configure thousands of individual zones on their name servers. They
 just tell the prospective customer to point their NS records at the
 hoster's name servers, and the web hoster doesn't have to provision
 anything in order to make the customer's domain resolve. NS queries
 to the hoster will therefore not give the right result, which may
 endanger QNAME minimisation (it will be a problem for DNSSEC, too).

 TODO report by Akamai about why they return erroneous responses
 https://mailarchive.ietf.org/arch/msg/dnsop/
 XIX16DCe2ln3ZnZai723v32ZIjE

 TODO what to do if the resolver forwards? Unbound disables QNAME
 minimisation in that case, since the forwarder will see everything,
 anyway. What should a minimising resolver do when forwading the
 request to a forwarder, not to an authoritative name server? Send
 the full qname? Minimises? (But how since the resolver does not
 know the zone cut?)

The administrators of the forwarders, and of the authoritative
name servers, will get less data, which will reduce the utility of
the statistics they can produce (such as the percentage of the
various QTYPEs).

 DNS administrators are reminded that the data on DNS requests that
 they store may have legal consequences, depending on your
 jurisdiction (check with your local lawyer).

4. Performance Considerations

 The main goal of QNAME minimisation is to improve privacy by sending
 less data. However, it may have other advantages. For instance, if
 a resolver sends a root name server queries for A.example followed by
 B.example followed by C.example, the result will be three NXDOMAINs,
 since .example does not exist in the root zone. When using QNAME
 minimisation, the resolver would send only one question (for .example
 itself) to which they could answer NXDOMAIN, thus opening up a
 negative caching opportunity in which the full resolver could know a
 priori that neither B.example nor C.example could exist. Thus, in
 this common case, the total number of upstream queries under QNAME
 minimisation could be counterintuitively less than the number of
 queries under the traditional iteration (as described in the DNS
 standard). TODO mention [RFC8020]? And [RFC8198], the latter
 depending on DNSSEC?

 QNAME minimisation may also improve lookup performance for TLD
 operators. For a TLD that is delegation-only, a two-label QNAME
 query may be optimal for finding the delegation owner name, depending
 on the way domain matching is implemented.

QNAME minimisation can decrease performance in some cases, most
notably for domain names with many labels (like
www.host.group.department.example.com, where
host.group.department.example.com is hosted on example.com's
name servers). Assume a resolver that knows only the name servers of
example.com. Without QNAME minimisation, it would send these
example.com name servers a query for
www.host.group.department.example.com and immediately get a specific
referral or an answer, without the need for more queries to probe for
the zone cut. For such a name, a cold resolver with QNAME
minimisation will, depending on how QNAME minimisation is
implemented, send more queries, one per label. Once the cache is
warm, there will be no difference with a traditional resolver.
Actual testing is described in [Huque‑QNAME‑Min]. Such deep domains
are especially common under ip6.arpa.

5. Alternative Methods for QNAME Minimisation

 One useful optimisation may be, in the spirit of the HAMMER idea
 [HAMMER], The resolver can probe in advance for the introduction of
 zone cuts where none previously existed to confirm their continued
 absence or to discover them.

 To reduce the number of queries (an issue described in Section 4), a
 resolver could always use full name queries when the cache is cold
 and then to move to the aggressive method of QNAME minimisation when
 the cache is warm. (Precisely defining what is "warm" or "cold" is
 left to the implementer). This will decrease the privacy for initial
 queries but will guarantee no degradation of performance.

 Another possible algorithm, not fully studied at this time, could be
 to "piggyback" on the traditional resolution code. At startup, it
 sends traditional full QNAMEs and learns the zone cuts from the
 referrals received, then switches to NS queries asking only for the
 minimum domain name. This leaks more data but could require fewer
 changes in the existing resolver codebase.

6. Results of the Experimentation

 TODO various experiences from actual deployments, problems heard.
 TODO the Knot bug #339 https://gitlab.labs.nic.cz/knot/knot-resolver/
 issues/339? TODO Problems with AWS https://forums.aws.amazon.com/
 thread.jspa?threadID=269116?

7. Security Considerations

 QNAME minimisation's benefits are clear in the case where you want to
 decrease exposure to the authoritative name server. But minimising
 the amount of data sent also, in part, addresses the case of a wire
 sniffer as well as the case of privacy invasion by the servers.
 (Encryption is of course a better defense against wire sniffers, but,
 unlike QNAME minimisation, it changes the protocol and cannot be
 deployed unilaterally. Also, the effect of QNAME minimisation on
 wire sniffers depends on whether the sniffer is on the DNS path.)

 QNAME minimisation offers zero protection against the recursive
 resolver, which still sees the full request coming from the stub
 resolver.

 All the alternatives mentioned in Section 5 decrease privacy in the
 hope of improving performance. They must not be used if you want
 maximum privacy.

8. Implementation Status

 \[\[Note to RFC Editor: Remove this entire section, and the
 reference to RFC 7942, before publication. \]\]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 Unbound has had a QNAME minimisation feature since version 1.5.7,
 December 2015, (see [Dolmans-Unbound]) and it has had QNAME
 minimisation turned default since version 1.7.2, June 2018. It has
 two modes set by the "qname-minimisation-strict" configuration
 option. In strict mode (option set to "yes"), there is no workaround
 for broken authoritative name servers. In lax mode, Unbound retries
 when there is a NXDOMAIN response from the minimized query. Since
 November 2016, Unbound uses only queries for the A RRtype and not the
 NS RRtype.

 Knot Resolver has had a QNAME minimisation feature since version
 1.0.0, May 2016, and it is activated by default.

 BIND has had a QNAME minimisation feature since unstable development
 version 9.13.2, July 2018. It currently has several modes, with or
 without workarounds for broken authoritative name servers.

 The Cloudflare's public resolver at IP address 1.1.1.1 has QNAME
 minimisation. (It currently uses Knot.)

 Testing with one thousand RIPE Atlas probes [atlas-qname-min], one
 can see that QNAME minimisation is now common:

% blaeu‑resolve ‑‑requested 1000 ‑‑type TXT qnamemintest.internet.nl
["no ‑ qname minimisation is not enabled on your resolver :("] : 888 occurrences
["hooray ‑ qname minimisation is enabled on your resolver :)!"] : 105 occurrences
[ERROR: SERVFAIL] : 3 occurrences
Test #16113243 done at 2018‑09‑14T13:01:47Z

 10 % of the probes have a resolver with QNAME minimisation (it is not
 possible to infer the percentage of users having QNAME minimisation).

9. References

9.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6973]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7816]
 Bortzmeyer, S., "DNS Query Name Minimisation to Improve
 Privacy", RFC 7816, DOI 10.17487/RFC7816, March 2016,
 <https://www.rfc-editor.org/info/rfc7816>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [atlas-qname-min]

 Bortzmeyer, S., "DNS resolution of
 qnamemintest.internet.nl/TXT on RIPE Atlas probes",
 September 2018,
 <https://atlas.ripe.net/measurements/16113243/>.

 [DNS-Res-Improve]

 Vixie, P., Joffe, R., and F. Neves, "Improvements to DNS
 Resolvers for Resiliency, Robustness, and Responsiveness",
 Work in Progress, draft-vixie-dnsext-resimprove-00, June
 2010.

 [Dolmans-Unbound]

 Dolmans, R., "Unbound QNAME minimisation @ DNS-OARC",
 March 2016, <https://indico.dns-
 oarc.net/event/22/contributions/332/attachments/310/542/
 unbound_qnamemin_oarc24.pdf>.

 [HAMMER]
 Kumari, W., Arends, R., Woolf, S., and D. Migault, "Highly
 Automated Method for Maintaining Expiring Records", Work
 in Progress, draft-wkumari-dnsop-hammer-01, July 2014.

 [Huque-QNAME-Discuss]

 Huque, S., "Qname Minimization @ DNS-OARC", May 2015,
 <https://www.huque.com/2015/05/16/qname-min.html>.

 [Huque-QNAME-Min]

 Huque, S., "Query name minimization and authoritative
 server behavior", May 2015,
 <https://indico.dns-oarc.net/event/21/contribution/9>.

 [I-D.bortzmeyer-dprive-rfc7626-bis]

 Bortzmeyer, S. and S. Dickinson, "DNS Privacy
 Considerations", draft-bortzmeyer-dprive-rfc7626-bis-01
 (work in progress), July 2018.

 [I-D.ietf-dnsop-terminology-bis]

 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", draft-ietf-dnsop-terminology-bis-14 (work in
 progress), September 2018.

 [RFC2181]
 Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC7942]
 Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8020]
 Bortzmeyer, S. and S. Huque, "NXDOMAIN: There Really Is
 Nothing Underneath", RFC 8020, DOI 10.17487/RFC8020,
 November 2016, <https://www.rfc-editor.org/info/rfc8020>.

 [RFC8198]
 Fujiwara, K., Kato, A., and W. Kumari, "Aggressive Use of
 DNSSEC-Validated Cache", RFC 8198, DOI 10.17487/RFC8198,
 July 2017, <https://www.rfc-editor.org/info/rfc8198>.

Acknowledgments

 TODO (refer to 7816)

Changes from RFC 7816

 o Made changes to deal with errata #4644

 o Changed status to be on standards track

 o Major reorganization

Authors' Addresses

Stephane Bortzmeyer
AFNIC
1, rue Stephenson
Montigny‑le‑Bretonneux 78180
France

Phone: +33 1 39 30 83 46
Email: bortzmeyer+ietf@nic.fr
URI: https://www.afnic.fr/

Paul Hoffman
ICANN

 Email: paul.hoffman@icann.org

draft-ietf-dnsop-serve-stale-04 - Serving Stale Data to Improve DNS Resiliency

draft-ietf-dnsop-serve-stale-04 - Serving Stale Data to Improve DNS Resiliency

Index
Back 5
Prev
Next
Forward 5

DNSOP Working Group

Internet-Draft

Updates: 1034, 1035 (if approved)

Intended status: Standards Track

Expires: September 10, 2019

D. Lawrence

Oracle

W. Kumari

P. Sood

Google

March 09, 2019

Serving Stale Data to Improve DNS Resiliency

draft-ietf-dnsop-serve-stale-04

Abstract

 This draft defines a method (serve-stale) for recursive resolvers to
 use stale DNS data to avoid outages when authoritative nameservers
 cannot be reached to refresh expired data. It updates the definition
 of TTL from [RFC1034], [RFC1035], and [RFC2181] to make it clear that
 data can be kept in the cache beyond the TTL expiry and used for
 responses when a refreshed answer is not readily available. One of
 the motivations for serve-stale is to make the DNS more resilient to
 DoS attacks, and thereby make them less attractive as an attack
 vector.

Ed note

 Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in GitHub at <https://github.com/vttale/serve-
 stale>. The most recent version of the document, open issues, etc
 should all be available here. The authors gratefully accept pull
 requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Background

	4. Standards Action

	5. Example Method

	6. Implementation Considerations

	7. Implementation Caveats

	8. Implementation Status

	9. EDNS Option

	10. Security Considerations

	11. Privacy Considerations

	12. NAT Considerations

	13. IANA Considerations

	14. Acknowledgements

	15. References
	 15.1. Normative References

	 15.2. Informative References

	Authors' Addresses

1. Introduction

 Traditionally the Time To Live (TTL) of a DNS resource record has
 been understood to represent the maximum number of seconds that a
 record can be used before it must be discarded, based on its
 description and usage in [RFC1035] and clarifications in [RFC2181].

 This document proposes that the definition of the TTL be explicitly
 expanded to allow for expired data to be used in the exceptional
 circumstance that a recursive resolver is unable to refresh the
 information. It is predicated on the observation that authoritative
 answer unavailability can cause outages even when the underlying data
 those servers would return is typically unchanged.

 We describe a method below for this use of stale data, balancing the
 competing needs of resiliency and freshness.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 For a comprehensive treatment of DNS terms, please see [RFC7719].

3. Background

 There are a number of reasons why an authoritative server may become
 unreachable, including Denial of Service (DoS) attacks, network
 issues, and so on. If the recursive server is unable to contact the
 authoritative servers for a query but still has relevant data that
 has aged past its TTL, that information can still be useful for
 generating an answer under the metaphorical assumption that "stale
 bread is better than no bread."

 [RFC1035]
 Section 3.2.1 says that the TTL "specifies the time
 interval that the resource record may be cached before the source of
 the information should again be consulted", and Section 4.1.3 further
 says the TTL, "specifies the time interval (in seconds) that the
 resource record may be cached before it should be discarded."

 A natural English interpretation of these remarks would seem to be
 clear enough that records past their TTL expiration must not be used.
 However, [RFC1035] predates the more rigorous terminology of
 [RFC2119] which softened the interpretation of "may" and "should".

 [RFC2181]
 aimed to provide "the precise definition of the Time to
 Live", but in Section 8 was mostly concerned with the numeric range
 of values and the possibility that very large values should be
 capped. (It also has the curious suggestion that a value in the
 range 2147483648 to 4294967295 should be treated as zero.) It closes
 that section by noting, "The TTL specifies a maximum time to live,
 not a mandatory time to live." This is again not [RFC2119]-normative
 language, but does convey the natural language connotation that data
 becomes unusable past TTL expiry.

 Several major recursive resolver operators currently use stale data
 for answers in some way, including Akamai (in three different
 resolver implementations), BIND, Knot, OpenDNS, and Unbound. Apple
 MacOS can also use stale data as part of the Happy Eyeballs
 algorithms in mDNSResponder. The collective operational experience
 is that it provides significant benefit with minimal downside.

4. Standards Action

 The definition of TTL in [RFC1035] Sections 3.2.1 and 4.1.3 is
 amended to read:

TTL a 32‑bit unsigned integer number of seconds that specifies the
 duration that the resource record MAY be cached before the source
 of the information MUST again be consulted. Zero values are
 interpreted to mean that the RR can only be used for the
 transaction in progress, and should not be cached. Values SHOULD
 be capped on the orders of days to weeks, with a recommended cap
 of 604,800 seconds. If the data is unable to be authoritatively
 refreshed when the TTL expires, the record MAY be used as though
 it is unexpired.

 Interpreting values which have the high order bit set as being
 positive, rather than 0, is a change from [RFC2181]. Suggesting a
 cap of seven days, rather than the 68 years allowed by [RFC2181],
 reflects the current practice of major modern DNS resolvers.

 When returning a response containing stale records, the recursive
 resolver MUST set the TTL of each expired record in the message to a
 value greater than 0, with 30 seconds RECOMMENDED.

 Answers from authoritative servers that have a DNS Response Code of
 either 0 (NoError) or 3 (NXDomain) and the Authoritative Answers (AA)
 bit set MUST be considered to have refreshed the data at the
 resolver. Answers from authoritative servers that have any other
 response code SHOULD be considered a failure to refresh the data and
 therefor leave any previous state intact.

5. Example Method

 There is conceivably more than one way a recursive resolver could
 responsibly implement this resiliency feature while still respecting
 the intent of the TTL as a signal for when data is to be refreshed.

 In this example method four notable timers drive considerations for
 the use of stale data, as follows:

 o A client response timer, which is the maximum amount of time a
 recursive resolver should allow between the receipt of a
 resolution request and sending its response.

 o A query resolution timer, which caps the total amount of time a
 recursive resolver spends processing the query.

 o A failure recheck timer, which limits the frequency at which a
 failed lookup will be attempted again.

 o A maximum stale timer, which caps the amount of time that records
 will be kept past their expiration.

 Most recursive resolvers already have the query resolution timer, and
 effectively some kind of failure recheck timer. The client response
 timer and maximum stale timer are new concepts for this mechanism.

 When a request is received by the recursive resolver, it SHOULD start
 the client response timer. This timer is used to avoid client
 timeouts. It SHOULD be configurable, with a recommended value of 1.8
 seconds as being just under a common timeout value of 2 seconds while
 still giving the resolver a fair shot at resolving the name.

 The resolver then checks its cache for any unexpired data that
 satisfies the request and of course returns them if available. If it
 finds no relevant unexpired data and the Recursion Desired flag is
 not set in the request, it SHOULD immediately return the response
 without consulting the cache for expired records. Typically this
 response would be a referral to authoritative nameservers covering
 the zone, but the specifics are implementation dependent.

 If iterative lookups will be done, then the failure recheck timer is
 consulted. Attempts to refresh from non-responsive or otherwise
 failing authoritative nameservers are recommended to be done no more
 frequently than every 30 seconds. If this request was received
 within this period, the cache may be immediately consulted for stale
 data to satisfy the request.

 Outside the period of the failure recheck timer, the resolver SHOULD
 start the query resolution timer and begin the iterative resolution
 process. This timer bounds the work done by the resolver when
 contacting external authorities, and is commonly around 10 to 30
 seconds. If this timer expires on an attempted lookup that is still
 being processed, the resolution effort is abandoned.

 If the answer has not been completely determined by the time the
 client response timer has elapsed, the resolver SHOULD then check its
 cache to see whether there is expired data that would satisfy the
 request. If so, it adds that data to the response message with a TTL
 greater than 0 per Section 4. The response is then sent to the
 client while the resolver continues its attempt to refresh the data.

 When no authorities are able to be reached during a resolution
 attempt, the resolver SHOULD attempt to refresh the delegation and
 restart the iterative lookup process with the remaining time on the
 query resolution timer. This resumption should be done only once
 during one resolution effort.

 Outside the resolution process, the maximum stale timer is used for
 cache management and is independent of the query resolution process.
 This timer is conceptually different from the maximum cache TTL that
 exists in many resolvers, the latter being a clamp on the value of
 TTLs as received from authoritative servers and recommended to be 7
 days in the TTL definition above. The maximum stale timer SHOULD be
 configurable, and defines the length of time after a record expires
 that it SHOULD be retained in the cache. The suggested value is 7
 days, which gives time for monitoring to notice the resolution
 problem and for human intervention to fix it.

6. Implementation Considerations

 This document mainly describes the issues behind serving stale data
 and intentionally does not provide a formal algorithm. The concept
 is not overly complex, and the details are best left to resolver
 authors to implement in their codebases. The processing of serve-
 stale is a local operation, and consistent variables between
 deployments are not needed for interoperability. However, we would
 like to highlight the impact of various implementation choices,
 starting with the timers involved.

 The most obvious of these is the maximum stale timer. If this
 variable is too large it could cause excessive cache memory usage,
 but if it is too small, the serve-stale technique becomes less
 effective, as the record may not be in the cache to be used if
 needed. Increased memory consumption could be mitigated by
 prioritizing removal of stale records over non-expired records during
 cache exhaustion. Implementations may also wish to consider whether
 to track the names in requests for their last time of use or their
 popularity, using that as an additional factor when considering cache
 eviction. A feature to manually flush only stale records could also
 be useful.

 The client response timer is another variable which deserves
 consideration. If this value is too short, there exists the risk
 that stale answers may be used even when the authoritative server is
 actually reachable but slow; this may result in sub-optimal answers
 being returned. Conversely, waiting too long will negatively impact
 user experience.

 The balance for the failure recheck timer is responsiveness in
 detecting the renewed availability of authorities versus the extra
 resource use for resolution. If this variable is set too large,
 stale answers may continue to be returned even after the
 authoritative server is reachable; per [RFC2308], Section 7, this
 should be no more than five minutes. If this variable is too small,
 authoritative servers may be rapidly hit with a significant amount of
 traffic when they become reachable again.

 Regarding the TTL to set on stale records in the response,
 historically TTLs of zero seconds have been problematic for some
 implementations, and negative values can't effectively be
 communicated to existing software. Other very short TTLs could lead
 to congestive collapse as TTL-respecting clients rapidly try to
 refresh. The recommended value of 30 seconds not only sidesteps
 those potential problems with no practical negative consequences, it
 also rate limits further queries from any client that honors the TTL,
 such as a forwarding resolver.

 Another implementation consideration is the use of stale nameserver
 addresses for lookups. This is mentioned explicitly because, in some
 resolvers, getting the addresses for nameservers is a separate path
 from a normal cache lookup. If authoritative server addresses are
 not able to be refreshed, resolution can possibly still be successful
 if the authoritative servers themselves are up. For instance,
 consider an attack on a top-level domain that takes its nameservers
 offline; serve-stale resolvers that had expired glue addresses for
 subdomains within that TLD would still be able to resolve names
 within those subdomains, even those it had not previously looked up.

 The directive in Section 4 that only NoError and NXDomain responses
 should invalidate any previously associated answer stems from the
 fact that no other RCODEs which a resolver normally encounters makes
 any assertions regarding the name in the question or any data
 associated with it. This comports with existing resolver behavior
 where a failed lookup (say, during pre-fetching) doesn't impact the
 existing cache state. Some authoritative servers operators have said
 that they would prefer stale answers to be used in the event that
 their servers are responding with errors like ServFail instead of
 giving true authoritative answers. Implementers MAY decide to return
 stale answers in this situation.

 Since the goal of serve-stale is to provide resiliency for all
 obvious errors to refresh data, these other RCODEs are treated as
 though they are equivalent to not getting an authoritative response.
 Although NXDomain for a previously existing name might well be an
 error, it is not handled that way because there is no effective way
 to distinguish operator intent for legitimate cases versus error
 cases.

 During discussion in dnsop it was suggested that Refused from all
 authorities should be treated, from a serve-stale perspective, as
 though it were equivalent to NXDomain because it represents an
 explicit signal to take down the zone from servers that still have
 the zone's delegation pointed to them. Refused, however, is also
 overloaded to mean multiple possible failures which could represent
 transient configuration failures. Operational experience has shown
 that purposely returning Refused is a poor way to achieve an explicit
 takedown of a zone compared to either updating the delegation or
 returning NXDomain with a suitable SOA for extended negative caching.
 Implementers MAY nonetheless consider whether to treat all
 authorities returning Refused as preempting the use of stale data.

7. Implementation Caveats

 Stale data is used only when refreshing has failed in order to adhere
 to the original intent of the design of the DNS and the behaviour
 expected by operators. If stale data were to always be used
 immediately and then a cache refresh attempted after the client
 response has been sent, the resolver would frequently be sending data
 that it would have had no trouble refreshing. As modern resolvers
 use techniques like pre-fetching and request coalescing for
 efficiency, it is not necessary that every client request needs to
 trigger a new lookup flow in the presence of stale data, but rather
 that a good-faith effort has been recently made to refresh the stale
 data before it is delivered to any client.

 It is important to continue the resolution attempt after the stale
 response has been sent, until the query resolution timeout, because
 some pathological resolutions can take many seconds to succeed as
 they cope with unavailable servers, bad networks, and other problems.
 Stopping the resolution attempt when the response with expired data
 has been sent would mean that answers in these pathological cases
 would never be refreshed.

 The continuing prohibition against using data with a 0 second TTL
 beyond the current transaction explicitly extends to it being
 unusable even for stale fallback, as it is not to be cached at all.

 Be aware that Canonical Name (CNAME) records mingled in the expired
 cache with other records at the same owner name can cause surprising
 results. This was observed with an initial implementation in BIND
 when a hostname changed from having an IPv4 Address (A) record to a
 CNAME. The version of BIND being used did not evict other types in
 the cache when a CNAME was received, which in normal operations is
 not a significant issue. However, after both records expired and the
 authorities became unavailable, the fallback to stale answers
 returned the older A instead of the newer CNAME.

8. Implementation Status

 [RFC Editor: per RFC 6982 this section should be removed prior to
 publication.]

 The algorithm described in Section 5 was originally implemented as a
 patch to BIND 9.7.0. It has been in production on Akamai's
 production network since 2011, and effectively smoothed over
 transient failures and longer outages that would have resulted in
 major incidents. The patch was contributed to Internet Systems
 Consortium and the functionality is now available in BIND 9.12 via
 the options stale-answer-enable, stale-answer-ttl, and max-stale-ttl.

 Unbound has a similar feature for serving stale answers, but will
 respond with stale data immediately if it has recently tried and
 failed to refresh the answer by pre-fetching.

 Knot Resolver has a demo module here: https://knot-
 resolver.readthedocs.io/en/stable/modules.html#serve-stale

 Details of Apple's implementation are not currently known.

 In the research paper "When the Dike Breaks: Dissecting DNS Defenses
 During DDoS" [DikeBreaks], the authors detected some use of stale
 answers by resolvers when authorities came under attack. Their
 research results suggest that more widespread adoption of the
 technique would significantly improve resiliency for the large number
 of requests that fail or experience abnormally long resolution times
 during an attack.

9. EDNS Option

 During the discussion of serve-stale in the IETF dnsop working group,
 it was suggested that an EDNS option should be available to either
 explicitly opt-in to getting data that is possibly stale, or at least
 as a debugging tool to indicate when stale data has been used for a
 response.

 The opt-in use case was rejected as the technique was meant to be
 immediately useful in improving DNS resiliency for all clients.

 The reporting case was ultimately also rejected as working group
 participants determined that even the simpler version of a proposed
 option was still too much bother to implement for too little
 perceived value.

10. Security Considerations

 The most obvious security issue is the increased likelihood of DNSSEC
 validation failures when using stale data because signatures could be
 returned outside their validity period. This would only be an issue
 if the authoritative servers are unreachable, the only time the
 techniques in this document are used, and thus does not introduce a
 new failure in place of what would have otherwise been success.

 Additionally, bad actors have been known to use DNS caches to keep
 records alive even after their authorities have gone away. This
 potentially makes that easier, although without introducing a new
 risk.

 In [CloudStrife] it was demonstrated how stale DNS data, namely
 hostnames pointing to addresses that are no longer in use by the
 owner of the name, can be used to co-opt security such as to get
 domain-validated certificates fraudulently issued to an attacker.
 While this RFC does not create a new vulnerability in this area, it
 does potentially enlarge the window in which such an attack could be
 made. An obvious mitigation is that not only should a certificate
 authority not use a resolver that has this feature enabled, it should
 probably not use a caching resolver at all and instead fully look up
 each name freshly from the root.

11. Privacy Considerations

 This document does not add any practical new privacy issues.

12. NAT Considerations

 The method described here is not affected by the use of NAT devices.

13. IANA Considerations

 There are no IANA considerations.

14. Acknowledgements

 The authors wish to thank Robert Edmonds, Tony Finch, Bob Harold,
 Tatuya Jinmei, Matti Klock, Jason Moreau, Giovane Moura, Jean Roy,
 Mukund Sivaraman, Davey Song, Paul Vixie, Ralf Weber and Paul Wouters
 for their review and feedback.

15. References

15.1. Normative References

 [RFC1034]
 Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2181]
 Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC2308]
 Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [CloudStrife]

 Borgolte, K., Fiebig, T., Hao, S., Kruegel, C., and G.
 Vigna, "Cloud Strife: Mitigating the Security Risks of
 Domain-Validated Certificates", ACM 2018 Applied
 Networking Research Workshop, DOI 10.1145/3232755.3232859,
 July 2018, <https://www.ndss-symposium.org/wp-
 content/uploads/2018/02/
 ndss2018_06A-4_Borgolte_paper.pdf>.

 [DikeBreaks]

 Moura, G., Heidemann, J., Mueller, M., Schmidt, R., and M.
 Davids, "When the Dike Breaks: Dissecting DNS Defenses
 During DDos", ACM 2018 Internet Measurement Conference,
 DOI 10.1145/3278532.3278534, October 2018,
 <https://www.isi.edu/~johnh/PAPERS/Moura18b.pdf>.

 [RFC7719]
 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", RFC 7719, DOI 10.17487/RFC7719, December
 2015, <https://www.rfc-editor.org/info/rfc7719>.

Authors' Addresses

David C Lawrence
Oracle

 Email: tale@dd.org

Warren "Ace" Kumari
Google
1600 Amphitheatre Parkway
Mountain View CA 94043
USA

 Email: warren@kumari.net

Puneet Sood
Google

 Email: puneets@google.com

draft-ietf-grow-bmp-adj-rib-out-03 - Support for Adj-RIB-Out in BGP Monitoring Protocol (BMP)

draft-ietf-grow-bmp-adj-rib-out-03 - Support for Adj-RIB-Out in BGP Monitoring P

Index
Next
Forward 5

Global Routing Operations

Internet-Draft

Updates: 7854 (if approved)

Intended status: Standards Track

Expires: June 22, 2019

T. Evens

S. Bayraktar

Cisco Systems

P. Lucente

NTT Communications

P. Mi

Tencent

S. Zhuang

Huawei

December 19, 2018

Support for Adj-RIB-Out in BGP Monitoring Protocol (BMP)

draft-ietf-grow-bmp-adj-rib-out-03

Abstract

 The BGP Monitoring Protocol (BMP) defines access to only the Adj-RIB-
 In Routing Information Bases (RIBs). This document updates the BGP
 Monitoring Protocol (BMP) RFC 7854 by adding access to the Adj-RIB-
 Out RIBs. It adds a new flag to the peer header to distinguish Adj-
 RIB-In and Adj-RIB-Out.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Definitions

	4. Per-Peer Header

	5. Adj-RIB-Out
	 5.1. Post-Policy

	 5.2. Pre-Policy

	6. BMP Messages
	 6.1. Route Monitoring and Route Mirroring

	 6.2. Statistics Report

	 6.3. Peer Down and Up Notifications
	 6.3.1. Peer Up Information

	7. Other Considerations
	 7.1. Peer and Update Groups

	8. Security Considerations

	9. IANA Considerations
	 9.1. BMP Peer Flags

	 9.2. BMP Statistics Types

	 9.3. Peer UP Information TLV

	10. References
	 10.1. Normative References

	 10.2. URIs

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 BGP Monitoring Protocol (BMP) defines monitoring of the received
 (e.g. Adj-RIB-In) Routing Information Bases (RIBs) per peer. The
 Adj-RIB-In pre-policy conveys to a BMP receiver all RIB data before
 any policy has been applied. The Adj-RIB-In post-policy conveys to a
 BMP receiver all RIB data after policy filters and/or modifications
 have been applied. An example of pre-policy verses post-policy is
 when an inbound policy applies attribute modification or filters.
 Pre-policy would contain information prior to the inbound policy
 changes or filters of data. Post policy would convey the changed
 data or would not contain the filtered data.

 Monitoring the received updates that the router received before any
 policy has been applied is the primary level of monitoring for most
 use-cases. Inbound policy validation and auditing is the primary
 use-case for enabling post-policy monitoring.

 In order for a BMP receiver to receive any BGP data, the BMP sender
 (e.g. router) needs to have an established BGP peering session and
 actively be receiving updates for an Adj-RIB-In.

 Being able to only monitor the Adj-RIB-In puts a restriction on what
 data is available to BMP receivers via BMP senders (e.g. routers).
 This is an issue when the receiving end of the BGP peer is not
 enabled for BMP or when it is not accessible for administrative
 reasons. For example, a service provider advertises prefixes to a
 customer, but the service provider cannot see what it advertises via
 BMP. Asking the customer to enable BMP and monitoring of the Adj-
 RIB- In is not feasible.

 This document updates BGP Monitoring Protocol (BMP) RFC 7854
 [RFC7854] peer header by adding a new flag to distinguish Adj-RIB-In
 verses Adj-RIB-Out.

 Adding Adj-RIB-Out enables the ability for a BMP sender to send to a
 BMP receiver what it advertises to BGP peers, which can be used for
 outbound policy validation and to monitor RIBs that were advertised.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Definitions

 o Adj-RIB-Out: As defined in [RFC4271], "The Adj-RIBs-Out contains
 the routes for advertisement to specific peers by means of the
 local speaker's UPDATE messages."

 o Pre-Policy Adj-RIB-Out: The result before applying the outbound
 policy to an Adj-RIB-Out. This normally would match what is in the
 local RIB.

 o Post-Policy Adj-RIB-Out: The result of applying outbound policy to
 an Adj-RIB-Out. This MUST be what is actually sent to the peer.

4. Per-Peer Header

 The per-peer header has the same structure and flags as defined in
 section 4.2 [RFC7854] with the following O flag addition:

 0 1 2 3 4 5 6 7
+‑+‑+‑+‑+‑+‑+‑+‑+
|V|L|A|O| Resv |
+‑+‑+‑+‑+‑+‑+‑+‑+

 o The O flag indicates Adj-RIB-In if set to 0 and Adj-RIB-Out if set
 to 1.

 The existing flags are defined in section 4.2 [RFC7854] and the
 remaining bits are reserved for future use. They SHOULD be
 transmitted as 0 and their values MUST be ignored on receipt. The
 following fields in Per-Peer Header are redefined:

 o Peer Address: The remote IP address associated with the TCP
 session over which the encapsulated PDU was sent.

 o Peer AS: The Autonomous System number of the peer from which the
 encapsulated PDU was sent.

 o Peer BGP ID: The BGP Identifier of the peer from which the
 encapsulated PDU was sent.

5. Adj-RIB-Out

5.1. Post-Policy

 The primary use-case in monitoring Adj-RIB-Out is to monitor the
 updates transmitted to the BGP peer after outbound policy has been
 applied. These updates reflect the result after modifications and
 filters have been applied (e.g. Adj-RIB-Out Post-Policy). Some
 attributes are set when the BGP message is transmitted, such as next-
 hop. Adj-RIB-Out Post-Policy MUST convey what is actually
 transmitted to the peer, next-hop and any attribute set during
 transmission should also be set and transmitted to the BMP receiver.

 The L flag MUST be set to 1 to indicate post-policy.

5.2. Pre-Policy

 As with Adj-RIB-In policy validation, there are use-cases that pre-
 policy Adj-RIB-Out is used to validate and audit outbound policies.
 For example, a comparison between pre-policy and post-policy can be
 used to validate the outbound policy.

 Depending on BGP peering session type (IBGP, IBGP route reflector
 client, EBGP, BGP confederations, Route Server Client) the candidate
 routes that make up the Pre-Policy Adj-RIB-Out do not contain all
 local-rib routes. Pre-Policy Adj-RIB-Out conveys only routes that
 are available based on the peering type. Post-Policy represents the
 filtered/changed routes from the available routes.

 Some attributes are set only during transmission of the BGP message,
 e.g. Post-Policy. It is common that next-hop may be null, loopback,
 or similar during this phase. All mandatory attributes, such as
 next-hop, MUST be either ZERO or have an empty length if they are
 unknown at the Pre-Policy phase. The BMP receiver will treat zero or
 empty mandatory attributes as self originated.

 The L flag MUST be set to 0 to indicate pre-policy.

6. BMP Messages

 Many BMP messages have a per-peer header but some are not applicable
 to Adj-RIB-In or Adj-RIB-Out monitoring. Unless otherwise defined,
 the O flag should be set to 0 in the per-peer header in BMP messages.

6.1. Route Monitoring and Route Mirroring

 The O flag MUST be set accordingly to indicate if the route monitor
 or route mirroring message conveys Adj-RIB-In or Adj-RIB-Out.

6.2. Statistics Report

 Statistics report message has Stat Type field to indicate the
 statistic carried in the Stat Data field. Statistics report messages
 are not specific to Adj-RIB-In or Adj-RIB-Out and MUST have the O
 flag set to zero. The O flag SHOULD be ignored by the BMP receiver.

 The following new statistic types are added:

 o Stat Type = 14: (64-bit Gauge) Number of routes in Adj-RIBs-Out
 Pre-Policy.

 o Stat Type = 15: (64-bit Gauge) Number of routes in Adj-RIBs-Out
 Post-Policy.

 o Stat Type = 16: Number of routes in per-AFI/SAFI Adj-RIB-Out Pre-
 Policy. The value is structured as: 2-byte Address Family
 Identifier (AFI), 1-byte Subsequent Address Family Identifier
 (SAFI), followed by a 64-bit Gauge.

 o Stat Type = 17: Number of routes in per-AFI/SAFI Adj-RIB-Out Post-
 Policy. The value is structured as: 2-byte Address Family
 Identifier (AFI), 1-byte Subsequent Address Family Identifier
 (SAFI), followed by a 64-bit Gauge.

6.3. Peer Down and Up Notifications

 PEER UP and DOWN notifications convey BGP peering session state to
 BMP receivers. The state is independent of whether or not route
 monitoring or route mirroring messages will be sent for Adj-RIB-In,
 Adj-RIB-Out, or both. BMP receiver implementations SHOULD ignore the
 O flag in PEER UP and DOWN notifications. BMP receiver
 implementations MUST use the per-peer header O flag in route
 monitoring and mirroring messages in order to identify if the message
 is for Adj-RIB-In or Adj-RIB-Out.

6.3.1. Peer Up Information

 The following peer UP information TLV types are added:

 o Type = 4: Admin Label. The Information field contains a free-form
 UTF-8 string whose length is given by the Information Length
 field. The value is administratively assigned. There is no
 requirement to terminate the string with null or any other
 character.

 Multiple admin labels can be included in the Peer UP. When
 multiple admin labels are included the BMP receiver MUST preserve
 the order.

 The TLV is optional.

7. Other Considerations

7.1. Peer and Update Groups

 Peer and update groups are used to group updates shared by many
 peers. This is a level of efficiency in the implementation, not a
 true representation of what is conveyed to a peer in either Pre-
 Policy or Post-Policy.

 One of the use-cases to monitor Adj-RIB-Out Post-Policy is to
 validate and continually ensure the egress updates match what is
 expected. For example, wholesale peers should never have routes with
 community X:Y sent to them. In this use-case, there maybe hundreds
 of wholesale peers but a single peer could have represented the
 group.

 A single peer could be used to represent a group. From a BMP
 perspective, this should be simple to include a group name in the
 PEER UP, but it is more complex than that. BGP implementations have
 evolved to provide comprehensive and structured policy grouping, such
 as session, afi/safi, and template based group policy inheritances.

 This level of structure and inheritance of polices does not provide a
 simple peer group name or ID, such as wholesale peer.

 Instead of requiring a group name to be used, a new administrative
 label informational TLV (Section 6.3.1) is added to the Peer UP
 message. These labels have administrative scope relevance. For
 example, labels "type=wholesale" and "region=west" could be used to
 monitor expected policies.

 Configuration and assignment of labels to peers is BGP implementation
 specific.

8. Security Considerations

 It is not believed that this document adds any additional security
 considerations.

9. IANA Considerations

 This document requests that IANA assign the following new parameters
 to the BMP parameters name space [1].

9.1. BMP Peer Flags

 This document defines the following new per-peer header flags
 (Section 4):

 o Flag 3 as O flag: The O flag indicates Adj-RIB-In if set to 0 and
 Adj-RIB-Out if set to 1.

9.2. BMP Statistics Types

 This document defines four new statistic types for statistics
 reporting (Section 6.2):

 o Stat Type = 14: (64-bit Gauge) Number of routes in Adj-RIBs-Out
 Pre-Policy.

 o Stat Type = 15: (64-bit Gauge) Number of routes in Adj-RIBs-Out
 Post-Policy.

 o Stat Type = 16: Number of routes in per-AFI/SAFI Adj-RIB-Out Pre-
 Policy. The value is structured as: 2-byte Address Family
 Identifier (AFI), 1-byte Subsequent Address Family Identifier
 (SAFI), followed by a 64-bit Gauge.

 o Stat Type = 17: Number of routes in per-AFI/SAFI Adj-RIB-Out Post-
 Policy. The value is structured as: 2-byte Address Family
 Identifier (AFI), 1-byte Subsequent Address Family Identifier
 (SAFI), followed by a 64-bit Gauge.

9.3. Peer UP Information TLV

 This document defines the following new BMP PEER UP informational
 message TLV types (Section 6.3.1):

 o Type = 4: Admin Label. The Information field contains a free-form
 UTF-8 string whose length is given by the Information Length
 field. The value is administratively given by the Information
 Length field. The value is administratively assigned. There is
 no requirement to terminate the string with null or any other
 character.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

10.2. URIs

 [1] https://www.iana.org/assignments/bmp-parameters/bmp-

 parameters.xhtml

Acknowledgements

 The authors would like to thank John Scudder for his valuable input.

Contributors

Manish Bhardwaj
Cisco Systems
3700 Cisco Way
San Jose, CA 95134
USA

 Email: manbhard@cisco.com

Xianyuzheng
Tencent
Tencent Building, Kejizhongyi Avenue,
Hi‑techPark, Nanshan District,Shenzhen 518057, P.R.China

Weiguo
Tencent
Tencent Building, Kejizhongyi Avenue,
Hi‑techPark, Nanshan District,Shenzhen 518057, P.R.China

Shugang cheng
H3C

Authors' Addresses

Tim Evens
Cisco Systems
2901 Third Avenue, Suite 600
Seattle, WA 98121
USA

 Email: tievens@cisco.com

Serpil Bayraktar
Cisco Systems
3700 Cisco Way
San Jose, CA 95134
USA

 Email: serpil@cisco.com

Paolo Lucente
NTT Communications
Siriusdreef 70‑72
Hoofddorp, WT 2132
NL

 Email: paolo@ntt.net

Penghui Mi
Tencent
Tengyun Building,Tower A ,No. 397 Tianlin Road
Shanghai 200233
China

 Email: kevinmi@tencent.com

Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: zhuangshunwan@huawei.com

draft-ietf-grow-bmp-local-rib-02 - Support for Local RIB in BGP Monitoring Protocol (BMP)

draft-ietf-grow-bmp-local-rib-02 - Support for Local RIB in BGP Monitoring Proto

Index
Prev
Next
Forward 5

Global Routing Operations

Internet-Draft

Updates: 7854 (if approved)

Intended status: Standards Track

Expires: March 21, 2019

T. Evens

S. Bayraktar

M. Bhardwaj

Cisco Systems

P. Lucente

NTT Communications

September 17, 2018

Support for Local RIB in BGP Monitoring Protocol (BMP)

draft-ietf-grow-bmp-local-rib-02

Abstract

 The BGP Monitoring Protocol (BMP) defines access to the Adj-RIB-In
 and locally originated routes (e.g. routes distributed into BGP from
 protocols such as static) but not access to the BGP instance Loc-RIB.
 This document updates the BGP Monitoring Protocol (BMP) RFC 7854 by
 adding access to the BGP instance Local-RIB, as defined in RFC 4271
 the routes that have been selected by the local BGP speaker's
 Decision Process. These are the routes over all peers, locally
 originated, and after best-path selection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Current Method to Monitor Loc-RIB

	2. Terminology

	3. Definitions

	4. Per-Peer Header
	 4.1. Peer Type

	 4.2. Peer Flags

	5. Loc-RIB Monitoring
	 5.1. Per-Peer Header

	 5.2. Peer UP Notification
	 5.2.1. Peer UP Information

	 5.3. Peer Down Notification

	 5.4. Route Monitoring
	 5.4.1. ASN Encoding

	 5.4.2. Granularity

	 5.5. Route Mirroring

	 5.6. Statistics Report

	6. Other Considerations
	 6.1. Loc-RIB Implementation
	 6.1.1. Multiple Loc-RIB Peers

	 6.1.2. Filtering Loc-RIB to BMP Receivers

	7. Security Considerations

	8. IANA Considerations
	 8.1. BMP Peer Type

	 8.2. BMP Peer Flags

	 8.3. Peer UP Information TLV

	9. References
	 9.1. Normative References

	 9.2. URIs

	Acknowledgements

	Authors' Addresses

1. Introduction

 The BGP Monitoring Protocol (BMP) suggests that locally originated
 routes are locally sourced routes, such as redistributed or otherwise
 added routes to the BGP instance by the local router. It does not
 specify routes that are in the BGP instance Loc-RIB, such as routes
 after best-path selection.

 Figure 1 shows the flow of received routes from one or more BGP peers
 into the Loc-RIB.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Peer‑A | | Peer‑B |
/‑‑ | | ‑‑‑‑ | | ‑‑\
| | Adj‑RIB‑In (Pre) | | Adj‑RIB‑In (Pre) | |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | | |
| Filters/Policy ‑| Filters/Policy ‑| |
| V V |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | Adj‑RIB‑In (Post)| | Adj‑RIB‑In (Post)| |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | | |
| Selected ‑| Selected ‑| |
| V V |
| +‑‑‑+ |
| | Loc‑RIB | |
| +‑‑‑+ |
| |
| ROUTER/BGP Instance |
\‑‑/

 Figure 1: BGP peering Adj-RIBs-In into Loc-RIB

 As shown in Figure 2, Locally originated follows a similar flow where
 the redistributed or otherwise originated routes get installed into
 the Loc-RIB based on the decision process selection.

/‑‑\
| |
| +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ |
| | IS‑IS | | OSPF | | Static | | BGP | |
| +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ |
	Redistributed or originated into BGP			
V V V V				
+‑‑+				
	Loc‑RIB			
+‑‑+				
ROUTER/BGP Instance				
\‑‑/

 Figure 2: Locally Originated into Loc-RIB

 BGP instance Loc-RIB usually provides a similar, if not exact,
 forwarding information base (FIB) view of the routes from BGP that
 the router will use. The following are some use-cases for Loc-RIB
 access:

 o Adj-RIBs-In Post-Policy may still contain hundreds of thousands of
 routes per-peer but only a handful are selected and installed in
 the Loc-RIB as part of the best-path selection. Some monitoring
 applications, such as ones that need only to correlate flow
 records to Loc-RIB entries, only need to collect and monitor the
 routes that are actually selected and used.

 Requiring the applications to collect all Adj-RIB-In Post-Policy
 data forces the applications to receive a potentially large
 unwanted data set and to perform the BGP decision process
 selection, which includes having access to the IGP next-hop
 metrics. While it is possible to obtain the IGP topology
 information using BGP-LS, it requires the application to implement
 SPF and possibly CSPF based on additional policies. This is
 overly complex for such a simple application that only needed to
 have access to the Loc-RIB.

 o It is common to see frequent changes over many BGP peers, but
 those changes do not always result in the router's Loc-RIB
 changing. The change in the Loc-RIB can have a direct impact on
 the forwarding state. It can greatly reduce time to troubleshoot
 and resolve issues if operators had the history of Loc-RIB
 changes. For example, a performance issue might have been seen

 for only a duration of 5 minutes. Post troubleshooting this issue
 without Loc-RIB history hides any decision based routing changes
 that might have happened during those five minutes.

 o Operators may wish to validate the impact of policies applied to
 Adj-RIB-In by analyzing the final decision made by the router when
 installing into the Loc-RIB. For example, in order to validate if
 multi-path prefixes are installed as expected for all advertising
 peers, the Adj-RIB-In Post-Policy and Loc-RIB needs to be
 compared. This is only possible if the Loc-RIB is available.
 Monitoring the Adj-RIB-In for this router from another router to
 derive the Loc-RIB is likely to not show same installed prefixes.
 For example, the received Adj-RIB-In will be different if add-
 paths is not enabled or if maximum number of equal paths are
 different from Loc-RIB to routes advertised.

 This document adds Loc-RIB to the BGP Monitoring Protocol and
 replaces Section 8.2 [RFC7854] Locally Originated Routes.

1.1. Current Method to Monitor Loc-RIB

 Loc-RIB is used to build Adj-RIB-Out when advertising routes to a
 peer. It is therefore possible to derive the Loc-RIB of a router by
 monitoring the Adj-RIB-In Pre-Policy from another router. At scale
 this becomes overly complex and error prone.

/‑‑\
| ROUTER1 BGP Instance |
| |
| +‑‑+ |
| | Loc‑RIB | |
| +‑‑+ |
| | | |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | Peer‑ROUTER2 | | Peer‑ROUTER3 | |
| | Adj‑RIB‑Out (Pre)| | Adj‑RIB‑Out (Pre)| |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| Filters/Policy ‑| Filters/Policy ‑| |
| V V |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | Adj‑RIB‑Out (Post)| | Adj‑RIB‑Out (Post)| |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | | |
\‑‑‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑‑‑‑‑‑‑/
 BGP | BGP |
 Peer | Peer |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Peer‑ROUTER1 | | Peer‑ROUTER1 |
/‑‑| |‑‑\ /‑‑| | ‑‑\
	Adj‑RIB‑In (Pre)				Adj‑RIB‑In (Pre)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
ROUTER2/BGP Instance		ROUTER3/BGP Instance				
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/
 | |
 v v
 ROUTER2 BMP Feed ROUTER3 BMP Feed

 Figure 3: Current method to monitor Loc-RIB

 The setup needed to monitor the Loc-RIB of a router requires another
 router with a peering session to the target router that is to be
 monitored. As shown in Figure 3, the target router Loc-RIB is
 advertised via Adj-RIB-Out to the BMP router over a standard BGP
 peering session. The BMP router then forwards Adj-RIB-In Pre-Policy
 to the BMP receiver.

 The current method introduces the need for additional resources:

 o Requires at least two routers when only one router was to be
 monitored.

 o Requires additional BGP peering to collect the received updates
 when peering may have not even been required in the first place.
 For example, VRF's with no peers, redistributed bgp-ls with no
 peers, segment routing egress peer engineering where no peers have
 link-state address family enabled.

 Complexities introduced with current method in order to derive (e.g.
 correlate) peer to router Loc-RIB:

 o Adj-RIB-Out received as Adj-RIB-In from another router may have a
 policy applied that filters, generates aggregates, suppresses more
 specifics, manipulates attributes, or filters routes. Not only
 does this invalidate the Loc-RIB view, it adds complexity when
 multiple BMP routers may have peering sessions to the same router.
 The BMP receiver user is left with the error prone task of
 identifying which peering session is the best representative of
 the Loc-RIB.

 o BGP peering is designed to work between administrative domains and
 therefore does not need to include internal system level
 information of each peering router (e.g. the system name or
 version information). In order to derive a Loc-RIB to a router,
 the router name or other system information is needed. The BMP
 receiver and user are forced to do some type of correlation using
 what information is available in the peering session (e.g. peering
 addresses, ASNs, and BGP-ID's). This leads to error prone
 correlations.

 o The BGP-ID's and session addresses to router correlation requires
 additional data, such as router inventory. This additional data
 provides the BMP receiver the ability to map and correlate the
 BGP-ID's and/or session addresses, but requires the BMP receiver
 to somehow obtain this data outside of BMP. How this data is
 obtained and the accuracy of the data directly effects the
 integrity of the correlation.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Definitions

 o Adj-RIB-In: As defined in [RFC4271], "The Adj-RIBs-In contains
 unprocessed routing information that has been advertised to the
 local BGP speaker by its peers." This is also referred to as the
 pre-policy Adj-RIB-In in this document.

 o Adj-RIB-Out: As defined in [RFC4271], "The Adj-RIBs-Out contains
 the routes for advertisement to specific peers by means of the
 local speaker's UPDATE messages."

 o Loc-RIB: As defined in [RFC4271], "The Loc-RIB contains the routes
 that have been selected by the local BGP speaker's Decision
 Process." It is further defined that the routes selected include
 locally originated and routes from all peers.

 o Pre-Policy Adj-RIB-Out: The result before applying the outbound
 policy to an Adj-RIB-Out. This normally represents a similar view
 of the Loc-RIB but may contain additional routes based on BGP
 peering configuration.

 o Post-Policy Adj-RIB-Out: The result of applying outbound policy to
 an Adj-RIB-Out. This MUST be what is actually sent to the peer.

4. Per-Peer Header

4.1. Peer Type

 A new peer type is defined for Loc-RIB to distinguish that it
 represents Loc-RIB with or without RD and local instances.
 Section 4.2 [RFC7854] defines a Local Instance Peer type, which is
 for the case of non-RD peers that have an instance identifier.

 This document defines the following new peer type:

 o Peer Type = TBD1: Loc-RIB Instance Peer

4.2. Peer Flags

 In section 4.2 [RFC7854], the "locally sourced routes" comment under
 the L flag description is removed. Locally sourced routes MUST be
 conveyed using the Loc-RIB instance peer type.

 The per-peer header flags for Loc-RIB Instance Peer type are defined
 as follows:

 0 1 2 3 4 5 6 7
+‑+‑+‑+‑+‑+‑+‑+‑+
|F| Reserved |
+‑+‑+‑+‑+‑+‑+‑+‑+

 o The F flag indicates that the Loc-RIB is filtered. This indicates
 that the Loc-RIB does not represent the complete routing table.

 The remaining bits are reserved for future use. They SHOULD be
 transmitted as 0 and their values MUST be ignored on receipt.

5. Loc-RIB Monitoring

 Loc-RIB contains all routes from BGP peers as well as any and all
 routes redistributed or otherwise locally originated. In this
 context, only the BGP instance Loc-RIB is included. Routes from
 other routing protocols that have not been redistributed, originated
 by or into BGP, or received via Adj-RIB-In are not considered.

 Loc-RIB in this context does not attempt to maintain a pre-policy and
 post-policy representation. Loc-RIB is the selected and used routes,
 which is equivalent to post-policy.

 For example, VRF "Blue" imports several targets but filters out
 specific routes. The end result of VRF "Blue" Loc-RIB is conveyed.
 Even though the import is filtered, the result is complete for VRF
 "Blue" Loc-RIB. The F flag is not set in this case since the Loc-RIB
 is complete and not filtered to the BMP receiver.

5.1. Per-Peer Header

 All peer messages that include a per-peer header MUST use the
 following values:

 o Peer Type: Set to TBD1 to indicate Loc-RIB Instance Peer.

 o Peer Distinguisher: Zero filled if the Loc-RIB represents the
 global instance. Otherwise set to the route distinguisher or
 unique locally defined value of the particular instance the Loc-
 RIB belongs to.

 o Peer Address: Zero-filled. Remote peer address is not applicable.
 The V flag is not applicable with Local-RIB Instance peer type
 considering addresses are zero-filed.

 o Peer AS: Set to the BGP instance global or default ASN value.

 o Peer BGP ID: Set to the BGP instance global or RD (e.g. VRF)
 specific router-id.

5.2. Peer UP Notification

 Peer UP notifications follow section 4.10 [RFC7854] with the
 following clarifications:

 o Local Address: Zero-filled, local address is not applicable.

 o Local Port: Set to 0, local port is not applicable.

 o Remote Port: Set to 0, remote port is not applicable.

 o Sent OPEN Message: This is a fabricated BGP OPEN message.
 Capabilities MUST include 4-octet ASN and all necessary
 capabilities to represent the Loc-RIB route monitoring messages.
 Only include capabilities if they will be used for Loc-RIB
 monitoring messages. For example, if add-paths is enabled for
 IPv6 and Loc-RIB contains additional paths, the add-paths
 capability should be included for IPv6. In the case of add-paths,
 the capability intent of advertise, receive or both can be ignored
 since the presence of the capability indicates enough that add-
 paths will be used for IPv6.

 o Received OPEN Message: Repeat of the same Sent Open Message. The
 duplication allows the BMP receiver to use existing parsing.

5.2.1. Peer UP Information

 The following peer UP information TLV types are added:

 o Type = TBD2: VRF/Table Name. The Information field contains an
 ASCII string whose value MUST be equal to the value of the VRF or
 table name (e.g. RD instance name) being conveyed. The string
 size MUST be within the range of 1 to 255 bytes.

 The VRF/Table Name TLV is optionally included. For consistency,
 it is RECOMMENDED that the VRF/Table Name always be included. The
 default value of "global" SHOULD be used for the default Loc-RIB
 instance with a zero-filled distinguisher. If the TLV is
 included, then it SHOULD also be included in the Peer Down
 notification.

5.3. Peer Down Notification

 Peer down notification SHOULD follow the section 4.9 [RFC7854] reason
 2.

 The VRF/Table Name informational TLV SHOULD be included if it was in
 the Peer UP.

5.4. Route Monitoring

 Route Monitoring messages are used for initial synchronization of the
 Loc-RIB. They are also used to convey incremental Loc-RIB changes.
 As defined in section 4.3 [RFC7854], "Following the common BMP header
 and per-peer header is a BGP Update PDU."

5.4.1. ASN Encoding

 Loc-RIB route monitor messages MUST use 4-byte ASN encoding as
 indicated in PEER UP sent OPEN message (Section 5.2) capability.

5.4.2. Granularity

 State compression and throttling SHOULD be used by a BMP sender to
 reduce the amount of route monitoring messages that are transmitted
 to BMP receivers. With state compression, only the final resultant
 updates are sent.

 For example, prefix 10.0.0.0/8 is updated in the Loc-RIB 5 times
 within 1 second. State compression of BMP route monitor messages
 results in only the final change being transmitted. The other 4
 changes are suppressed because they fall within the compression
 interval. If no compression was being used, all 5 updates would have
 been transmitted.

 A BMP receiver SHOULD expect that Loc-RIB route monitoring
 granularity can be different by BMP sender implementation.

5.5. Route Mirroring

 Route mirroring is not applicable to Loc-RIB.

5.6. Statistics Report

 Not all Stat Types are relevant to Loc-RIB. The Stat Types that are
 relevant are listed below:

 o Stat Type = 8: (64-bit Gauge) Number of routes in Loc-RIB.

 o Stat Type = 10: Number of routes in per-AFI/SAFI Loc-RIB. The
 value is structured as: 2-byte AFI, 1-byte SAFI, followed by a 64-
 bit Gauge.

6. Other Considerations

6.1. Loc-RIB Implementation

 There are several methods to implement Loc-RIB efficiently. In all
 methods, the implementation emulates a peer with Peer UP and DOWN
 messages to convey capabilities as well as Route Monitor messages to
 convey Loc-RIB. In this sense, the peer that conveys the Loc-RIB is
 a local router emulated peer.

6.1.1. Multiple Loc-RIB Peers

 There MUST be multiple emulated peers for each Loc-RIB instance, such
 as with VRF's. The BMP receiver identifies the Loc-RIB's by the peer
 header distinguisher and BGP ID. The BMP receiver uses the VRF/
 Table Name from the PEER UP information to associate a name to the
 Loc-RIB.

 In some implementations, it might be required to have more than one
 emulated peer for Loc-RIB to convey different address families for
 the same Loc-RIB. In this case, the peer distinguisher and BGP ID
 should be the same since it represents the same Loc-RIB instance.
 Each emulated peer instance MUST send a PEER UP with the OPEN message
 indicating the address family capabilities. A BMP receiver MUST
 process these capabilities to know which peer belongs to which
 address family.

6.1.2. Filtering Loc-RIB to BMP Receivers

 There maybe be use-cases where BMP receivers should only receive
 specific routes from Loc-RIB. For example, IPv4 unicast routes may
 include IBGP, EBGP, and IGP but only routes from EBGP should be sent
 to the BMP receiver. Alternatively, it may be that only IBGP and
 EBGP that should be sent and IGP redistributed routes should be
 excluded. In these cases where the Loc-RIB is filtered, the F flag
 is set to 1 to indicate to the BMP receiver that the Loc-RIB is
 filtered.

7. Security Considerations

 It is not believed that this document adds any additional security
 considerations.

8. IANA Considerations

 This document requests that IANA assign the following new parameters
 to the BMP parameters name space [1].

8.1. BMP Peer Type

 This document defines a new peer type (Section 4.1):

 o Peer Type = TBD1: Loc-RIB Instance Peer

8.2. BMP Peer Flags

 This document defines a new flag (Section 4.2) and proposes that peer
 flags are specific to the peer type:

 o The F flag indicates that the Loc-RIB is filtered. This indicates
 that the Loc-RIB does not represent the complete routing table.

8.3. Peer UP Information TLV

 This document defines the following new BMP PEER UP informational
 message TLV types (Section 5.2.1):

 o Type = TBD2: VRF/Table Name. The Information field contains an
 ASCII string whose value MUST be equal to the value of the VRF or
 table name (e.g. RD instance name) being conveyed. The string
 size MUST be within the range of 1 to 255 bytes.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

9.2. URIs

 [1] https://www.iana.org/assignments/bmp-parameters/bmp-

 parameters.xhtml

Acknowledgements

 The authors would like to thank John Scudder for his valuable input.

Authors' Addresses

Tim Evens
Cisco Systems
2901 Third Avenue, Suite 600
Seattle, WA 98121
USA

 Email: tievens@cisco.com

Serpil Bayraktar
Cisco Systems
3700 Cisco Way
San Jose, CA 95134
USA

 Email: serpil@cisco.com

Manish Bhardwaj
Cisco Systems
3700 Cisco Way
San Jose, CA 95134
USA

 Email: manbhard@cisco.com

Paolo Lucente
NTT Communications
Siriusdreef 70‑72
Hoofddorp, WT 2132
NL

 Email: paolo@ntt.net

draft-ietf-grow-bmp-registries-change-00 - Revision to Registration Procedures for Multiple BMP Registries

draft-ietf-grow-bmp-registries-change-00 - Revision to Registration Procedures f

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 7854 (if approved)

Intended status: Standards Track

Expires: June 12, 2019

J. Scudder

Juniper Networks

December 9, 2018

Revision to Registration Procedures for Multiple BMP Registries

draft-ietf-grow-bmp-registries-change-00.txt

Abstract

 This document updates RFC 7854, BGP Monitoring Protocol (BMP) by
 making a change to the registration procedures for several
 registries. Specifically, any BMP registry with a range of
 32768-65530 designated "Specification Required" has that range re-
 designated as "First Come First Served".

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 12, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. IANA Considerations

	3. Security Considerations

	4. Acknowledgements

	5. Normative References

	Author's Address

1. Introduction

 [RFC7854]
 creates a number of IANA registries that include a range of
 32768-65530 designated "Specification Required". Each such registry
 also has a large range designated "Standards Action". Subsequent
 experience has shown two things. First, there is less difference
 between these two policies in practice than there is in theory
 (consider that [RFC8126] explains that for Specification Required,
 "Publication of an RFC is an ideal means of achieving this
 requirement"). Second, it's desirable to have a very low bar to
 registration, to avoid the risk of conflicts introduced by use of
 unregistered code points (so-called "code point squatting").

 Accordingly, this document revises the registration procedures, as
 given in Section 2.

2. IANA Considerations

 IANA is requested to revise the following registries within the BMP
 group:

o BMP Statistics Types
o BMP Initiation Message TLVs
o BMP Termination Message TLVs
o BMP Termination Message Reason Codes
o BMP Peer Down Reason Codes
o BMP Route Mirroring TLVs
o BMP Route Mirroring Information Codes

 For each of these registries, the ranges 32768-65530 whose
 registration procedures were "Specification Required" are revised to
 have the registration procedures "First Come First Served".

3. Security Considerations

 This revision to registration procedures does not change the
 underlying security issues inherent in the existing [RFC7854].

4. Acknowledgements

 Thanks to Jeff Haas for review and encouragement.

5. Normative References

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Author's Address

John Scudder
Juniper Networks
1194 N. Mathilda Ave
Sunnyvale, CA 94089
USA

 Email: jgs@juniper.net

draft-ietf-grow-rpki-as-cones-01 - RPKI Autonomous Systems Cones: A Profile To Define Sets of Autonomous Systems Numbers To Facilitate BGP Filtering

draft-ietf-grow-rpki-as-cones-01 - RPKI Autonomous Systems Cones: A Profile To D

Index
Prev
Next
Forward 5

Global Routing Operations

Internet-Draft

Intended status: Informational

Expires: September 6, 2019

J. Snijders

NTT

M. Stucchi

RIPE NCC

March 5, 2019

RPKI Autonomous Systems Cones: A Profile To Define Sets of Autonomous Systems Numbers To Facilitate BGP Filtering

draft-ietf-grow-rpki-as-cones-01

Abstract

 This document describes a way to define groups of Autonomous System
 numbers in RPKI [RFC6480]. We call them AS-Cones. AS-Cones provide
 a mechanism to be used by operators for filtering BGP-4 [RFC4271]
 announcements.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Format of AS-Cone objects
	 2.1. Policy definition object
	 2.1.1. Naming convention for Policy definition objects

	 2.1.2. ASN.1 format of a Policy Definition object

	 2.1.3. Naming convention for neighbour relationships

	 2.2. AS-Cone definition object
	 2.2.1. Naming convention for AS-Cone objects

	 2.2.2. ASN.1 format of an AS-Cone

	3. Validating an AS-Cone

	4. Recommendations for use of AS-Cones at Internet Exchange points

	5. Publication of AS-Cones as IRR objects

	6. Security Considerations

	7. IANA Considerations

	8. Contributors

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

 The main goal of the Resource Public Key Infrastructure (RPKI) system
 [RFC6480] is to support improved security for the global routing
 system. This is achieved through the use of information stored in a
 distributed repository system comprised of signed objects. A
 commonly used object type is the Route Object Authorisation (ROAs),
 which describe the prefixes originated by ASNs.

 There is however no way for an operator to assert the routes for its
 customer networks, making it difficult to use the information carried
 by RPKI to create meaningful BGP-4 filters without relying on RPSL
 [RFC2622] as-sets.

 This memo introduces a new attestation object, called an AS-Cone. An
 AS-Cone is a digitally signed object with the goal to enable
 operators to define a set of customers that can be found as "right
 adjacencies", or transit customer networks, facilitating the
 construction of prefix filters for a given ASN, thus making routing
 more secure.

2. Format of AS-Cone objects

 AS-Cones are composed of two types of distinct objects:

 o Policy definitions; and

 o The AS-Cones themselves.

 These objects are stored in ASN.1 format and are digitally signed
 according to the same rules and conventions applied for RPKI ROA
 Objects ([RFC6482]).

2.1. Policy definition object

 A policy definition contains a list the upstream and peering
 relationships for a given Autonomous System that need an AS-Cone to
 be used for filtering. For each relationship, an AS-Cone is
 referenced to indicate which BGP networks will be announced to the
 other end of the relationship.

 The default behaviour for a neighbour, if the relationship is not
 explicitly described in the policy, is to only accept the networks
 originated by the ASN. This means that a stub ASN neither has to set
 up any AS-Cone, description, nor policy.

 Only one AS-Cone can be supplied for a given relationship. If more
 than one AS-Cone needs to be announced in the relationship, then it
 is mandatory to create a third AS-Cone that includes those two.

2.1.1. Naming convention for Policy definition objects

 A Policy object is referenced using the Autonomous System number it
 refers to, preceded by the string "AS".

2.1.2. ASN.1 format of a Policy Definition object

ASNPolicy DEFINITIONS ::=
BEGIN
Neighbours ::= SEQUENCE OF Neighbour

Neighbour ::= SEQUENCE
{
 ASN INTEGER (1..42949672965),
 ASCone VisibleString
}

Version ::= INTEGER
LastModified ::= GeneralizedTime
Created ::= GeneralizedTime
END

 ASN.1 format of a Policy definition object

2.1.3. Naming convention for neighbour relationships

 When referring to a neighbour relationship contained in a Policy
 definition object the following convention should be used:

 ASX:ASY

 Where X is the number of the AS holder and Y is the number of the ASN
 intended to use the AS-Cone object to generate a filter.

2.2. AS-Cone definition object

 An AS-Cone contains a list of the downstream customers and AS-Cones
 of a given ASN. The list is used to create filter lists by the
 networks providing transit or a peering relationship with the ASN.

 An AS-Cone can reference another AS-Cone if a customer of the
 operator also has defined an AS-Cone to be announced upstream.

2.2.1. Naming convention for AS-Cone objects

 AS-Cones MUST have a unique name for the ASN they belong to. Names
 are composed of ASCII strings up to 255 characters long and cannot
 contain spaces.

 In order for AS-Cones to be unique in the global routing system,
 their string name is preceded by the AS number of the ASN they are
 part of, followed by ":". For example, AS-Cone "EuropeanCustomers"
 for ASN 65530 is represented as "AS65530:EuropeanCustomers" when
 referenced from a third party.

2.2.2. ASN.1 format of an AS-Cone

ASCone DEFINITIONS ::=
BEGIN
Entities ::= SEQUENCE OF Entity

Entity CHOICE
{
 ASN INTEGER (1..4294967295),
 OtherASCone VisibleString
}

Version ::= INTEGER
LastModified ::= GeneralizedTime
Created ::= GeneralizedTime
END

 ASN.1 format of an AS-Cone

3. Validating an AS-Cone

 The goal of AS-Cones is to be able to recursively define all the
 originating ASNs that define the customer base of a given ASN,
 including all the transit relationships. This means that through AS-
 Cones, it is possible to create a graph of all the neighbour
 relationships for the customers of a given ASN.

 In order to validate a full AS-Cone, a network operator MUST have
 access to the validated cache of an RPKI validator software
 containing all the Policy definition and AS-Cone objects. Validation
 occurs following the description in: [RFC6488].

 In order to validate a full AS-Cone, an operator SHOULD perform the
 following steps:

 1. For Every downstream ASN, the operator takes its policy
 definition file and collects a list of ASNs for the cone by
 looking at the following data, in exact order:

 1. A policy for the specific relationship, in the form of
 ASX:ASY, where ASX is the downstream ASN, and ASY is the ASN
 of the operator validating the AS-Cone;

 2. If there is no specific definition for the relationship, the
 ASX:Default policy;

 If none of the two objects above exists, then the operator should
 only consider the ASN of its downstream to be added to the list.

 2. These objects can either point to:

 1. An AS-Cone; or

 2. An ASN

 3. If the definition points to an AS-Cone, the operator looks for
 the object referenced, which should be contained in the validated
 cache;

 4. If the validated cache does not contain the referenced object,
 then the validation moves on to the next downstream ASN;

 5. If the validated cache contains the referenced object, the
 validation process evaluates every entry in the AS-Cone. For
 each entry:

 1. If there is a reference to an ASN, then the operator adds the
 ASN to the list for the given AS-Cone;

 2. If there is a reference to another AS-Cone, the validating
 process should recursively process all the entries in that
 AS-Cone first, with the same principles contained in this
 list.

 Since the goal is to build a list of ASNs announcing routes in
 the AS-Cone, then if an ASN or an AS-Cone are referenced more
 than once in the process, their contents should only be added
 once to the list. This is intended to avoid endless loops, and
 in order to avoid cross-reference of AS-Cones.

 6. When all the AS-Cones referenced in the policies have been
 recursively iterated, and all the originating ASNs have been
 taken into account, the operator can then build a full prefix-
 list with all the prefixes originated in its AS-Cone. This can
 be done by querying the RPKI validator software for all the
 networks originated by every ASN referenced in the AS-Cone.

4. Recommendations for use of AS-Cones at Internet Exchange points

 When an operator is a member of an internet exchange point, it is
 recommended for it to create at least a Default policy.

 In case of a peering session with a route server, the operator could
 publish a policy pointing to the ASN of the route server. A route
 server operator, then, could build strict prefix filtering rules for
 all the participants, and offer it as a service to its members.

5. Publication of AS-Cones as IRR objects

 AS-Cones are very similar to AS-Set RPSL Objects, so they could also
 be published in IRR Databases as AS-Set objects. Every ASN contained
 in an AS-Cone, and all the AS-Cones referenced should be considered
 as member: attributes. The naming convention for AS-Cones (ASX:AS-
 Cone) should be maintained, in order to keep consistency between the
 two databases.

6. Security Considerations

 TBW

7. IANA Considerations

 This memo includes no request to IANA.

8. Contributors

 The following people contributed significantly to the content of the
 document: Greg Skinner.

9. Acknowledgments

 The authors would like to thank ...

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [RFC2622]
 Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D.,
 Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra,
 "Routing Policy Specification Language (RPSL)", RFC 2622,
 DOI 10.17487/RFC2622, June 1999,
 <https://www.rfc-editor.org/info/rfc2622>.

 [RFC6480]
 Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

 [RFC6482]
 Lepinski, M., Kent, S., and D. Kong, "A Profile for Route
 Origin Authorizations (ROAs)", RFC 6482,
 DOI 10.17487/RFC6482, February 2012,
 <https://www.rfc-editor.org/info/rfc6482>.

 [RFC6488]
 Lepinski, M., Chi, A., and S. Kent, "Signed Object
 Template for the Resource Public Key Infrastructure
 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,
 <https://www.rfc-editor.org/info/rfc6488>.

Authors' Addresses

Job Snijders
NTT Communications
Theodorus Majofskistraat 100
Amsterdam 1065 SZ
The Netherlands

 Email: job@ntt.net

Massimiliano Stucchi
RIPE NCC
Stationsplein, 11
Amsterdam 1012 AB
The Netherlands

 Email: mstucchi@ripe.net

draft-ietf-grow-wkc-behavior-03 - Well-Known Community Policy Behavior

draft-ietf-grow-wkc-behavior-03 - Well-Known Community Policy Behavior

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: September 11, 2019

J. Borkenhagen

AT&T

R. Bush

Internet Initiative Japan

R. Bonica

Juniper Networks

S. Bayraktar

Cisco Systems

March 10, 2019

Well-Known Community Policy Behavior

draft-ietf-grow-wkc-behavior-03

Abstract

 Well-Known BGP Communities are manipulated inconsistently by current
 implementations. This results in difficulties for operators.
 Network operators are encouraged to deploy consistent community
 handling across their networks, taking the inconsistent behaviors
 from the various BGP implementations they operate into consideration.
 Also, BGP implementors are expected to not create any further
 inconsistencies from this point forward.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
 be interpreted as described in RFC 2119 [RFC2119] only when they
 appear in all upper case. They may also appear in lower or mixed
 case as English words, without normative meaning.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Manipulation of Communities by Policy

	3. Community Manipulation Policy Differences

	4. Documentation of Vendor Implementations
	 4.1. Note on an Inconsistency

	5. Note for Those Writing RFCs for New Community-Like Attributes

	6. Action Items

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgments

	10. Normative References

	Authors' Addresses

1. Introduction

 The BGP Communities Attribute was specified in [RFC1997] which
 introduced the concept of Well-Known Communities. In hindsight,
 [RFC1997] did not prescribe as fully as it should have how Well-Known
 Communities may be manipulated by policies applied by operators.
 Currently, implementations differ in this regard, and these
 differences can result in inconsistent behaviors that operators find
 difficult to identify and resolve.

 This document describes the current behavioral differences in order
 to assist operators in generating consistent community-manipulation
 policies in a multi-vendor environment, and to prevent the
 introduction of additional divergence in implementations.

2. Manipulation of Communities by Policy

 [RFC1997] says:

 "A BGP speaker receiving a route with the COMMUNITIES path attribute
 may modify this attribute according to the local policy."

 One basic operational need is to add or remove one or more
 communities to the received set. The focus of this document is
 another common operational need, to replace all communities with a
 new set. To simplify this second case, most BGP policy
 implementations provide syntax to "set" community that operators use
 to mean "remove any/all communities present on the route, and apply
 this set of communities instead."

 Some operators prefer to write explicit policy to delete unwanted
 communities rather than using "set;" i.e. using a "delete community
 :" and then "add community x:y ..." configuration statements in an
 attempt to replace all received communities. The same community
 manipulation policy differences described in the following section
 exist in both "set" and "delete community *:*" syntax. For
 simplicity, the remainder of this document refers only to the "set"
 behaviors, which we refer to collectively as each implementation's
 '"set" directive.'

3. Community Manipulation Policy Differences

 Vendor implementations differ in the treatment of certain Well-Known
 communities when modified using the syntax to "set" the community.
 Some replace all communities including the Well-Known ones with the
 new set, while others replace all non-Well-Known Communities but do
 not modify any Well-Known Communities that are present.

 These differences result in what would appear to be identical policy
 configurations having very different results on different platforms.

4. Documentation of Vendor Implementations

 In this section we document the syntax and observed behavior of the
 "set" directive in several popular BGP implementations.

 In Juniper Networks' Junos OS, "community set" removes all received
 communities, Well-Known or otherwise.

 In Cisco Systems' IOS XR, "set community" removes all received
 communities except for the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Numeric | Common Name |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0:0	internet
65535:0	graceful‑shutdown
65535:1	accept‑own rfc7611
65535:65281	NO_EXPORT
65535:65282	NO_ADVERTISE
65535:65283	NO_EXPORT_SUBCONFED (or local‑AS)
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Communities not removed by Cisco IOS XR

 Table 1

 IOS XR does allow Well-Known communities to be removed one at a time
 by explicit policy; for example, "delete community accept-own".
 Operators are advised to consult IOS XR documentation and/or Cisco
 Systems support for full details.

 On Extreme networks' Brocade NetIron: "set community X" removes all
 communities and sets X.

 In Huawei's VRP product, "community set" removes all received
 communities, well-Known or otherwise.

 In OpenBSD's OpenBGPD, "set community" does not remove any
 communities, Well-Known or otherwise.

 Nokia's SR OS has several directives that operate on communities.
 Its "set" directive is called using the "replace" keyword, replacing
 all communities, Well-Known or otherwise, with the specified
 communities.

4.1. Note on an Inconsistency

 The IANA publishes a list of Well-Known Communities [IANA-WKS].

 IOS XR's set of well-known communities that "set community" will not
 overwrite diverges from IANA's list. Quite a few well-known
 communities from IANA's list do not receive special treatment in IOS
 XR, and at least one specific community on IOS XR's special treatment
 list (internet == 0:0) is not really on IANA's list -- it's taken
 from the "Reserved" range [0x00000000-0x0000FFFF].

 This merely notes an inconsistency. It is not a plea to 'protect'
 the entire IANA list from "set community."

5. Note for Those Writing RFCs for New Community-Like Attributes

 Care should be taken when establishing new [RFC1997]-like attributes
 (large communities, wide communities, etc) to avoid repeating this
 mistake.

6. Action Items

 Unfortunately, it would be operationally disruptive for vendors to
 change their current implementations.

 Vendors SHOULD clearly document the behavior of "set" directive in
 their implementations.

 Vendors MUST ensure that their implementations' "set" directive
 treatment of any specific community does not change if/when that
 community becomes a new Well-Known Community through future
 standardization. For most implementations, this means that the "set"
 directive MUST continue to remove the community; for those
 implementations where the "set" directive removes no communities,
 that behavior MUST continue.

 Given the implementation inconsistencies described in this document,
 network operators are urged never to rely on any implicit
 understanding of a neighbor ASN's BGP community handling. I.e.,
 before announcing prefixes with NO_EXPORT or any other community to a
 neighbor ASN, the operator should confirm with that neighbor how the
 community will be treated.

 Network operators are encouraged to limit their use of the "set"
 directive (within reason), to improve the readability of their
 configurations and hopefully to achieve behavioral consistency across
 platforms.

7. Security Considerations

 Surprising defaults and/or undocumented behaviors are not good for
 security. This document attempts to remedy that.

8. IANA Considerations

 This document has no IANA Considerations other than to be aware that
 any future Well-Known Communities will be subject to the policy
 treatment described here.

9. Acknowledgments

 The authors thank Martijn Schmidt, Qin Wu for the Huawei data point,
 Greg Hankins, Job Snijders, David Farmer, John Heasley, and Jakob
 Heitz.

10. Normative References

 [IANA-WKS]

 "IANA Well-Known Communities",
 <https://www.iana.org/assignments/bgp-well-known-
 communities/bgp-well-known-communities.xhtml>.

 [RFC1997]
 Chandra, R., Traina, P., and T. Li, "BGP Communities
 Attribute", RFC 1997, DOI 10.17487/RFC1997, August 1996,
 <http://www.rfc-editor.org/info/rfc1997>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Authors' Addresses

Jay Borkenhagen
AT&T
200 Laurel Avenue South
Middletown, NJ 07748
United States of America

 Email: jayb@att.com

Randy Bush
Internet Initiative Japan
5147 Crystal Springs
Bainbridge Island, WA 98110
United States of America

 Email: randy@psg.com

Ron Bonica
Juniper Networks
2251 Corporate Park Drive
Herndon, VA 20171
US

 Email: rbonica@juniper.net

Serpil Bayraktar
Cisco Systems
170 W. Tasman Drive
San Jose, CA 95134
United States of America

 Email: serpil@cisco.com

draft-ietf-mboned-dc-deploy-05 - Multicast in the Data Center Overview

draft-ietf-mboned-dc-deploy-05 - Multicast in the Data Center Overview

Index
Next
Forward 5

MBONED

Internet-Draft

Intended status: Informational

Expires: September 12, 2019

M. McBride

Huawei

O. Komolafe

Arista Networks

March 11, 2019

Multicast in the Data Center Overview

draft-ietf-mboned-dc-deploy-05

Abstract

 The volume and importance of one-to-many traffic patterns in data
 centers is likely to increase significantly in the future. Reasons
 for this increase are discussed and then attention is paid to the
 manner in which this traffic pattern may be judiously handled in data
 centers. The intuitive solution of deploying conventional IP
 multicast within data centers is explored and evaluated. Thereafter,
 a number of emerging innovative approaches are described before a
 number of recommendations are made.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Reasons for increasing one-to-many traffic patterns
	 2.1. Applications

	 2.2. Overlays

	 2.3. Protocols

	3. Handling one-to-many traffic using conventional multicast
	 3.1. Layer 3 multicast

	 3.2. Layer 2 multicast

	 3.3. Example use cases

	 3.4. Advantages and disadvantages

	4. Alternative options for handling one-to-many traffic
	 4.1. Minimizing traffic volumes

	 4.2. Head end replication

	 4.3. BIER

	 4.4. Segment Routing

	5. Conclusions

	6. IANA Considerations

	7. Security Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 The volume and importance of one-to-many traffic patterns in data
 centers is likely to increase significantly in the future. Reasons
 for this increase include the nature of the traffic generated by
 applications hosted in the data center, the need to handle broadcast,
 unknown unicast and multicast (BUM) traffic within the overlay
 technologies used to support multi-tenancy at scale, and the use of
 certain protocols that traditionally require one-to-many control
 message exchanges. These trends, allied with the expectation that
 future highly virtualized data centers must support communication
 between potentially thousands of participants, may lead to the
 natural assumption that IP multicast will be widely used in data
 centers, specifically given the bandwidth savings it potentially
 offers. However, such an assumption would be wrong. In fact, there
 is widespread reluctance to enable IP multicast in data centers for a
 number of reasons, mostly pertaining to concerns about its
 scalability and reliability.

 This draft discusses some of the main drivers for the increasing
 volume and importance of one-to-many traffic patterns in data
 centers. Thereafter, the manner in which conventional IP multicast
 may be used to handle this traffic pattern is discussed and some of
 the associated challenges highlighted. Following this discussion, a
 number of alternative emerging approaches are introduced, before
 concluding by discussing key trends and making a number of
 recommendations.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. Reasons for increasing one-to-many traffic patterns

2.1. Applications

 Key trends suggest that the nature of the applications likely to
 dominate future highly-virtualized multi-tenant data centers will
 produce large volumes of one-to-many traffic. For example, it is
 well-known that traffic flows in data centers have evolved from being
 predominantly North-South (e.g. client-server) to predominantly East-
 West (e.g. distributed computation). This change has led to the
 consensus that topologies such as the Leaf/Spine, that are easier to
 scale in the East-West direction, are better suited to the data
 center of the future. This increase in East-West traffic flows
 results from VMs often having to exchange numerous messages between
 themselves as part of executing a specific workload. For example, a
 computational workload could require data, or an executable, to be
 disseminated to workers distributed throughout the data center which
 may be subsequently polled for status updates. The emergence of such
 applications means there is likely to be an increase in one-to-many
 traffic flows with the increasing dominance of East-West traffic.

 The TV broadcast industry is another potential future source of
 applications with one-to-many traffic patterns in data centers. The
 requirement for robustness, stability and predicability has meant the
 TV broadcast industry has traditionally used TV-specific protocols,
 infrastructure and technologies for transmitting video signals
 between end points such as cameras, monitors, mixers, graphics
 devices and video servers. However, the growing cost and complexity
 of supporting this approach, especially as the bit rates of the video
 signals increase due to demand for formats such as 4K-UHD and 8K-UHD,
 means there is a consensus that the TV broadcast industry will
 transition from industry-specific transmission formats (e.g. SDI,
 HD-SDI) over TV-specific infrastructure to using IP-based
 infrastructure. The development of pertinent standards by the SMPTE,
 along with the increasing performance of IP routers, means this
 transition is gathering pace. A possible outcome of this transition
 will be the building of IP data centers in broadcast plants. Traffic
 flows in the broadcast industry are frequently one-to-many and so if
 IP data centers are deployed in broadcast plants, it is imperative
 that this traffic pattern is supported efficiently in that
 infrastructure. In fact, a pivotal consideration for broadcasters
 considering transitioning to IP is the manner in which these one-to-
 many traffic flows will be managed and monitored in a data center
 with an IP fabric.

 One of the few success stories in using conventional IP multicast has
 been for disseminating market trading data. For example, IP
 multicast is commonly used today to deliver stock quotes from the
 stock exchange to financial services provider and then to the stock
 analysts or brokerages. The network must be designed with no single
 point of failure and in such a way that the network can respond in a
 deterministic manner to any failure. Typically, redundant servers
 (in a primary/backup or live-live mode) send multicast streams into
 the network, with diverse paths being used across the network.
 Another critical requirement is reliability and traceability;
 regulatory and legal requirements means that the producer of the
 marketing data may need to know exactly where the flow was sent and
 be able to prove conclusively that the data was received within
 agreed SLAs. The stock exchange generating the one-to-many traffic
 and stock analysts/brokerage that receive the traffic will typically
 have their own data centers. Therefore, the manner in which one-to-
 many traffic patterns are handled in these data centers are extremely
 important, especially given the requirements and constraints
 mentioned.

 Many data center cloud providers provide publish and subscribe
 applications. There can be numerous publishers and subscribers and
 many message channels within a data center. With publish and
 subscribe servers, a separate message is sent to each subscriber of a
 publication. With multicast publish/subscribe, only one message is
 sent, regardless of the number of subscribers. In a publish/
 subscribe system, client applications, some of which are publishers
 and some of which are subscribers, are connected to a network of
 message brokers that receive publications on a number of topics, and
 send the publications on to the subscribers for those topics. The
 more subscribers there are in the publish/subscribe system, the
 greater the improvement to network utilization there might be with
 multicast.

2.2. Overlays

 The proposed architecture for supporting large-scale multi-tenancy in
 highly virtualized data centers [RFC8014] consists of a tenant's VMs
 distributed across the data center connected by a virtual network
 known as the overlay network. A number of different technologies
 have been proposed for realizing the overlay network, including VXLAN
 [RFC7348], VXLAN-GPE [I-D.ietf-nvo3-vxlan-gpe], NVGRE [RFC7637] and
 GENEVE [I-D.ietf-nvo3-geneve]. The often fervent and arguably
 partisan debate about the relative merits of these overlay
 technologies belies the fact that, conceptually, it may be said that
 these overlays typically simply provide a means to encapsulate and
 tunnel Ethernet frames from the VMs over the data center IP fabric,
 thus emulating a layer 2 segment between the VMs. Consequently, the
 VMs believe and behave as if they are connected to the tenant's other
 VMs by a conventional layer 2 segment, regardless of their physical
 location within the data center. Naturally, in a layer 2 segment,
 point to multi-point traffic can result from handling BUM (broadcast,
 unknown unicast and multicast) traffic. And, compounding this issue
 within data centers, since the tenant's VMs attached to the emulated
 segment may be dispersed throughout the data center, the BUM traffic
 may need to traverse the data center fabric. Hence, regardless of
 the overlay technology used, due consideration must be given to
 handling BUM traffic, forcing the data center operator to consider
 the manner in which one-to-many communication is handled within the
 IP fabric.

2.3. Protocols

 Conventionally, some key networking protocols used in data centers
 require one-to-many communication. For example, ARP and ND use
 broadcast and multicast messages within IPv4 and IPv6 networks
 respectively to discover MAC address to IP address mappings.
 Furthermore, when these protocols are running within an overlay
 network, then it essential to ensure the messages are delivered to
 all the hosts on the emulated layer 2 segment, regardless of physical
 location within the data center. The challenges associated with
 optimally delivering ARP and ND messages in data centers has
 attracted lots of attention [RFC6820]. Popular approaches in use
 mostly seek to exploit characteristics of data center networks to
 avoid having to broadcast/multicast these messages, as discussed in
 Section 4.1.

 There are networking protocols that are being modified/developed to
 specifically target working in a data center CLOS environment. BGP
 has been extended to work in these type of DC environments and well
 supports multicast. RIFT (Routing in Fat Trees) is a new protocol
 being developed to work efficiently in DC CLOS environments and also
 is being specified to support multicast addressing and forwarding.

3. Handling one-to-many traffic using conventional multicast

3.1. Layer 3 multicast

 PIM is the most widely deployed multicast routing protocol and so,
 unsurprisingly, is the primary multicast routing protocol considered
 for use in the data center. There are three potential popular modes
 of PIM that may be used: PIM-SM [RFC4601], PIM-SSM [RFC4607] or PIM-
 BIDIR [RFC5015]. It may be said that these different modes of PIM
 tradeoff the optimality of the multicast forwarding tree for the
 amount of multicast forwarding state that must be maintained at
 routers. SSM provides the most efficient forwarding between sources
 and receivers and thus is most suitable for applications with one-to-
 many traffic patterns. State is built and maintained for each (S,G)
 flow. Thus, the amount of multicast forwarding state held by routers
 in the data center is proportional to the number of sources and
 groups. At the other end of the spectrum, BIDIR is the most
 efficient shared tree solution as one tree is built for all flows,
 therefore minimizing the amount of state. This state reduction is at
 the expense of optimal forwarding path between sources and receivers.
 This use of a shared tree makes BIDIR particularly well-suited for
 applications with many-to-many traffic patterns, given that the
 amount of state is uncorrelated to the number of sources. SSM and
 BIDIR are optimizations of PIM-SM. PIM-SM is the most widely
 deployed multicast routing protocol. PIM-SM can also be the most
 complex. PIM-SM relies upon a RP (Rendezvous Point) to set up the
 multicast tree and subsequently there is the option of switching to
 the SPT (shortest path tree), similar to SSM, or staying on the
 shared tree, similar to BIDIR.

3.2. Layer 2 multicast

 With IPv4 unicast address resolution, the translation of an IP
 address to a MAC address is done dynamically by ARP. With multicast
 address resolution, the mapping from a multicast IPv4 address to a
 multicast MAC address is done by assigning the low-order 23 bits of
 the multicast IPv4 address to fill the low-order 23 bits of the
 multicast MAC address. Each IPv4 multicast address has 28 unique
 bits (the multicast address range is 224.0.0.0/12) therefore mapping
 a multicast IP address to a MAC address ignores 5 bits of the IP
 address. Hence, groups of 32 multicast IP addresses are mapped to
 the same MAC address. And so a a multicast MAC address cannot be
 uniquely mapped to a multicast IPv4 address. Therefore, planning is
 required within an organization to choose IPv4 multicast addresses
 judiciously in order to avoid address aliasing. When sending IPv6
 multicast packets on an Ethernet link, the corresponding destination
 MAC address is a direct mapping of the last 32 bits of the 128 bit
 IPv6 multicast address into the 48 bit MAC address. It is possible
 for more than one IPv6 multicast address to map to the same 48 bit
 MAC address.

 The default behaviour of many hosts (and, in fact, routers) is to
 block multicast traffic. Consequently, when a host wishes to join an
 IPv4 multicast group, it sends an IGMP [RFC2236], [RFC3376] report to
 the router attached to the layer 2 segment and also it instructs its
 data link layer to receive Ethernet frames that match the
 corresponding MAC address. The data link layer filters the frames,
 passing those with matching destination addresses to the IP module.
 Similarly, hosts simply hand the multicast packet for transmission to
 the data link layer which would add the layer 2 encapsulation, using
 the MAC address derived in the manner previously discussed.

 When this Ethernet frame with a multicast MAC address is received by
 a switch configured to forward multicast traffic, the default
 behaviour is to flood it to all the ports in the layer 2 segment.
 Clearly there may not be a receiver for this multicast group present
 on each port and IGMP snooping is used to avoid sending the frame out
 of ports without receivers.

 A switch running IGMP snooping listens to the IGMP messages exchanged
 between hosts and the router in order to identify which ports have
 active receivers for a specific multicast group, allowing the
 forwarding of multicast frames to be suitably constrained. Normally,
 the multicast router will generate IGMP queries to which the hosts
 send IGMP reports in response. However, number of optimizations in
 which a switch generates IGMP queries (and so appears to be the
 router from the hosts' perspective) and/or generates IGMP reports
 (and so appears to be hosts from the router's perspectve) are
 commonly used to improve the performance by reducing the amount of
 state maintained at the router, suppressing superfluous IGMP messages
 and improving responsivenss when hosts join/leave the group.

 Multicast Listener Discovery (MLD) [RFC 2710] [RFC 3810] is used by
 IPv6 routers for discovering multicast listeners on a directly
 attached link, performing a similar function to IGMP in IPv4
 networks. MLDv1 [RFC 2710] is similar to IGMPv2 and MLDv2 [RFC 3810]
 [RFC 4604] similar to IGMPv3. However, in contrast to IGMP, MLD does
 not send its own distinct protocol messages. Rather, MLD is a
 subprotocol of ICMPv6 [RFC 4443] and so MLD messages are a subset of
 ICMPv6 messages. MLD snooping works similarly to IGMP snooping,
 described earlier.

3.3. Example use cases

 A use case where PIM and IGMP are currently used in data centers is
 to support multicast in VXLAN deployments. In the original VXLAN
 specification [RFC7348], a data-driven flood and learn control plane
 was proposed, requiring the data center IP fabric to support
 multicast routing. A multicast group is associated with each virtual
 network, each uniquely identified by its VXLAN network identifiers
 (VNI). VXLAN tunnel endpoints (VTEPs), typically located in the
 hypervisor or ToR switch, with local VMs that belong to this VNI
 would join the multicast group and use it for the exchange of BUM
 traffic with the other VTEPs. Essentially, the VTEP would
 encapsulate any BUM traffic from attached VMs in an IP multicast
 packet, whose destination address is the associated multicast group
 address, and transmit the packet to the data center fabric. Thus,
 PIM must be running in the fabric to maintain a multicast
 distribution tree per VNI.

 Alternatively, rather than setting up a multicast distribution tree
 per VNI, a tree can be set up whenever hosts within the VNI wish to
 exchange multicast traffic. For example, whenever a VTEP receives an
 IGMP report from a locally connected host, it would translate this
 into a PIM join message which will be propagated into the IP fabric.
 In order to ensure this join message is sent to the IP fabric rather
 than over the VXLAN interface (since the VTEP will have a route back
 to the source of the multicast packet over the VXLAN interface and so
 would naturally attempt to send the join over this interface) a more
 specific route back to the source over the IP fabric must be
 configured. In this approach PIM must be configured on the SVIs
 associated with the VXLAN interface.

 Another use case of PIM and IGMP in data centers is when IPTV servers
 use multicast to deliver content from the data center to end users.
 IPTV is typically a one to many application where the hosts are
 configured for IGMPv3, the switches are configured with IGMP
 snooping, and the routers are running PIM-SSM mode. Often redundant
 servers send multicast streams into the network and the network is
 forwards the data across diverse paths.

 Windows Media servers send multicast streams to clients. Windows
 Media Services streams to an IP multicast address and all clients
 subscribe to the IP address to receive the same stream. This allows
 a single stream to be played simultaneously by multiple clients and
 thus reducing bandwidth utilization.

3.4. Advantages and disadvantages

 Arguably the biggest advantage of using PIM and IGMP to support one-
 to-many communication in data centers is that these protocols are
 relatively mature. Consequently, PIM is available in most routers
 and IGMP is supported by most hosts and routers. As such, no
 specialized hardware or relatively immature software is involved in
 using them in data centers. Furthermore, the maturity of these
 protocols means their behaviour and performance in operational
 networks is well-understood, with widely available best-practices and
 deployment guides for optimizing their performance.

 However, somewhat ironically, the relative disadvantages of PIM and
 IGMP usage in data centers also stem mostly from their maturity.
 Specifically, these protocols were standardized and implemented long
 before the highly-virtualized multi-tenant data centers of today
 existed. Consequently, PIM and IGMP are neither optimally placed to
 deal with the requirements of one-to-many communication in modern
 data centers nor to exploit characteristics and idiosyncrasies of
 data centers. For example, there may be thousands of VMs
 participating in a multicast session, with some of these VMs
 migrating to servers within the data center, new VMs being
 continually spun up and wishing to join the sessions while all the
 time other VMs are leaving. In such a scenario, the churn in the PIM
 and IGMP state machines, the volume of control messages they would
 generate and the amount of state they would necessitate within
 routers, especially if they were deployed naively, would be
 untenable.

4. Alternative options for handling one-to-many traffic

 Section 2 has shown that there is likely to be an increasing amount
 one-to-many communications in data centers. And Section 3 has
 discussed how conventional multicast may be used to handle this
 traffic. Having said that, there are a number of alternative options
 of handling this traffic pattern in data centers, as discussed in the
 subsequent section. It should be noted that many of these techniques
 are not mutually-exclusive; in fact many deployments involve a
 combination of more than one of these techniques. Furthermore, as
 will be shown, introducing a centralized controller or a distributed
 control plane, makes these techniques more potent.

4.1. Minimizing traffic volumes

 If handling one-to-many traffic in data centers can be challenging
 then arguably the most intuitive solution is to aim to minimize the
 volume of such traffic.

 It was previously mentioned in Section 2 that the three main causes
 of one-to-many traffic in data centers are applications, overlays and
 protocols. While, relatively speaking, little can be done about the
 volume of one-to-many traffic generated by applications, there is
 more scope for attempting to reduce the volume of such traffic
 generated by overlays and protocols. (And often by protocols within
 overlays.) This reduction is possible by exploiting certain
 characteristics of data center networks: fixed and regular topology,
 single administrative control, consistent hardware and software,
 well-known overlay encapsulation endpoints and so on.

 A way of minimizing the amount of one-to-many traffic that traverses
 the data center fabric is to use a centralized controller. For
 example, whenever a new VM is instantiated, the hypervisor or
 encapsulation endpoint can notify a centralized controller of this
 new MAC address, the associated virtual network, IP address etc. The
 controller could subsequently distribute this information to every
 encapsulation endpoint. Consequently, when any endpoint receives an
 ARP request from a locally attached VM, it could simply consult its
 local copy of the information distributed by the controller and
 reply. Thus, the ARP request is suppressed and does not result in
 one-to-many traffic traversing the data center IP fabric.

 Alternatively, the functionality supported by the controller can
 realized by a distributed control plane. BGP-EVPN [RFC7432, RFC8365]
 is the most popular control plane used in data centers. Typically,
 the encapsulation endpoints will exchange pertinent information with
 each other by all peering with a BGP route reflector (RR). Thus,
 information about local MAC addresses, MAC to IP address mapping,
 virtual networks identifiers etc can be disseminated. Consequently,
 ARP requests from local VMs can be suppressed by the encapsulation
 endpoint.

4.2. Head end replication

 A popular option for handling one-to-many traffic patterns in data
 centers is head end replication (HER). HER means the traffic is
 duplicated and sent to each end point individually using conventional
 IP unicast. Obvious disadvantages of HER include traffic duplication
 and the additional processing burden on the head end. Nevertheless,
 HER is especially attractive when overlays are in use as the
 replication can be carried out by the hypervisor or encapsulation end
 point. Consequently, the VMs and IP fabric are unmodified and
 unaware of how the traffic is delivered to the multiple end points.
 Additionally, it is possible to use a number of approaches for
 constructing and disseminating the list of which endpoints should
 receive what traffic and so on.

 For example, the reluctance of data center operators to enable PIM
 and IGMP within the data center fabric means VXLAN is often used with
 HER. Thus, BUM traffic from each VNI is replicated and sent using
 unicast to remote VTEPs with VMs in that VNI. The list of remote
 VTEPs to which the traffic should be sent may be configured manually
 on the VTEP. Alternatively, the VTEPs may transmit appropriate state
 to a centralized controller which in turn sends each VTEP the list of
 remote VTEPs for each VNI. Lastly, HER also works well when a
 distributed control plane is used instead of the centralized
 controller. Again, BGP-EVPN may be used to distribute the
 information needed to faciliate HER to the VTEPs.

4.3. BIER

 As discussed in Section 3.4, PIM and IGMP face potential scalability
 challenges when deployed in data centers. These challenges are
 typically due to the requirement to build and maintain a distribution
 tree and the requirement to hold per-flow state in routers. Bit
 Index Explicit Replication (BIER) [RFC 8279] is a new multicast
 forwarding paradigm that avoids these two requirements.

 When a multicast packet enters a BIER domain, the ingress router,
 known as the Bit-Forwarding Ingress Router (BFIR), adds a BIER header
 to the packet. This header contains a bit string in which each bit
 maps to an egress router, known as Bit-Forwarding Egress Router
 (BFER). If a bit is set, then the packet should be forwarded to the
 associated BFER. The routers within the BIER domain, Bit-Forwarding
 Routers (BFRs), use the BIER header in the packet and information in
 the Bit Index Forwarding Table (BIFT) to carry out simple bit- wise
 operations to determine how the packet should be replicated optimally
 so it reaches all the appropriate BFERs.

 BIER is deemed to be attractive for facilitating one-to-many
 communications in data ceneters [I-D.ietf-bier-use-cases]. The
 deployment envisioned with overlay networks is that the the
 encapsulation endpoints would be the BFIR. So knowledge about the
 actual multicast groups does not reside in the data center fabric,
 improving the scalability compared to conventional IP multicast.
 Additionally, a centralized controller or a BGP-EVPN control plane
 may be used with BIER to ensure the BFIR have the required
 information. A challenge associated with using BIER is that, unlike
 most of the other approaches discussed in this draft, it requires
 changes to the forwarding behaviour of the routers used in the data
 center IP fabric.

4.4. Segment Routing

 Segment Routing (SR) [I-D.ietf-spring-segment-routing] adopts the the
 source routing paradigm in which the manner in which a packet
 traverses a network is determined by an ordered list of instructions.
 These instructions are known as segments may have a local semantic to
 an SR node or global within an SR domain. SR allows enforcing a flow
 through any topological path while maintaining per-flow state only at
 the ingress node to the SR domain. Segment Routing can be applied to
 the MPLS and IPv6 data-planes. In the former, the list of segments
 is represented by the label stack and in the latter it is represented
 as a routing extension header. Use-cases are described in [I-D.ietf-
 spring-segment-routing] and are being considered in the context of
 BGP-based large-scale data-center (DC) design [RFC7938].

 Multicast in SR continues to be discussed in a variety of drafts and
 working groups. The SPRING WG has not yet been chartered to work on
 Multicast in SR. Multicast can include locally allocating a Segment
 Identifier (SID) to existing replication solutions, such as PIM,
 mLDP, P2MP RSVP-TE and BIER. It may also be that a new way to signal
 and install trees in SR is developed without creating state in the
 network.

5. Conclusions

 As the volume and importance of one-to-many traffic in data centers
 increases, conventional IP multicast is likely to become increasingly
 unattractive for deployment in data centers for a number of reasons,
 mostly pertaining its inherent relatively poor scalability and
 inability to exploit characteristics of data center network
 architectures. Hence, even though IGMP/MLD is likely to remain the
 most popular manner in which end hosts signal interest in joining a
 multicast group, it is unlikely that this multicast traffic will be
 transported over the data center IP fabric using a multicast
 distribution tree built by PIM. Rather, approaches which exploit
 characteristics of data center network architectures (e.g. fixed and
 regular topology, single administrative control, consistent hardware
 and software, well-known overlay encapsulation endpoints etc.) are
 better placed to deliver one-to-many traffic in data centers,
 especially when judiciously combined with a centralized controller
 and/or a distributed control plane (particularly one based on BGP-
 EVPN).

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

 No new security considerations result from this document

8. Acknowledgements

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [I-D.ietf-bier-use-cases]

 Kumar, N., Asati, R., Chen, M., Xu, X., Dolganow, A.,
 Przygienda, T., Gulko, A., Robinson, D., Arya, V., and C.
 Bestler, "BIER Use Cases", draft-ietf-bier-use-cases-06
 (work in progress), January 2018.

 [I-D.ietf-nvo3-geneve]

 Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
 Network Virtualization Encapsulation", draft-ietf-
 nvo3-geneve-11 (work in progress), March 2019.

 [I-D.ietf-nvo3-vxlan-gpe]

 Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
 Extension for VXLAN", draft-ietf-nvo3-vxlan-gpe-06 (work
 in progress), April 2018.

 [I-D.ietf-spring-segment-routing]

 Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
 Litkowski, S., and R. Shakir, "Segment Routing
 Architecture", draft-ietf-spring-segment-routing-15 (work
 in progress), January 2018.

 [RFC2236]
 Fenner, W., "Internet Group Management Protocol, Version
 2", RFC 2236, DOI 10.17487/RFC2236, November 1997,
 <https://www.rfc-editor.org/info/rfc2236>.

 [RFC2710]
 Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 DOI 10.17487/RFC2710, October 1999,
 <https://www.rfc-editor.org/info/rfc2710>.

 [RFC3376]
 Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
 <https://www.rfc-editor.org/info/rfc3376>.

 [RFC4601]
 Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast - Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601,
 DOI 10.17487/RFC4601, August 2006,
 <https://www.rfc-editor.org/info/rfc4601>.

 [RFC4607]
 Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC5015]
 Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast (BIDIR-
 PIM)", RFC 5015, DOI 10.17487/RFC5015, October 2007,
 <https://www.rfc-editor.org/info/rfc5015>.

 [RFC6820]
 Narten, T., Karir, M., and I. Foo, "Address Resolution
 Problems in Large Data Center Networks", RFC 6820,
 DOI 10.17487/RFC6820, January 2013,
 <https://www.rfc-editor.org/info/rfc6820>.

 [RFC7348]
 Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <https://www.rfc-editor.org/info/rfc7348>.

 [RFC7432]
 Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
 Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
 Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
 2015, <https://www.rfc-editor.org/info/rfc7432>.

 [RFC7637]
 Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
 Virtualization Using Generic Routing Encapsulation",
 RFC 7637, DOI 10.17487/RFC7637, September 2015,
 <https://www.rfc-editor.org/info/rfc7637>.

 [RFC7938]
 Lapukhov, P., Premji, A., and J. Mitchell, Ed., "Use of
 BGP for Routing in Large-Scale Data Centers", RFC 7938,
 DOI 10.17487/RFC7938, August 2016,
 <https://www.rfc-editor.org/info/rfc7938>.

 [RFC8014]
 Black, D., Hudson, J., Kreeger, L., Lasserre, M., and T.
 Narten, "An Architecture for Data-Center Network
 Virtualization over Layer 3 (NVO3)", RFC 8014,
 DOI 10.17487/RFC8014, December 2016,
 <https://www.rfc-editor.org/info/rfc8014>.

 [RFC8279]
 Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
 Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
 Explicit Replication (BIER)", RFC 8279,
 DOI 10.17487/RFC8279, November 2017,
 <https://www.rfc-editor.org/info/rfc8279>.

 [RFC8365]
 Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R.,
 Uttaro, J., and W. Henderickx, "A Network Virtualization
 Overlay Solution Using Ethernet VPN (EVPN)", RFC 8365,
 DOI 10.17487/RFC8365, March 2018,
 <https://www.rfc-editor.org/info/rfc8365>.

Authors' Addresses

Mike McBride
Huawei

 Email: michael.mcbride@huawei.com

Olufemi Komolafe
Arista Networks

 Email: femi@arista.com

draft-ietf-mboned-deprecate-interdomain-asm-03 - Deprecating ASM for Interdomain Multicast

draft-ietf-mboned-deprecate-interdomain-asm-03 - Deprecating ASM for Interdomain

Index
Prev
Next
Forward 5

Mboned

Internet-Draft

Intended status: Best Current Practice

Expires: August 15, 2019

M. Abrahamsson

T-Systems

T. Chown

Jisc

L. Giuliano

Juniper Networks, Inc.

T. Eckert

Huawei

February 11, 2019

Deprecating ASM for Interdomain Multicast

draft-ietf-mboned-deprecate-interdomain-asm-03

Abstract

 This document recommends deprecation of the use of Any-Source
 Multicast (ASM) for interdomain multicast. It recommends the use of
 Source-Specific Multicast (SSM) for interdomain multicast
 applications and that hosts and routers in these deployments fully
 support SSM. The recommendations in this document do not preclude
 the continued use of ASM within a single organisation or domain and
 are especially easy to adopt in existing intradomain ASM/PIM-SM
 deployments.

Requirements Language and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [RFC2119].

 The term IP and IP multicast are used to refer to both IPv4 and IPv6.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 15, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Background
	 2.1. Multicast service models

	 2.2. ASM routing protocols
	 2.2.1. PIM Sparse Mode (PIM-SM)

	 2.2.2. Embedded-RP

	 2.2.3. Bidir-RP

	 2.3. SSM Routing protocols

	3. Discussion
	 3.1. Observations on ASM and SSM deployments

	 3.2. Advantages of SSM for interdomain multicast
	 3.2.1. Reduced network operations complexity

	 3.2.2. No network wide IP multicast group-address management

	 3.2.3. Intrinsic source-control security

	4. Recommendations
	 4.1. Deprecating use of ASM for interdomain multicast

	 4.2. Including network support for IGMPv3 / MLDv2

	 4.3. Building application support for SSM

	 4.4. Developing application guidance: SSM, ASM, service discovery

	 4.5. Preferring SSM applications intradomain

	 4.6. Documenting an ASM/SSM protocol mapping mechanism

	 4.7. Not filtering ASM addressing between domains

	 4.8. Not precluding Intradomain ASM

	 4.9. Evolving PIM deployments for SSM

	5. Future interdomain ASM work

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgments

	9. Changelog

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

 IP Multicast has been deployed in various forms, within private
 networks, the wider Internet, and federated networks such as national
 or regional research networks. While a number of service models have
 been published, and in many cases revised over time, there has been
 no strong recommendation made by the IETF on the appropriateness of
 those models to certain scenarios, even though vendors and
 federations have often made such recommendations.

 This document addresses this gap by making a BCP-level recommendation
 to deprecate the use of ASM for interdomain multicast, leaving SSM as
 the recommended interdomain mode of multicast. This recommendation
 thus also implicitly states that all hosts and routers that are
 expected to support interdomain multicast applications fully support
 SSM.

 This document does not make any statement on the use of ASM within a
 single domain or organisation, and therefore does not preclude its
 use. Indeed, there are application contexts for which ASM is
 currently still widely considered well-suited within a single domain.

 The main issue in most cases with moving to SSM is application
 support. Many applications are initially deployed for intradomain
 use and are later deployed interdomain. Therefore, this document
 recommends applications support SSM, even when they are initially
 intended for intradomain use. As explained below, SSM applications
 are readily compatible with existing intradomain ASM deployments as
 SSM is merely a subset of ASM.

2. Background

2.1. Multicast service models

 Any-Source Multicast (ASM) and Source-Specific Multicast (SSM) are
 the two multicast service models in use today. In ASM, as originally
 described in [RFC1112], receivers express interest in joining a
 multicast group address and routers use multicast routing protocols
 to deliver traffic from the sender(s) to the receivers. If there are
 multiple senders for a given group, traffic from all senders will be
 delivered to the receiver. Since receivers specify only the group
 address, the network, and therefore the multicast routing protocols,
 are responsible for source discovery.

 In SSM, by contrast, receivers specify both group and source when
 expressing interest in joining a multicast stream. Source discovery
 in SSM is handled by some out-of-band mechanism (ie, the application
 layer), which drastically simplifies the network and how the
 multicast routing protocols operate.

 IANA has reserved specific ranges of IPv4 and IPv6 address space for
 multicast addressing. Guidelines for IPv4 multicast address
 assignments can be found in [RFC5771], while guidelines for IPv6
 multicast address assignments can be found in [RFC2375] and
 [RFC3307]. The IPv6 multicast address format is described in
 [RFC4291].

2.2. ASM routing protocols

2.2.1. PIM Sparse Mode (PIM-SM)

 The most commonly deployed ASM routing protocol is Protocol
 Independent Multicast - Sparse Mode (PIM-SM), as detailed in
 [RFC7761]. PIM-SM, as the name suggests, was designed to be used in
 scenarios where the subnets with receivers are sparsely distributed
 throughout the network. Because receivers do not indicate sender
 addresses in ASM (but only group addresses), PIM-SM uses the concept
 of a Rendezvous Point (RP) as a 'meeting point' for sources and
 receivers, and all routers in a PIM-SM domain are configured to use
 specific RP(s), either explicitly or through dynamic RP discovery
 protocols.

 To enable PIM-SM to work between multiple domains, an interdomain,
 inter-RP signalling protocol known as Multicast Source Discovery
 Protocol (MSDP) [RFC3618] is used to allow an RP in one domain to
 learn the existence of a source in another domain. Deployment
 scenarios for MSDP are given in [RFC4611]. MSDP floods information
 about all active sources for all multicast streams to all RPs in all
 the domains - even if there is no receiver for a given application in
 a domain. As a result of this key scalability and security issue,
 along with other deployment challenges with the protocol, MSDP was
 never extended to support IPv6 and remains an Experimental protocol.

 To this day, there is no IETF Proposed Standard level interdomain
 solution for IPv4 ASM multicast because MSDP was the "best" component
 for the interdomain source discovery problem, and it is Experimental.
 Other protocol options where investigated at the same time but were
 never implemented or deployed and are now historic (e.g: [RFC3913]).

2.2.2. Embedded-RP

 Due to the availability of more bits in an IPv6 address than in IPv4,
 an IPv6-specific mechanism was designed in support of interdomain ASM
 with PIM-SM leveraging those bits. Embedded-RP [RFC3956] allows
 routers supporting the protocol to determine the RP for the group
 without any prior configuration or discovery protocols, simply by
 observing the unicast RP address that is embedded (included) in the
 IPv6 multicast group address. Embedded-RP allows PIM-SM operation
 across any IPv6 network in which there is an end-to-end path of
 routers supporting this mechanism, including interdomain deployment.

2.2.3. Bidir-RP

 Bidir-PIM [RFC5015] is another protocol to support ASM. There is no
 standardized option to operate Bidir-PIM interdomain. It is deployed
 intradomain for applications where many sources may want to sent
 traffic to the same IP multicast groups because unlike PIM-SM it does
 not create per-source state. Bidir-PIM is one of the important
 reasons for this document to not deprecate intradomain ASM.

2.3. SSM Routing protocols

 SSM is detailed in [RFC4607]. It mandates the use of PIM-SSM for
 routing of SSM. PIM-SSM as it merely a subset of PIM-SM ([RFC7761]).

 PIM-SSM expects that the sender's source address(es) is known in
 advance by receivers through some out-of-band mechanism (typically in
 the application layer), and thus the receiver's designated router can
 send a PIM JOIN directly towards the source without needing to use an
 RP.

 IPv4 addresses in the 232/8 (232.0.0.0 to 232.255.255.255) range are
 designated as source-specific multicast (SSM) destination addresses
 and are reserved for use by source-specific applications and
 protocols. See [RFC4607]. For IPv6, the address prefix FF3x::/32 is
 reserved for source-specific multicast use.

3. Discussion

3.1. Observations on ASM and SSM deployments

 In enterprise and campus scenarios, ASM in the form of PIM-SM is
 likely the most commonly deployed multicast protocol. The
 configuration and management of an RP (including RP redundancy)
 within a single domain is a well understood operational practice.
 However, if interworking with external PIM domains is needed in IPv4
 multicast deployments, interdomain MSDP is required to exchange
 information about sources between domain RPs. Deployment experience
 has shown MSDP to be a complex and fragile protocol to manage and
 troubleshoot (complex flooding RPF rules, state attack protection,
 filtering of undesired sources, ...).

 PIM-SM is a general purpose protocol that can handle all use cases.
 In particular, it was designed for cases such as videoconferencing
 where multiple sources may come and go during a multicast session.
 But for cases where a single, persistent source for a group is used,
 and receivers can be configured to know of that source, PIM-SM has
 unnecessary complexity. Therefore, SSM removes the need for many of
 the most complex components of PIM-SM.

 As explained above, MSDP was not extended to support IPv6. Instead,
 the proposed interdomain ASM solution for PIM-SM with IPv6 is
 Embedded-RP, which allows the RP address for a multicast group to be
 embedded in the group address, making RP discovery automatic for all
 routers on the path between a receiver and a sender. Embedded-RP can
 support lightweight ad-hoc deployments. However, it relies on a
 single RP for an entire group that could only be made resilient
 within one domain. While this approach solves the MSDP issues, it
 does not solve the problem of unauthorised sources sending traffic to
 ASM multicast groups; this security issue is one of biggest problems
 of interdomain multicast.

 As stated in RFC 4607, SSM is particularly well-suited to
 dissemination-style applications with one or more senders whose
 identities are known (by some out-of-band mechanism) before the
 application starts running or applications that utilize some
 signaling to indicate the source address of the multicast stream
 (e.g., electronic programming guide in IPTV applications). PIM-SSM
 is therefore very well-suited to applications such as classic linear
 broadcast TV over IP.

 SSM requires applications, host operating systems and the designated
 routers connected to receiving hosts to support IGMPv3 [RFC3376] and
 MLDv2 [RFC3810]. Support for IGMPv3 and MLDv2 has become widespread
 in common OSes for several years (Windows, MacOS, Linux/Android) and
 is no longer an impediment to SSM deployment.

3.2. Advantages of SSM for interdomain multicast

 This section describes the three key benefits that SSM with PIM-SSM
 has over ASM. These benefits also apply to intradomain deployment
 but are even more important in interdomain deployments. See
 [RFC4607] for more details.

3.2.1. Reduced network operations complexity

 A significant benefit of SSM is the reduced complexity that comes
 through eliminating the network-based source discovery required in
 ASM with PIM-SM. Specifically, SSM eliminates the need for RPs,
 shared trees, Shortest Path Tree (SPT) switchovers, PIM registers,
 MSDP, dynamic RP discovery mechanisms (BSR/AutoRP) and data-driven
 state creation. SSM simply utilizes a small subset of PIM-SM,
 alongside the integration with IGMPv3 / MLDv2, where the source
 address signaled from the receiver is immediately used to create
 (S,G) state. Eliminating network-based source discovery for
 interdomain multicast means the vast majority of the complexity of
 multicast goes away.

 This reduced complexity makes SSM radically simpler to manage,
 troubleshoot and operate, particularly for backbone network
 operators. This is the main operator motivation for the
 recommendation to deprecate the use of ASM in interdomain scenarios.

 Note that this discussion does not apply to Bidir-PIM, and there is
 (as mentioned above) no standardized interdomain solution for Bidir-
 PIM. In Bidir-PIM, traffic is forwarded to an RPs instead o building
 state as in PIM-SM. Even in the absence of receivers. Bidir-PIM
 therefore trades state complexity with (potentially large amounts) of
 unnecessary traffic.

3.2.2. No network wide IP multicast group-address management

 In ASM, IP multicast group addresses need to be assigned to
 applications and instances thereof, so that two simultaneously active
 application instances will not share the same group address and
 receive each others IP multicast traffic.

 In SSM, no such IP multicast group management is necessary. Instead,
 the IP multicast group address simply needs to be assigned locally on
 a source like a unicast transport protocol port number: No two
 independent applications on the host must use same IP multicast group
 number. This does not require any network operator involvement.

3.2.3. Intrinsic source-control security

 SSM is implicitly secure against unauthorized/undesired sources.
 Receivers only receive packets from the sources they explicitly
 specify in their IGMP/MLD membership messages, as opposed to ASM
 where any host can send traffic to a group address and have it
 transmitted to all receivers. With PIM-SSM, traffic from sources not
 requested by any receiver will be discarded by the first-hop router
 (FHR) of that source, minimizing source attacks against shared
 network bandwidth and receivers.

 This benefit is particularily important in interdomain deployments
 because there are no standardized solutions for ASM control of
 sources and the most common intradomain operational practices such as
 Access Control Lists (ACL) on the sender's FHR are not feasible for
 interdomain deployments.

 This topic is expanded upon in [RFC4609].

4. Recommendations

4.1. Deprecating use of ASM for interdomain multicast

 This document recommends that the use of ASM is deprecated for
 interdomain multicast, and thus implicitly, that hosts and routers
 that support such interdomain applications fully support SSM and its
 associated protocols. Best current practices for deploying
 interdomain multicast using SSM are documented in [RFC8313].

 The recommendation applies to the use of ASM between domains where
 either MSDP (IPv4) or Embedded-RP (IPv6) is used.

 An interdomain use of ASM multicast in the context of this document
 is one where PIM-SM with RPs/MSDP/Embedded-RP is run on routers
 operated by two or more separate administrative entities (domains,
 organisations).

 The more inclusive interpretation of this recommendation is that it
 also extends to the case where PIM may only be operated in a single
 operator domain, but where user hosts or non-PIM network edge devices
 are under different operator control. A typical example of this case
 is an SP providing IPTV (single operator domain for PIM) to
 subscribers operating an IGMP proxy home gateway and IGMPv3/MLDv2
 hosts (computer, tablets, set-top boxes).

4.2. Including network support for IGMPv3 / MLDv2

 This document recommends that all hosts, router platforms and
 security appliances used for deploying multicast support the
 components of IGMPv3 [RFC3376] and MLDv2 [RFC3810] necessary to
 support SSM (i.e., explicitly sending source-specific reports). The
 updated IPv6 Node Requirements RFC [I-D.ietf-6man-rfc6434-bis] states
 that MLDv2 support is a MUST in all implementations. Such support is
 already widespread in common host and router platforms.

 Further guidance on IGMPv3 and MLDv2 is given in [RFC4604].

 Multicast snooping is often used to limit the flooding of multicast
 traffic in a layer 2 network. With snooping, a L2 switch will
 monitor IGMP/MLD messages and only forward multicast traffic out on
 host ports that have interested receivers connected. Such snooping
 capability should therefore support IGMPv3 and MLDv2. There is
 further discussion in [RFC4541].

4.3. Building application support for SSM

 The recommendation to use SSM for interdomain multicast means that
 applications should properly trigger the sending of IGMPv3/MLDv2
 source-specific report messages. It should be noted, however, there
 is a wide range of applications today that only support ASM. In many
 cases this is due to application developers being unaware of the
 operational concerns of networks. This document serves to provide
 clear direction for application developers to support SSM.

 It is often thought that ASM is required for multicast applications
 where there are multiple sources. However, RFC 4607 also describes
 how SSM can be used instead of PIM-SM for multi-party applications:

 "SSM can be used to build multi-source applications where all
 participants' identities are not known in advance, but the multi-
 source "rendezvous" functionality does not occur in the network
 layer in this case. Just like in an application that uses unicast
 as the underlying transport, this functionality can be implemented
 by the application or by an application-layer library."

 Some useful considerations for multicast applications can be found in
 [RFC3170].

4.4. Developing application guidance: SSM, ASM, service discovery

 Applications with many-to-many communication patterns can create more
 (S,G) state than feasible for networks, whether the source discovery
 is done by ASM with PIM-SM or at the application level and SSM/PIM-
 SM. These applications are not best supported by either SSM/PIM-SSM
 or ASM/PIM-SM.

 Instead, these applications are better served by routing protocols
 that do not create (S,G) such as Bidir-PIM. As of today,
 Unfortunately, many applications simply use ASM for service
 discovery, for example by clients sending IP multicast packets to
 elicit unicast replies from server(s). Deploying any form of IP
 multicast solely in support of such service discovery is in general
 not recommended (complexity, control, ...) but instead dedicated
 service discovery via DNS [RFC6763]

 Best practices should be developed to explain when to use SSM in
 applications, when ASM without (S,G) state in the network is better,
 or when dedicated service-discovery mechanisms should be used.

4.5. Preferring SSM applications intradomain

 If feasible, it is recommended for applications to use SSM even if
 they are initially only meant to be used in intradomain environments
 supporting ASM. Because PIM-SSM is a subset of PIM-SM, existing
 intradomain PIM-SM networks are automatically compatible with SSM
 applications. Thus, SSM applications can operate alongside existing
 ASM applications. SSM's benefits of simplified address management
 and significantly reduced operational complexity apply equally to
 intradomain use.

 However, for some applications it may be prohibitively difficult to
 add support for source discovery, so intradomain ASM may still be
 appropriate.

4.6. Documenting an ASM/SSM protocol mapping mechanism

 In the case of existing ASM applications that cannot readily be
 ported to SSM, it may be possible to use some form of protocol
 mapping, i.e., to have a mechanism to translate a (*,G) join or leave
 to a (S,G) join or leave, for a specific source, S. The general
 challenge in performing such mapping is determining where the
 configured source address, S, comes from.

 There are existing vendor-specific mechanisms deployed that achieve
 this function, but none are documented in IETF documents. This may
 be a useful area for the IETF to work on as an interim transition
 mechanism. However, these mechanisms would introduce additional
 administrative burdens, along with the need for some form of address
 management, neither of which are required in SSM. Hence, this should
 not be considered a long-term solution.

4.7. Not filtering ASM addressing between domains

 A key benefit of SSM is that the receiver specifies the source-group
 tuple when signaling interest in a multicast stream. Hence, the
 group address need not be globally unique, so there is no need for
 multicast address allocation as long the reserved SSM range is used.

 Despite the deprecation of interdomain ASM, it is recommended that
 operators should not filter ASM group ranges at domain boundaries, as
 some form of ASM-SSM mappings may continue to be used for some time.

4.8. Not precluding Intradomain ASM

 The use of ASM within a single multicast domain such as a campus or
 enterprise is still relatively common today. There are even global
 enterprise networks that have successfully been using PIM-SM for many
 years. The operators of such networks most often use Anycast-RP
 [RFC4610] or MSDP (with IPv4) for RP resilience, at the expense of
 the extra operational complexity. These existing practices are
 unaffected by this document.

 In the past decade, Bidir-PIM too has seen deployments to scale
 interdomain ASM deployments beyond the capabilities of PIM-SM. This
 too is unaffected by this document, instead it is encouraged where
 necessary due to application requirements (see Section 4.4.

 This document does also not preclude continued use of ASM with
 multiple PIM-SM domains inside organisations, such as with IPv4 MSDP
 or IPv6 Embedded-RP. This includes organizations that are
 federations and have appropriate, non-standardized mechanisms to deal
 with the interdomain ASM issues explained in Section 3.2.

4.9. Evolving PIM deployments for SSM

 Existing PIM-SM deployments can usually be used to run SSM/PIM-SM
 applications with no or little changes. In some widely available
 router implentations of PIM-SM, PIM-SSM is simply enabled by default
 in the designated SSM address spaces whener PIM-SM is configuring/
 enabled. In other implementations, simple configuration options
 exist to enable it. This allows to easily migrate ASM applications
 to SSM/PIM-SSM solely through application side development/
 configuration work: adding above mentioned source-signaling via
 IGMPv3/MLDv2 and using SSM addresses. No network actions are
 required for this transitioning: Unchanged ASM applications can
 continue to co-exist without issues.

 When running PIM-SM, IGMPv3/MLDv2 (S,G) membership reports may also
 result in the desired PIM-SSM (S,G) operations and bypass any RP
 procedures, but this is not standardized but depends on
 implementation and may require additional configuration in available
 products. In general, it is recommended to always use SSM address
 space for SSM applications. For example, the interaction of IGMPv3/
 MLDv2 (S,G) membership reports and Bidir-PIM is undefined and may not
 result in forwarding of any traffic.

 Note that these migration recommendations do not include the
 considerations when or how to evolve those intradomain applications
 best served by ASM/Bidir-PIM from PIM-SM to Bidir-PIM. This may also
 be important but is outside the scope of this document.

5. Future interdomain ASM work

 Future work may attempt to overcome current limitations of ASM
 solutions, such as interdomain deployment solutions for Bidir-PIM, or
 source access control mechaisms for IPv6 PIM-SM with embedded-RP.
 Such work could modify or amend the recommendations of this document
 (like any future IETF standards/BCP work).

 Nevertheless, this document does not believe that any ASM solution,
 even with such future work, can ever provide the same intrinsic
 security and network and address management simplicity as SSM (see
 Section 3.2). Instead, this document believes that future work for
 general purpose interdomain IP multicast is better spent on the SSM
 items listed in Section 4.

6. Security Considerations

 This document adds no new security considerations. It instead
 removes security issues incurred by interdomain ASM with PIM-SM/MSDP
 such as infrastructure control plane attacks and application and
 bandwidth/congestion attacks from unauthorised sources sending to ASM
 multicast groups. RFC 4609 describes the additional security
 benefits of using SSM instead of ASM.

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed upon publication as
 an RFC.

8. Acknowledgments

 The authors would like to thank members of the IETF mboned WG for
 discussions on the content of this document, with specific thanks to
 the following people for their contributions to the document: Hitoshi
 Asaeda, Dale Carder, Jake Holland, Albert Manfredi, Mike McBride, Per
 Nihlen, Greg Shepherd, James Stevens, Stig Venaas, Nils Warnke, and
 Sandy Zhang.

9. Changelog

 [RFC-Editor: Please remove this section.]

 02 - Toerless: Attempt to document the issues brought up on the list
 and discussion by James Stevens re. use of Bidir-PIM intradomain and
 IGMP/MLD interop issues.

 - NOTE: Text was not vetted by co-authors, so rev'ed just as
 discussion basis.

 - more subsection to highlight content. Added more detailled
 discussion about downsides of ASM wrt. address management and
 intrinsic source-control in SSM. Added recommendation to work on
 guidance when apps are best suited for SSM vs. ASM/Bidir vs. service
 discovery. Added recommendation how to evolve from PIM-SM to SSM in
 existing deployments. Added section on possible future interdomain
 ASM work (and why not to focus on it).

 01 - Lenny: cleanup of text version, removed redundancies.

 00 - initial IETF WG version. See draft-acg-mboned-deprecate-
 interdomain-asm for work leading to this document.

10. References

10.1. Normative References

 [RFC1112]
 Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, DOI 10.17487/RFC1112, August 1989,
 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3307]
 Haberman, B., "Allocation Guidelines for IPv6 Multicast
 Addresses", RFC 3307, DOI 10.17487/RFC3307, August 2002,
 <https://www.rfc-editor.org/info/rfc3307>.

 [RFC3376]
 Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
 <https://www.rfc-editor.org/info/rfc3376>.

 [RFC3810]
 Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC3956]
 Savola, P. and B. Haberman, "Embedding the Rendezvous
 Point (RP) Address in an IPv6 Multicast Address",
 RFC 3956, DOI 10.17487/RFC3956, November 2004,
 <https://www.rfc-editor.org/info/rfc3956>.

 [RFC4291]
 Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4607]
 Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC4610]
 Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
 Independent Multicast (PIM)", RFC 4610,
 DOI 10.17487/RFC4610, August 2006,
 <https://www.rfc-editor.org/info/rfc4610>.

 [RFC5771]
 Cotton, M., Vegoda, L., and D. Meyer, "IANA Guidelines for
 IPv4 Multicast Address Assignments", BCP 51, RFC 5771,
 DOI 10.17487/RFC5771, March 2010,
 <https://www.rfc-editor.org/info/rfc5771>.

 [RFC7761]
 Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
 Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
 Multicast - Sparse Mode (PIM-SM): Protocol Specification
 (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
 2016, <https://www.rfc-editor.org/info/rfc7761>.

10.2. Informative References

 [RFC2375]
 Hinden, R. and S. Deering, "IPv6 Multicast Address
 Assignments", RFC 2375, DOI 10.17487/RFC2375, July 1998,
 <https://www.rfc-editor.org/info/rfc2375>.

 [RFC2730]
 Hanna, S., Patel, B., and M. Shah, "Multicast Address
 Dynamic Client Allocation Protocol (MADCAP)", RFC 2730,
 DOI 10.17487/RFC2730, December 1999,
 <https://www.rfc-editor.org/info/rfc2730>.

 [RFC2776]
 Handley, M., Thaler, D., and R. Kermode, "Multicast-Scope
 Zone Announcement Protocol (MZAP)", RFC 2776,
 DOI 10.17487/RFC2776, February 2000,
 <https://www.rfc-editor.org/info/rfc2776>.

 [RFC2909]
 Radoslavov, P., Estrin, D., Govindan, R., Handley, M.,
 Kumar, S., and D. Thaler, "The Multicast Address-Set Claim
 (MASC) Protocol", RFC 2909, DOI 10.17487/RFC2909,
 September 2000, <https://www.rfc-editor.org/info/rfc2909>.

 [RFC3170]
 Quinn, B. and K. Almeroth, "IP Multicast Applications:
 Challenges and Solutions", RFC 3170, DOI 10.17487/RFC3170,
 September 2001, <https://www.rfc-editor.org/info/rfc3170>.

 [RFC3569]
 Bhattacharyya, S., Ed., "An Overview of Source-Specific
 Multicast (SSM)", RFC 3569, DOI 10.17487/RFC3569, July
 2003, <https://www.rfc-editor.org/info/rfc3569>.

 [RFC3618]
 Fenner, B., Ed. and D. Meyer, Ed., "Multicast Source
 Discovery Protocol (MSDP)", RFC 3618,
 DOI 10.17487/RFC3618, October 2003,
 <https://www.rfc-editor.org/info/rfc3618>.

 [RFC3913]
 Thaler, D., "Border Gateway Multicast Protocol (BGMP):
 Protocol Specification", RFC 3913, DOI 10.17487/RFC3913,
 September 2004, <https://www.rfc-editor.org/info/rfc3913>.

 [RFC3973]
 Adams, A., Nicholas, J., and W. Siadak, "Protocol
 Independent Multicast - Dense Mode (PIM-DM): Protocol
 Specification (Revised)", RFC 3973, DOI 10.17487/RFC3973,
 January 2005, <https://www.rfc-editor.org/info/rfc3973>.

 [RFC4541]
 Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <https://www.rfc-editor.org/info/rfc4541>.

 [RFC4604]
 Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, DOI 10.17487/RFC4604,
 August 2006, <https://www.rfc-editor.org/info/rfc4604>.

 [RFC4609]
 Savola, P., Lehtonen, R., and D. Meyer, "Protocol
 Independent Multicast - Sparse Mode (PIM-SM) Multicast
 Routing Security Issues and Enhancements", RFC 4609,
 DOI 10.17487/RFC4609, October 2006,
 <https://www.rfc-editor.org/info/rfc4609>.

 [RFC4611]
 McBride, M., Meylor, J., and D. Meyer, "Multicast Source
 Discovery Protocol (MSDP) Deployment Scenarios", BCP 121,
 RFC 4611, DOI 10.17487/RFC4611, August 2006,
 <https://www.rfc-editor.org/info/rfc4611>.

 [RFC5015]
 Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast (BIDIR-
 PIM)", RFC 5015, DOI 10.17487/RFC5015, October 2007,
 <https://www.rfc-editor.org/info/rfc5015>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8085]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8313]
 Tarapore, P., Ed., Sayko, R., Shepherd, G., Eckert, T.,
 Ed., and R. Krishnan, "Use of Multicast across Inter-
 domain Peering Points", BCP 213, RFC 8313,
 DOI 10.17487/RFC8313, January 2018,
 <https://www.rfc-editor.org/info/rfc8313>.

 [I-D.ietf-6man-rfc6434-bis]

 Chown, T., Loughney, J., and T. Winters, "IPv6 Node
 Requirements", draft-ietf-6man-rfc6434-bis-09 (work in
 progress), July 2018.

Authors' Addresses

Mikael Abrahamsson
T‑Systems
Stockholm
Sweden

 Email: mikael.abrahamsson@t-systems.se

Tim Chown
Jisc
Lumen House, Library Avenue
Harwell Oxford, Didcot OX11 0SG
United Kingdom

 Email: tim.chown@jisc.ac.uk

Lenny Giuliano
Juniper Networks, Inc.
2251 Corporate Park Drive
Herndon, Virginia 20171
United States

 Email: lenny@juniper.net

Toerless Eckert
Futurewei Technologies Inc.
2330 Central Expy
Santa Clara 95050
USA

 Email: tte+ietf@cs.fau.de

draft-ietf-mboned-driad-amt-discovery-02 - DNS Reverse IP AMT Discovery

draft-ietf-mboned-driad-amt-discovery-02 - DNS Reverse IP AMT Discovery

Index
Prev
Next
Forward 5

Mboned

Internet-Draft

Updates: 7450 (if approved)

Intended status: Standards Track

Expires: September 9, 2019

J. Holland

Akamai Technologies, Inc.

March 08, 2019

DNS Reverse IP AMT Discovery

draft-ietf-mboned-driad-amt-discovery-02

Abstract

 This document updates RFC 7450 (Automatic Multicast Tunneling, or
 AMT) by extending the relay discovery process to use a new DNS
 resource record named AMTRELAY when discovering AMT relays for
 source-specific multicast channels. The reverse IP DNS zone for a
 multicast sender's IP address is configured to use AMTRELAY resource
 records to advertise a set of AMT relays that can receive and forward
 multicast traffic from that sender over an AMT tunnel.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Background

	 1.2. Terminology
	 1.2.1. Relays and Gateways

	 1.2.2. Definitions

	2. Relay Discovery Operation
	 2.1. Overview

	 2.2. Signaling and Discovery

	 2.3. Happy Eyeballs
	 2.3.1. Overview

	 2.3.2. Connection Definition

	 2.4. Optimal Relay Selection
	 2.4.1. Overview

	 2.4.2. Preference Ordering

	 2.4.3. Connecting to Multiple Relays

	 2.5. Guidelines for Restarting Discovery
	 2.5.1. Overview

	 2.5.2. Updates to Restarting Events

	 2.5.3. Tunnel Stability

	 2.5.4. Traffic Health

	 2.5.5. Relay Loaded or Shutting Down

	 2.5.6. Relay Discovery Messages vs. Restarting Discovery

	 2.5.7. Independent Discovery Per Traffic Source

	 2.6. DNS Configuration

	 2.7. Waiting for DNS resolution

	3. Example Deployments
	 3.1. Example Receiving Networks
	 3.1.1. Tier 3 ISP

	 3.1.2. Small Office

	 3.2. Example Sending Networks
	 3.2.1. Sender-controlled Relays

	 3.2.2. Provider-controlled Relays

	4. AMTRELAY Resource Record Definition
	 4.1. AMTRELAY RRType

	 4.2. AMTRELAY RData Format
	 4.2.1. RData Format - Precedence

	 4.2.2. RData Format - Discovery Optional (D-bit)

	 4.2.3. RData Format - Type

	 4.2.4. RData Format - Relay

	 4.3. AMTRELAY Record Presentation Format
	 4.3.1. Representation of AMTRELAY RRs

	 4.3.2. Examples

	5. IANA Considerations

	6. Security Considerations
	 6.1. Use of AMT

	 6.2. Record-spoofing

	 6.3. Congestion

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Unknown RRType construction

	Author's Address

1. Introduction

 This document defines DNS Reverse IP AMT Discovery (DRIAD), a
 mechanism for AMT gateways to discover AMT relays that are capable of
 forwarding multicast traffic from a known source IP address.

 AMT (Automatic Multicast Tunneling) is defined in [RFC7450], and
 provides a method to transport multicast traffic over a unicast
 tunnel, in order to traverse non-multicast-capable network segments.

 Section 4.1.5 of [RFC7450] explains that the relay selection process
 for AMT is intended to be more flexible than the particular discovery
 method described in that document, and further explains that the
 selection process might need to depend on the source of the multicast
 traffic in some deployments, since a relay must be able to receive
 multicast traffic from the desired source in order to forward it.

 That section goes on to suggest DNS-based queries as a possible
 solution. DRIAD is a DNS-based solution, as suggested there. This
 solution also addresses the relay discovery issues in the
 "Disadvantages" lists in Section 3.3 of [RFC8313] and Section 3.4 of
 [RFC8313].

 The goal for DRIAD is to enable multicast connectivity between
 separate multicast-enabled networks when neither the sending nor the
 receiving network is connected to a multicast-enabled backbone,
 without pre-configuring any peering arrangement between the networks.

 This document updates Section 5.2.3.4 of [RFC7450] by adding a new
 extension to the relay discovery procedure.

1.1. Background

 The reader is assumed to be familiar with the basic DNS concepts
 described in [RFC1034], [RFC1035], and the subsequent documents that
 update them, particularly [RFC2181].

 The reader is also assumed to be familiar with the concepts and
 terminology regarding source-specific multicast as described in
 [RFC4607] and the use of IGMPv3 [RFC3376] and MLDv2 [RFC3810] for
 group management of source-specific multicast channels, as described
 in [RFC4604].

 The reader should also be familiar with AMT, particularly the
 terminology listed in Section 3.2 of [RFC7450] and Section 3.3 of
 [RFC7450].

1.2. Terminology

1.2.1. Relays and Gateways

 When reading this document, it's especially helpful to recall that
 once an AMT tunnel is established, the relay receives native
 multicast traffic and sends unicast tunnel-encapsulated traffic to
 the gateway, and the gateway receives the tunnel-encapsulated
 packets, decapsulates them, and forwards them as native multicast
 packets, as illustrated in Figure 1.

 Multicast +‑‑‑‑‑‑‑‑‑‑‑+ Unicast +‑‑‑‑‑‑‑‑‑‑‑‑‑+ Multicast
>‑‑‑‑‑‑‑‑‑> | AMT relay | >=======> | AMT gateway | >‑‑‑‑‑‑‑‑‑>
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: AMT Tunnel Illustration

1.2.2. Definitions

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Term | Definition |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
(S,G)	A source‑specific multicast channel, as described in
	[RFC4607]. A pair of IP addresses with a source host
	IP and destination group IP.
discovery	A broker or load balancer for AMT relay discovery,
broker	as mentioned in section 4.2.1.1 of [RFC7450].
downstream	Further from the source of traffic, as described in
	[RFC7450].
FQDN	Fully Qualified Domain Name, as described in
	[RFC8499]
gateway	An AMT gateway, as described in [RFC7450]
L flag	The "Limit" flag described in Section 5.1.1.4 of
	[RFC7450]
relay	An AMT relay, as described in [RFC7450]
RPF	Reverse Path Forwarding, as described in [RFC5110]
RR	A DNS Resource Record, as described in [RFC1034]
RRType	A DNS Resource Record Type, as described in
	[RFC1034]
SSM	Source‑specific multicast, as described in [RFC4607]
upstream	Closer to the source of traffic, as described in
	[RFC7450].
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] and [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Relay Discovery Operation

2.1. Overview

 The AMTRELAY resource record (RR) defined in this document is used to
 publish the IP address or domain name of a set of AMT relays or
 discovery brokers that can receive, encapsulate, and forward
 multicast traffic from a particular sender.

 The sender is the owner of the RR, and configures the zone so that it
 contains a set of RRs that provide the addresses or domain names of
 AMT relays (or discovery brokers that advertise relays) that can
 receive multicast IP traffic from that sender.

 This enables AMT gateways in remote networks to discover an AMT relay
 that is capable of forwarding traffic from the sender. This in turn
 enables those AMT gateways to receive the multicast traffic tunneled
 over a unicast AMT tunnel from those relays, and then to pass the
 multicast packets into networks or applications that are using the
 gateway to subscribe to traffic from that sender.

 This mechanism only works for source-specific multicast (SSM)
 channels. The source address of the (S,G) is reversed and used as an
 index into one of the reverse mapping trees (in-addr.arpa for IPv4,
 as described in Section 3.5 of [RFC1035], or ip6.arpa for IPv6, as
 described in Section 2.5 of [RFC3596]).

 This mechanism should be treated as an extension of the AMT relay
 discovery procedure described in Section 5.2.3.4 of [RFC7450]. A
 gateway that supports this method of AMT relay discovery SHOULD use
 this method whenever it's performing the relay discovery procedure,
 and the source IP addresses for desired (S,G)s are known to the
 gateway, and conditions match the requirements outlined in
 Section 2.4.

 Some detailed example use cases are provided in Section 3, and other
 applicable example topologies appear in Section 3.3 of [RFC8313],
 Section 3.4 of [RFC8313], and Section 3.5 of [RFC8313].

2.2. Signaling and Discovery

 This section describes a typical example of the end-to-end process
 for signaling a receiver's join of a SSM channel that relies on an
 AMTRELAY RR.

 The example in Figure 2 contains 2 multicast-enabled networks that
 are both connected to the internet with non-multicast-capable links,
 and which have no direct association with each other.

 A content provider operates a sender, which is a source of multicast
 traffic inside a multicast-capable network.

 An end user who is a customer of the content provider has a
 multicast-capable internet service provider, which operates a
 receiving network that uses an AMT gateway. The AMT gateway is
 DRIAD-capable.

 The content provider provides the user with a receiving application
 that tries to subscribe to at least one (S,G)
RFC1242 - Benchmarking Terminology for Network Interconnection Devices

1242 - Benchmarking Terminology for Network Interconnection Devices

Index
Prev
Next
Forward 5

Network Working Group

Request for Comments: 1242

S. Bradner, Editor

Harvard University

July 1991

Benchmarking Terminology for Network Interconnection Devices

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Abstract

 This memo discusses and defines a number of terms that are used in
 describing performance benchmarking tests and the results of such
 tests. The terms defined in this memo will be used in additional
 memos to define specific benchmarking tests and the suggested format
 to be used in reporting the results of each of the tests. This memo
 is a product of the Benchmarking Methodology Working Group (BMWG) of
 the Internet Engineering Task Force (IETF).

1. Introduction

 Vendors often engage in "specsmanship" in an attempt to give their
 products a better position in the marketplace. This usually involves
 much "smoke & mirrors" used to confuse the user. This memo and
 follow-up memos attempt to define a specific set of terminology and
 tests that vendors can use to measure and report the performance
 characteristics of network devices. This will provide the user
 comparable data from different vendors with which to evaluate these
 devices.

2. Definition format

 Term to be defined. (e.g., Latency)

 Definition:

 The specific definition for the term.

Discussion:
 A brief discussion about the term, it's application
 and any restrictions on measurement procedures.

Measurement units:
 The units used to report measurements of this
 term, if applicable.

 Issues:

 List of issues or conditions that effect this term.

 See Also:

 List of other terms that are relevant to the discussion
 of this term.

3. Term definitions

3.1 Back-to-back

 Definition:

 Fixed length frames presented at a rate such that there
 is the minimum legal separation for a given medium
 between frames over a short to medium period of time,
 starting from an idle state.

Discussion:
 A growing number of devices on a network can produce
 bursts of back‑to‑back frames. Remote disk servers
 using protocols like NFS, remote disk backup systems
 like rdump, and remote tape access systems can be
 configured such that a single request can result in
 a block of data being returned of as much as 64K octets.
 Over networks like ethernet with a relatively small MTU
 this results in many fragments to be transmitted. Since
 fragment reassembly will only be attempted if all
 fragments have been received, the loss of even one
 fragment because of the failure of some intermediate
 network device to process enough continuous frames can
 cause an endless loop as the sender repetitively
 attempts to send its large data block.

 With the increasing size of the Internet, routing
 updates can span many frames, with modern routers able
 to transmit very quickly. Missing frames of routing
 information can produce false indications of
 unreachability. Tests of this parameter are intended
 to determine the extent of data buffering in the
 device.

 Measurement units:

 Number of N-octet frames in burst.

 Issues:

 See Also:

3.2 Bridge

 Definition:

 A system which forwards data frames based on information
 in the data link layer.

 Discussion:

 Measurement units:

 n/a

 Issues:

See Also:
 bridge/router (3.3)
 router (3.15)

3.3 bridge/router

 Definition:

 A bridge/router is a network device that can selectively
 function as a router and/or a bridge based on the
 protocol of a specific frame.

 Discussion:

 Measurement units:

 n/a

 Issues:

See Also:
 bridge (3.2)
 router (3.15)

3.4 Constant Load

 Definition:

 Fixed length frames at a fixed interval time.

Discussion:
 Although it is rare, to say the least, to encounter
 a steady state load on a network device in the real
 world, measurement of steady state performance may
 be useful in evaluating competing devices. The
 frame size is specified and constant. All device
 parameters are constant. When there is a checksum
 in the frame, it must be verified.

 Measurement units:

 n/a

 Issues:

 unidirectional vs. bidirectional

 See Also:

3.5 Data link frame size

Definition:
 The number of octets in the frame from the first octet
 following the preamble to the end of the FCS, if
 present, or to the last octet of the data if there
 is no FCS.

Discussion:
 There is much confusion in reporting the frame
 sizes used in testing network devices or network
 measurement. Some authors include the checksum,
 some do not. This is a specific definition for use
 in this and subsequent memos.

 Measurement units:

 octets

 Issues:

 See Also:

3.6 Frame Loss Rate

Definition:
 Percentage of frames that should have been forwarded
 by a network device under steady state (constant)
 load that were not forwarded due to lack of
 resources.

Discussion:
 This measurement can be used in reporting the
 performance of a network device in an overloaded
 state. This can be a useful indication of how a
 device would perform under pathological network
 conditions such as broadcast storms.

 Measurement units:

 Percentage of N-octet offered frames that are dropped.
 To be reported as a graph of offered load vs frame loss.

 Issues:

See Also:
 overhead behavior (3.11)
 policy based filtering (3.13)
 MTU mismatch behavior (3.10)

3.7 Inter Frame Gap

 Definition:

 The delay from the end of a data link frame as defined
 in section 3.5, to the start of the preamble of the
 next data link frame.

Discussion:
 There is much confusion in reporting the between
 frame time used in testing network devices. This
 is a specific definition for use in this and subsequent
 memos.

Measurement units:
 Time with fine enough units to distinguish between
 2 events.

 Issues:

 Link data rate.

 See Also:

3.8 Latency

Definition:
 For store and forward devices:
 The time interval starting when the last bit of the
 input frame reaches the input port and ending when
 the first bit of the output frame is seen on the
 output port.

 For bit forwarding devices:
 The time interval starting when the end of the first
 bit of the input frame reaches the input port and
 ending when the start of the first bit of the output
 frame is seen on the output port.

Discussion:
 Variability of latency can be a problem.
 Some protocols are timing dependent (e.g., LAT and IPX).
 Future applications are likely to be sensitive to

 network latency. Increased device delay can reduce
 the useful diameter of net. It is desired to
 eliminate the effect of the data rate on the latency
 measurement. This measurement should only reflect the
 actual within device latency. Measurements should be
 taken for a spectrum of frame sizes without changing
 the device setup.

 Ideally, the measurements for all devices would be from
 the first actual bit of the frame after the preamble.
 Theoretically a vendor could design a device that
 normally would be considered a store and forward
 device, a bridge for example, that begins transmitting
 a frame before it is fully received. This type of
 device is known as a "cut through" device. The
 assumption is that the device would somehow invalidate
 the partially transmitted frame if in receiving the
 remainder of the input frame, something came up that
 the frame or this specific forwarding of it was in
 error. For example, a bad checksum. In this case,
 the device would still be considered a store and
 forward device and the latency would still be
 from last bit in to first bit out, even though the
 value would be negative. The intent is to treat
 the device as a unit without regard to the internal
 structure.

Measurement units:
 Time with fine enough units to distinguish between
 2 events.

 Issues:

See Also:
 link speed mismatch (3.9)
 constant load (3.4)
 back‑to‑back (3.1)
 policy based filtering (3.13)
 single frame behavior (3.16)

3.9 Link Speed Mismatch

 Definition:

 Speed mismatch between input and output data rates.

 Discussion:

 This does not refer to frame rate per se, it refers to
 the actual data rate of the data path. For example,

 an Ethernet on one side and a 56KB serial link on the
 other. This is has also been referred to as the "fire
 hose effect". Networks that make use of serial links
 between local high speed networks will usually have
 link speed mismatch at each end of the serial links.

 Measurement units:

 Ratio of input and output data rates.

 Issues:

See Also:
 constant load (3.4)
 back‑to‑back (3.1)

3.10 MTU-mismatch behavior

 Definition:

 The network MTU (Maximum Transmission Unit) of the
 output network is smaller than the MTU of the input
 network, this results in fragmentation.

 Discussion:

 The performance of network devices can be significantly
 affected by having to fragment frames.

 Measurement units:

 Description of behavior.

 Issues:

 See Also:

3.11 Overhead behavior

 Definition:

 Processing done other than that for normal data frames.

Discussion:
 Network devices perform many functions in addition
 to forwarding frames. These tasks range from internal
 hardware testing to the processing of routing
 information and responding to network management
 requests. It is useful to know what the effect of
 these sorts of tasks is on the device performance.
 An example would be if a router were to suspend
 forwarding or accepting frames during the processing
 of large routing update for a complex protocol like

 OSPF. It would be good to know of this sort of
 behavior.

 Measurement units:

 Any quantitative understanding of this behavior is by
 the determination of its effect on other measurements.

Issues:
 bridging and routing protocols
 control processing
 icmp
 ip options processing
 fragmentation
 error processing
 event logging/statistics collection
 arp

 See Also:

 policy based filtering (3.13)

3.12 Overloaded behavior

 Definition:

 When demand exceeds available system resources.

 Discussion:

 Devices in an overloaded state will lose frames. The
 device might lose frames that contain routing or
 configuration information. An overloaded state is
 assumed when there is any frame loss.

 Measurement units:

 Description of behavior of device in any overloaded
 states for both input and output overload conditions.

Issues:
 How well does the device recover from overloaded state?
 How does source quench production effect device?
 What does device do when its resources are exhausted?
 What is response to system management in overloaded
 state?

 See Also:

3.13 Policy based filtering

 Definition:

 Filtering is the process of discarding received

 frames by administrative decision where normal
 operation would be to forward them.

Discussion:
 Many network devices have the ability to be
 configured to discard frames based on a number
 of criteria. These criteria can range from simple
 source or destination addresses to examining
 specific fields in the data frame itself.
 Configuring many network devices to perform
 filtering operations impacts the throughput
 of the device.

 Measurement units:

 n/a

Issues:
 flexibility of filter options
 number of filter conditions

 See Also:

3.14 Restart behavior

 Definition:

 Reinitialization of system causing data loss.

Discussion:
 During a period of time after a power up or
 reset, network devices do not accept and forward
 frames. The duration of this period of unavailability
 can be useful in evaluating devices. In addition,
 some network devices require some form of reset
 when specific setup variables are modified. If the
 reset period were long it might discourage network
 managers from modifying these variables on production
 networks.

 Measurement units:

 Description of device behavior under various restart
 conditions.

Issues:
 Types:
 power on
 reload software image
 flush port, reset buffers
 restart current code image, without reconfuration

 Under what conditions is a restart required?
 Does the device know when restart needed (i.e., hung
 state timeout)?
 Does the device recognize condition of too frequent
 auto‑restart?
 Does the device run diagnostics on all or some resets?
 How may restart be initiated?
 physical intervention
 remote via terminal line or login over network

 See Also:

3.15 Router

 Definition:

 A system which forwards data frames based on
 information in the network layer.

Discussion:
 This implies "running" the network level protocol
 routing algorithm and performing whatever actions
 that the protocol requires. For example, decrementing
 the TTL field in the TCP/IP header.

 Measurement units:

 n/a

 Issues:

See Also:
 bridge (3.2)
 bridge/router (3.3)

3.16 Single frame behavior

 Definition:

 One frame received on the input to a device.

Discussion:
 A data "stream" consisting of a single frame can
 require a network device to do a lot of processing.
 Figuring routes, performing ARPs, checking
 permissions etc., in general, setting up cache entries.
 Devices will often take much more time to process a
 single frame presented in isolation than it would if
 the same frame were part of a steady stream. There
 is a worry that some devices would even discard a single
 frame as part of the cache setup procedure under the

 assumption that the frame is only the first of many.

 Measurement units:

 Description of the behavior of the device.

 Issues:

 See Also:

 policy based filtering (3.13)

3.17 Throughput

 Definition:

 The maximum rate at which none of the offered frames
 are dropped by the device.

Discussion:
 The throughput figure allows vendors to report a
 single value which has proven to have use in the
 marketplace. Since even the loss of one frame in a
 data stream can cause significant delays while
 waiting for the higher level protocols to time out,
 it is useful to know the actual maximum data
 rate that the device can support. Measurements should
 be taken over a assortment of frame sizes. Separate
 measurements for routed and bridged data in those
 devices that can support both. If there is a checksum
 in the received frame, full checksum processing must
 be done.

Measurement units:
 N‑octet input frames per second
 input bits per second

Issues:
 single path vs. aggregate
 load
 unidirectional vs bidirectional
 checksum processing required on some protocols

See Also:
 frame loss rate (3.6)
 constant load (3.4)
 back‑to‑back (3.1)

4. Acknowledgements

 This memo is a product of the IETF BMWG working group:

Chet Birger, Coral Networks
Scott Bradner, Harvard University (chair)
Steve Butterfield, independant consultant
Frank Chui, TRW
Phill Gross, CNRI
Stev Knowles, FTP Software, Inc.
Mat Lew, TRW
Gary Malkin, FTP Software, Inc.
K.K. Ramakrishnan, Digital Equipment Corp.
Mick Scully, Ungerman Bass
William M. Seifert, Wellfleet Communications Corp.
John Shriver, Proteon, Inc.
Dick Sterry, Microcom
Geof Stone, Network Systems Corp.
Geoff Thompson, SynOptics
Mary Youssef, IBM

Security Considerations

 Security issues are not discussed in this memo.

Author's Address

Scott Bradner
Harvard University
William James Hall 1232
33 Kirkland Street
Cambridge, MA 02138

 Phone: (617) 495-3864

EMail: SOB@HARVARD.HARVARD.EDU
Or, send comments to: bmwg@harvisr.harvard.edu.

RFC eBook Conversion

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

make-ncx - Create NCX file

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarc